高考数学向量与三角不等式等

合集下载

高考数学基本(均值)不等式与其他知识相结合的9种方式-10.23

高考数学基本(均值)不等式与其他知识相结合的9种方式-10.23

基本(均值)不等式与其他知识相结合的9种方式基本(均值)不等式是解决函数、立体几何、三角函数、数列、向量、解三角形等知识领域重要的方法之一。

本资料整理高一知识融合试题,试题偏难,仅供强基计划学生选用。

一、不等式与三角函数1.已知αβγπ++=,β为锐角,tan 3tan αβ=,则11tan tan γα+的最小值为( ) A .12B .43C .32 D .34解析:∵αβγπ++=, ∴2tan tan 4tan tan tan()1tan tan 13tan αββγαβαββ+=-+=-=---,22113tan 119tan 1tan tan 4tan 3tan 12tan ββγαβββ-+∴+=+= 31321tan 49tan 432ββ⎛⎫=+≥⨯= ⎪⎝⎭, 当且仅当1tan 9tan ββ=即1tan 3β=时取等号, 所以11tan tan γα+的最小值为12.故选:A.二、不等式与数列2.阅读:已知a 、b ∈(0,+∞),a +b =1,求y =1a +2b 的最小值. 解法如下:y =1a +2b =(1a +2b )(a +b)=ba +2a b+3≥3+2√2,当且仅当ba =2ab,即a =√2−1,b =2−√2时取到等号,则y =1a +2b 的最小值为3+2√2. 应用上述解法,求解下列问题:(1)已知a,b,c ∈(0,+∞),a +b +c =1,求y =1a +1b +1c 的最小值; (2)已知x ∈(0,12),求函数y =1x +81−2x 的最小值;(3)已知正数a 1、a 2、a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1, 求证:S =a 12a1+a 2+a 22a2+a 3+a 32a3+a 4+⋯+a n2an +a 1≥12.解析:(1)∵a +b +c =1,∴y =1a +1b +1c =(a +b +c )(1a +1b +1c )=3+(b a+a b+c a+a c+c b+b c)≥3+2√b a⋅ab+2√ca ⋅a c +2√cb ⋅bc=9, 当且仅当a =b =c =13时取等号.即y =1a +1b +1c 的最小值为9. (2)y =22x +81−2x =(22x +81−2x )(2x +1−2x)=10+2⋅1−2x 2x+8⋅2x1−2x ,而x ∈(0,12),∴2⋅1−2x 2x+8⋅2x 1−2x≥2√2(1−2x)2x⋅8⋅2x1−2x =8,当且仅当2(1−2x)2x =8⋅2x1−2x ,即x =16∈(0,12)时取到等号,则y ≥18,∴函数y =1x +81−2x 的最小值为18. (3)∵a 1+a 2+a 3+…+a n =1, ∴2S =(a 12a 1+a 2+a 22a 2+a 3+a 32a 3+a 4+⋯+a n 2a n +a 1)[(a 1+a 2)+(a 2+a 3)+…+(a n +a 1)]=(a 12+a 22+⋯+a n 2)+[a 12a 1+a 2(a 2+a 3)+a 22a 2+a 3(a 1+a 2)+⋯+a n2an +a 1(a 1+a 2)+a 12a 1+a 2(a 3+a 4)+⋯]≥(a 12+a 22+⋯+a n 2)+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当a 1=a 2=⋯=a n =1n 时取到等号,则S ≥12.三、不等式与立体几何3.已知三棱锥A BCD -的所有顶点都在球O 的球面上,AD ⊥平面,120ABC BAC ︒∠=,2AD =,若球O 的表面积为20π,则三棱锥A BCD -的体积的最大值为( )A B C D .【解析】设球O 的半径为R ,AB x =,AC y =, 由2420R ππ=,得25R =. 如图:设三角形ABC 的外心为G ,连接OG ,GA ,OA ,可得112OG AD ==,则2AG ==.在ABC ∆中,由正弦定理可得:24sin120BCAG ==︒,即BC =由余弦定理可得,222221122()32BC x y xy x y xy xy ==+-⨯-=++,4xy ∴.则三棱锥A BCD -的体积的最大值为114sin120232⨯⨯⨯︒⨯=.故选:B .4.如图,在三棱锥S ABC -中,SA ⊥面ABC ,AB BC E F ⊥,、是SC 上两个三等分点,记二面角E AB F --的平面角为α,则tan α( )A .有最大值43B .有最大值34C .有最小值43D .有最小值34【解析】将三棱锥放入长方体中,设AB a ,BC b =,AS c =,如图所示:过E 作EN ⊥平面ABC 与N ,NM AB ⊥与M ,连接ME , 则EMN ∠为二面角E AB C --的平面角,设为1α,则13NE c =,23MN b =,故1tan 2cbα=. 同理可得:设二面角F AB S --的平面角为2α,2tan 2b cα=. 12121231tan tan 34tan tan 2tan tan 422c b b cααπααααα-⎛⎫=--==≤ ⎪+⎝⎭+,当22c b b c=,即b c =时等号成立. 故选:B .5.如图,已知四面体ABCD 为正四面体,AB =E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .1BC .2D .【解析】把正四面体补为正方体,如图,根据题意,//KL BC ,//LM GH ,KL AL BC AB =,LM BLAD AB=, 所以KL AL =,LM BL =,故KL LM AL BL +=+=,222KL LM S KL LM +⎛⎫=⋅≤= ⎪⎝⎭截面,当且仅当KL LM =时成立,故选:C.四、不等式证明6.设,,0x y z >,1114,4,4a x b y c z y z x=+=+=+,则,,a b c 三个数( ) A .都小于4 B .至少有一个不大于4 C .都大于4D .至少有一个不小于4【解析】假设三个数144x y +<且144y z +<且144z x+<, 相加得:11144412x y z x y z+++++<, 由基本不等式得:144x x +;144y y +;144z z+;相加得:11144412x y z x y z+++++,与假设矛盾;所以假设不成立,三个数14x y +、14y z +、14z x+至少有一个不小于4. 故选:D .7.已知a ,b ,R c ∈,2221a b c ++=.()1证明:112ab bc ca -≤++≤. ()2证明:()()()22222222223a b c b c a c a b +++++≤.【解析】()1证明:由()222222212220a b c a b c ab bc ca ab bc ca ++=+++++=+++≥,得12ab bc ca ++≥-.另一方面,222a b ab +≥,222b c bc +≥,222c a ca +≥, 所以222222222a b c ab bc ca ++≥++,即1ab bc ca ++≤.所以112ab bc ca -≤++≤.()2证明:()()()222222222a b c b c a c a b +++++()()()()2222224441111a a b b c c a b c =-+-+-=-++,因为()()24442222222224444442221a b c a b ca b b c c a a b b c c a ++=++---≥-+++++,即()44431a b c ++≥,则44413a b c ++≥, 所以()()()22222222223a bc b c a c a b +++++≤.8.已知,,a b c 为正数,且满足 1.a b c ++= 证明:(1)1119a b c++≥; (2)8.27ac bc ab abc ++-≤【解析】(1)1a b c ++=,故111a b c a b c a b c a b c a b c++++++++=++ 332229b a c a c ba b a c b c =++++++≥+++=,当13a b c ===时等号成立. (2)易知10,10,10a b c ->->->.()()()()1111ac bc ab abc a b c ac bc ab abc a b c ++-=-+++++-=---31118327a b c -+-+-⎛⎫≤= ⎪⎝⎭.当13a b c ===时等号成立.9.设实数x ,y 满足2x y 1+=.()1若2y 12x 3--<,求x 的取值范围;()2若x 0>,y 0>,求证:1215x y 2+. 【解析】()1由21x y +=,得12y x =-,所以不等式2123y x --<,即为4123x x --<,所以有{1423x x x <-+<或1041423x x x ⎧≤≤⎪⎨⎪--<⎩或144123x x x ⎧>⎪⎨⎪--<⎩ 解得10x -<< 或10?4x ≤≤或 124x <<, 所x 的取值范围为()1,2x ∈-.()20x >,0y >,21x y +=所以()1212424448y xx y x y x y x y⎛⎫+=++=++≥+= ⎪⎝⎭ 当且仅当4y x x y =,即122x y ==时取等号.又2122x y +≥-=-,当且仅当122x y ==时取等号,所以12152x y +≥,当且仅当122x y ==时取等号.10、在锐角ABC ∆中,证明:(1)tan tan tan tan tan tan A B C A B C ++=;(2)tan tan tan A B C ⋅⋅≥证明:(1)tan tan tan tan()tan tan 1A BC A B A B +=-+=-∴tan tan tan tan tan tan A B C A B C ++=(5分)(2)解法1:tan ,(0,)2y x x π=∈是凸函数,∴tan tan tan A B C ≥解法2:3tan tan tan tan tan tan ()3A B C A B C ++≤,∴tan tan tan A B C ≥五、最值问题11.设0,0x y >>且4x y +=,则2212x y x y +++的最小值是 A .167B .73C .2310D .94【解析】∵4x y +=,∴(x+1)+(y+2)=7∴()()()()2222121124241212x x y y x y x y x y +-+++-+++=+++++=1+()1414x 1y 214y 24x 112216112?x 1y 2x 1y 277777x 17y 2777⎛⎫++++⎛⎫+=+++=++++≥+⨯= ⎪⎪++++++⎝⎭⎝⎭()() 12.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为( ) A.34+ B.34+ C.36+ D.36+ 【解析】因为0,1a b >>满足5a b +=,则()21211()1114a b a b a b +=++-⨯⎡⎤⎣⎦--()21113(3414b a a b -⎡⎤=++≥+⎢⎥-⎣⎦ 当且仅当()211b aa b -=-时取等号,故选:A .13.设0a b >>,则()241ab b b a b ++-的最小值是( ) A .2B .3C .4D .6【解析】因为00a b a b >>⇒->; 所以22224114()()ab ab b b b b a b b a b b ++=-+++--2214()2(246()b a b b b a b b a b b =-+++-=+=-.当且仅当1()()b a b b a b -=-,224b b=时取等号,∴241()ab b b a b ++-的最小值为6.故选:D .六、不等式与函数14.已知()221f x x x =-++. (1)求不等式()6f x <的解集;(2)设,,m n p 为正实数,且()2m n p f ++=,求证:3mn np pm ++≤.【解析】(1)不等式2216x x -++<等价于不等式组1336x x <-⎧⎨-+<⎩或1256x x -≤≤⎧⎨-+<⎩或2336x x >⎧⎨-<⎩,所以不等式2216x x -++<的解集为()1,3-; (2)证明:因为3m n p ++=,所以()22222229m n p m n p mn mp np ++=+++++=, 因为,,m n p 为正实数,所以由基本不等式222m n mn +≥(当且仅当m n =时等号成立), 同理22222,2m p mp p n pn +≥+≥,所以222m n p mn mp np ++≥++, 所以()22222229333m n p m n p mn mp np mn mp np ++=+++++=≥++, 所以3mn mp np ++≤.15.已知函数()f x =的定义域为R .(1)求实数m 的取值范围;(2)设实数t 为m 的最大值,若实数,,a b c 满足2222a b c t ++=,求222111123a b c +++++的最小值. 【解析】(1)函数()f x =R .∴231x x m ---≥对任意的x ∈R 恒成立,令()231g x x x =---,则()()()()7,353,035,0x x g x x x x x ⎧-≥⎪=-<<⎨⎪-≤⎩,结合()g x 的图像易知()g x 的最小值为4-,所以实数m 的取值范围(],4-∞-.(2)由(1)得4t =-,则22216a b c ++=,所以()()()22212322a b c +++++=,()()()22222222211112311112312322a b c a b c a b c ⎛⎫⎡⎤+++++++ ⎪⎣⎦+++⎝⎭++=+++ 222222222322213132312132322b ac a c b a b a c b c ++++++++++++++++++=922≥=,当且仅当222221233a b c +=+=+=,即2193a =,2163b =,2133c =时等号成立,∴222111123a b c +++++的最小值为922.七、不等式与向量16.若非零向量,m n 满足||||1m e m e n e n e --⋅=--⋅=(e 为单位向量),且m n ⊥,则||m n -的最小值是( )A .1B .2C .4D .8【解析】由非零向量,m n 满足m n ⊥,可设(,0)m a =,(0,)n b =,其中,a b 均不为0. 因为e 为单位向量,可设(cos ,sin )e θθ=,因为||(cos 1m e m e a a θ--⋅=-=,所以222222cos cos sin 12cos cos a a a a θθθθθ+=++-+,即2sin 4cos a θθ= ①, 同理,由||1n e n e --⋅=可得2cos 4sin b θθ= ②,由①②,可得22224416cos 16sin sin cos a b θθθθ+=+=42242244cos sin cos sin sin cos 16sin cos θθθθθθθθ⎛⎫+++ ⎪⎝⎭42421116tan tan 16(22)64tan tan θθθθ⎛⎫=+++≥⨯+= ⎪⎝⎭当且仅当2tan 1θ=时,等号成立,所以当2tan 1θ=时,min ||8m n -=, 故选:D .17.已知平行四边形ABCD的面积为,23πBAD ∠=,E 为线段BC 的中点.若F 为线段DE 上的一点,且56AF AB AD λ=+,则AF 的最小值为___________. 【解析】由题可知,平行四边形ABCD 的图象如下:设DF kDE =,()=AF AD DF AD kDE AD k DC CE ∴=++=++,DC AB =,12CE DA =,则1+2AF AD k AB k DA =+, 所以11122AF k AB AD k AD k AB k AD ⎛⎫=+-=+- ⎪⎝⎭,又56AF AB AD λ=+,则有:15126k k λ=⎧⎪⎨-=⎪⎩,解得:13k λ==,即1536AF AB AD =+, 平行四边形ABCD的面积为,即2sin3AB AD π⋅=18AB AD ∴⋅=, 2222151525369936AF AB AD AB AB AD AD ⎛⎫∴=+=+⋅+ ⎪⎝⎭,即:2221525cos 9936AF AB AB AD BAD AD ∴=+⋅∠+, 222221512512518=+599236936AF AB AD AB AD ⎛⎫∴=+⨯⨯-+- ⎪⎝⎭,即:222125=+5936AF AB AD -, 222212512552=218=1093618AB AD AB AD +≥⨯⨯⨯,即22125+10936AB AD ≥, 所以22125+55936AB AD -≥,25AF ∴≥,5AF ∴≥,当且仅当:22125=936AB AD 时,取等号,AF ∴的最小值为.18.平面向量,,a b c →→→满足||1a →≤,||1b →≤,|2()|||c a b a b →→→→→≤--+,则||c →的最大值为_______. 【解析】由绝对值不等式的性质可知,已知中|2()|||c a b a b -+≤-,可得|2|||||c a b a b -+≤-,即|2|||||c a b a b ≤++-,将a ,b 的起点移到同一点,以a ,b 为边构造平行四边形,则a b +,a b -为平行四边形的两条对角线,在平行四边形ABCD 中,2222||||||||AC AB AD AB AD ==++2||||cos AB AD BAD +⋅∠,由余弦定理可知222||||||2||||cos BD AB AD AB AD BAD -=+⋅∠,则22||||AC BD +=222||2||AB AD +,显然||||AC BD +若取最大值,则||AB ,||AD 应为最大1,即()()2222||||||||4||||||22||4||||2AC BD AC BD AC BD AC BD AC BD ++=⇒=--+=⇒由基本不等式可知()()()222|||||||||||282|||||||||4AC BD AC BD AC BD AC BD AC BD ++=≤⇒⇒++≤-≤当且仅当||||AC BD =时取等号,所以当||1a =,||1b =且||||a b a b +=-时,||||a b a b ++-取得最大值则|2|||||22c a b a b ≤++-≤,即||2c ≤,所以||c .八、不等式与解三角形19.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c +=-,则1tan 2tan()CBC +-的最小值为( )AB .2C .1D.【解析】因为222sin()SA C b c +=-,即222sin S B b c =-,所以22sin sin ac B B b c =-,因为sin 0B ≠,所以22b c ac =+,由余弦定理2222cos b a c ac B =+-,可得2cos a c B c -=, 再由正弦定理得sin 2sin cos sin A C B C -=,因为sin 2sin cos sin()2sin cos sin()A C B B C C B B C -=+-=-, 所以sin()sin B C C -=,所以B C C -=或B C C π-+=, 得2B C =或B π=(舍去).因为ABC ∆是锐角三角形,所以02022032C C C ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,得64C ππ<<,即tan C ∈,所以11tan tan 2tan()2tan C C B C C+=+≥-当且仅当tan C =,取等号. 故选:A20.已知在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =,则当角C 取到最大值时ABC 的面积为( )A .B .CD .【解析】设AC 中点为D ,则()BO AC BD DO AC ⋅=+⋅ BD AC =⋅ ()()12BC BA BC BA =+⋅- 221122BC BA =-,22111522a c ∴-=,即c = 由c a <知角C 为锐角,故222cos 2a b c C ab+-=2301301212b b b b +⎛⎫==+ ⎪⎝⎭ 1212b ⨯=,当且仅当30b b =,即b =cos C 最小,又cos y x =在0,2π⎛⎫⎪⎝⎭递减,故C 最大.此时,恰有222a b c =+,即ABC 为直角三角形,ABC12Sbc ==,故选A .21.在ABC 中,已知·9AB AC =,sin cos sin B A C =,6ABCS =,P 为线段AB 上的点,且CA CB CP xyCACB=+,则xy 的最大值为________.【解析】由sin cos sin B A C =得2222221622ABC b c a b c a b c S ab bc ∆+-=⇒+=⇒==所以由·9AB AC =得29,3,4AC b a =∴== 又P 为线段AB 上的点,且CA CB CP xyCACB=+,所以1,1,1334x y x y xy b a +=∴+=∴≥≤ ,当且仅当3,22x y ==时,等号成立即xy 的最大值为3.22.设ABC △的内角,,A B C 所对的边分别为,,a b c ,且3cos cos 5a Bb Ac -=,则()tan A B -的最大值为A.2B .34C .32D【解析】3cos cos 5a Bb Ac -=∴由正弦定理,得35sinAcosB sinBcosA sinC -=, C A B sinC sin A B π=-+⇒=+()(),, ∴35sinAcosB sinBcosA sinAcosB cosAsinB -=+(),整理,得4sinAcosB sinBcosA =,同除以cosAcosB , 得4tanA tanB = , 由此可得23311144tanA tanB tanBtan A B tanAtanB tan BtanB tanB(),--===+++A B 、 是三角形内角,且tan A 与tanB 同号,A B ∴、 都是锐角,即00tanA tanB >,>,144tanB tanB +≥= 33144tan A B tanB tanB-=≤+(),当且仅当14tanB tanB =,即12tanB = 时,tan A B -()的最大值为34.故选B .23.已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为( )A .5B .5C .5D .3【解析】因为a 2+b 2+2c 2=8,所以22282a b c +=-,由余弦定理得222283cos 22a b c c C ab ab+--==,即22cos 83ab C c =-① 由正弦定理得in 12s S ab C =,即2sin 4ab C S =② 由①,②平方相加得()()()()()222222222483482ab c S abc =-+≤+=-,所以()()()()2222222222116556448283165525c c S c c c c ⎛⎫-+≤---=-≤= ⎪⎝⎭,即245S ≤,所以5S ≤, 当且仅当22a b =且221655c c -=即222128,55a b c ===时,取等号. 故选:B24.已知G 是ABC 的重心,过点G 作直线MN 与AB ,AC 交于点,M N ,且AM xAB =,AN y AC =,(),0x y >,则3x y +的最小值是( )A .83B .72C .52D .433+ 【解析】因为,,M G N 三点共线,故()1AG t AM t AN =+-,因为,AM x AB AN y AC ==,所以()1AG txAB t yAC =+-,又G 为重心,故1331AG AB AC =+,而,AB AC 不共线,所以()11,133tx t y =-=,也即是113x y +=.()1111333433y x x y x y x y x y ⎡⎤⎛⎫⎛⎫+=++=++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,由基本不等式可以得到:3y x x y +≥13x y ==+等号成立,故3x y +的最小值为433+,故选D .25.已知O 是ABC 的外心,45C ∠=︒,2,(,)OC mOA nOB m n R =+∈,则2214m n +的最小值为____.【解析】()2222222244OC mOA nOB OC mOA nOBm OA n OB mnOA OB =+∴=+=++⋅90045C AOB OA OB ∠=︒∴∠=︒∴⋅=故2241m n +=()2222222222414141644816m n n m m n mn m n ⎛⎫+=+=+++≥= ⎪⎭+⎝ 当222216n m m n=即2211,28n m ==时等号成立,故答案为:1626.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,若224sin 6b c bc A π⎛⎫+=+⎪⎝⎭,则tan tan tan A B C ++的最小值是______.【解析】由余弦定理,得2222cos b c a bc A +=+,则由224sin 6b c bc A π⎛⎫+=+⎪⎝⎭,得22cos 4sin 2cos )6a bc A bc A bc A A π⎛⎫+=+=+ ⎪⎝⎭,所以2sin a A =,由正弦定理,得2sin sin sin A B C A =⋅⋅,所以sin sin A B C =,所以sin()sin B C B C +=,sin cos cos sin sin B C B C B C +=,tan tan tan B C B C +=.因为tan tan tan tan()tan tan 1B CA B C B C +=-+=-,所以tan tan tan tan tan tan A B C A B C ++=⋅⋅,则tan tan tan tan tan tan tan tan tan tan tan 1B C A B C B C B C B C +++=⋅⋅=⋅-.令tan tan 1B C m ⋅-=,而tan tan tan tan 1,0tan tan B CB C m A A⋅-=+∴> 则tan tan 1B C m ⋅=+,)221tan tan tan m m A B C m++++==1223(22)m m m ⎫=++=⎪⎭当且仅当1m =时,等号成立,故tan tan tan A B C ++的最小值为27.已知ABC ∆的内角,,A B C 所对边分别为,,a b c ,且3cos cos 5a C c Ab -=,则tan()A C -的最大值为______. 【解析】因为3cos cos 5a Cc A b -=,由正弦定理得3sin cos sin cos sin 5A C C AB -=, 又()B AC π=-+,所以3sin cos sin cos sin[()]5A C C A A C -=-+π, 即3sin cos sin cos sin()5A C C A A C -=+, 所以5sin cos 5sin cos 3sin cos 3cos sin A C C A A C A C -=+,所以2sin cos 8cos sin A C A C =,当cos 0C ≤或cos 0A ≤时,等式不成立,所以,(0,)2A C π∈, 所以tan 4tan A C =, 所以2tan tan 3tan 3tan()11tan tan 14tan 4tan tan A C C A C A C C C C--===+++ 又tan 0C >,所以14tan tan C C +≥, 当且仅当14tan tan C C =,即1tan 2C =时,等号成立, 所以33tan()144tan tan A C C C -=≤+, 所以tan()A C -的最大值为34.28.已知ABC ∆的三个内角,,A B C 的对边分别为,,,a b c 且满足0,cos cos a b A B++=则2sin 2tan B C ⋅的取值范围是__________.【解析】0cos cos a b A B+=,即cos cos cos 0a B b A A +=,即sin cos sin cos cos 0A B B A C A ++=,()sin 10C A =,sin 0C ≠,故10A =,34A π=,故4B C π+=. ()()222222222cos 11cos sin 1sin 2tan cos 232cos cos cos cos C C C B C C C C C C --⎛⎫⋅=⋅==-+ ⎪⎝⎭, 0,4C π⎛⎫∈ ⎪⎝⎭,故21cos ,12t C ⎛⎫=∈ ⎪⎝⎭,故132y t t ⎛⎫=-+ ⎪⎝⎭,根据双勾函数性质知:函数在1,22⎛ ⎝⎭上单调递增,在2⎫⎪⎢⎪⎣⎭上单调递减.故max 3y =-,当1t =时,0y = ,当12t =时,0y =,故(2sin 2tan 0,3B C ⋅∈-.故答案为:(0,3-.九、不等式与恒成立问题29.正数,a b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,)+∞B .(,3]-∞C .(,6]-∞D .[6,)+∞ 【解析】190,0,1a b a b>>+=,199()1010216b a b a b a b a b a b a ⎛⎫∴+=++=+++= ⎪⎝⎭当且仅当3a b =,即4, 12a b ==时,“=”成立,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则241816x x m -++-≤, 即242x x m -++≤对任意实数x 恒成立,2242(2)66x x x -++=--+≤ 6m ∴≥ 实数m 的取值范围是[6,)+∞30.数列{}n a 中,112a =,()()()*111n n n na a n n na +=∈++N ,若不等式()24110n n a n nλ++-≥恒成立,则实数λ的取值范围为__________. 【解析】由数列{} n a 满足112a =,1()(1)(1)x n n nna a n N n na +=∈++, 两边取倒数可得:1111(1)n n n a na +-=+,∴数列1n na ⎧⎫⎨⎬⎩⎭是等差数列, 公差为1, 首项为2 12(1)1n n n na ∴=+-=+,1(1)n a n n =+∴ 由241(1)0n n a n nλ++-恒成立,得221414(1)(1)n n n n n n n λ---⋅--=+, 当 n 为偶数时,(1)(4)4(5)n n n n nλ-++=-++, 则9λ≥-,当n 为奇数时,45n n λ++,则283λ ,∴实数λ的取值范围为289,3⎡⎤-⎢⎥⎣⎦。

高中数学知识点总结

高中数学知识点总结

高中数学知识点总结高考数学知识点总结1一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

高考数学知识点总结2三、数列数列这个板块,重点考两个方面:一个通项;一个是求和。

四、空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。

五、概率和统计概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。

高考数学知识点总结3六、解析几何这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学直线方程知识点:什么是直线方程从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。

常用直线向上方向与 X 轴正向的夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

【巧解妙解】高考数学向量与其他问题结合的经典题型

【巧解妙解】高考数学向量与其他问题结合的经典题型

平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。

(完整版)向量与三角,不等式等知识综合应用

(完整版)向量与三角,不等式等知识综合应用

第19讲 向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为.4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN u u u u r u u u r与的夹角余弦值为 .四、典型例题例1 已知a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π (B) 4π (C) 3π (D) 2π例3 设向量a r =(sin x ,cos x ),b r =(cos x ,cos x ),x ∈R ,函数f(x)=a r ·(a r +b r).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅u u u r u u u r u u u r+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.第19讲 向量与三角、不等式等知识综合应用 过关练习1.已知i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r ,且||||a b r r与的夹角为锐角,则实数λ的取值范围是( )(A )),21(+∞ (B ))21,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))21,(-∞2.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )(A ) 4 (B ) 5 (C ) 26 (D )263.已知||2||0a b =≠r r ,且关于x 的方程2||0x a x a b ++⋅=r r r 有实根,则a r 与b r 的夹角的取值范围是 ( )(A )[0,6π] (B )[,]3ππ (C )2[,]33ππ (D )[,]6ππ 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=u u u r u u u r,若OP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,则实数λ的取值范围是 ( )(A )112λ≤≤ (B )11λ-≤≤(C )1122λ≤≤+ (D )1122λ-≤≤+ 5. 已知向量a r =(cos α,sin α),b r =(cos β,sin β),且a b ≠±r r ,那么a b +r r 与a b-r r的夹角的大小是 .6. 已知向量].2,0[),2sin ,2(cos ),23sin,23(cos π∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为32-,则λ的值为 .7.已知A 、B 、C 是ABC ∆三内角,向量(m =-u r(cos ,sin ),n A A =r 且 1.m n ⋅=u r r(Ⅰ)求角A ; (Ⅱ)若221sin 23cos sin BB B+=--,求tanC . 8.设函数f (x )=a b ⋅r r ,其中向量a r =(2cos x ,1),b r=(cos x ,3sin2x ),x ∈R .(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c r =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.第19讲 向量与三角、不等式等知识综合应用 参考答案课前训练部分1.C2.D3.4.1517典型例题部分例1 A例2 1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 当2θπ=即2πθ=时,面积最大.例3 3,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(=.222-=⋅- 即)(+⋅的最小值为:-2.例5 (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π).∵x∈[0,4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m u r =(8π,1)是满足条件的一个向量.例6 (cos sin sin )m n θθθθ+=-++u r rm n +=u r r由已知m n +=u r r ,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+- 过关练习部分1.B2.C3.B4.B 5、2π6. 217(Ⅰ)∵1m n ⋅=u r r∴(()cos ,sin 1A A -⋅= cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π= (Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅r r =2cos 2x +3sin2x =1+2sin(2x +6π).由1+2sin(2x +6π)=1-3,可得三角方程sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π. (Ⅱ)函数y =2sin2x 的图象按向量c r=(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.由(1)得 f(x)=2sin2(x +12π)+1. ∵|m |<2π,∴12m π=-, 1.n =。

高三文科数学重点知识点总结

高三文科数学重点知识点总结

高三文科数学重点知识点总结对于文科生来说,数学是一门比较特别的学科,要求学生有一定投的逻辑思维能力,但是文科生大多数都是感性理解能力比较好。

因此数学对于他们来说有一定的难度。

下面是小编为大家整理的关于高三文科数学重点知识点,希望对您有所帮助!高考文科数学题型知识点归纳解析几何一般全国卷第20题会考解析几何题。

解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。

所以大家不要有畏难情绪,认为这是最后2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。

退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。

三角函数/数列一般全国卷第17题会考三角函数或数列题。

数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。

数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。

圆/坐标系与参数方程/不等式一般全国卷第22至24题会考圆/坐标系与参数方程/不等式三道选做题。

参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。

概率一般全国卷第18题会考概率题。

概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。

主要还是对作图和识图能力考查比较多。

注重对数学概念的理解数学有很多概念需要我们去记住的。

就比如说数学的函数部分,这个部分的特点就是数学概念多,对于概念的理解很重要。

而且在实际的复习中,高三的学生需要对这一数学知识点加深重视,数学概念可以突出数学题的本质,也就能产生很多解决数学问题的方法。

如果高三学生对于数学概念还是不够重视的话,数学题也不会做的很好。

高三文科数学常考知识点一、导数的应用1.用导数研究函数的最值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

高考数学知识点整理

高考数学知识点整理

高考数学知识点整理高考数学知识点整理在平日的学习中,说到知识点,大家是不是都习惯性的重视?知识点就是掌握某个问题/知识的学习要点。

为了帮助大家掌握重要知识点,以下是店铺精心整理的高考数学知识点整理,希望能够帮助到大家。

高考数学知识点整理1一、函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0?f(x)在(a,b)上为增函数.f′(x)≤0?f(x)在(a,b)上为减函数.1、f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.二、函数的极值1、函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0 f="" x="">0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2、函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.三、函数的最值1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.四、求可导函数单调区间的一般步骤和方法1、确定函数f(x)的定义域;2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.五、求函数极值的步骤1、确定函数的定义域;2、求方程f′(x)=0的根;3、用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.六、求函数f(x)在[a,b]上的最大值和最小值的步骤1、求函数在(a,b)内的极值;2、求函数在区间端点的函数值f(a),f(b);3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.高考数学知识点整理2一、直线方程.1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.3. ⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要条件)4. 直线的交角:⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5. 过两直线的交点的直线系方程为参数,不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.注:1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.特例:点P(x,y)到原点O的距离:2. 定比分点坐标分式。

高考数学一轮复习知识点归纳

高考数学一轮复习知识点归纳

高考数学一轮复习知识点归纳虽然高考数学试卷文科理科有所不同,但是在同一个考点上可能也是侧重有一些区别的,下面是高考数学一轮复习知识点归纳,请考生学习掌握。

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)

高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)


cos
x




0


2

的部分图象如图所示,f
x0


f
0 ,
则正确的选项是( )
试卷第 2页,总 9页
A.

6
,
x0

1
C.

3
,
x0

1
B.

6
,
x0

4 3
D.

3
,
x0

2 3
20.已知 | a | 1,| b | 2, a 与 b 的夹角为 600,若 a kb 与 b 垂直,则 k 的值为( )
B. 2 2
C. 3 2
D.1
22 . . 设 G 是 ABC 的 重 心 , 且
(56 sin A)GA (40 sin B)GB (35 sin C)GC 0 ,则角 B 的大小为
()
A.45° B.60° C.30° D.1 5°
23.在△ABC 中,a=2,b=2 ,B=45°,则 A 等于( )

CC1 c 则A1B
(A) a+b-c
(B) a–b+c
(C)-a+b+c.
(D)-a+b-c
18.函数 f x sin 2 x
3
sin
x
cos
x
在区间
4
,
2

上的最大值为(

(A) 3 2
(B)1 3
(C)1
(D) 1 3 2
19.已知函数

高中数学平面向量,三角函数,一元二次不等式知识点

高中数学平面向量,三角函数,一元二次不等式知识点

高中数学知识点一、平面向量1.1 平面向量的定义和表示平面向量是在平面上具有大小和方向的量,可以用有向线段来表示。

平面向量的表示方法有两种:坐标表示和数量与方向表示。

•坐标表示:设平面向量$\\vec{AB}$的起点为A(A1,A1),终点为A(A2,A2),则向量$\\vec{AB}$的坐标表示为$\\vec{AB}=(x_2-x_1,y_2-y_1)$。

•数量与方向表示:设平面向量$\\vec{AB}$的起点为A,终点为A,则向量$\\vec{AB}$的数量表示为$|\\vec{AB}|=\\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$,方向表示是线段AA的方向。

1.2 平面向量的运算平面向量的运算有加法、减法和数量乘法。

•加法:设有平面向量$\\vec{A}$和$\\vec{B}$,则它们的和为$\\vec{A}+\\vec{B}=(x_1+x_2, y_1+y_2)$。

•减法:设有平面向量$\\vec{A}$和$\\vec{B}$,则它们的差为$\\vec{A}-\\vec{B}=(x_1-x_2, y_1-y_2)$。

•数量乘法:设有平面向量$\\vec{A}$和实数A,则$k\\vec{A}=(kx, ky)$。

1.3 平面向量的性质平面向量的性质主要包括以下几点:•相等性:两个向量相等的充分必要条件是它们的坐标或起点和终点相同。

•共线性:若两个向量的方向相同或相反,它们为共线向量。

•共面性:若三个向量共面,则它们必定落在同一个平面上。

•数量乘法:向量的数量乘法可以改变向量的大小和方向。

二、三角函数2.1 弧度制和角度制在三角函数中,角度可以用弧度制或角度制来表示。

•弧度制:弧度制是以圆的半径为单位来度量角的大小。

一个圆的周长为$2\\pi$,一周所对应的角为$2\\pi$弧度。

常见的角度制与弧度制的换算关系是$180^\\circ=\\pi$弧度。

•角度制:角度制是以度为单位来度量角的大小。

数学高二题型归纳总结

数学高二题型归纳总结

数学高二题型归纳总结高二数学是一门重要的学科,在学习过程中,理解掌握题型是非常关键的。

不同的题型有不同的解题方法和技巧,因此在备考过程中,我们需要对高二数学的各种题型进行归纳总结,以加深对问题的理解并提高解题效率。

本文将对高二数学中常见的题型进行归纳总结。

1. 函数与方程函数与方程是高二数学的重要内容。

常见的题型包括一次函数、二次函数、指数函数、对数函数、三角函数等。

对于一次函数,我们需要掌握如何确定函数的表达式、求解函数的零点和函数图像的性质。

对于二次函数,我们需要掌握如何求解二次方程、确定二次函数的图像、求顶点和轴等。

指数函数和对数函数的题型中,需要熟练掌握指数与对数的性质以及相关的计算方法。

三角函数则需要熟悉各种三角函数的定义、性质和相关的变换公式。

2. 二次函数与二次方程二次函数与二次方程是高二数学中的重要内容。

针对二次函数,我们需要掌握二次函数图像的性质,如开口方向、顶点坐标等。

同时,我们也需要掌握如何求得函数的解析式、怎样根据函数图像确定其方程的性质等。

在解二次方程的过程中,可以利用判别式、配方法、求根公式等方法进行求解。

3. 不等式不等式也是高二数学中的一大重点。

包括一元不等式、二元不等式、绝对值不等式等。

在解不等式时,我们需要注意不等号的方向,同时注意分情况讨论。

同时,也需要注意将不等式转化为等价的形式,以便更好地求解。

4. 向量向量题型在高二数学中也是比较常见的。

我们需要掌握向量的定义、运算法则、平行与垂直以及数量积等知识。

在解题时,需要注意向量的坐标表示、求模、夹角等基本技巧。

同时,我们也需要理解并掌握向量的几何意义和运用。

5. 三角函数三角函数的题型在高二数学中也有一定的比重。

我们需要掌握三角函数的定义、性质、图像以及相关的变换公式。

在解题时,需要熟练运用三角函数的性质和公式,解决问题。

6. 排列组合与概率排列组合与概率题型在高二数学中也是比较常见的。

我们需要掌握排列组合的求解方法、排列组合与二项式系数的关系等。

2023高考数学常考的知识点与题型归纳

2023高考数学常考的知识点与题型归纳

2023高考数学常考的知识点与题型归纳高考数学常考题型有哪些1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

2、平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些数学基础题或中档题。

3、数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

4、不等式主要考查数学不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

5、概率和统计这部分和我们的生活联系比较大,属数学应用题。

6、空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

7、解析几何高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分。

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。

3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

高数里常用不等式

高数里常用不等式

高数里常用不等式高等数学中常用的不等式有很多,它们在数学推导和证明中起着重要的作用。

在本文中,我们将介绍几个常见的不等式,并简要解释它们的应用。

一、柯西-施瓦茨不等式柯西-施瓦茨不等式是高等数学中最常用的不等式之一。

它可以用于证明两个向量的内积的绝对值不大于这两个向量的模的乘积。

具体地说,对于任意的实数a1、a2、...、an和b1、b2、...、bn,都有:|a1b1 + a2b2 + ... + anbn| ≤ √(a1^2 + a2^2 + ... + an^2) √(b1^2 + b2^2 + ... + bn^2)柯西-施瓦茨不等式在向量计算、概率论、信号处理等领域都有广泛的应用。

例如,在信号处理中,可以利用柯西-施瓦茨不等式来证明信号的相关性和功率谱密度之间的关系。

二、三角函数的不等式在高等数学中,我们经常会遇到三角函数的不等式。

其中,最常见的是正弦函数和余弦函数的不等式。

对于任意的实数x,都有以下不等式成立:-1 ≤ sin(x) ≤ 1-1 ≤ cos(x) ≤ 1这些不等式在解析几何、微积分和物理学等领域经常被使用。

例如,在解析几何中,我们可以利用正弦函数和余弦函数的不等式来证明三角形的性质。

三、均值不等式均值不等式是数学分析中常用的一类不等式,它们可以用于证明一组数的平均值与它们的其他性质之间的关系。

常见的均值不等式有算术平均-几何平均不等式、几何平均-调和平均不等式和算术平均-调和平均不等式等。

以算术平均-几何平均不等式为例,对于任意的正数a1、a2、...、an,都有:(a1 + a2 + ... + an)/n ≥ √(a1a2...an)这个不等式在数列极限、数论和凸函数等领域都有广泛的应用。

例如,在数列极限中,我们可以利用算术平均-几何平均不等式来证明某些数列的收敛性。

四、泰勒不等式泰勒不等式是高等数学中与泰勒级数相关的一个不等式。

它可以用于估计函数在某个点附近的误差。

三角不等式的数学知识点

三角不等式的数学知识点

三角不等式的数学知识点
关于三角不等式的数学知识点
数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。

下面是店铺收集整理的关于三角不等式的数学知识点,仅供参考,大家一起来看看吧。

三角不等式要领:在三角形中,必然有两边之和大于第三边,即为三角不等式。

三角不等式
三角不等式还有以下推论:两条相交线段AB、CD,必有AC+BD 小于AB+CD。

|a|-|b|≤|a±b|≤|a|+|b| (定理),也称为三角不等式。

加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的'三角不等式(其中a,b分别为向量a和向量b)
将三角函数的性质融入不等式.
如:当X在(0,90*)时,有sinx
等式成立的条件:
|a|-|b| = |a+b| = |a|+|b|
左边等式成立的条件:ab≤0且|a|≥|b| 右边等式成立的条件:ab≥0
|a|-|b| = |a-b| = |a|+|b|
左边等式成立的条件:ab≥0且|a|≥|b| 右边等式成立的条件:ab≤0
和差化积
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
知识总结:三角不等式虽然简单,但却是平面几何不等式里最为基础的结论,包括广义托勒密定理、欧拉定理及欧拉不等式最后都会
用这一不等式导出不等关系。

向量三角不等式取等条件

向量三角不等式取等条件

向量三角不等式取等条件1. 向量三角不等式取等条件啊,就像是一群小伙伴手拉手。

你看啊,当两个向量同向的时候,就像小伙伴们朝着同一个方向走,这时候向量三角不等式就取等啦。

比如说我和我的朋友一起去商场,我们都朝着商场大门这个方向走,我们的方向就是同向的,就有点像向量同向的情况呢。

2. 嘿,向量三角不等式取等条件可不是啥神秘莫测的东西。

想象一下向量是小箭头,当这些小箭头在同一条直线上,而且方向一样的时候,那就是取等的时候喽。

就好比在赛场上,所有运动员都沿着跑道同一个方向奔跑,他们的运动方向就类似向量同向,这就满足取等条件啦。

3. 向量三角不等式取等条件啊,简单得就像一家人步伐一致的时候。

要是把向量比作家庭成员的行动方向,当他们同向行动,就像全家一起朝着一个目的地前进,这时候不等式就取等啦。

比如说我们全家去旅游,都朝着旅游景点的方向走,这和向量同向从而取等是一个道理呢。

4. 哟,向量三角不等式取等条件,就如同鸟儿朝着同一个方向飞翔。

你要是把向量当作鸟儿飞行的方向,当它们都朝着同一个方向飞的时候,那不等式就达到取等的状态了。

像一群大雁往南飞的时候,它们的飞行方向就类似同向的向量,这就是取等的情况呀。

5. 向量三角不等式取等条件呀,这就像是一群小鱼朝着相同方向游动。

把向量想象成小鱼游动的方向,当所有小鱼都朝着一个方向游的时候,就好像向量同向,这时候不等式就取等啦。

就像在水族馆里,一群小鱼都朝着有食物的方向游,就跟向量同向取等很相似呢。

6. 哇塞,向量三角不等式取等条件可有意思啦。

把向量看成是路上行人的行走方向,如果大家都朝着同一个方向前行,就如同向量同向,那这个不等式就取等喽。

比如说在游行队伍里,所有人都朝着游行的终点方向走,这和向量同向取等的情况是一样的呢。

7. 向量三角不等式取等条件呢,就像是火车都朝着同一个轨道方向行驶。

向量就好比火车行驶的方向,当所有火车都在同一条轨道朝着同一个方向开的时候,那不等式就取等啦。

高中数学知识点大全

高中数学知识点大全

高中数学知识点大全
高中数学知识点较多,主要包括以下几个方面:
1.集合与函数:包括集合的概念、集合间的关系与运算、函数的概念与性质、基本初等函数等。

2.三角函数与平面向量:包括任意角的三角函数、三角函数的图像与性质、平面向量的概念与运算等。

3.数列与不等式:包括数列的概念与通项公式、等差数列与等比数列的性质与求和、不等式的性质与解法、基本不等式及其应用等。

4.解析几何:包括直线与方程、圆与方程、圆锥曲线与方程等。

5.立体几何:包括空间几何体及其表面积和体积、空间中的平行关系与垂直关系、空间向量及其运算等。

6.概率与统计:包括随机事件及其概率、古典概型与几何概型、二项分布与正态分布、统计图表与数据分析等。

7.导数与微积分:包括导数的概念与运算、导数的应用、定积分与不定积分的概念与运算等。

8.复数:包括复数的概念与运算、复数的几何意义等。

9.算法初步:包括算法的概念与表示、算法的基本结构与控制结构等。

10.数论基础:包括整除与同余、素数与合数、最大公约数与最小公倍数等。

除了以上内容,高中数学还可能包括一些拓展内容,例如数理逻辑初步、数论中的一些深入问题、组合数学基础等等。

这些内容可能
因不同地区使用的不同教材版本有所差异,也可能随时间而变更。

建议参考所在地区的高中数学教科书目录和教学大纲来获取更详细和准确的信息。

三角不等式的数学知识点

三角不等式的数学知识点

三角不等式的数学知识点关于三角不等式的数学知识点数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。

下面是店铺收集整理的关于三角不等式的数学知识点,仅供参考,大家一起来看看吧。

三角不等式要领:在三角形中,必然有两边之和大于第三边,即为三角不等式。

三角不等式三角不等式还有以下推论:两条相交线段AB、CD,必有AC+BD 小于AB+CD。

|a|-|b|≤|a±b|≤|a|+|b| (定理),也称为三角不等式。

加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的'三角不等式(其中a,b分别为向量a和向量b)将三角函数的性质融入不等式.如:当X在(0,90*)时,有sinx等式成立的条件:|a|-|b| = |a+b| = |a|+|b|左边等式成立的条件:ab≤0且|a|≥|b| 右边等式成立的条件:ab≥0|a|-|b| = |a-b| = |a|+|b|左边等式成立的条件:ab≥0且|a|≥|b| 右边等式成立的条件:ab≤0和差化积sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]知识总结:三角不等式虽然简单,但却是平面几何不等式里最为基础的结论,包括广义托勒密定理、欧拉定理及欧拉不等式最后都会用这一不等式导出不等关系。

【关于三角不等式的数学知识点】。

高考数学知识点大全

高考数学知识点大全

高考数学知识点大全20XX年高考数学知识点大全有哪些你知道吗?数学是所有学科中最有意思的学科,也是所有学科中最美的学科,让我们一起走进数学的世界,一起惊叹于数学之美吧!一起来看看20XX年高考数学知识点大全,欢迎查阅!高考数学知识点大全1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).一、充分条件和必要条件当命题“若A则B”为真时,A称为B的充分条件,B称为A 的必要条件。

二、充分条件、必要条件的常用判断法1.定义法:判断B是A的条件,实际上就是判断B=A或者A=B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:三、知识扩展1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19讲:向量与三角、不等式等知识综合应用
一、高考要求
平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之
一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透.
二、考点解读
考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.
考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一.
三、课前训练
1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( C ) (A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0
(C)(y +1)sin x +2y +1=0
(D) -(y +1)sin x +2y +1=0 2.函数y =sin x 的图象按向量a =(32
π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( D )
(A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +2
3.已知向量a = (1,sin θ),b = (1,cos θ),则 | b a - | 的最大值为2
4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2
π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,
M 、N 是图象与x 轴的交点,则PM PN 与的夹角余弦
值为1517
四、典型例题
例1 已知a =ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数 f (x )=b a ⋅,且f (x )的最小正周期是π,则ω= ( A )
(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(π
θθθ∈B A ,
则△OAB 的面积达到最大值时,=θ ( D )
(A)
6π (B) 4π (C) 3π (D) 2
π 解:1111sin cos (1cos )(1sin )222
ABC S θθθθ∆=----- 11sin cos 22θθ=-11sin 224θ=-
当2θπ=即2π
θ=时,面积最大.
例3 设向量a =(sin x ,cos x ),b =(cos x ,cos x ),x ∈R ,函数f(x)=a ·(a +b ). 使不等式f (x )≥
23成立的x 的取值集合为 解:3,88x k x k k Z ππππ⎧
⎫-≤≤+∈⎨⎬⎩⎭
例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅+的最小值是
解:如图,≥-=⋅⋅=+⋅OM OA OC OB OA 2)(
.222-=⋅- 即)(OC OB OA +⋅的最小值为 -2。

相关文档
最新文档