2011-2012学年北京市海淀区七年级(上)期末数学试卷
数学试卷---五套七年级数学上册期末试卷(附答案)
数学期末考试卷一、选择题(每小题3分,共36分) 1、下列说,其中正确的个数为( )①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
A .1个B .2个C .3个D .4个 2、下列计算中正确的是( )A .532a a a =+B .22a a -=-C .33)(a a =-D .22)(a a -- 3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( ) A .13107.4⨯元 B .12107.4⨯ C .131071.4⨯元 D .131072.4⨯元5、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 。
a b 图3B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是4 。
D .多项式322++xy x 是三次三项式 6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x C .13413=+--x x D .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
2011-2012学年北京市海淀区七年级(上)期末数学试卷
2011-2012学年北京市海淀区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(3分)﹣2的绝对值等于()A.﹣B.C.﹣2D.22.(3分)神舟八号于2011年11月1日5时58分由改进型“长征二号”火箭顺利发射升空,此次火箭的起飞质量为497000公斤,数字497000用科学记数法可以表示为()A.497×103B.0.497×106C.4.97×105D.49.7×104 3.(3分)下列结果为负数的是()A.﹣(﹣3)B.﹣32C.(﹣3)2D.|﹣3|4.(3分)下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b5.(3分)如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE6.(3分)已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥7.(3分)若关于x的方程ax+3x=2的解是x=,则a的值是()A.﹣1B.5C.1D.﹣58.(3分)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°9.(3分)若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.10.(3分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种二、填空题(本题共18分,每小题3分)11.(3分)若一个数的相反数是2,则这个数是.12.(3分)∠α=18°20′,∠β=6°30′,则α+β=.13.(3分)如图所示,线段AB=4cm,BC=7cm,则AC=cm.14.(3分)若|m﹣3|+(n+2)2=0,则m+2n的值为.15.(3分)如果a﹣3b=8,那么代数式5﹣a+3b的值是.16.(3分)观察下面两行数第一行:4,﹣9,16,﹣25,36,…第二行:6,﹣7,18,﹣23,38,…则第二行中的第6个数是;第n个数是.三、解答题(本题共24分,第19题8分,其他题每题4分)17.(4分)计算:(﹣1)10×3+8÷(﹣4).18.(4分)化简:2x+5+3x﹣7.19.(8分)解方程:(1)2x﹣9=5x+3(2).20.(4分)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.21.(4分)画一画如下图所示,河流在两个村庄A、B的附近可以近似地看成是两条折线段(图中l),A、B分别在河的两旁.现要在河边修建一个水泵站,同时向A、B两村供水,为了节约建设的费用,就要使所铺设的管道最短.某人甲提出了这样的建议:从B 向河道作垂线交l于P,则点P为水泵站的位置.(1)你是否同意甲的意见?(填“是”或“否”);(2)若同意,请说明理由,若不同意,那么你认为水泵站应该建在哪?请在图中作出来,并说明作图的依据.四、解答题(本题共28分,第22题5分,第23题5分,第24题6分,第25题6分,第26题6分)22.(5分)如图所示,已知∠COB=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠BOD的度数.23.(5分)列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?24.(6分)关于x的方程(m﹣1)x n﹣3=0是一元一次方程.(1)则m,n应满足的条件为:m,n;(2)若此方程的根为整数,求整数m的值.25.(6分)已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN=cm;(2)猜想线段MN与线段AB长度的关系,即MN=AB,并说明理由.26.(6分)有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是;(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m,则m的最大值为;(3)若小明将1到n(n≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m.探究m的最小值和最大值.2011-2012学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(3分)﹣2的绝对值等于()A.﹣B.C.﹣2D.2【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选:D.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2.(3分)神舟八号于2011年11月1日5时58分由改进型“长征二号”火箭顺利发射升空,此次火箭的起飞质量为497000公斤,数字497000用科学记数法可以表示为()A.497×103B.0.497×106C.4.97×105D.49.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将497000用科学记数法表示为:4.97×105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(3分)下列结果为负数的是()A.﹣(﹣3)B.﹣32C.(﹣3)2D.|﹣3|【分析】负数就是小于的数,利用绝对值的性质,以及平方的计算方法,计算出各项的值,即可作出判断.【解答】解:A、﹣(﹣3)=3,是正数,故A选项错误;B、﹣32=﹣9,是负数,故B选项正确;C、(﹣3)2=9,是正数,故C选项错误;D、|﹣3|=3,是正数,故D选项错误.故选:B.【点评】本题主要考查了绝对值与有理数的乘方的计算,是基础的题目.4.(3分)下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【解答】解:A、3a与b不是同类项,不能合并.错误;B、3a﹣a=2a.错误;C、2a3与3a2不是同类项,不能合并.错误;D、﹣a2b+2a2b=a2b.正确.故选:D.【点评】同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项;注意不是同类项的一定不能合并.5.(3分)如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE【分析】求∠AOE的余角,根据互余的定义,即是求与∠AOE的和是90°的角,根据角相互间的和差关系可得.【解答】解:已知点O在直线AB上,∠BOC=90°,∴∠AOC=90°,∴∠AOE+∠COE=90°,∴∠AOE的余角是∠COE,故选:A.【点评】本题主要考查了余角和补角的定义,是一个基本的类型.6.(3分)已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【解答】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选:B.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.7.(3分)若关于x的方程ax+3x=2的解是x=,则a的值是()A.﹣1B.5C.1D.﹣5【分析】把x=代入方程ax+3x=2得到一个关于a的方程,求出方程的解即可.【解答】解:把x=代入方程ax+3x=2得:a+=2,∴a+3=8,∴a=5,故选:B.【点评】本题考查了解一元一次方程和一元一次方程的解等知识点的应用,关键是根据方程的解的定义得出一个关于a的方程,题目比较典型,难度不大.8.(3分)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°【分析】先根据平角的定义求出∠COB的度数,再由OD平分∠BOC即可求出∠2的度数.【解答】解:∵∠1=40°,∴∠COB=180°﹣40°=140°,∵OD平分∠BOC,∴∠2=∠BOC=×140°=70°.故选:D.【点评】本题考查的是平角的定义及角平分线的定义,熟知以上知识是解答此题的关键.9.(3分)若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【分析】根据m<1<﹣m,求出m的取值范围,进而确定M的位置即可.【解答】解:∵m<1<﹣m,∴,解得:m<﹣1.故选:A.【点评】此题主要考查了不等式组的解法以及利用数轴确定点的位置,根据已知得出m的取值范围是解题关键.10.(3分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x 的值为小数,不合题意.【解答】解:∵输出的结果为556,∴5x+1=556,解得x=111;而111<500,当5x+1等于111时最后输出的结果为556,即5x+1=111,解得x=22;当5x+1=22时最后输出的结果为556,即5x+1=22,解得x=4.2(不合题意舍去),所以开始输入的x值可能为22或111.故选:B.【点评】本题考查了代数式求值:先把代数式进行变形,然后把满足条件的字母的值代入计算得到对应的代数式的值.也考查了解一元一方程.二、填空题(本题共18分,每小题3分)11.(3分)若一个数的相反数是2,则这个数是﹣2.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:﹣2的相反数为2,∴这个数为﹣2.故答案为:﹣2.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.12.(3分)∠α=18°20′,∠β=6°30′,则α+β=24°50′.【分析】代入后相加即可,注意:18°+6°=24°,20′+30′=50′.【解答】解:∠α+∠β=18°20′+6°30′=24°50′,故答案为:24°50′.【点评】本题考查了对角的计算的理解,注意:计算时分别相加(度+度、分+分、秒+秒,满60进1),如1°36′+2°43′=3°79′=4°19′.13.(3分)如图所示,线段AB=4cm,BC=7cm,则AC=11cm.【分析】直接利用AC=AB+BC计算即可.【解答】解:∵AB=4cm,BC=7cm,∴AC=AB+BC=4cm+7cm=11cm.故答案为11.【点评】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.14.(3分)若|m﹣3|+(n+2)2=0,则m+2n的值为﹣1.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣3|+(n+2)2=0,∴,解得,∴m+2n=3﹣4=﹣1.故答案为﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.(3分)如果a﹣3b=8,那么代数式5﹣a+3b的值是﹣3.【分析】将已知条件整体代入所求代数式即可.【解答】解:∵a﹣3b=8,∴5﹣a+3b=5﹣(a﹣3b)=5﹣8=﹣3.故本题答案为﹣3.【点评】本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.16.(3分)观察下面两行数第一行:4,﹣9,16,﹣25,36,…第二行:6,﹣7,18,﹣23,38,…则第二行中的第6个数是﹣47;第n个数是(﹣1)n+1(n+1)2+2.【分析】由第一行可知,每个数字为完全平方数,即第n个数字为(n+1)2,符号是偶数项为负,第二行每一个数比第一行对应的数大2,由此得出规律.【解答】解:根据观察的规律,得第二行中的第6个数是﹣(6+1)2+2=﹣47;第n个数是(﹣1)n+1(n+1)2+2;故答案为:﹣47,(﹣1)n+1(n+1)2+2.【点评】本题考查了数字变化规律型题.关键是由特殊到一般,找出数字规律,符号规律.三、解答题(本题共24分,第19题8分,其他题每题4分)17.(4分)计算:(﹣1)10×3+8÷(﹣4).【分析】首先进行乘方运算,然后在进行乘除法运算即可.【解答】解:原式=1×3﹣8÷4=3﹣2=1.【点评】本题主要考查有理数的混合运算,关键在于正确认真进行计算.18.(4分)化简:2x+5+3x﹣7.【分析】合并同类项的法则就是字母不变,系数想加减.【解答】解:原式=(2x+3x)+(5﹣7)=5x﹣2.【点评】本题考查合并同类项的法则关键知道字母不变,系数想加减.19.(8分)解方程:(1)2x﹣9=5x+3(2).【分析】(1)按照移项,合并,系数化为1的步骤解题即可;(2)按照去分母,去括号,移项,合并的步骤解题即可.【解答】解:(1)移项得:2x﹣5x=3+9.合并得:﹣3x=12.系数化为1得:x=﹣4.(2)解:两边同时乘以12,得2(5x﹣7)+12=3(3x﹣1).去括号得:10x﹣14+12=9x﹣3.移项得:10x﹣9x=﹣3+14﹣12,合并得:x=﹣1.【点评】考查解一元一次方程;掌握解一元一次方程的步骤是解决本题的关键;注意去分母时单独的一个数也要乘最小公倍数.20.(4分)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.【分析】先去括号,x2﹣(5x2﹣4y)+3(x2﹣y)=x2﹣5x2+4y+3x2﹣3y;再合并同类项得﹣x2+y;最后把x=﹣1,y=2代入式子求值.【解答】解:x2﹣(5x2﹣4y)+3(x2﹣y)=x2﹣5x2+4y+3x2﹣3y=﹣x2+y;∴当x=﹣1,y=2时,原式=﹣(﹣1)2+2=1.【点评】此类化简求值题目的解答,要按顺序先化简,再代入计算求值.关键是化为最简的代数式,才能简化计算.21.(4分)画一画如下图所示,河流在两个村庄A、B的附近可以近似地看成是两条折线段(图中l),A、B分别在河的两旁.现要在河边修建一个水泵站,同时向A、B两村供水,为了节约建设的费用,就要使所铺设的管道最短.某人甲提出了这样的建议:从B 向河道作垂线交l于P,则点P为水泵站的位置.(1)你是否同意甲的意见?否(填“是”或“否”);(2)若同意,请说明理由,若不同意,那么你认为水泵站应该建在哪?请在图中作出来,并说明作图的依据.【分析】(1)根据线段的性质可判断;(2)水泵应在线段AB上,连接AB,与l的交点,即为水泵的位置;【解答】解:(1)否;(2)连接AB,交l于点Q,则水泵站应该建在点Q处;依据为:两点之间,线段最短.【点评】本题主要考查了线段的性质:两点之间线段最短;体现了数学知识在实际中的应用.四、解答题(本题共28分,第22题5分,第23题5分,第24题6分,第25题6分,第26题6分)22.(5分)如图所示,已知∠COB=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠BOD的度数.【分析】由角平分线的定义,可以得到∠BOD=∠AOB÷2,从而可以转化为求∠AOB.【解答】解:∵∠COB=2∠AOC,且∠AOC=40°,∴∠COB=2×40°=80°,∴∠AOB=∠AOC+∠COB=40°+80°=120°,∵OD平分∠AOB,∴∠BOD=∠AOB÷2=120°÷2=60°.∴∠BOD的度数是60°.故答案为60°.【点评】本题主要考查角平分线的知识点,比较简单.23.(5分)列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x 人,根据题意可列方程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:生产圆形铁片的有24人,生产长方形铁片的有18人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.24.(6分)关于x的方程(m﹣1)x n﹣3=0是一元一次方程.(1)则m,n应满足的条件为:m≠1,n=1;(2)若此方程的根为整数,求整数m的值.【分析】(1)根据一元一次方程的定义:含有一个未知数,未知数的次数为1,求解;(2)先由(1)得方程(m﹣1)x﹣3=0,求出x,再根据此方程的根为整数确定m的值.【解答】解:(1)根据一元一次方程的定义得:m﹣1≠0,n=1,即m≠1,n=1,故答案为:≠1,=1;(2)由(1)可知方程为(m﹣1)x﹣3=0,则x=∵此方程的根为整数,∴为整数.又m为整数,则m﹣1=﹣3,﹣1,1,3,∴m=﹣2,0,2,4.【点评】本题考查的是一元一次方程的定义,根据题意确定m的值是解答此题的关键.25.(6分)已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN=5cm;(2)猜想线段MN与线段AB长度的关系,即MN=AB,并说明理由.【分析】(1)因为点C恰好为线段AB上一点,所以MN=MC+NC=AC+BC=(AC+BC)=AB=5cm;(2)分三种情况当C在线段AB上时,当C在线段AB的延长线上时,当C在线段BA的延长线上时,进行推论说明.【解答】解:(1)因为点C恰好为线段AB上一点,所以MN=MC+NC=AC+BC=(AC+BC)=AB=5cm;故答案为:5;(2);证明:∵M是线段AC的中点,∴CM=AC,∵N是线段BC的中点,∴CN=BC,…(3分)以下分三种情况讨论,当C在线段AB上时,MN=CM+CN=AB;…(4分)当C在线段AB的延长线上时,MN=CM﹣CN=AB;…(5分)当C在线段BA的延长线上时,MN=CN﹣CM=AB;…(6分)综上:MN=AB.故答案为:.【点评】考查了两点间的距离.首先要根据题意,考虑所有可能情况,画出正确图形.再根据中点的概念,进行线段的计算与证明.26.(6分)有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是4;(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m,则m的最大值为2010;(3)若小明将1到n(n≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m.探究m的最小值和最大值.【分析】(1)根据已知得出输入与输出结果的规律求出即可;(2)根据题意每次输入都是与前一次运算结果求差后取绝对值,转化为奇偶性的性质然后讨论最大值.(3)根据分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算分别得出最大值与最小值.【解答】解:(1)根据题意可以得出:||3﹣4|﹣5|=|1﹣5|=4;故答案为:4.(2)由于输入的数都是非负数.当x1≥0,x2≥0时,|x1﹣x2|不超过x1,x2中最大的数.对x1≥0,x2≥0,x3≥0,则||x1﹣x2|﹣x3|不超过x1,x2,x3中最大的数.小明输入这2011个数设次序是x1,x2,x2011,相当于计算:||||x1﹣x2|﹣x3|﹣x2011|﹣x2011|=P.因此P的值≤2011.另外从运算奇偶性分析,x1,x2为整数.|x1﹣x2|与x1+x2奇偶性相同.因此P与x1+x2+…+x2011的奇偶性相同.但x1+x2+…+x2011=1+2+2011=偶数.于是断定P≤2010.我们证明P可以取到2010.对1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0.|||(4k+1)﹣(4k+3)|﹣(4k+4)|﹣(4k+2)|=0,对k=0,1,2,均成立.因此,1﹣2008可按上述办法依次输入最后显示结果为0.而后||2009﹣2010|﹣2011|=2010.所以P的最大值为2010.故答案为:2010;(3)对于任意两个正整数x1,x2,|x1﹣x2|一定不超过x1和x2中较大的一个,对于任意三个正整数x1,x2,x3,||x1﹣x2|﹣x3|一定不超过x1,x2和x3中最大的一个,以此类推,设小明输入的n个数的顺序为x1,x2,…x n,则m=|||…|x1﹣x2|﹣x3|﹣…|﹣x n|,m一定不超过x1,x2,…x n,中的最大数,所以0≤m≤n,易知m与1+2+…+n的奇偶性相同;1,2,3可以通过这种方式得到0:||3﹣2|﹣1|=0;任意四个连续的正整数可以通过这种方式得到0:|||a﹣(a+1)|﹣(a+3)|﹣(a+2)|=0(*);下面根据前面分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算.当n=4k时,1+2+…+n为偶数,则m为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n,则最大值为n;当n=4k+1时,1+2+…+n为奇数,则m为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n,则最大值为n;当n=4k+2时,1+2+…+n为奇数,则m为奇数,从1开始连续四个正整数结合得到0,仅剩下n和n﹣1,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n,最大值为n﹣1;当n=4k+3时,1+2+…+n为偶数,则m为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n,则最大值为n﹣1.【点评】此题考查了整数的奇偶性问题以及含有绝对值的函数最值问题,虽然以计算为载体,但首先要有试验观察和分情况讨论的能力.。
2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析
2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。
11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。
2023年海淀初一上数学期末试卷及答案
2023年海淀初一上数学期末试卷及答案
第一部分:选择题(共30题,每题2分,共60分)
1. 以下哪个数是整数?
A. 3/5
B. √2
C. -1.9
D. 0.4
2. 一个正方形的周长是16cm,那么它的边长是多少?
A. 4cm
B. 8cm
C. 16cm
D. 64cm
3. 在一个正五边形中,每个内角的度数是多少?
A. 90°
B. 108°
C. 120°
D. 135°
...
第二部分:计算题(共5题,每题10分,共50分)
1. 计算:8 × 3 + 6 ÷ 2 = ____
2. 现在是12点,半小时之后是几点几分?
3. 有一块长方形的土地,长为10m,宽为5m,要围起来,请
问需要多长的围墙?
...
第三部分:解答题(共5题,每题20分,共100分)
1. 计算:(3 + 5) × 2 ÷ 4 = ____
2. 小明在书架上有30本书,其中有1/5是科幻小说,1/3是推理小说,剩下的是其他类型的书。
请问推理小说有几本?
3. 某商场原价200元的商品打8折,现在的价格是多少?
...
答案
第一部分:选择题
1. C
2. A
3. B
...
第二部分:计算题
1. 30
2. 12:30
3. 30m
...
第三部分:解答题
1. 4
2. 10本
3. 160元
...。
2023届北京海淀区七年级数学第一学期期末综合测试模拟试题含解析
2022-2023学年七上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.关于x 的方程2(x -1)-a =0的根是3,则a 的值为( )A .4B .-4C .5D .-52.某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元3.下列计算正确的是( )A .a •a 2=a 2B .(x 3)2=x 5C .(2a)2=4a 2D .(x+1)2=x 2+1 4.把方程2x +214x -=1-15x +去分母,正确的是( ) A .40x+5(2x-1)=1-4(x+1) B .2x+ (2x-1)=1-(x+1)C .40x+5(2x-1)=20-4(x+1)D .2x+5(2x-1)=20-4(x+1) 5.某市有5500名学生参加考试,为了了解考试情况,从中抽取1名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1名考生是总体的一个样本;②5500名考生是总体;③样本容量是1.其中正确的说法有( ) A .0种B .1种C .2种D .3种 6.单项式43b x y 与214a x y 是同类项,那么a 、b 的值分别为( ) A .4、2 B .2、4 C .4、4 D .2、27.在下列说法中:①方程311142x x ++-=的解为5x =;②方程()3126x --=的解为2x =-;③方程253164y y ---=的解为3y =;④方程()()62520412x x -+=-的解为7x =.正确的有( )A .1个B .2个C .3个D .4个8.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A .调查全体女生B .调查全体男生C .调查九年级全体学生D .调查七,八,九年级各100名学生9.如图是一个简单的运算程序,如果输入的x 值为﹣2,则输出的结果为( )A .6B .﹣6C .14D .﹣1410.已知2016x n +7y 与–2017x 2m +3y 是同类项,则(2m –n )2的值是( )A .16B .4048C .–4048D .5 11.若23m xy -与2385n x y -的和是单项式,则m 、n 的值分别是( )A .m=2,n=2B .m=4,n=2C .m=4,n=1D .m=2,n=3 12.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性,若把第一个三角数记为1a ,第二个三角数记为2a ,…,第n 个三角数记为n a ,计算20202019a a -的值为( )A .2020B .2019C .2018D .2017二、填空题(每题4分,满分20分,将答案填在答题纸上)13.下面是某个宾馆的五个时钟,显示了同一时刻国外四个城市时间和北京时间,你能根据表格给出的国外四个城市与北京的时差,分别在时钟的下方表明前四个时钟所在的城市名称_____ _____ _____ ____14.如图,数轴上的两个点A .B 所对应的数分别为−8、7,动点M 、N 对应的数分别是m 、m+1.若AN=2BM ,m 的值等于_________.15.任意写出一个含有字母,a b 的五次三项式,其中最高次项的系数为2,常数项为9-:____16.单项式﹣2xy 2的系数是_____,次数是_____.17.已知三点M 、N 、P 不在同一条直线上,且MN =4,NP =3,M 、P 两点间的距离为x ,那么x 的取值范围是_______.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)老师买了13时30分开车的火车票,12时40分从家门口乘公交车赶往火车站.公交车的平均速度是30千米/时,在行驶13路程后改乘出租车,车速提高了1倍,结果提前10分钟到达车站.张老师家到火车站有多远? 19.(5分)(1)如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站C ,使它到A 、B 两村庄的距离的和最小,请在图中画出点C 的位置,并保留作图痕迹.(探索)(2)如图,C 、B 两个村庄在一条笔直的马路的两端,村庄A 在马路外,要在马路上建一个垃圾站O ,使得AO +BO +CO最小,请在图中画出点O 的位置.(3)如图,现有A 、B 、C 、D 四个村庄,如果要建一个垃圾站O ,使得AO +BO +CO +DO 最小,请在图中画出点O 的位置.20.(8分)先化简,再求值()()324323x y x y x x y ---++--⎡⎤⎣⎦,其中x 1=-,1y 2=-. 21.(10分)某粮库一周内进出库的吨数记录如下表(“+”表示进库,“-”表示出库,单位:顿): 星期一 二 三 四 五 六 日进出库数量 260+320- 150- 340+ 380- 200- 230+(1)经过这7天,粮库里的粮食是增多了还是减少了?增多了或减少了多少吨?(2)经过这7天,粮库管理员结算时发现粮库里还存有2480吨粮食,7天前粮库里存粮有多上吨?(3)如果进出库的装卸费都是每吨5元,那么这7天要付多少装卸费?22.(10分)如图,点O 是直线AE 上的一点,OC 是∠AOD 的平分线,∠BOD =13∠AOD .(1)若∠BOD=20°,求∠BOC的度数;(2)若∠BOC=n°,用含有n的代数式表示∠EOD的大小.23.(12分)如图,已知直线AB以及点C、点D、点E(1)画直线CD交直线AB于点O,画射线OE(2)在(1)所画的图中,若∠AOE=40°,∠EOD∶∠AOC=3∶4,求∠AOC的度数参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、A【解析】试题分析:虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=3代入2(x﹣1)﹣a=0中:得:2(3﹣1)﹣a=0解得:a=4故选A.考点:一元一次方程的解.2、C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135,解得:x =108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x =135,解得:x =180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C .【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般. 3、C【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则和积的乘方运算法则、完全平方公式分别计算得出答案.【详解】A 、a •a 2=a 3,故此选项错误;B 、(x 3)2=x 6,故此选项错误;C 、(2a)2=4a 2,正确;D 、(x+1)2=x 2+2x+1,故此选项错误.故选C .【点睛】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.4、C【分析】方程两边都乘以20,注意不要漏乘,可得答案. 【详解】解: 2x +214x -=1-15x + ∴ 405(21)204(1)x x x +-=-+故选C .【点睛】本题考查的是解一元一次方程中的去分母,掌握去分母时,不漏乘是解题的关键.5、B【分析】根据总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量分别进行分【详解】解:抽取的1名学生的成绩是一个样本,故①错误;5500名考生的考试成绩是总体,故②错误;因为从中抽取1名学生的成绩,所以样本容量是1,故③正确.故选B .【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握各个量的定义.6、A【分析】根据同类项的定义,即可求出a 、b 的值.【详解】解:∵单项式43b x y 与214a x y 是同类项, ∴4a =,2b =,故选:A .【点睛】本题考查了同类项的定义,解题的关键是熟练掌握同类项的定义进行解题.7、A【分析】根据方程的解的概念逐一进行判断即可. 【详解】解:①方程311142x x ++-=的解为5x =,所以①正确;②方程()3126x --=的解为2x =,所以②错误;③方程253164y y ---=的解为13y =所以③错误;方程()()62520412x x -+=-的解为710x =,所以④错误. 故应选A.【点睛】本题考查了一元一次方程的解的定义,正确理解方程解的定义是解题的关键.8、D【详解】在抽样调查中,样本的选取应注意广泛性和代表性,而本题中A 、B 、C 三个选项都不符合条件,选择的样本有局限性.故选D考点:抽样调查的方式9、C【分析】根据图示列出算式,继而计算可得.【详解】解:根据题意可列算式[(-2)-5]×(-2)=(-7)×(-2)=14,故选:C .本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.10、A【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,注意同类项与字母的顺序无关,与系数无关.【详解】解:由题意,得:2m+3=n+7,移项,得:2m-n=4,(2m-n )2=16,故选A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.11、B【详解】试题分析:由题意,得:231{28n m -==,解得:42m n =⎧⎨=⎩.故选B . 考点:1.解二元一次方程组;2.同类项.12、A【分析】根据题意,分别求出2a -1a 、3a -2a 、4a -3a 、5a -4a ,找出运算结果的规律,并归纳出公式n a -1n a -,从而求出20202019a a -.【详解】解:根据题意:2a -1a =3-1=23a -2a =6-3=34a -3a =10-6=45a -4a =15-10=5∴n a -1n a -=n∴202020192020a a =-故选A .此题考查的是探索规律题,找出规律并归纳公式是解决此题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、伦敦罗马北京纽约【分析】根据纽约、悉尼、伦敦、罗马,与北京的时差,结合钟表确定出对应的城市即可.【详解】解:由表格,可知北京时间是16点,则纽约时间为16-13=3点,悉尼时间为16+2=18点,伦敦时间为16-8=8点,罗马时间为16-7=9点,由钟表显示的时间可得对应城市为伦敦、罗马、北京、纽约、悉尼;故答案为:伦敦、罗马、北京、纽约.【点睛】此题考查了正数与负数,弄清各城市与北京的时差是解本题的关键.14、1或3【分析】根据A、B所对应的数分别是−8、7,M、N所对应的数分别是m、m+1,可得AN=|(m+1)−(−8)|=|m +11|,BM=|7−m|,分三种情况讨论,即可得到m的值.【详解】解:∵A、B所对应的数分别是−8、7,M、N所对应的数分别是m、m+1.∴AN=|(m+1)−(−8)|=|m+11|,BM=|7−m|,①当m≤−11时,有m+11≤2,7−m>2.∴AN=|m+11|=−m−11,BM=|7−m|=7−m,由AN=2BM得,−m−11=2(7−m),解得m=3,∵m≤−11,∴m=3不合题设,舍去;②当−11<m≤7时,有m+11>2,7−m≥2.∴AN=|m+11|=m+11,BM=|7−m|=7−m,由AN=2BM得,m+11=2(7−m),解得m=1,符合题设;③当m>7时,有m+11>2,7−m<2.∴AN=|m+11|=m+11,BM=|7−m|=m−7,由AN=2BM得,m+11=2(m−7),解得m=3,符合题设;综上所述,当m=1或m=3时,AN=2BM,故答案为:1或3.【点睛】本题考查了数轴上两点间的距离及一元一次方程的应用,表示出两点间的距离并能运用分类讨论的方法是解题的关键.15、429a b ab --(答案不唯一)【分析】根据题意,结合五次三项式、最高次项的系数为2,常数项可写出所求多项式,答案不唯一,只要符合题意即可.【详解】根据题意,此多项式是:429a b ab --(答案不唯一),故答案是:429a b ab --(答案不唯一).【点睛】本题考查了多项式,解题的关键是熟练掌握多项式中系数、最高次项、常数项的概念.16、-2 1【分析】根据单项式的系数和次数的定义解答即可【详解】解:单项式﹣2xy 2的系数是﹣2,次数是1+2=1.故答案是:﹣2;1.【点睛】考查了单项式,单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.17、17x <<【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】根据题意知,三点M 、N 、P 不在同一条直线上,则三点构成三角形,4-3=1,4+3=1,MN-NP<x<MN+NP , ∴1<x<1,故答案为:1<x<1.【点睛】本题考查了三角形的三边关系,掌握利用三角形三边关系式是解题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、张老师家到火车站有1千米【分析】设张老师家到火车站有x 千米,根据老师行驶的两段路程与总路程间的数量关系和路程=时间×速度列出方程并解答.【详解】解:设张老师家到火车站有x 千米,根据题意,得 1251333030266x x +=-⨯解得x =1.答:张老师家到火车站有1千米.【点睛】考查了一元一次方程的应用,解题的关键是读懂题意,找到等量关系,列出方程.19、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短,连接AB ,交l 于点C 即可;(2)根据BO +CO=BC 为定长,故需保证AO 最小即可,根据垂线段最短,过点A 作AO ⊥BC 于O 即可; (3)根据两点之间线段最短,故连接AC 、BD 交于点O 即可.【详解】解:(1)连接AB ,交l 于点C ,此时AC +BC=AB ,根据两点之间线段最短,AB 即为AC +BC 的最小值,如下图所示:点C 即为所求;(2)∵点O 在BC 上∴BO +CO=BC∴AO +BO +CO =AO +BC ,而BC 为定长,∴当AO +BO +CO 最小时,AO 也最小过点A 作AO ⊥BC 于O ,根据垂线段最短,此时AO 最小,AO +BO +CO 也最小,如下图所示:点O 即为所求;(3)根据两点之间线段最短,若使AO +CO 最小,连接AC ,点O 应在线段AC 上;若使BO +DO 最小,连接BD ,点O 应在线段BD 上,∴点O 应为AC 和BD 的交点如下图所示:点O 即为所求.【点睛】此题考查的是两点之间线段最短和垂线段最短的应用,掌握根据两点之间线段最短和垂线段最短,找出最值所需点是解决此题的关键.20、2x ;2-【分析】先去括号合并同类项,再把x 1=-,1y 2=-代入计算即可. 【详解】解:原式()324323x y x y x x y =---++-+324323x y x y x x y =-+---+2x =,当1x =-时,原式22x ==-.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.21、(1)仓库里的货物减少了,减少了220吨;(2)仓库里有货物2700吨;(3)这7天要付9600元装卸费.【分析】(1)求出这7天进出货物的质量和,根据结果的符号和绝对值进行判断即可;(2)根据(1)的结果的意义,可列算式计算;(3)求出进出货物的总吨数,即各个数的绝对值的和,再求出总装卸费.【详解】解:(1)(+260)+(-320)+(-150)+(+340)+(-380)+(-200)+(+230)=-220(吨),所以仓库里的货物减少了,减少了220吨;(2)2480-(-220)=2700(吨),答:7天前,仓库里有货物2700吨;(3)|+260|+|-360|+|-150|+|+340|+|-380|+|-200|+|+230|=1920(吨),5×1920=9600(元),答:这7天要付9600元装卸费.【点睛】本题考查有理数的意义,理解正数和负数表示相反意义的量是正确解答的前提.22、(1)10°;(2)180°﹣6n【分析】(1)根据∠BOD=13∠AOD.∠BOD=20°,可求出∠AOD,进而求出答案;(2)设∠BOD的度数,表示∠AOD,用含有n的代数式表示∠AOD,从而表示∠DOE.【详解】解:(1)∵∠BOD=13∠AOD.∠BOD=20°,∴∠AOD=20°×3=60°,∵OC是∠AOD的平分线,∴∠AOC=∠COD=12∠AOD=12×60°=30°,∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;(2)设∠BOD=x,则∠AOD=3x,有(1)得,∠BOC=∠COD﹣∠BOD,即:n=32x﹣x,解得:x=2n,∴∠AOD=3∠BOD=6n,∠EOD=180°﹣∠AOD=180°﹣6n,【点睛】考查角平分线的意义,以及角的计算,通过图形直观得到角的和或差是解决问题的关键.23、(1)见解析(2)80°【解析】(1)根据题意作图即可;(2)由∠AOE=40°,先求出∠BOE=140°,由对顶角知∠AOC=∠BOD,故∠EOD∶∠AOC=∠EOD∶∠BOD =3∶4,故求出BOD=434∠BOE=80°,即为∠AOC的度数.【详解】(1)如图,(2)∵∠AOE=40°,∴∠BOE=140°,∵∠AOC=∠BOD,∴∠EOD∶∠AOC=∠EOD∶∠BOD =3∶4,∴BOD=434∠BOE=80°,∴∠AOC=80°【点睛】此题主要考查角的和差关系,解题的关键是熟知角度的计算.。
2012年海淀区初三上学期数学期末试题答案
海淀区九年级第一学期期末练习数学试卷答案及评分参考 2012.01说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共32分,每小题4分)1. B2.D3.A4.B5. B6. C7.D8. C 二、填空题(本题共16分,每小题4分)9. x =0或x =4 10. 15 11. 1 12. π(2分);32π12n + (2分)三、解答题(本题共29分,第13题~第15题各5分,第16题4分,第17题、第18题各5分)13.解法一: a =1, b =-8, c =1, …………………………1分24600b ac ∆=-=>. …………………………2分86022b x a-±∆±==. …………………………3分∴ 154,15421-=+=x x . …………………………5分解法二:281x x -=-.2816116x x -+=-+. …………………………1分 2(4)15x -=. …………………………2分415x -=±. (3)分∴154,15421-=+=x x . …………………………5分 14.证明: 在△AED 和△ACB 中,∵ ∠A =∠A , ∠AED =∠C , ……………………………2分 ∴ △AED ∽△ACB. ……………………………3分 ∴.AB AD AC AE = ……………………………4分 ∴.645=AE∴ .310=AE ……………………………5分15.(1)① (-2 ,0), (1, 0);② 8; ③增大 (每空1分) ……………………………3分(2)依题意设抛物线解析式为 y =a (x +2) (x -1).由点 (0, -4)在函数图象上,得-4=a (0+2) (0-1). ……………………………………4分解得 a =2.∴ y =2 (x +2) (x -1). …………………………………………………5分即所求抛物线解析式为y =2x 2+2x -4. 16.(1)正确画图(1分)标出字母(1分) ……………………………………2分 (2)正确画图(1分),结论(1分) ………………………………………………4分 17.解:由题意得{220,[2(2)]4(2)(1)0.k k k k -≠∆=---+≥ …………………1分 由①得 2k ≠. ………………………………………………………2分① ②由②得 2k ≤. ………………………………………………………4分∴2k <. ∵k 为正整数,∴1k =. ……………………………………………………5分18.解法一:由题意画树形图如下: …………………3分从树形图看出,所有可能出现的结果共有9个,这些结果出现的可能性相等,标号之和等于4的结果共有3种. ………………………………………………………4分所以P (标号之和等于4)=3193=. ………………………………………………………5分解法二:……………………………………3分由上表得出,所有可能出现的结果共有9个,这些结果出现的可能性相等,标号之和等于4的结果共有3种. ………………………………………………………4分 所以P (标号之和等于4)=3193=. ………………………………………………………5分四、解答题(本题共21分, 第19题、第20题各5分, 第21题6分,第22题5分) 19.(1)(20)(280)(20)y w x x x =-=-+- ……………………………………2分221201600x x =-+-.(2)22(30)200y x =--+. ∵2040x ≤≤, a =-2<0,∴当30x =时,200y =最大值. ……………………………………4分 答:当销售单价定为每双30元时,每天的利润最大,最大利润为200元. ………5分 20.(1)∵二次函数y =m x 2+(3-m )x -3 (m >0)的图象与x 轴交于点 (x 1, 0)和(x 2, 0), ∴ 令0y =,即 m x 2+(3-m )x -3=0.………………………………………………1分(m x +3)( x -1)=0. ∵m >0, ∴0m >. 解得 1x =或3x m=-. …………………………………………………………2分∵ x 1 <x 2,103<<-m,∴21x =. ……………………………………………………………3分 (2)由(1)13x m=-,得13x m =-.标号 标号 标号 之和 1 2 3 1 2 3 4 2 3 4 5 3456第二次摸球第一次摸球312321233211由13x m=-是方程mx 2+(3-m )x -3=0的根, 得m x 12+(3-m )x 1=3.∴mx 12 +m x 12 +(3-m ) x 1+ 6m x 1+9 =m x 12 +(3-m ) x 1+(m x 1+3)2=3. ………5分21.解:(1)证明:∵C E A B ⊥, ∴ 90CEB ∠=.∵ CD 平分E C B ∠, BC =BD ,∴ 12∠=∠, 2D ∠=∠. ∴ 1D ∠=∠. …………………………1分 ∴ CE ∥B D .∴ 90DBA CEB ∠=∠= . ∵ AB 是⊙O 的直径, ∴ BD 是⊙O 的切线. ………………………………………………………2分 (2)连接AC ,∵ AB 是⊙O 直径,∴ 90ACB ∠= . ∵CE AB ⊥,可得 2CE AE EB =⋅. ∴ .162==AECE EB ………………………………………………………3分在Rt △CEB 中,∠CEB =90︒, 由勾股定理得 2220.BC CE EB =+= ……………4分 ∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,∴ △EFC ∽△BFD. ………………………………………………………5分 ∴ BFEF BDEC =.∴101620BF BF-=.∴ BF =10. ………………………………………………………………………6分 22.(1)画图: 图略(1分); 填空: a (1分) …………………………………2分(2)a 85(1分),an n1212++ (2分) (5)分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)∵A (a , -3)在4a y x+=的图象上,∴43a a +=-.解得1a =-. ……………………………………1分 ∴反比例函数的解析式为3y x=. ……………………………………2分(2)过A 作AC ⊥y 轴于C .∵ A (-1, -3), ∴ AC =1,OC =3. ∵ ∠ABO =135︒, ∴ ∠ABC =45︒. 可得 BC =AC =1.21E F OB DCA 432y∴ OB =2.∴ B (0, -2). …………………3分由抛物线2y ax bx c =++与y 轴交于B ,得c = -2. ∵ a = -1,∴22y x bx =-+-.∵ 抛物线过A (-1,-3), ∴ 123b ---=-. ∴ b =0.∴ 二次函数的解析式为22y x =--. ……………………………………4分(3)将22y x =--的图象沿x 轴翻折,得到二次函数解析式为22y x =+. ……………5分设将22y x =+的图象向右平移后的二次函数解析式为2()2y x m =-+ (m >0).∵ 点P (x 0, 6)在函数3y x=上,∴036.x =∴012x =.∴2()2y x m =-+的图象过点1(,6)2P .∴62)21(2=+-m .可得1253,22m m ==-(不合题意,舍去).∴ 平移后的二次函数解析式为25()22y x =-+. (6)分∵ a =1>0, ∴ 当2521≤≤x 时,62≤≤y ; 当325≤<x 时,492≤<y .∴ 当132x ≤≤时,26y ≤≤. (7)分∴ 平移后的二次函数y 的取值范围为 26y ≤≤.24. (1)CD =AF +BE . …………………1分 (2)解:(1)中的结论仍然成立. 证明:延长EA 到G ,使得AG =BE ,连结DG . ∵ 四边形ABCD 是平行四边形, ∴ AB =CD , AB ∥CD ,AD =BC .∵ AE ⊥BC 于点E ,∴ ∠AEB =∠AEC =90︒.∴∠AEB =∠DAG =90︒. ∴ ∠DAG =90︒. ∵ AE =AD , ∴ △ABE ≌△DAG . …………………………………………………………………3分 ∴∠1=∠2, DG =AB . ∴∠GFD =90︒-∠3. ∵ DF 平分∠ADC ,4321G D A F C EB Oxy -1-111234-2-3-4-4-3-2432ABC∴∠3=∠4.∴∠GDF =∠2+∠3=∠1+∠4=180︒-∠FAD -∠3=90︒-∠3.∴∠GDF =∠GFD . ………………………………………………………………4分 ∴ DG =GF .∴ CD =GF =AF +AG = AF + BE .即 CD = AF +BE . ………………………………………………………………5分 (3)a CD AF BEb=+或bC D aAF bBE =+或b b CD AF BEaa=+. …………………7分25. 解:(1)∵ 抛物线过原点和A (23,0-),∴ 抛物线对称轴为3-=x . ∴ B (3,3-).设抛物线的解析式为2+33y a x =+(). ∵ 抛物线经过(0, 0),∴ 0=3a +3. ∴ a =-1.∴3)3(2++-=x y ……………………………………………1分 =.322x x --∵ C 为AB 的中点, A (23,0-)、B (3,3-), 可得 C (333,22-) .可得直线OC 的解析式为x y 33-=. ……………………………………………2分(2)连结OB . 依题意点E 为抛物线x x y 322--=与直线x y 33-=的交点(点E 与点O 不重合).由23323,y x y x x ⎧=-⎪⎨⎪=--⎩, 解得 53,35,3x y ⎧=-⎪⎪⎨⎪=⎪⎩或0,0.x y =⎧⎨=⎩(不合题意,舍).∴ E (535,33-) …………………………3分过E 作EF ⊥y 轴于F , 可得OF =53,∵ OE =DE ,EF ⊥y 轴, ∴ OF=DF . ∴ DO =2OF =103.∴ D (0, 10)3. (4)分∴ BD =2210233733-+-=()(). ……………………………………………5分FCD E B AyxO(3)E 点的坐标为(333,22-)或(31,22-). ……………………………………………8分说明:此问少一种结果扣1分.。
2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一卷二)含解析
2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一)一、选一选(本大题共10小题,每小题4分,共40分.)1. 值等于7的数是( ).A. 7B.C.D. 0和77-7±2. 两个非零有理数的和为零,则它们的商是( )A. B. C. D. 没有能确01-1定3. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1 D. 多项式的次数是423abc-29517m mn --4. 下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是( )A. 0个B. 1个C. 2个D. 3个5. 已知有理数a ,b在数轴上表示的点如图所示,则下列式子中没有正确的是( )A. B. a b >0 C. a+b >0 D. ab <0a b <6. 中国的领水面积约为370000km 2,将数370000用科学记数法表示为( )A. 37×104B. 3.7×104C. 0.37×106D. 3.7×1057. 一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( )A . x 1=(26 x )+2 B. x 1=(13 x )+2C. x+1=(26 x ) 2D. x+1=(13 x ) 28. 已知某商店有两个进价没有同的计算器都卖了80元,其中一个盈利,另一个亏损60%,在这次买卖中,这家商店( ).20%A. 没有盈没有亏 B. 盈利10元 C. 亏损10元 D. 盈利50元9. 如果|a+b+1|+(b 1)2=0,则(a+b )2017的值是( )A. 0B. 1C. 1D. ±110. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )A. 114B. 104C. 85D. 76二、填 空 题(本题共6小题,每小题3分,共18分)11. 平方等于16的数是______.12. 比较大小:___(小“>“,“<”或“=“).12-13-13. 当x=_____时,式子与的值互为相反数.256x +114x x ++14. 当x=1时,代数式px 3+qx+1的值为2016,则代数式2p+2q+1的值为_____.15. 轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.16. 规定一种新运算“*”:a *b =a -b ,则方程x *2=1*x 的解为________.1314三、解 答 题(本题9小题,共92分.)17. (1)将下列各数填在相应的集合里.﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0,,﹣1.5;122正数集合{…}分数集合{ …}(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接.18. 计算:(1); (2).()2718732-+--()2411236⎡⎤--⨯--⎣⎦19. 解下列方程:(1) 2(x 2)=12(2).13124x x -+=-20. 先化简再求值:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3),其中x= 3,y= 2.21. (8分)一项工程,甲单独完成要20天,乙单独完成要25天,现由甲先做2天,然后甲、乙合做余下的部分还要多少天才能完成这项工程.22. 10袋小麦以每袋150千克为准,超过的千克数记为正数,没有足的千克数记为负数,分别记为:-6,-3,0,-3,+7,+3,+4,-3,-2,+1.(1)与标准重量相比较,10袋小麦总计超过或没有足多少千克?(2)10袋小麦中哪一个记数重量最接近标准重量?(3)每袋小麦的平均重量是多少千克?23. 若关于x 的方程2x 3=1和有相同的解,求k 的值.32x k k x -=-24. 某商场用元购进,两种新型节能台灯共盏,这两种台灯的进价,标价如下表2750A B 50所示:类型型 A 型B 进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)若型台灯按标价的折出售,型台灯按标价的折出售,那么这批台灯全部售出后,A 9B 8商场共获利多少元?25. 如图1是一个长为、宽为的长方形(其中,均为正数,且),沿图中虚线2a 2b a b a b >用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.图1图2(1)图2中大正方形的边长为 ;小正方形(阴影部分)的边长为 .(用含、a 的代数式表示)b (2)仔细观察图2,请你写出下列三个代数式:所表示的图形面积之间22(),(),a b a b ab +-的相等关系,并选取适合,的数值加以验证.a b (3)已知.则代数式的值为 .7,6a b ab +==()-a b2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一)一、选一选(本大题共10小题,每小题4分,共40分.)1. 值等于7的数是( ).A. 7B. C. D. 0和77-7±【正确答案】C 【详解】值等于7的数是,故选C.7±2. 两个非零有理数的和为零,则它们的商是()A. B. C. D. 没有能确1-1定【正确答案】B 【分析】首先根据条件判断这两个数是一对非零的相反数,由相反数的性质,可知它们符号相反,值相等,再根据有理数的除法法则得出结果.【详解】∵ 两个非零有理数的和为零,∴ 这两个数是一对相反数,∴ 它们符号没有同,值相等,∴ 它们的商是.1-故选.B 本题考查了相反数的定义、性质及有理数的除法运算法则:两数相除,同号得正,异号得负,并把值相除.3. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1D. 多项式的次数是423abc -29517m mn --【正确答案】A【详解】选项A . a 是单项式,正确.选项 B . 的系数是,错误.22r π2π选项C . 的次数是,错误.23abc-3选项 D .多项式的次数是2,错误.29517m mn --故选:A .4. 下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是( )A . 0个 B. 1个 C. 2个 D. 3个【正确答案】D【详解】①如果两个数的积为1,则这两个数互为倒数,故本项错误;②相如果两个数积为0,则至少有一个数为0,正确;③值等于其本身的有理数是零和正数,故本项错误;④倒数等于其本身的有理数是1和−1,故本项错误;错误的有①③④,共3个.故选D.点睛:本题考查了倒数的定义,有理数的乘法,相反数的定义,值的性质,是基础概念题,熟记概念是解题的关键.5. 已知有理数a ,b在数轴上表示的点如图所示,则下列式子中没有正确的是( )A.B. a b >0C. a+b >0D. ab <00a b <【正确答案】C 【详解】选项C ,b 的值大于a,所以a+b <0,故选C.6. 中国的领水面积约为370000km 2,将数370000用科学记数法表示为( )A. 37×104B. 3.7×104C. 0.37×106D. 3.7×105【正确答案】D 【分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.【详解】解:370000=3.7×105.故选D .本题考查科学记数法—表示较大的数7. 一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( )A. x 1=(26 x )+2B. x 1=(13 x )+2C. x+1=(26 x ) 2D. x+1=(13 x ) 2【正确答案】B 【详解】根据题意可得:长方形的宽为(13-x)cm ,根据题意可得:x -1=(13-x)+2.故选B.考点:一元方程的应用8. 已知某商店有两个进价没有同的计算器都卖了80元,其中一个盈利,另一个亏损60%,在这次买卖中,这家商店( ).20%A. 没有盈没有亏B. 盈利10元C. 亏损10元D. 盈利50元【正确答案】B 【分析】设盈利的计算器的进价为,则,亏损的计算器的进价为,则x (160%)80x +=y ,用售价减去进价即可.(120%)80y -=【详解】设个计算器的进价为x 元,第二个计算器的进价为y 元,则,(160%)80x +=,解得,.(120%)80y -=50x =100y =因为(元),8025010010⨯--=所以盈利了10元.故选:B .本题考查了一元方程的应用,找准等量关系列出方程是解题的关键.9. 如果|a+b+1|+(b 1)2=0,则(a+b )2017的值是( )A. 0B. 1C. 1D. ±1【正确答案】C【详解】由题意得,,1010a b b ++=⎧⎨-=⎩解得,a=−2,b=1,则=−1,2017()a b +故选C.10. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )A. 114B. 104C. 85D. 76【正确答案】A 【详解】解:第1个图形中小圆的个数为6;124=⨯+第2个图形中小圆的个数为10;234=⨯+第3个图形中小圆的个数为16;344=⨯+第4个图形中小圆的个数为24;454=⨯+······则知第n 个图形中小圆的个数为n (n +1)+4.故第10个图形中小圆的个数为10×11+4=114个.故选A二、填 空 题(本题共6小题,每小题3分,共18分)11. 平方等于16的数是______.【正确答案】4±【分析】根据平方运算的概念,即可求解.【详解】∵,∴平方等于16的数是.22416,(4)16=-=4±掌握平方运算的反则,是解题的关键.12. 比较大小:___(小“>“,“<”或“=“).12-13-【正确答案】<【分析】根据“两个负数比较大小,值大的其值反而小”进行比较.【详解】因为,1111||||2233-=>-=所以<.12-13-故<.考查了有理数的比较大小,解题关键关键是掌握有理数的比较大小的法则(两个负数比较大小,值大的其值反而小).13. 当x=_____时,式子与的值互为相反数.256x +114x x ++【正确答案】4319-【分析】式子与的值互为相反数就是已知这两个式子的和是0,就可以得到256x +114x x++一个关于x 的方程,解方程就可以求出x 的值.【详解】由题意得:,2511064x x x ++++=去分母得:2(2x+5)+3(x+11)+12x=0,去括号得:4x+10+3x+33+12x=0,移项、合并同类项得:19x=﹣43,系数化1得:x=.4319-故答案为.4319-14. 当x=1时,代数式px 3+qx+1的值为2016,则代数式2p+2q+1的值为_____.【正确答案】4031【详解】时,代数式的值为2016,1x =31px qx ++p+q +1=2016, p+q=2015,2.()22121p q p q ++=++=201514031⨯+=故答案为4031.点睛:整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.15. 轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.【正确答案】504【分析】根据时间关系列方程求解.此题考查了学生对顺水速度,逆水速度的理解,这与顺风逆风类似.【详解】解:设A 港和B 港相距x 千米,根据题意得: ,3262262x x +=+-解得:x =504.答:A 港和B 港相距504千米.此题考查一元方程的应用,解题关键是理解顺流与逆流的关系,顺水速度=水流速度+静水速度,逆水速度=静水速度−水流速度.16. 规定一种新运算“*”:a *b =a -b ,则方程x *2=1*x 的解为________.1314【正确答案】107【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:x -×2=×1-,13141314xx =,71256解得:x =,107故答案为x =.107此题的关键是掌握新运算规则,转化成一元方程,再解这个一元方程即可.三、解 答 题(本题9小题,共92分.)17. (1)将下列各数填在相应的集合里.﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0,,﹣1.5;122正数集合{ …}分数集合{…}(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接.【正确答案】(1) {﹣(﹣2.5),(﹣1)2, ,…}, {﹣(﹣2.5),,﹣1.5 …};(2)见解122122析【分析】(1)按有理数的分类标准进行分类即可;(2)先在数轴上表示各个数字,然后再进行比较即可.【详解】(1)正数集合{﹣(﹣2.5),(﹣1)2,…};122分数集合{﹣(﹣2.5),,﹣1.5…};122(2)如图所示:用“<“号把这些数连接为:﹣22<﹣|﹣2|<﹣1.5<0<(﹣1)2<=﹣(﹣2.5).12218. 计算:(1);(2).()2718732-+--()2411236⎡⎤--⨯--⎣⎦【正确答案】(1)-30;(2)16【详解】试题分析:(1)直接计算.(2)按照有理数混合运算法则计算.试题解析:(1)原式=27+(-18)+(-7)+(-32)= -30.(2)原式=()11296--⨯-=()1176--⨯-=716-+=.1619. 解下列方程:(1) 2(x 2)=12(2).13124x x -+=-【正确答案】(1)x= 4;(2)x=1.【详解】试题分析:(1)按去括号、移项、合并同类项、系数化为1的步骤进行求解即可;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.试题解析:(1)去括号得:﹣2x+4=12,移项得:﹣2x=12 4,合并同类项得:﹣2x=8,系数化为1得:x= 4;(2)去分母得:2(x 1)=4 (x+3),去括号得:2x 2=4 x 3,移项得:2x+x=4 3+2,合并同类项得:3x=3,系数化为1得:x=1.20. 先化简再求值:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3),其中x= 3,y= 2.【正确答案】 y 2 2x+2y ,-2【详解】试题分析:先去括号,然后合并同类项,代入数值进行计算即可.试题解析:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3)=2x 3 4y 2 x+2y x+3y 2 2x 3= y 2 2x+2y ,当x= 3,y= 2时,原式= ( 2)2 2×( 3)+2×( 2)= 4+6 4= 2.21. (8分)一项工程,甲单独完成要20天,乙单独完成要25天,现由甲先做2天,然后甲、乙合做余下的部分还要多少天才能完成这项工程.【正确答案】10【详解】分析:设甲、乙合做余下的部分还要x 天才能完成这项工程,根据总工程=甲单独完成的部分+甲、乙合作完成的部分即可得出关于x 的一元方程,解之即可得出结论.本题解析:解:设甲、乙合做余下的部分还要x 天才能完成这项工程,根据题意得: +(+)x=1,220120125解得:x=10.答:甲、乙合做余下的部分还要10天才能完成这项工程.22. 10袋小麦以每袋150千克为准,超过的千克数记为正数,没有足的千克数记为负数,分别记为:-6,-3,0,-3,+7,+3,+4,-3,-2,+1.(1)与标准重量相比较,10袋小麦总计超过或没有足多少千克? (2)10袋小麦中哪一个记数重量最接近标准重量? (3)每袋小麦的平均重量是多少千克?【正确答案】(1)没有足2千克;(2)第三个;(3)149.8千克【分析】(1)先求﹣6,﹣3,0,﹣3,+7,+3,+4,﹣3,﹣2,+1的和,是正数,则超过,是负数,则没有足;(2)根据值即可进行判断,值最小的接近标准重量;(3)求得10袋小麦以每袋150千克为准时的总量,再加上(1)中的结果,然后用总量除以10,即可求得每袋小麦的平均重量.【详解】试题解析:(1)﹣6+(﹣3)+0+(﹣3)+7+3+4+(﹣3)+(﹣2)+1=﹣2<0,所以,10袋小麦总计没有足2千克;(2)因为|0|=0,所以第三个记数重量最接近标准重量;(3)(150×10-2)÷10=149.8,所以,每袋小麦的平均重量是149.8千克.本题考查了正数与负数的意义,有理数的加法运算,值等,弄清题意是解题的关键.23. 若关于x 的方程2x 3=1和有相同的解,求k 的值.32x kk x-=-【正确答案】k=143【详解】方程2x-3=1的解是x=2,把x=2代入=k-3x ,得解得2x k -26,2kk -=-143k =24. 某商场用元购进,两种新型节能台灯共盏,这两种台灯的进价,标价如下表2750A B 50所示:类型型 A 型B 进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)若型台灯按标价的折出售,型台灯按标价的折出售,那么这批台灯全部售出后,A 9B 8商场共获利多少元?【正确答案】(1)购进型台灯盏,则购进型台灯盏;(2)元.A 20B 30730【分析】(1)设购进型台灯盏,则购进型台灯盏,根据购买型台灯的钱数A xB ()50x -A 购买型台灯的钱数总钱数,列出方程求解即可;+B =2750(2)根据型台灯总售价型台灯总售价总进价利润,代入数据求解即可.A +B -=【详解】解:(1)设购进型台灯盏,则购进型台灯盏.A xB ()50x -根据题意列方程得:,()4065502750x x +-=解得:,20x =所以(盏)502030-=答:设购进型台灯盏,则购进型台灯盏.A 20B 30(2)(元),6090%2010080%302750730⨯⨯+⨯⨯-=答:这批台灯全部售出后,商场共获利730元.本题考查了一元方程的应用,解题的关键是找准等量关系列出方程求解即可.25. 如图1是一个长为、宽为的长方形(其中,均为正数,且),沿图中虚线2a 2b a b a b >用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.图1图2(1)图2中大正方形的边长为;小正方形(阴影部分)的边长为.(用含、a 的代数式表示)b (2)仔细观察图2,请你写出下列三个代数式:所表示的图形面积之间22(),(),a b a b ab +-的相等关系,并选取适合,的数值加以验证.a b (3)已知.则代数式的值为.7,6a b ab +==()-a b 【正确答案】(1),;(2)+,验证见解析;(3).a b +-a b ()()22a b a b +=-4ab 5【分析】(1)观察图形即可得出大正方形边长为小长方形的长与宽的和,而小正方形边长为小长方形的长与宽的差,据此求解即可;(2)观察图形可得大正方形面积等于小正方形面积加上原长方形面积,()2a b +()2a b -4ab 据此即可列出代数式,然后进一步代入合适的数字检验即可;(3)由(2)中的关系式进一步变形计算即可.【详解】(1)由图形可得:大正方形的边长为;小正方形(阴影部分)的边长为a b +a b -,故,;a b +a b -(2)由图可得:大正方形面积等于小正方形面积加上原长方形面积,()2a b +()2a b -4ab 即:+;()()22a b a b +=-4ab 当,时,=49,+=49,5a =2b =()2a b +()2a b -4ab ∴+成立;()()22a b a b +=-4ab (3)由(2)得:+,()()22a b a b +=-4ab ∴当时,+,7,6a b ab +==()227a b =-46⨯即:,()2492425a b -=-=∴或,5a b -=5a b -=-∵,a b >∴.5a b -=本题主要考查了代数式的探究类问题,准确地找出题中三者面积之间的关系是解题关键.2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷二)一、选一选(共10个小题,每小题3分,共30分。
北京市海淀区2012-2013学年八年级(上)期末数学试卷(含答案)
海 淀 区 八 年 级 第 一 学 期 期 末 练 习数 学(分数:100分 时间:90分钟) 2013.1一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意. 请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 答案1.2的平方根是 A .21B .2C .2-D .2±2.下列图形不是..轴对称图形的是 A .角 B .等腰三角形C .等边三角形D .有一个内角为30的直角三角形 3.在下列各式的计算中,正确的是A .235+a a a =B .22(1)22a a a a +=+C .3225()ab a b =D .22(2)(+2)2y x y x y x -=- 4.已知等腰三角形的两边长分别为7和3,则第三边的长是A .7B .4C .3D .3或7 5.下列有序实数对表示的各点不在..函数42y x =-的图象上的是 A .16--(,) B .(-2, 6) C .(1, 2)D .(3, 10)6.下列各式不能分解因式的是A .224x x - B .214x x ++C .229x y +D .21m - 7.若分式 211x x --的值为0,则x 的值为A .1B .0C .1-D .1±8.已知整数m 满足381m m <<+,则m 的值为A .4B . 5C .6D .79.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为A . 24°B . 25°C . 30°D . 35°10.已知一次函数y kx b =+中x 取不同值时,y 对应的值列表如下:x … 21m -- 1 2 … y…2-21n +…则不等式0kx b +>(其中k ,b ,m ,n 为常数)的解集为A .1x >B .2x >C .1x <D .无法确定 二、填空题(本题共18分,每小题3分)11. 对于一次函数2y kx =-,如果y 随x 增大而增大,那么k 需要满足的条件是 .12.计算:111xx x -=-- . 13.如图,在△ABC 中,AB =AC ,∠A =20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 为 度.14. 计算:222()ab ab ÷-=() .15. 若关于x 的二次三项式2x +kx b +因式分解为(1)(3)x x --,则k+b 的值为__________.16.如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点. 图①~⑥⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”.(1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ; (2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .AB CDE⑥ ⑤ ④ ③ ② ①ABCB'C'EF12三、解答题:(本题共19分,第18题4分,其余每小题5分) 17. 计算:()031683π-+-.解:18. 如图, 在△ABC 中,=AB AC ,D 是△ABC 内一点,且BD DC =. 求证:∠ABD =∠ACD . 证明:19. 把多项式33312a b ab -分解因式.解:20. 已知12x =,2y =-,求代数式()22(2)(2)x y x y x y +--+的值. 解:AB CD四、解答题(本题共20分,每小题5分)21.解方程:54 2332xx x+=--.解:22.已知正比例函数的图象过点(12)-,.(1)求此正比例函数的解析式;(2)若一次函数图象是由(1)中的正比例函数的图象平移得到的,且经过点(12),,求此一次函数的解析式.解:(1)(2)23. 已知等腰三角形周长为12,其底边长为y ,腰长为x . (1)写出y 关于x 的函数解析式及自变量x 的取值范围; (2)在给出的平面直角坐标系中,画出(1)中函数的图象. 解:-2 -1 -7-6 -5 -4 -3 -3 -4 -5 -6 -7 12 3 4 5 6 7 -1 -2 76 5 4 3 2 1 oyx24.如图,在ABC △中,AC BC =,90ACB ∠=,D 为ABC △内一点,15BAD ∠=,AD AC =,CE AD ⊥于E ,且5CE =. (1)求BC 的长;(2)求证:BD CD =.解:(1)(2)证明:E DCBA五、解答题(本题共13分,第25题6分,第26题7分)25. 我们知道,假分数可以化为带分数. 例如: 83=223+=223. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:11x x -+,21x x -这样的分式就是假分式;31x + ,221x x + 这样的分式就是真分式 . 类似的,假分式也可以化为带分式(即:整式与真分式和的形式).例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为带分式; (2)若分式211x x -+的值为整数,求x 的整数值;(3)求函数2211x y x -=+图象上所有横纵坐标均为整数的点的坐标.解:(1)(2)(3)26.在△ABC 中,已知D 为直线BC 上一点,若,ABC x BAD y ∠=∠=.(1)当D 为边BC 上一点,并且CD=CA ,40x =,30y =时,则AB _____ AC (填“=”或“≠”);DCBA(2)如果把(1)中的条件“CD=CA ”变为“CD=AB ”,且x,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由; 解:(3)若CD= CA =AB ,请写出y 与x 的关系式及x 的取值范围.(不写解答过程,直接写出结果)解:DCBA海 淀 区 八 年 级 第 一 学 期 期 末 练 习数学试卷答案及评分参考 2013.1说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DDBABCCCBA二、填空题(本题共18分,每小题3分)11.k > 0 12.1- 13.60 14. b 2 15. 1- 16.4,112S L =-(第1空1分,第2空2分) 三、解答题:(本题共19分,第18题4分,其余每小题5分)17. 解:原式421=-+ …………………………3分3= …………………………5分 18. 证明:AB AC =,ABC ACB ∴∠=∠.…………………………1分 BD CD =.12∴∠=∠ . …………………………2分 12ABC ACB ∴∠-∠=∠-∠.即ABD ACD ∠=∠.…………………………4分19.解:原式223(4)ab a b =- …………………………3分3(2)(2)ab a b a b =+- …………………………5分20. 解:原式222244(4)x xy y x y =++-- …………………………2分 2222444x xy y x y =++-+248xy y =+ …………………………3分当12x =,2y =-时, 原式2148(2)2=⨯⨯-+⨯-(2)432=-+28=. …………………………5分1ABCD2四、解答题(本题共20分,每小题5分) 21. 解:两边同乘以23x -得54(23)x x -=-…………………………1分5812x x -=-77x =1x = …………………………4分 检验:1x =时,230x -≠,1x =是原分式方程的解.∴原方程的解是1x =. …………………………5分22. 解:(1)设正比例函数解析式为(0)y ax a =≠,依题意有2a =-∴所求解析式为2y x =-. …………………………2分(2)设一次函数解析式为(0)y kx b k =+≠依题意有22k k b =-⎧⎨+=⎩,解得24k b =-⎧⎨=⎩. …………………………4分∴所求解析式为24y x =-+. …………………………5分23. 解:(1)依题意212y x +=,212y x ∴=-+. …………………………2分x ,y 是三角形的边,故有002x y x y >⎧⎪>⎨⎪>⎩,将212y x =-+代入,解不等式组得36x <<. …………………………3分(2)…………………………5分-2-1-7-6-5-4-3-3-4-5-6-71234567-1-27654321oyxF E C BA D 24.解:(1)在△ABC 中,AC BC =,90ACB ∠=︒,45BAC ∴∠=︒. 15BAD ∠=︒,30CAD ∴∠=︒.CE AD ⊥,5CE =, 10AC ∴=.10BC ∴=. …………………………2分(2)证明:过D 作DF BC ⊥于F .在△ADC 中,30CAD ∠=︒,AD AC =,75ACD ∴∠=︒.90ACB ∠=︒, 15FCD ∴∠=︒.在△ACE 中,30CAE ∠=︒,CE AD ⊥, 60ACE ∴∠=︒.15ECD ACD ACE ∴∠=∠-∠=︒.ECD FCD ∴∠=∠. …………………………3分 DF DE ∴=.在Rt △DCE 与Rt △DCF 中,DC DC,DE DF.=⎧⎨=⎩∴ Rt △DCE ≌Rt △DCF .5CF CE ∴==.10BC =,BF FC ∴=. …………………………4分 DF BC ⊥,BD CD ∴=. …………………………5分五、解答题(本题共13分,第25题6分,第26题7分) 25. 解:(1)12331222x x x x x -(+)-==-+++; …………………………1分 (2)2121332111x x x x x -(+)-==-+++. …………………………2分 当211x x -+为整数时,31x +也为整数.1x ∴+可取得的整数值为1±、3±.x ∴的可能整数值为0,-2,2,-4. …………………………3分(3)22212(1)112(1)111x x y x x x x --+===-++++. …………………………4分 当x ,y 均为整数时,必有11x +=±.x ∴=0或-2. …………………………5分 相应的y 值分别为-1或-7.∴所求的坐标为(0,-1)或(-2,-7). …………………………6分26.(1)= …………………………1分 (2)成立. …………………………2分 解法一:=.,.=.=.BC BE BA AE CD AB BE CD BE DE CD DE BD CE =∴=∴--在上截取,连结即:40,70.B BAE BEA ∠=︒∴∠=∠=︒4030.=110=70.==110.=.=,=,=.ABD B BAD BDA ADE ADE BEA AEC AD AE ABD ACE AD AE BDA CEA BD CE ABD ACE ∆∠=︒∠=︒∴∠︒∠︒∴∠∠∠︒∴∆∆⎧⎪∠∠⎨⎪⎩∴∆∆在中,,,,在和中,≌.=.AB AC ∴ …………………………4分解法二:如图,作30,DAE DAB AE AB ∠=∠=︒=,AE 交BC 于点F .ABD AED ∆∆在和中,.AD AD DAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,,.ABD AED ∴∆∆≌40,.AED B ADB ADE ∴∠=∠=︒∠=∠ ABD ∆在中,40,30.B BAD ∴∠=︒∠=︒110,70.ADE ADB ADC ∴∠=∠=︒∠=︒FEDCBAEDCBA40.CDE ADE ADC ∴∠=∠-∠=︒ 40.CDE AED ∴∠=∠=︒ .FD FE ∴=,AB CD AB AE ==, .CD AE ∴=..CD FD AE FE FC FA ∴-=-=即:,.DFE CFA ACB AED ∠=∠∴∠=∠B ACB ∴∠=∠..AB AC ∴= …………………………4分(3)解:(ⅰ)当D 在线段BC 上时,3902y x =-(060x <≤)(取等号时B 、D 重合). ……………………5分 (ⅱ)当D 在CB 的延长线上时,3902y x =-(6090x <<)(取等号时B 、D 重合). ……………………6分 (ⅲ)当D 在BC 的延长线上时,31802y x =-,(090x <<). …………………………7分。
北京市海淀区初一年级第一学期期末数学试卷图片版含答案
七年级第一学期期末调研数学参考答案 2019.1一、选择题(本大题共30分,每小题3分)二、填空题(本大题共16分,每小题2分) 11. <12. 2, 58 (答56,57,59,60均算正确)13. 答案不唯一,如:32x ﻩﻩ 14. 42b a - 15. COD ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)5900x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分=53+=8………………………………………………………………………………4分(2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分 =2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分) 解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-=解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分91x = ……………………………………………………………………………3分 19x = ……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分EA C22.(本小题4分)(1)-(3)如图所示:正确画出OD ,O E……………………1分正确画出点F …………………………2分正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分)23.(本小题6分)(1)解:方法一:∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点, ∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分 或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下:方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分∴3DM MC ==,∴由图可知,点M 是线段CD 的中点. ……………………………………………6分方法二:∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分∵点M 为线段AB 的中点,∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-,∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分 解得:5x =. ……………………………………………………………………5分(注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分(3)方法一:依题意:40k b +=, …………………………………………………………3分∵0k ≠, ∴4b k =-. ………………………………………………………………………4分解关于y 的方程:32b y k+=, ∴324y +=-. …………………………………………………………………5分 解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分 ∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,∵0k ≠,∴360y +=. …………………………………………………………5分 解得:2y =-. …………………………………………………………6分 ﻬ62.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下: 此时,45AON ︒∠=,…………………………………………………………………5分 90+2COD α︒∠=,依题意可得:B AB A45902180α︒︒++=︒解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵aa=a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有:()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形.*:例如考虑12*=.情形一:121*=,若满足交换律,则211*可知:再次计算12*=**=*=,矛盾;12(21)2222*=情形二:122*=,由(2)可知, 211*≠*,不满足交换律,矛盾;1221*=情形三:123*=,若满足交换律,即213*可知:再次计算22*=**=*=**=*=,22(21)232(12)2123*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。
海淀区七年级第一学期期末统考数学试卷
海淀区七年级第一学期期末统考数学试卷班级____________姓名____________学号____________成绩____________同学们,当这份期末测评卷展现在你面前时,希望你能充满自信。
本测评卷分为必作题(100分)和选作题(20分)两部分,对于选作题,可根据你自己的情况选择作答,请尽可能完成更多的题目。
要细心审题,认真解答哦,相信通过这份测评卷能把你一学期的收获更好地展示出来!第一部分一、选择题:(本题共40分,每小题4分)在四个选项中只有一个是正确的。
1.-0.3是( )A .正数B .负数C .正分数D .整数2.5的相反数是( )A .-5B .5C .51-D .51 3.如果向东走2km 记作+2km ,那么-3km 表示( )A .向东走3kmB .向南走3kmC .向西走3kmD .向北走3km4.与如下实物相类似的立体图形按从左到右的顺序依次是( )A .球,圆锥,圆柱B .圆锥,圆柱,球C .球,棱柱,棱锥D .球,圆柱,圆锥5.一个角的度数是45°30′,则它的余角的度数是( )A .44°30′B .45°30′C .135°30′D .134°30′6.下列去括号正确的是( )A .a-(b-c )=a-b-cB .a+(-b+c )=a-b-cC .a+(b-c )=a+b-cD .a-(-b-c )=a+b-c7.据联合国近期公布的数字显示,我国内地吸引外来直接投资已越居世界第四,1980~2002年期间,吸引外资累计为4880亿美元,用科学记数法表示正确的是( )A .210880.4⨯亿美元B .310880.4⨯亿美元C .4104880.0⨯亿美元D .21080.48⨯亿美元8.正方体的平面展开图可以是下列图形中的( )9.在下列事件中,必然事件是( )A .明天要下雨B .任意买一张电影票,座位是偶数C .买彩票会中奖D .向空中抛掷一枚石子,石子会下落10.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .b>aB .|-a|>-bC .-a>|-b|D .-b>a二、填空题:(本题共24分,每小题4分)11.“a 的2倍与b 的差”用代数式表示是_____________。
海淀区初一期末数学试卷
一、选择题(每题5分,共30分)1. 下列各数中,有理数是()A. √9B. πC. -√16D. 2/32. 下列各式中,正确的是()A. a² = b²,则a = bB. a² = b²,则a = ±bC. a² = b²,则a² = b²D. a² = b²,则a = 03. 已知x² - 4x + 4 = 0,则x的值为()A. 2B. -2C. 1D. -14. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 已知三角形的三边长分别为3,4,5,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形二、填空题(每题5分,共25分)6. 若a = 3,b = -2,则a² - b² = _______7. 已知方程x² - 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂ = _______8. 在直角坐标系中,点P(-3,4)到原点的距离为 _______9. 已知等腰三角形的底边长为8,腰长为10,则该三角形的面积为 _______10. 已知一元二次方程x² - 4x + 3 = 0,若其解为x₁和x₂,则x₁x₂ = _______三、解答题(每题10分,共40分)11. (10分)解下列方程:(1)2x - 3 = 5(2)3x² - 12x + 9 = 012. (10分)已知等腰三角形的底边长为6,腰长为8,求该三角形的面积。
13. (10分)在直角坐标系中,点A(-2,3)关于x轴的对称点为B,求点B的坐标。
14. (10分)已知一元二次方程x² - 6x + 9 = 0,求该方程的解。
2021-2022学年北京市海淀区清华附中七年级(上)期末数学试卷
2021-2022学年北京市海淀区清华附中七年级(上)期末数学试卷1.(单选题,3分)下列图形中,不属于立体图形的是()A.B.C.D.2.(单选题,3分)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75000万个,将数据75000用科学记数法表示是()A.7.5×103B.7.5×104C.7.5×105D.7.5×1063.(单选题,3分)单项式-3x2y的系数和次数分别是()A.3,2B.-3,2C.3,3D.-3,34.(单选题,3分)在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.(单选题,3分)下列各组式子中,是同类项的为()A.2a与2bB.2ab与-3baC.a2b与2ab2D.3a2b与a2bc6.(单选题,3分)如果3(x-2)与2(3-x)互为相反数,那么x的值是()A.0B.1C.2D.37.(单选题,3分)下列等式变形正确的是()A.若2x=1,则x=2B.若2(x-2)=5(x+1),则2x-4=5x+5C.若4x-1=2-3x,则4x+3x=2-1D.若3x+12−1−2x3=1,则3(3x+1)-2(1-2x)=18.(单选题,3分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.-a>cB.a>bC.ab>0D.a>-39.(单选题,3分)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,设该分派站有x名快递员,则可列方程为()A.10x-6=12x+6B.10x+6=12x-6C. x−610=x+612D. x+610=x−61210.(单选题,3分)如图,直线AB,CD相交于点O,OE平分∠AOD,OF平分∠BOD.当直线CD绕点O顺时针旋转α°(0<α<180)时,下列各角的度数与∠BOD度数变化无关的角是()A.∠AODB.∠AOCC.∠EOFD.∠DOF11.(填空题,2分)用四舍五入法将3.1415精确到百分位约等于___ .12.(填空题,2分)已知关于x的方程x+2m=15的解是x=1,则m=___ .13.(填空题,2分)若关于x的多项式x3+(2m+2)x2-(m-3)x-1不含二次项,则m=___ .14.(填空题,2分)如图,点C在线段AB上,若AB=10,BC=2,M是线段AB的中点,则MC的长为___ .15.(填空题,2分)已知关于x的方程(m+1)x|m|=6是一元一次方程,则m的值是 ___ .16.(填空题,2分)比较大小:36°25'___ 36.25°(填“>”,“<”或“=”).17.(填空题,2分)已知代数式m+2n=1,则代数式3m+6n+5的值为___ .18.(填空题,2分)甲、乙两商场在做促销,如下所示,已知两家商场相同商品的标价都一样.甲商场:全场均打八五折;乙商场:购物不超过200元,不给予优惠;超过了200元而不超过500元,一律打八八折;超过500元时,其中的500元打八八折,超过500元的部分打八折.(1)某顾客要购买商品的总标价为600元,该顾客选择 ___ (填“甲”或“乙”)商场更划算;(2)当购物总额是 ___ 元时,甲、乙两商场实付款相同.19.(问答题,8分)计算:(1)(-3)2-23÷(-2);(2)(14 + 12- 23)×12.20.(问答题,8分)解下列方程: (1)2x-15=5-3x ; (2)5x−73 = 3x−32.21.(问答题,5分)先化简,再求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy ),其中x=1,y=-2.22.(问答题,5分)如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形: (1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是:___ .23.(问答题,5分)定义一种新运算“※”,其规则为x ※y=xy-x+y .例如2※3=2×3-2+3=7,(2a )※3=(2a )×3-2a+3=4a+3. (1)计算3※2值为 ___ ;(2)已知(2m )※3=2※m ,求m 的值;(3)有理数的加法和乘法运算都满足交换律,即a+b=b+a ,ab=ba ,那么“※”运算是否满足交换律?若满足,请说明理由;若不满足,请举例说明.24.(问答题,5分)下表是某次篮球联赛积分榜的一部分:球队 比赛场次 胜场 负场 积分 前进1410424光明14 9 5 23远大14 7 7 21钢铁14 14 14备注:积分=胜场积分+负场积分(1)观察积分榜,胜一场积 ___ 分,负一场积 ___ 分;(2)设某队胜x场,则胜场总积分为 ___ 分,负场总积分为 ___ 分(用含x的整式填空);(3)若某队的负场总积分是胜场总积分的n倍,其中n为正整数,请直接写出n的值.25.(问答题,5分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①② ③ ④ 四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第 ___ 部分;(2)若AC=5,BC=3,b=-1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.26.(问答题,7分)已知∠AOB=100°,∠COD=40°,OE,OF分别平分∠AOD,∠BOD.(1)如图1,当OA,OC重合时,∠EOF=___ 度;(2)若将∠COD从图1的位置绕点O顺时针旋转,旋转角∠AOC=α,满足0°<α<90°且α≠40°.① 如图2,用等式表示∠BOF与∠COE之间的数量关系,并说明理由;② 在∠COD旋转过程中,请用等式表示∠BOE与∠COF之间的数量关系,并直接写出答案.27.(问答题,6分)给定一列数,我们把这列数中的第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,依此类推,第n 个数记为a n (n 为正整数),如下面这列数2,4,6,8,10中,a 1=2,a 2=4,a 3=6,a 4=8,a 5=10,规定运算 ∑a i n i=1 =a 1+a 2+a 3+…+a n .即从这列数的第一个数开始依次加到第n 个数,如在上面的一列数中, ∑a i 3i=1 =a 1+a 2+a 3=2+4+6=12. (1)已知一列数1,-2,3,-4,5,-6,7,-8,9,-10,那么a 5=___ , ∑a i 5i=1 =___ ; (2)已知这列数1,-2,3,-4,5,-6,7,-8,9,-10,…,按照规律可以无限写下去,那么a 2020=___ , ∑a i 2022i=1 =___ ;(3)在(2)的条件下,若存在正整数n 使等式| ∑a i n i=1 |=2022成立,直接写出n 的值.28.(填空题,3分)若实数x ,y ,满足|x+2|+(x+y )2=0,则x y 的值等于 ___ . 29.(填空题,3分)一个角的补角比它的余角的3倍少20°,这个角的度数是 ___ 30.(填空题,3分)若a+9=b+8=c+7,则(a-b )2+(b-c )2-(c-a )2=___ .31.(填空题,4分)对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=−1+2+33 = 43,min{-1,2,3}=-1,如果M{3,2x+1,x-1}=min{3,-x+7,2x+5},那么x=___ .32.(问答题,7分)对于数轴上的点A 和正数r ,给出如下定义:点A 在数轴上移动,沿负方向移动r 个单位长度后所在位置点表示的数是x ,沿正方向移动r 个单位长度后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的r 对称数”,记作D (A ,r )={x ,y},其中x <y . 例如:原点O 表示0,原点O 的1对称数是D (O ,1)={-1,1}.(1)若点A 表示2,则点A 的4对称数D (A ,4)={x ,y},则x=___ ,y=___ ; (2)若D (A ,r )={-3,11},求点A 表示的数及r 的值;(3)已知D (A ,5)={x ,y},D (B ,3)={m ,n},若点A 、点B 从原点同时出发,沿数轴反向运动,且点A 的速度是点B 速度的2倍,当2(y-n )=3(x-m )时,请直接写出点A 表示的数.。
北京市海淀区2022-2023学年七年级上学期期末数学试卷
海淀区2022-2023学年第一学期期末试卷
七年级 数学
一、选择题(本题共30分,每题3分).第1-10题均有四个选项,符合题意的选项只有一个.
1.中国空间站离地球的远地点距离约为347000m ,其中347000用科学计数法可表示为
(A) 34.7 x 104 (B ) 3.47 x 104 (C ) 3.47 x 105 (D) 0.347 x 106
2. -3的绝对值是
(A) 3(B )-3 (C )13-(D )±3
3.如图,分别是从上面、正面、左面看某立体图形得到的平面图形, 则该立体图形是下列的
(A )长方体(B )圆柱
(C )三棱锥(D )三棱柱
4.下列等式变形正确的是
(A)若21x -=,则2x =-
(B)若325x x =+,则325x x +=
(C)若213
x x -+= ,则3(2)1x x +-= (D)若2(1)1x x --=,则2x-2-x = 1221x x --=
5.如图,点A , B , C 在直线l 上,下列说法正确的是
(A )点C 在线段AB 上(B )点A 在线段BC 的延长线上
(C )射线BC 与射线CB 是同一条射线 (D)AC=BC+AB
6. 若220x y --=,则多项式243x y --的值为
(A) -1(B) 1(C )-3(D )0
7.如图,直角三角尺AOB 的直角顶点。
在直线CD 上,
若∠AOC = 350,则∠BOD 的度数为。
2016-2017学年北京市海淀区七年级(上)期末数学试卷及答案解析
2016-2017学年北京市海淀区七年级(上)期末数学试卷一、单项选择题(本题共36分,每小题3分)1.(3分)根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是()A.4822×108B.4.822×1011C.48.22×1010D.0.4822×10122.(3分)从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.3.(3分)若a+3=0,则a的相反数是()A.3B.C.﹣D.﹣34.(3分)将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.5.(3分)下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣4b+b=﹣3b D.a2b﹣ab2=06.(3分)西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4km.隧道贯通后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点7.(3分)已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A.12 cm B.8 cmC.12 cm或8 cm D.以上均不对8.(3分)若关于x的方程2x+a﹣4=0的解是x=2,则a的值等于()A.﹣8B.0C.2D.89.(3分)如表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为()日期摘要币种存/取款金额余额操作员备注151101北京水费RMB钞﹣125.45874.55010005B25折160101北京水费RMB钞﹣136.02738.53010005Y03折160301北京水费RMB钞﹣132.36606.17010005D05折160501北京水费RMB钞﹣128.59477.5801000K19折A.738.53元B.125.45元C.136.02元D.477.58元10.(3分)如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0B.a+b>0C.|a|﹣|b|<0D.a﹣b<0 11.(3分)已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余12.(3分)小博表演扑克牌游戏,她将两副牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:a.在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b.从第2堆拿出4张牌放到第1堆里;c.从第3堆牌中拿出8张牌放在第1堆里;d.数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e.从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A说5张,观众B说8张,小博猜两人最初每一堆里放的牌数分别为()A.14,17B.14,18C.13,16D.12,16二、填空题(本题共24分,每小题3分)13.(3分)用四舍五入法,精确到百分位,对2.017取近似数是.14.(3分)请写出一个只含有字母m、n,且次数为3的单项式.15.(3分)已知|x+1|+(2﹣y)2=0,则x y的值是.16.(3分)已知a﹣b=2,则多项式3a﹣3b﹣2的值是.17.(3分)若一个角比它的补角大36°48′,则这个角为°′.18.(3分)下面的框图表示解方程3x+20=4x﹣25的流程.第1步的依据是.19.(3分)如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为°.20.(3分)下面是一道尚未编完的应用题,请你补充完整,使列出的方程为2x+4(35﹣x)=94.七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题8分,第27题7分)21.(8分)计算:(1)(+﹣)×12.(2)(﹣1)10÷2+(﹣)3×16.22.(5分)解方程:﹣3=.23.(5分)设A=﹣x﹣4(x﹣y)+(﹣x+y).(1)当x=﹣,y=1时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的x、y的条件还可以是.24.(5分)如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③在线段DC的延长线上取一点F,使CF=BC,连接EF.(2)图中以E为顶点的角中,小于平角的角共有个.25.(5分)以下两个问题,任选其一作答.如图,OD是∠AOC的平分线,OE是∠BOC的平分线.问题一:若∠AOC=36°,∠BOC=136°,求∠DOE的度数.问题二:若∠AOB=100°,求∠DOE的度数.26.(5分)如图1,由于保管不善,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标EF符合要求.27.(7分)在数轴上,把表示数1的点称为基准点,记作点.对于两个不同的点M和N,若点M、点N到点的距离相等,则称点M与点N互为基准变换点.例如:图1中,点M表示数﹣1,点N表示数3,它们与基准点的距离都是2个单位长度,点M与点N互为基准变换点.(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换点,则点A表示的数是;(3)点P在点Q的左边,点P与点Q之间的距离为8个单位长度.对P、Q两点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的基准变换点,…,依此顺序不断地重复,得到P5,P6,…,P n.Q1为Q的基准变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的基准变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q5,Q6,…,Q n.若无论k为何值,P n与Q n两点间的距离都是4,则n=.2016-2017学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)1.(3分)根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是()A.4822×108B.4.822×1011C.48.22×1010D.0.4822×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 822亿元,用科学记数法表示4.822×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.属于基础题。
北京市海淀区2017-2018学年七年级(上)期末考试数学试题(含解析)
2017-2018学年北京市海淀区七年级(上)期末数学试卷一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1.﹣5的相反数是()A.B.﹣C.5D.﹣52.10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为()A.17.4×105B.1.74×105C.17.4×104D.1.74×1063.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|4.下列是一元一次方程的是()A.x2﹣2x﹣3=0B.2x+y=5C.D.x+1=05.如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>06.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=17.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6B.5C.4D.3二、填空题(每小题2分,共16分)11.计算:48°37'+53°35'=.12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费元.(用含a,b的代数式表示)13.已知|a﹣2|+(b+3)2=0,则b a的值等于.14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC =°.15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a=.16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为.18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化,(填写“会”或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).20.解方程:(1)3(2x﹣1)=15;(2).21.已知3a﹣7b=﹣3,求代数式2(2a+b﹣1)+5(a﹣4b)﹣3b的值.22.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.23.几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=°所以∠AOC=+=°+°=°因为OD平分∠AOC所以∠COD==°.24.如图1,线段AB=10,点C,E,F在线段AB上.(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.25.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(2,﹣3)★(3,﹣2)=;(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=;(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.2017-2018学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1.﹣5的相反数是()A.B.﹣C.5D.﹣5【分析】依据相反数的定义求解即可.【解答】解:﹣5的相反数是5.故选:C.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为()A.17.4×105B.1.74×105C.17.4×104D.1.74×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:174000用科学记数法表示为1.74×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,故(﹣3)2≠﹣32;B、(﹣3)2=9,32=9,故(﹣3)2=32;C、(﹣2)3=﹣8,﹣23=﹣8,则(﹣2)3=﹣23;D、|﹣2|3=23=8,|﹣23|=|﹣8|=8,则|﹣2|3=|﹣23|.故选:A.【点评】此题确定底数是关键,要特别注意﹣32和(﹣3)2的区别.4.下列是一元一次方程的是()A.x2﹣2x﹣3=0B.2x+y=5C.D.x+1=0【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、不是一元一次方程,故此选项错误;D、是一元一次方程,故此选项正确;故选:D.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.5.如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.【点评】本题考查了数轴的意义、绝对值的定义及有理数的乘法法则,熟练掌握数轴的有关性质是关键.6.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=1【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A、若﹣3x=5,则x=﹣,错误;B、若,则2x+3(x﹣1)=6,错误;C、若5x﹣6=2x+8,则5x﹣2x=8+6,错误;D、若3(x+1)﹣2x=1,则3x+3﹣2x=1,正确;故选:D.【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.7.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB 上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6B.5C.4D.3【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.二、填空题(每小题2分,共16分)11.计算:48°37'+53°35'=102°12'.【分析】1度=60分,即1°=60′,1分=60秒,即1′=60″,依据度分秒的换算即可得到结果.【解答】解:48°37'+53°35'=101°72'=102°12',故答案为:102°12'.【点评】本题主要考查了度分秒的换算,在进行度、分、秒的运算时也应注意借位和进位的方法.12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费(4a+10b)元.(用含a,b的代数式表示)【分析】根据单价×数量=总费用进行解答.【解答】解:依题意得:4a+10b;故答案是:(4a+10b).【点评】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.13.已知|a﹣2|+(b+3)2=0,则b a的值等于9.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入原式中即可.【解答】解:依题意得:a﹣2=0,b+3=0,∴a=2,b=﹣3.∴b a=(﹣3)2=9.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC=59°.【分析】根据题意可得∠CAS=18°,∠BAS=77°,然后利用角的和差关系可得答案.【解答】解:∠BAC=77°﹣18°=59°,故答案为:59.【点评】此题主要考查了方向角,方向角是从正北或正南方向到目标方向所形成的小于90°的角.15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a=1.【分析】根据一元一次方程的解的定义列出方程,解方程即可.【解答】解:∵2是关于x的一元一次方程2(x﹣1)=ax的解,∴2a=2,解得,a=1,故答案为:1.【点评】本题考查的是方程的解的定义,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=﹣8(直接写出答案).【分析】原式利用已知的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣8【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为2或10.【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,AC=1B﹣BC=6﹣4=2;当C在线段AB的延长线上时,AC=AB+BC=10.综上所述:AC的长度为2或10.故选:2或10.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化,不会(填写“会”或者“不会”),图形的周长为2n+4a.【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【解答】解:周长依次为16a,32a,64a,128a,…,2n+4a,即无限增加,所以不断发展下去到第n次变化时,图形的周长为2n+4a;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a2.故答案为:不会、2n+4a.【点评】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键,本题有一定难度.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据幂的乘方、有理数的除法和减法可以解答本题.【解答】解:(1)(﹣)×(﹣8)+(﹣6)2=4+36=40;(2)﹣14+(﹣2)=﹣1+2×3﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.解方程:(1)3(2x﹣1)=15;(2).【分析】(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【解答】解:(1)去括号得,6x﹣3=15,移项得,6x=15+3,合并同类项得,6x=18,系数化为1得,x=3;(2)去分母得,2(x﹣7)﹣3(1+x)=6,去括号得,2x﹣14﹣3﹣3x=6,移项得,2x﹣3x=6+14+3,合并同类项得,﹣x=23,系数化为1得,x=﹣23.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.21.已知3a﹣7b=﹣3,求代数式2(2a+b﹣1)+5(a﹣4b)﹣3b的值.【分析】根据整式的运算法则即可求出答案.【解答】解:当3a﹣7b=﹣3时,原式=4a+2b﹣2+5a﹣20b﹣3b=9a﹣21b﹣2=3(3a﹣7b)﹣2=﹣9﹣2=﹣11【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.【分析】(1)连接AM,以M为圆心,MA为半径画弧交直线l于N,点N即为所求;(2)连接AB交直线l于点O,点O即为所求;【解答】解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.【点评】本题考查作图﹣复杂作图,两点之间线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=120°所以∠AOC=∠AOB+∠BOC=40°+120°=160°因为OD平分∠AOC所以∠COD=∠AOC=80°.【分析】先求出∠BOC的度数,再求出∠AOC的度数,根据角平分线定义求出即可.【解答】解:∵∠BOC=3∠AOB,∠AOB=40°,∴∠BOC=120°,∴∠AOC=∠AOB+∠BOC=40°+120°=160°,∵OD平分∠AOC,∴∠COD=∠AOC==80°,故答案为:120,∠AOB,∠BOC,40,120,160,∠AOC,80.【点评】本题考查了角平分线定义和角的有关计算,能求出∠AOC的度数和得出∠COD=∠AOC 是解此题的关键.24.如图1,线段AB=10,点C,E,F在线段AB上.(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.【分析】(1)根据线段的中点得出AE=CE=AC,CF=FB=CB,求出EF=AB,代入求出即可;(2)根据线段的中点得出AE=CE=AC,CF=FB=CB,即可求出EF=AC.【解答】解:(1)∵当点E、点F是线段AC和线段BC的中点,∴AE=CE=AC,CF=FB=CB,∵AB=10,∴EF=CE+CF=AC+CB=(AC+CB)=AB=10=5;(2)如图:EF=AC,理由是:∵当点E、点F是线段AB和线段BC的中点,∴AE=EB=AB,CF=FB=CB,∴EF=EB﹣FB=AB﹣CB=(AB﹣CB)=AC.【点评】本题考查了求两点之间的距离和线段的中点,能根据线段的中点定义得出AE=EB=AB和CF=FB=CB是解此题的关键.25.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为2:3;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?【分析】探究一:依据3个A型号钢球与2个B型号钢球的体积相等,即可得到A型号与B型号钢球的体积比为2:3;探究二:设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由放入A型号与B型号钢球共10个后,水面高度涨到57mm,可得方程,进而得出结论.【解答】解:探究一:由题可得,3个A型号钢球与2个B型号钢球的体积相等,∴A型号与B型号钢球的体积比为2:3;故答案为:2:3;探究二:每个A型号钢球使得水面上升(36﹣30)=2 mm,每个B型号钢球使得水面上升(36﹣30)=3mm,设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由题意列方程:2x+3(10﹣x)=57﹣30,解得:x=3,所以10﹣x=7,答:放入水中的A型号钢球3个,B型号钢球7个.【点评】本题主要考查了一元一次方程的应用,解决问题的关键是依据等量关系列方程求解.26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(2,﹣3)★(3,﹣2)=﹣5;(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=1;(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x的值;(3)原式利用题中的新定义计算,求出整数k的值即可.【解答】解:(1)根据题意得:原式=﹣9+4=﹣5;故答案为:﹣5;(2)根据题意化简得:2x﹣1+3x+3=7,移项合并得:5x=5,解得:x=1;故答案为:1;(3)∵等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数,∴(2x﹣1)k﹣(﹣3)(x+k)=5+2k,∴(2k+3)x=5,∴x=,∵k是整数,∴2k+3=±1或±5,∴k=1,﹣1,﹣2,﹣4.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.【分析】(1)根据角平分线的定义计算即可;(2)①根据∠FCD=∠ACF﹣∠ACD,求出∠ACF,∠ACD即可;②猜想:∠BCE=2α.根据∠BCE=∠AOB﹣∠ECD﹣∠ACD计算即可;(3)求出α,β(用t表示),构建方程即可解决问题;【解答】解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,∴∠FOD=∠EOD=45°,故答案为45°(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,∴∠ECA=120°,∵CF平分∠ACE,∴∠FCA=∠ECA=60°∴α=∠FCD=60°﹣30°=30°故答案为30°.②如图2中,猜想:∠BCE=2α.理由:∵∠DCE=90°,∠DCF=α,∴∠ECF=90°﹣α,∵CF平分∠ACE,∴∠ACF=∠ECF=90°﹣α,∵点A,O,B共线∴AOB=180°∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|β﹣α|=20°,∴|30t|=20°,解得t=.故答案为.【点评】本题考查角的计算、角平分线的定义、数轴、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.。
2021-2022学年北京市海淀区七年级(上)期末数学试卷
2021-2022学年北京市海淀区七年级(上)期末数学试卷1.(单选题,3分)2022年北京冬奥会计划于2月4日开幕.作为2022年北京冬奥会雪上项目的主要举办地,张家口市崇礼区建成7家大型滑雪场,拥有169条雪道,共162000米.数字162000用科学记数法表示为()A.162×103B.16.2×104C.1.62×105D.0.162×1062.(单选题,3分)如果a的相反数是1,则a2的值为()A.1B.2C.-1D.-23.(单选题,3分)下列等式变形正确的是()A.若2x=7,则x= 27B.若x-1=0,则x=1C.若3x+2=2x,则3x+2x=2=3,则x-1=3D.若x−124.(单选题,3分)关于x的整式ax2+bx+c(a,b,c均为常数)的常数项为1,则()A.a=1B.b=1C.c=1D.a+b+c=15.(单选题,3分)某地居民生活用水收费标准:每月用水量不超过20立方米,每立方米a 元;超过部分每立方米(a+2)元.该地区某家庭上月用水量为25立方米,则应缴水费()A.25a元B.(25a+10)元C.(25a+50)元D.(20a+10)元6.(单选题,3分)已知点A ,B ,C ,D 在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位长度.若点A ,B ,C ,D 分别表示数a ,b ,c ,d ,且满足a+d=0,则b 的值为( )A.-1B.- 12 C. 12 D.17.(单选题,3分)中国有悠久的金石文化,印信是金石文化的代表之一,南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是( )A.B.C.D.8.(单选题,3分)几个人一起去购买物品,如果每人出8元,那么剩余3元;如果每人出7元,那么差4元.若设有x 人,则下列方程中,符合题意的是( ) A.8x-3=7x+4 B.8x+3=7x-4 C.x−38 = x+47 D.x+38 = x+479.(单选题,3分)关于x 的方程kx-3=2x 的解是整数,则整数k 的可能值有( )A.1个B.2个C.3个D.4个10.(单选题,3分)如图,三角尺COD的顶点O在直线AB上,∠COD=90°.现将三角尺COD绕点O旋转,若旋转过程中顶点C始终在直线AB的上方,设∠AOC=α,∠BOD=β,则下列说法中,正确的是()A.若α=10°,则β=70°B.α与β一定互余C.α与β有可能互补D.若α增大,则β一定减小-(-1)=___ .11.(填空题,2分)计算:- 1312.(填空题,2分)关于x的方程ax=2的解是x=2,则a的值是 ___ .13.(填空题,2分)如图所示的网格是正方形网格,∠ABC___ ∠DEF(填“>”,“=”或“<”)14.(填空题,2分)已知x=3-2y,则整式2x+4y-5的值为 ___ .15.(填空题,2分)某有理数满足它的绝对值等于它的相反数,写出一个符合该条件的数___ .16.(填空题,2分)如图,已知点C是线段AB的中点,点D是线段AB上的一点,若AD=1,CD=2,则AB的长度为 ___ .17.(填空题,2分)如图,一艘货轮B在沿某小岛O北偏东60°方向航行中,发现了一座灯塔A.某一时刻,灯塔A与货轮B分别到小岛O的距离恰好相等,用量角器度量得到此时∠ABO的度数是 ___ °(精确到度).18.(填空题,2分)如图,若一个表格的行数代表关于x 的整式的次数,列数代表关于x 的整式的项数(规定单项式的项数为1),那么每个关于x 的整式均会对应表格中的某个小方格.若关于x 的整式A 是三次二项式,则A 对应表格中标★的小方格.已知B 也是关于x 的整式,下列说法正确的有 ___ .(写出所有正确的序号)① 若B 对应的小方格行数是4,则A+B 对应的小方格行数一定是4; ② 若A+B 对应的小方格列数是5,则B 对应的小方格列数一定是3;③ 若B 对应的小方格列数是3,且A+B 对应的小方格列数是5,则B 对应的小方格行数不可能是3.19.(问答题,6分)计算: (1)25÷ 23 -25×(- 12 ); (2)(-3)2×( 12 - 56 )+|-4|.20.(问答题,8分)解方程: (1)5(x-1)+3=3x-3; (2) x−15 + x2=1.21.(问答题,6分)如图,已知平面上四个点A,B,C,D,请按要求完成下列问题:(1)画直线AB,射线BD,连接AC;(2)在线段AC上求作点P,使得CP=AC-AB;(保留作图痕迹)(3)请在直线AB上确定一点Q,使点Q到点P与点D的距离之和最短,并写出画图的依据.22.(问答题,5分)先化简,再求值:3mn2+m2n-2(2mn2-m2n),其中m=1,n=-2.23.(问答题,5分)如图,点O在直线AB上,∠COD=90°,∠BOC=α,OE是∠BOD的平分线.(1)若α=20°,求∠AOD的度数;(2)若OC为∠BOE的平分线,求α的值.24.(问答题,6分)某校初一(3)班组织生活小常识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了其中4个参赛者的得分情况.参赛者答对题数答错题数得分A 20 100B 2 88C 64D 10 40(1)参赛者E说他错了10个题,得50分,请你判断可能吗?并说明理由;(2)补全表格,并写出你的研究过程.25.(问答题,5分)如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程x-2=0是方程x-1=0的后移方程.(1)判断方程2x+1=0是否为方程2x+3=0的后移方程 ___ (填“是”或“否”);(2)若关于x的方程3x+m+n=0是关于x的方程3x+m=0的后移方程,求n的值.(3)当a≠0时,如果方程ax+b=0是方程ax+c=0的后移方程,用等式表达a,b,c满足的数量关系 ___ .26.(问答题,6分)在科幻世界里有各种造型奇特的小山.如图1是一座三棱锥小山,侧面展开图如图2所示,每个侧面完全相同.一只小狐狸在半山腰点M处(MD=MA)想饱览四周风景,它沿路径“M-N-K-A”绕小山一周最终以最短路径到达山脚A处,当小狐狸沿侧面的路径运动时,若MA≤NB,则称MN这段路为“上坡路”;若MA>NB,则称MN这段路为“下坡路”;若NB≤KC,则称NK这段路为“上坡路”;若NB>KC,则称NK这段路为“下坡路”.(1)当∠ADB=45°时,在图2中画出从点M沿侧面环绕一周到达山脚点A处的最短路径,并判断在侧面DAB、侧面DBC上走的是上坡路还是下坡路?(2)如果改变小山侧面顶角的大小,(1)中的结论是否发生变化呢?请利用量角器,刻度尺等工具画图探究,并把你的结论填入下表:(3)记∠ADB=α(0°<α<60°),随着α逐渐增大,在侧面DAB、侧面DBC上走的这两段路上下坡变化的情况为 ___ .27.(问答题,7分)在数轴上,把原点记作点O,表示数1的点记作点A.对于数轴上任意一点P(不与点O,点A重合),将线段PO与线段PA的长度之比定义为点P的特征值,记,例如:当点P是线段OA的中点时,因为PO=PA,所以P̂ =1.作P̂,即P̂ = POPA,点P2与P1关于原点对称.(1)如图,点P1,P2,P3为数轴上三个点,点P1表示的数是- 14① P2̂ =___ ;② 比较P1̂,P2̂,P3̂的大小 ___ (用“<”连接);OA,求M̂;(2)数轴上的点M满足OM= 13(3)数轴上的点P表示有理数p,已知P̂<100且P̂为整数,则所有满足条件的p的倒数之和为 ___ .。
海淀区七年级上册数学试卷
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. -1/32. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 1, 2, 3, 4, 53. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^24. 已知函数y = 2x - 3,如果x的值增加2,那么y的值将()A. 增加1B. 增加2C. 减少1D. 减少25. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)6. 下列各图中,能组成三角形的是()A. 两条边长分别为3cm和5cm,夹角为60°B. 两条边长分别为4cm和6cm,夹角为90°C. 两条边长分别为2cm和3cm,夹角为45°D. 两条边长分别为1cm和2cm,夹角为60°7. 下列各式中,正确的是()A. 3a^2b^3 = 3ab^3a^2B. (a^2b^3)^2 = a^4b^6C. (a^3b^2)^3 = a^9b^6D. (a^2b^3)^3 = a^6b^98. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解是()A. x = 2, x = 3B. x = 1, x = 4C. x = 2, x = 6D. x = 3, x = 59. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是()A. 75°B. 105°C. 135°D. 45°10. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 3x二、填空题(每题5分,共50分)11. (1)若a = 2,b = -3,则a^2 + b^2 = ________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年北京市海淀区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(3分)﹣2的绝对值等于()A.﹣B.C.﹣2D.22.(3分)神舟八号于2011年11月1日5时58分由改进型“长征二号”火箭顺利发射升空,此次火箭的起飞质量为497000公斤,数字497000用科学记数法可以表示为()A.497×103B.0.497×106C.4.97×105D.49.7×104 3.(3分)下列结果为负数的是()A.﹣(﹣3)B.﹣32C.(﹣3)2D.|﹣3|4.(3分)下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b5.(3分)如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE6.(3分)已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥7.(3分)若关于x的方程ax+3x=2的解是x=,则a的值是()A.﹣1B.5C.1D.﹣58.(3分)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°9.(3分)若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.10.(3分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种二、填空题(本题共18分,每小题3分)11.(3分)若一个数的相反数是2,则这个数是.12.(3分)∠α=18°20′,∠β=6°30′,则α+β=.13.(3分)如图所示,线段AB=4cm,BC=7cm,则AC=cm.14.(3分)若|m﹣3|+(n+2)2=0,则m+2n的值为.15.(3分)如果a﹣3b=8,那么代数式5﹣a+3b的值是.16.(3分)观察下面两行数第一行:4,﹣9,16,﹣25,36,…第二行:6,﹣7,18,﹣23,38,…则第二行中的第6个数是;第n个数是.三、解答题(本题共24分,第19题8分,其他题每题4分)17.(4分)计算:(﹣1)10×3+8÷(﹣4).18.(4分)化简:2x+5+3x﹣7.19.(8分)解方程:(1)2x﹣9=5x+3(2).20.(4分)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.21.(4分)画一画如下图所示,河流在两个村庄A、B的附近可以近似地看成是两条折线段(图中l),A、B分别在河的两旁.现要在河边修建一个水泵站,同时向A、B两村供水,为了节约建设的费用,就要使所铺设的管道最短.某人甲提出了这样的建议:从B 向河道作垂线交l于P,则点P为水泵站的位置.(1)你是否同意甲的意见?(填“是”或“否”);(2)若同意,请说明理由,若不同意,那么你认为水泵站应该建在哪?请在图中作出来,并说明作图的依据.四、解答题(本题共28分,第22题5分,第23题5分,第24题6分,第25题6分,第26题6分)22.(5分)如图所示,已知∠COB=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠BOD的度数.23.(5分)列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?24.(6分)关于x的方程(m﹣1)x n﹣3=0是一元一次方程.(1)则m,n应满足的条件为:m,n;(2)若此方程的根为整数,求整数m的值.25.(6分)已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN=cm;(2)猜想线段MN与线段AB长度的关系,即MN=AB,并说明理由.26.(6分)有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是;(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m,则m的最大值为;(3)若小明将1到n(n≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m.探究m的最小值和最大值.2011-2012学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(3分)﹣2的绝对值等于()A.﹣B.C.﹣2D.2【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选:D.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2.(3分)神舟八号于2011年11月1日5时58分由改进型“长征二号”火箭顺利发射升空,此次火箭的起飞质量为497000公斤,数字497000用科学记数法可以表示为()A.497×103B.0.497×106C.4.97×105D.49.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将497000用科学记数法表示为:4.97×105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(3分)下列结果为负数的是()A.﹣(﹣3)B.﹣32C.(﹣3)2D.|﹣3|【分析】负数就是小于的数,利用绝对值的性质,以及平方的计算方法,计算出各项的值,即可作出判断.【解答】解:A、﹣(﹣3)=3,是正数,故A选项错误;B、﹣32=﹣9,是负数,故B选项正确;C、(﹣3)2=9,是正数,故C选项错误;D、|﹣3|=3,是正数,故D选项错误.故选:B.【点评】本题主要考查了绝对值与有理数的乘方的计算,是基础的题目.4.(3分)下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【解答】解:A、3a与b不是同类项,不能合并.错误;B、3a﹣a=2a.错误;C、2a3与3a2不是同类项,不能合并.错误;D、﹣a2b+2a2b=a2b.正确.故选:D.【点评】同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项;注意不是同类项的一定不能合并.5.(3分)如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE【分析】求∠AOE的余角,根据互余的定义,即是求与∠AOE的和是90°的角,根据角相互间的和差关系可得.【解答】解:已知点O在直线AB上,∠BOC=90°,∴∠AOC=90°,∴∠AOE+∠COE=90°,∴∠AOE的余角是∠COE,故选:A.【点评】本题主要考查了余角和补角的定义,是一个基本的类型.6.(3分)已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【解答】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选:B.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.7.(3分)若关于x的方程ax+3x=2的解是x=,则a的值是()A.﹣1B.5C.1D.﹣5【分析】把x=代入方程ax+3x=2得到一个关于a的方程,求出方程的解即可.【解答】解:把x=代入方程ax+3x=2得:a+=2,∴a+3=8,∴a=5,故选:B.【点评】本题考查了解一元一次方程和一元一次方程的解等知识点的应用,关键是根据方程的解的定义得出一个关于a的方程,题目比较典型,难度不大.8.(3分)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°【分析】先根据平角的定义求出∠COB的度数,再由OD平分∠BOC即可求出∠2的度数.【解答】解:∵∠1=40°,∴∠COB=180°﹣40°=140°,∵OD平分∠BOC,∴∠2=∠BOC=×140°=70°.故选:D.【点评】本题考查的是平角的定义及角平分线的定义,熟知以上知识是解答此题的关键.9.(3分)若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【分析】根据m<1<﹣m,求出m的取值范围,进而确定M的位置即可.【解答】解:∵m<1<﹣m,∴,解得:m<﹣1.故选:A.【点评】此题主要考查了不等式组的解法以及利用数轴确定点的位置,根据已知得出m的取值范围是解题关键.10.(3分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x 的值为小数,不合题意.【解答】解:∵输出的结果为556,∴5x+1=556,解得x=111;而111<500,当5x+1等于111时最后输出的结果为556,即5x+1=111,解得x=22;当5x+1=22时最后输出的结果为556,即5x+1=22,解得x=4.2(不合题意舍去),所以开始输入的x值可能为22或111.故选:B.【点评】本题考查了代数式求值:先把代数式进行变形,然后把满足条件的字母的值代入计算得到对应的代数式的值.也考查了解一元一方程.二、填空题(本题共18分,每小题3分)11.(3分)若一个数的相反数是2,则这个数是﹣2.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:﹣2的相反数为2,∴这个数为﹣2.故答案为:﹣2.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.12.(3分)∠α=18°20′,∠β=6°30′,则α+β=24°50′.【分析】代入后相加即可,注意:18°+6°=24°,20′+30′=50′.【解答】解:∠α+∠β=18°20′+6°30′=24°50′,故答案为:24°50′.【点评】本题考查了对角的计算的理解,注意:计算时分别相加(度+度、分+分、秒+秒,满60进1),如1°36′+2°43′=3°79′=4°19′.13.(3分)如图所示,线段AB=4cm,BC=7cm,则AC=11cm.【分析】直接利用AC=AB+BC计算即可.【解答】解:∵AB=4cm,BC=7cm,∴AC=AB+BC=4cm+7cm=11cm.故答案为11.【点评】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.14.(3分)若|m﹣3|+(n+2)2=0,则m+2n的值为﹣1.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣3|+(n+2)2=0,∴,解得,∴m+2n=3﹣4=﹣1.故答案为﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.(3分)如果a﹣3b=8,那么代数式5﹣a+3b的值是﹣3.【分析】将已知条件整体代入所求代数式即可.【解答】解:∵a﹣3b=8,∴5﹣a+3b=5﹣(a﹣3b)=5﹣8=﹣3.故本题答案为﹣3.【点评】本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.16.(3分)观察下面两行数第一行:4,﹣9,16,﹣25,36,…第二行:6,﹣7,18,﹣23,38,…则第二行中的第6个数是﹣47;第n个数是(﹣1)n+1(n+1)2+2.【分析】由第一行可知,每个数字为完全平方数,即第n个数字为(n+1)2,符号是偶数项为负,第二行每一个数比第一行对应的数大2,由此得出规律.【解答】解:根据观察的规律,得第二行中的第6个数是﹣(6+1)2+2=﹣47;第n个数是(﹣1)n+1(n+1)2+2;故答案为:﹣47,(﹣1)n+1(n+1)2+2.【点评】本题考查了数字变化规律型题.关键是由特殊到一般,找出数字规律,符号规律.三、解答题(本题共24分,第19题8分,其他题每题4分)17.(4分)计算:(﹣1)10×3+8÷(﹣4).【分析】首先进行乘方运算,然后在进行乘除法运算即可.【解答】解:原式=1×3﹣8÷4=3﹣2=1.【点评】本题主要考查有理数的混合运算,关键在于正确认真进行计算.18.(4分)化简:2x+5+3x﹣7.【分析】合并同类项的法则就是字母不变,系数想加减.【解答】解:原式=(2x+3x)+(5﹣7)=5x﹣2.【点评】本题考查合并同类项的法则关键知道字母不变,系数想加减.19.(8分)解方程:(1)2x﹣9=5x+3(2).【分析】(1)按照移项,合并,系数化为1的步骤解题即可;(2)按照去分母,去括号,移项,合并的步骤解题即可.【解答】解:(1)移项得:2x﹣5x=3+9.合并得:﹣3x=12.系数化为1得:x=﹣4.(2)解:两边同时乘以12,得2(5x﹣7)+12=3(3x﹣1).去括号得:10x﹣14+12=9x﹣3.移项得:10x﹣9x=﹣3+14﹣12,合并得:x=﹣1.【点评】考查解一元一次方程;掌握解一元一次方程的步骤是解决本题的关键;注意去分母时单独的一个数也要乘最小公倍数.20.(4分)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.【分析】先去括号,x2﹣(5x2﹣4y)+3(x2﹣y)=x2﹣5x2+4y+3x2﹣3y;再合并同类项得﹣x2+y;最后把x=﹣1,y=2代入式子求值.【解答】解:x2﹣(5x2﹣4y)+3(x2﹣y)=x2﹣5x2+4y+3x2﹣3y=﹣x2+y;∴当x=﹣1,y=2时,原式=﹣(﹣1)2+2=1.【点评】此类化简求值题目的解答,要按顺序先化简,再代入计算求值.关键是化为最简的代数式,才能简化计算.21.(4分)画一画如下图所示,河流在两个村庄A、B的附近可以近似地看成是两条折线段(图中l),A、B分别在河的两旁.现要在河边修建一个水泵站,同时向A、B两村供水,为了节约建设的费用,就要使所铺设的管道最短.某人甲提出了这样的建议:从B 向河道作垂线交l于P,则点P为水泵站的位置.(1)你是否同意甲的意见?否(填“是”或“否”);(2)若同意,请说明理由,若不同意,那么你认为水泵站应该建在哪?请在图中作出来,并说明作图的依据.【分析】(1)根据线段的性质可判断;(2)水泵应在线段AB上,连接AB,与l的交点,即为水泵的位置;【解答】解:(1)否;(2)连接AB,交l于点Q,则水泵站应该建在点Q处;依据为:两点之间,线段最短.【点评】本题主要考查了线段的性质:两点之间线段最短;体现了数学知识在实际中的应用.四、解答题(本题共28分,第22题5分,第23题5分,第24题6分,第25题6分,第26题6分)22.(5分)如图所示,已知∠COB=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠BOD的度数.【分析】由角平分线的定义,可以得到∠BOD=∠AOB÷2,从而可以转化为求∠AOB.【解答】解:∵∠COB=2∠AOC,且∠AOC=40°,∴∠COB=2×40°=80°,∴∠AOB=∠AOC+∠COB=40°+80°=120°,∵OD平分∠AOB,∴∠BOD=∠AOB÷2=120°÷2=60°.∴∠BOD的度数是60°.故答案为60°.【点评】本题主要考查角平分线的知识点,比较简单.23.(5分)列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x 人,根据题意可列方程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:生产圆形铁片的有24人,生产长方形铁片的有18人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.24.(6分)关于x的方程(m﹣1)x n﹣3=0是一元一次方程.(1)则m,n应满足的条件为:m≠1,n=1;(2)若此方程的根为整数,求整数m的值.【分析】(1)根据一元一次方程的定义:含有一个未知数,未知数的次数为1,求解;(2)先由(1)得方程(m﹣1)x﹣3=0,求出x,再根据此方程的根为整数确定m的值.【解答】解:(1)根据一元一次方程的定义得:m﹣1≠0,n=1,即m≠1,n=1,故答案为:≠1,=1;(2)由(1)可知方程为(m﹣1)x﹣3=0,则x=∵此方程的根为整数,∴为整数.又m为整数,则m﹣1=﹣3,﹣1,1,3,∴m=﹣2,0,2,4.【点评】本题考查的是一元一次方程的定义,根据题意确定m的值是解答此题的关键.25.(6分)已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN=5cm;(2)猜想线段MN与线段AB长度的关系,即MN=AB,并说明理由.【分析】(1)因为点C恰好为线段AB上一点,所以MN=MC+NC=AC+BC=(AC+BC)=AB=5cm;(2)分三种情况当C在线段AB上时,当C在线段AB的延长线上时,当C在线段BA的延长线上时,进行推论说明.【解答】解:(1)因为点C恰好为线段AB上一点,所以MN=MC+NC=AC+BC=(AC+BC)=AB=5cm;故答案为:5;(2);证明:∵M是线段AC的中点,∴CM=AC,∵N是线段BC的中点,∴CN=BC,…(3分)以下分三种情况讨论,当C在线段AB上时,MN=CM+CN=AB;…(4分)当C在线段AB的延长线上时,MN=CM﹣CN=AB;…(5分)当C在线段BA的延长线上时,MN=CN﹣CM=AB;…(6分)综上:MN=AB.故答案为:.【点评】考查了两点间的距离.首先要根据题意,考虑所有可能情况,画出正确图形.再根据中点的概念,进行线段的计算与证明.26.(6分)有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是4;(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m,则m的最大值为2010;(3)若小明将1到n(n≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m.探究m的最小值和最大值.【分析】(1)根据已知得出输入与输出结果的规律求出即可;(2)根据题意每次输入都是与前一次运算结果求差后取绝对值,转化为奇偶性的性质然后讨论最大值.(3)根据分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算分别得出最大值与最小值.【解答】解:(1)根据题意可以得出:||3﹣4|﹣5|=|1﹣5|=4;故答案为:4.(2)由于输入的数都是非负数.当x1≥0,x2≥0时,|x1﹣x2|不超过x1,x2中最大的数.对x1≥0,x2≥0,x3≥0,则||x1﹣x2|﹣x3|不超过x1,x2,x3中最大的数.小明输入这2011个数设次序是x1,x2,x2011,相当于计算:||||x1﹣x2|﹣x3|﹣x2011|﹣x2011|=P.因此P的值≤2011.另外从运算奇偶性分析,x1,x2为整数.|x1﹣x2|与x1+x2奇偶性相同.因此P与x1+x2+…+x2011的奇偶性相同.但x1+x2+…+x2011=1+2+2011=偶数.于是断定P≤2010.我们证明P可以取到2010.对1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0.|||(4k+1)﹣(4k+3)|﹣(4k+4)|﹣(4k+2)|=0,对k=0,1,2,均成立.因此,1﹣2008可按上述办法依次输入最后显示结果为0.而后||2009﹣2010|﹣2011|=2010.所以P的最大值为2010.故答案为:2010;(3)对于任意两个正整数x1,x2,|x1﹣x2|一定不超过x1和x2中较大的一个,对于任意三个正整数x1,x2,x3,||x1﹣x2|﹣x3|一定不超过x1,x2和x3中最大的一个,以此类推,设小明输入的n个数的顺序为x1,x2,…x n,则m=|||…|x1﹣x2|﹣x3|﹣…|﹣x n|,m一定不超过x1,x2,…x n,中的最大数,所以0≤m≤n,易知m与1+2+…+n的奇偶性相同;1,2,3可以通过这种方式得到0:||3﹣2|﹣1|=0;任意四个连续的正整数可以通过这种方式得到0:|||a﹣(a+1)|﹣(a+3)|﹣(a+2)|=0(*);下面根据前面分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算.当n=4k时,1+2+…+n为偶数,则m为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n,则最大值为n;当n=4k+1时,1+2+…+n为奇数,则m为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n,则最大值为n;当n=4k+2时,1+2+…+n为奇数,则m为奇数,从1开始连续四个正整数结合得到0,仅剩下n和n﹣1,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n,最大值为n﹣1;当n=4k+3时,1+2+…+n为偶数,则m为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n,则最大值为n﹣1.【点评】此题考查了整数的奇偶性问题以及含有绝对值的函数最值问题,虽然以计算为载体,但首先要有试验观察和分情况讨论的能力.。