高考数学-不等式的性质及其解法

合集下载

上海高考数学复习专题-不等式

上海高考数学复习专题-不等式

【注】本例中
“a>0”是先决条件,否则需要讨论
x1,x2 与对称轴
x=−
$
的大小关系,非常
复杂。(如图 d)
图a
图b
图c
图d
2)分离参数法:将不等式变换为 f(x) ≥a 或 f(x) ≤a 的形式。 f(x) ≥m,x∈R 恒成立(如图 e),则 8! "3R ≥ 2 f(x) ≤m,x∈R 恒成立,(如图 f)则 8! "3 I ≤ 2 f(x) ≥m,在区间[x1,x2]恒成立,(如图 g),则 f! '" ≥ m

当且仅当 ' = $ = ⋯ = 时,取等号。
即:n 个正数的算术平均值,不小于它的几何平均值。当且仅当它们都相等时取等号。
【注】算术平均值 = .# /#⋯ #
几何平均值 = 0 ' ∙ $ ∙ ⋯ ∙
1.3 几个常用的重要结论
ab > 0 ⇒ + ≥ 2,当且仅当 a=b 时,取等号。
>0 2 = 常数 > 0,
一个含参数的等式(或参数)时,不得扩大或缩小原变量的范围。 如:若 a>b ⇒ ac>bc,则有 c>0
H
如:若
>
⇒ bc>ad,则有 ac>0
2.2 求解一元二次不等式
【注】1)对于a $ + + > 0!或 < 0",必须讨论:(1)a=0 ,(2)a≠0 2)一元二次不等式的解集,常与一元二次方程 a $ + + = 0 (a≠0)的根联系在一起。
"> 0
n!I"
m!I" n!I"

0

高考数学二轮复习不等式

高考数学二轮复习不等式

(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,

高考数学总复习 71 不等式的性质及解法课件 新人教B

高考数学总复习 71 不等式的性质及解法课件 新人教B
答案:C
(文)(2011·淄博统考)若 a>0,b>0,则不等式-b<1x
<a 等价于( )
A.-1b<x<0

1 0<x<a
B.-1a<x<b1
C.x<-1a或
1 x>b
D.x<-1b或
1 x>a
解析:由题意知 a>0,b>0,x≠0, (1)当 x>0 时,-b<1x<a⇔x>1a; (2)当 x<0 时,-b<1x<a⇔x<-b1. 综上所述,不等式-b<1x<a⇔x<-b1或 x>1a,故选 D.
答案:D
数的大小比较
[例 2] (1)若 x<y<0,试比较(x2+y2)(x-y)与(x2- y2)(x+y)的大小;
(2)设 a>0,b>0 且 a≠b,试比较 aabb 与 abba 的大小.
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30

高考数学知识点:不等式

高考数学知识点:不等式

高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。

不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。

下面将对高考数学中常见的不等式知识点进行详细介绍。

一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。

要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。

2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。

3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。

二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。

要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。

2. 计算抛物线的顶点坐标,即x₀=-b/2a。

3. 根据a的正负性确定抛物线的上升段或下降段。

4. 根据a的正负性确定不等式的解集。

三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。

要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。

2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。

常见不等式的解法--高考数学【解析版】

常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。

高考数学不等式的基本性质与不等式的解法考点总结

高考数学不等式的基本性质与不等式的解法考点总结

高考数学不等式的基本性质与不等式的解法考点总结什么叫做不等式用不等号将两个整式连结起来所成的式子。

不等式基本性质①假设xy,那么yx;假设yx,那么xy;〔对称性〕②假设xy,yz;那么xz;〔传递性〕③假设xy,而z为恣意实数或整式,那么x+zy+z;〔加法原那么,或叫同向不等式可加性〕④ 假设xy,z0,那么xzyz;假设xy,z0,那么xzyz;〔乘法原那么〕⑤假设xy,z0,那么x÷zy÷z;假设xy,z0,那么x÷zy÷z;⑥假设xy,mn,那么x+my+n;〔充沛不用要条件〕⑦假设x0,m0,那么xmyn;⑧假设x0,那么x的n次幂y的n次幂〔n为正数〕,x的n 次幂y的n次幂〔n为正数〕或许说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法那么。

假设由不等式的基本性质动身,经过逻辑推理,可以论证少量的初等不等式,以上是其中比拟有名的。

不等式性质与等式性质的异同点相反点:等式或不等式的两边同时加上〔或减去〕同一个数,等式或不等式依然成立。

不相反点:等式的两边同时乘以〔或除以〕同一个不为0 的数,等式依然成立。

不等式的两边同时乘以〔或除以〕同一个正数,不等式依然成立。

不等式的两边同时乘以〔或除以〕同一个正数,不等式改动方向。

不等式的解法:〔1〕一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对停止讨论:〔2〕相对值不等式:假定,那么;;留意:〔1〕解有关相对值的效果,思索去相对值,去相对值的方法有:⑴对相对值内的局部按大于、等于、小于零停止讨论去相对值;〔2〕。

经过两边平方去相对值;需求留意的是不等号两边为非负值。

〔3〕。

含有多个相对值符号的不等式可用〝按零点分区间讨论〞的方法来解。

〔4〕分式不等式的解法:通解变形为整式不等式;〔5〕不等式组的解法:区分求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共局部。

高考数学第一轮基础复习 不等式的性质及解法课件

高考数学第一轮基础复习 不等式的性质及解法课件

●命题趋势 1.不等式的性质是主要考查点之一,主要以客观题 形式考查.常见考查方式: ①依据给定的条件,利用不等式的性质,判断不等 式或有关的结论是否成立; ②利用不等式的性质与实数的性质、函数的性质相 结合,比较数的大小; ③判断不等式中条件与结论之间的关系,是充分条 件或必要条件或充要条件; ④解证不等式中的等价变形.
2.解不等式主要是一次、二次、分式、指对不等式, 结合函数单调性的抽象不等式,一般都比较容易.与其 它知识揉合在一块命题是主要考查形式,如和函数的定 义域结合,和集合结合,和逻辑用语结合等等,要注意 含参数的讨论 3.基本不等式是考查的重点和热点,常与其它知识 交汇在一起.
4.线性规划是高考考查的重要内容之一,一般为客 观题. 5.证明不等式是考查的重点,经常与一次函数、二 次函数、指对函数、导数等函数知识相结合.有时也与 向量、数列、解析几何各种知识交汇命题,重点考查不 等式知识,试题的立意高、难度大、综合性强,这两年 高考命题难度稍降.
6.应用题是高考命题的热点,而且应用问题多数与 不等式相关,需要根据题意,建立不等关系,设法求解; 或者用均值不等式、函数单调性求出最值等.
●备考指南 1.加强与函数性质、三角、数列、平面向量、解析 几何、导数的交汇训练,难度不宜太大,注意体现不等 式的工具作用. (1)要加强对不等式性质的理解与复习,对于常混易 错点应反复训练强化.可通过判断不等式是否成立,找 不等式成立的条件,比较数的大小等形式命题练习.
3.二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组. ②了解二元一次不等式的几何意义,能用平面区域 表示二元一次不等式组. ③从实际情境中抽象出一些简单的二元线性规划问 题,并能加以解决.
a+b 4.基本不等式: ab≤ (a,b>0). 2 ①探索并了解基本不等式的证明过程. ②会用基本不等式解决简单的最大 (小 )值问题.

高考数学中的不等式及解题方法

高考数学中的不等式及解题方法

高考数学中的不等式及解题方法在高中数学的学习中,不等式是一个非常重要的概念。

因为不等式的出现,能够将数轴上的点集表示,从而转化成解集。

在高考中,不等式作为基础的数学内容,经常出现在各种题目中。

因此,学生需要在学习过程中认真理解、掌握不等式的概念和解题方法。

一、等式的概念和性质首先,不等式与等式的概念是相互关联的。

等式是一种简单的数学关系,即两个数相等,可以用“=”号表示。

而不等式则是当两个数不相等时使用,通常用“>”、“<”、“≥”、“≤”来表示。

在解不等式的过程中,需要特别注意不等式的性质。

首先,两个不等数相加或相减,其结果的符号取决于绝对值大的数的符号。

当绝对值相等时,结果的符号与原来的符号相同。

其次,如果两个不等数相乘,则乘积的符号和不等数的符号相同。

当其中一个数为0时,乘积为0。

最后,如果有一个不等数为正,另一个为负,则它们的商为负。

如果两个不等数都为0或是都为正或是都为负数,则结果的符号为正数。

二、等式的解法在高考中,不等式通常需要使用不等式解答法进行解题。

这种解法的关键是将不等式转化为等式的形式,然后求解等式得出不等式的解集。

例如,对于一个形如“ax+b>0”的不等式,我们可以通过移项并除以系数得到“x>-b/a”。

因为当“x=-b/a”时,不等式右侧会等于0,不满足不等式关系,所以解集为“x>-b/a”。

在解决一般不等式时,通常需要注意移项和化简的方法。

三、常见的不等式在高考中,出现较多的不等式有两类:一类是含有单一变量的一元不等式,如“x^2-3x+2>0”等。

另一类是含有多元变量的二元不等式,如“x^2+y^2≥9”等。

对于一元不等式,通常可以使用因式分解的方法求解。

首先,我们将不等式化为“ax^2+bx+c>0”的标准形式,然后进行因式分解,最后求出不等式的解集。

例如,对于“x^2-3x+2>0”的不等式,我们可以先将其化为“(x-1)(x-2)>0”形式。

高考数学中的不等式问题解析

高考数学中的不等式问题解析

高考数学中的不等式问题解析不等式作为高中数学的一项重要内容,是高考数学中常常会涉及的题型。

解决不等式题目需要我们对不等式的基本性质加以理解,以及掌握一些基本的求解方法。

1. 不等式的基本性质在解决不等式问题时,我们需要掌握一些重要的基本性质。

首先,不等式的两边可以同时加上或减去一个相同的数,不等式的方向不会改变。

其次,不等式的两边都可以同乘或同除以一个正数,不等式的方向也不会改变。

但是,如果同乘或同除的数是一个负数,则不等式的方向会发生改变。

另外,多个不等式同时存在时,可以使用“与”、“或”关系进行连接。

例如,当我们需要求解同时满足两个不等式的解时,需使用“与”关系将它们连接。

若需要求解满足其中任意一个不等式的解,则使用“或”关系将它们连接。

2. 常见的不等式类型不等式有很多种类型,这里将介绍一些常见的不等式类型及其解法。

2.1 一次不等式一次不等式即形如ax+b>0(或<0)的不等式。

将变量x解出来后,判断所得出的解关于不等式的符号即可。

例如,问题:求解x+3>7的解。

解答中,将3从左边移到右边得到x>4,因此x的取值范围为x>4。

2.2 二次不等式二次不等式即形如ax²+bx+c>0(或<0)的不等式。

解决二次不等式需要使用一些特殊方法。

2.2.1 中间项系数为正数的二次不等式当二次不等式的中间项系数为正数时,可以将不等式转化为完全平方的形式进行求解。

例如,问题:求解x²+6x+8>0的解。

解答中,将x²+6x+8看作(x+3)²-1的形式,得到(x+3)²-1>0。

由于(x+3)²大于等于0,因此当(x+3)²>1时,不等式成立。

即x<-4或x>-2,x的取值范围为x<-4或x>-2。

2.2.2 中间项系数为负数的二次不等式当二次不等式的中间项系数为负数时,可以将不等式转化为中间项系数为正数的形式进行求解。

高考不等式知识点总结

高考不等式知识点总结

高考不等式知识点总结高考数学中不等式是一个非常重要的知识点,占据着较大的比重。

下面是对高考数学中不等式知识点的完整总结:一、基本概念和性质1.不等关系:对于实数a和b,如果a=b,则称a等于b;如果a≠b,则称a不等于b。

当a不等于b时,可以断定a大于b(记作a>b),或者a小于b(记作a<b)。

2.不等式:不等式是由不等关系得到的等式,包括大于等于不等式(a≥b)和小于等于不等式(a≤b)。

3.基本性质:(1)若a>b且b>c,则a>c;(2) 若a>b且c>0,则ac>bc;(3) 若a>b且c<0,则ac<bc;(4)若a>b且c≥0,则a+c>b+c;(5)若a>b且c≤0,则a+c>b+c。

4.解不等式:与解方程类似,解不等式是指寻找满足不等式的解的过程。

5.不等式的性质:对于不等式两边同时加减一个相同的数,不等号方向不变;对于不等式两边同时乘除一个同号的数,不等号方向不变;对于不等式两边同时乘除一个异号的数,不等号方向改变。

二、一元一次不等式1.解一元一次不等式:求解一元一次不等式的关键是确定x的取值范围。

在解过程中,可以通过加减法、乘除法保持不等式不变。

2.不等式组:由多个不等式组成的方程组,称为不等式组。

求解不等式组的关键是确定每个不等式的集合和并集。

三、一元二次不等式1.解一元二次不等式:求解一元二次不等式的关键是确定不等式的根及开口方向。

可以根据系数的正负、零点的位置和变号法等来确定解的范围。

2.二次函数与一元二次不等式:通过对一元二次不等式的解法,可以进一步理解和应用二次函数的性质。

四、绝对值不等式1.绝对值不等式的性质:对于绝对值不等式,可以利用绝对值的性质将其拆分为多个实数的不等式。

2.解绝对值不等式的关键是分情况讨论。

将绝对值不等式中的绝对值拆分出来,分别讨论绝对值内外的情况,从而得到解的范围。

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。

高考数学中的不等式性质总结及应用方法探讨

高考数学中的不等式性质总结及应用方法探讨

高考数学中的不等式性质总结及应用方法探讨在高考数学中,不等式是比较重要的一道题型,而不等式的性质和应用方法则更加是需要掌握的,下面笔者就为大家深入总结一下高考数学中不等式的性质总结及应用方法探讨,希望能够对大家有所帮助。

一、不等式的基本定义不等式是用于表示数值大小关系的一种数学符号,通常有“大于”符号“>”、小于符号“<”、“大于等于”符号“≥”、小于等于符号“≤”等,其中“大于”表示左边数大于右边数;小于表示左边数小于右边数;“大于等于”表示左边数不小于右边数;“小于等于”表示左边数不大于右边数。

二、不等式的基本性质1.可加性:对于不等式两边同时加上(或减去)同一个正数(或负数)的结果,该不等式成立的性质。

举个例子,若已知 2x + 1 > 3,则将式子两边减去 1,即得 2x > 2,最后将两边同时除以 2,即得 x > 1,显然,该不等式成立。

所以在解不等式时,我们通常可通过加减同一个数并整理式子的方式,进行求解。

2.可乘性:对于不等式两边同时同乘同一个正数(或负数)的结果,该不等式成立的性质。

以解不等式 2x + 3 > 5x 为例,我们可通过将不等式的两边同时减去 x,并整理式子,使其成立;或是将不等式的两边同时乘以一个负数或正数,这样同样可以使不等式成立。

3.正数负数性质:若不等式两边同乘同一个负数时,不等式将改变方向;两边同乘同一个正数时,不等式不变。

例如将 2x + 1 > 3 两边同时乘以 -1,即得 (-2x)-1 < -3,这时的便是原不等式两边同时乘以负数后取反,即“大于”符号变为了“小于”,“小于等于”变为“大于等于”的不等式形式。

同样地,若将不等式的两边同时乘以正数,则不等式的方向不变。

三、常用不等式的证明1.加减中心型不等式对于不等式a+b>=2根据算术平均数-几何平均数(AM-GM)不等式易证。

即可证得不等式。

高考数学(理)一轮知识点专题讲座:不等式的性质及解法(含答案)

高考数学(理)一轮知识点专题讲座:不等式的性质及解法(含答案)

【名师面对面】2015届数学一轮知识点讲座考点25 不等式的性质及解法加(*)号的知识点为了解内容,供学有余力的学生学习使用一.考纲目标不等式的性质;一元二次不等式的解法 二.知识梳理1.实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a2.不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性)(2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0推论2:n n b a b a >⇒>>0;推论3:n nb a b a >⇒>>03.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式 (3)可以化为一元一次或一元二次不等式的不等式. ①解一元高次不等式;②解分式不等式;③解无理不等式; ④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式; ⑦解不等式组.4.解不等式时应特别注意下列几点: (1)正确应用不等式的基本性质(2)正确应用幂函数、指数函数和对数函数的增、减性 (3)注意代数式中未知数的取值范围5.不等式的同解性(1)f(x)g(x)0 f(x)0 g(x)0 f(x)0g(x)0·>与>>或<<同解.⎧⎨⎩⎧⎨⎩ (2)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0·<与><或<>同解.⎧⎨⎩⎧⎨⎩ (3)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)>与>>或<<同解.≠⎧⎨⎩⎧⎨⎩(4)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)<与><或<>同解.≠⎧⎨⎩⎧⎨⎩(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0) (6)|f(x)|>g(x) 与①f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0);②g(x)<0同解(7)f(x)g(x) f(x)[g(x)]f(x)0g(x)0f(x)0g(x)02>与>≥≥或≥<同解.⎧⎨⎪⎩⎪⎧⎨⎩(8)f(x)g(x)f(x)[g(x)]f(x)02<与<≥同解.⎧⎨⎩(9)当a >1时,a f(x)>a g(x)与f(x)>g(x)同解, 当0<a <1时,af(x)>ag(x)与f(x)<g(x)同解(10)a 1log f(x)log g(x)f(x)g(x)f(x)0a a 当>时,>与>>同解.⎧⎨⎩ 当<<时,>与<>>同解.0a 1log f(x)log g(x)f(x)g(x) f(x)0g(x)0a a ⎧⎨⎪⎩⎪6.零点分段法:高次不等式与分式不等式的简洁解法 步骤:①形式:分母)移项,通分(不轻易去←>0)()(x Q x P ②首项系数符号>0——标准式,若系数含参数时,须判断或讨论系数的符号,化负为正 ③判断或比较根的大小 7.绝对值不等式a x <与)0(>>a a x 型不等式cb ax <+与)0(>>+c c b ax 型不等式的解法与解集:不等式)0(><a a x 的解集是{}a x a x <<-; 不等式)0(>>a a x 的解集是{}a x a x x -<>或,不等式)0(><+c c b ax 的解集为 {})0(|><+<-c c b ax c x ; 不等式)0(>>+c c b ax 的解集为 {})0(,|>>+-<+c c b ax c b ax x 或 8.解一元一次不等式)0(≠>a b ax①⎭⎬⎫⎩⎨⎧>>a b x x a ,0 ②⎭⎬⎫⎩⎨⎧<<a b x x a ,0 9.韦达定理:方程02=++c bx ax (0≠a )的二实根为1x 、2x ,则240b ac ∆=-≥且⎪⎩⎪⎨⎧=-=+a cx x a b x x 2121①两个正根,则需满足⎪⎩⎪⎨⎧>>+≥∆0002121x x x x ,②两个负根,则需满足1212000x x x x ∆≥⎧⎪+<⎨⎪>⎩,③一正根和一负根,则需满足⎩⎨⎧<>∆0021x x10.一元二次不等式的解法步骤对于一元二次不等式()22000ax bx c ax bx c a ++>++<>或,设相应的一元二次方程()200ax bx c a ++=>的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:c方程的根→函数草图→观察得解,对于0a <的情况可以化为0a >的情况解决注意:含参数的不等式ax 2+bx +c>0恒成立问题⇔含参不等式ax 2+bx +c>0的解集是R ;其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况 三.考点逐个突破 1.不等式的性质例1.(1) 已知三个不等式:①ab>0 ②bc>ad ③a c >bd,以其中两个作为条件,余下一个作为结论,则可以组成多少个正确的命题?并写出这些命题 解:可以组成下列3个命题命题一:若ab>0,a c >bd, 则bc>ad 命题二:若ab>0,bc>ad 则a c >bd,命题三:若a c >bd, bc>ad 则ab>0由不等式的性质得知这三个命题均为真命题(2)有三个条件:(1)ac 2>bc 2;(2)c a >c b;(3)a 2>b 2,其中能分别成为a>b 的充分条件的个数有A .0B .1C .2D .3解:(1)由ac 2>bc 2可知c 2>0,即a>b ,故ac 2>bc 2是a>b 的充分条件(2)c<0时,a<b (3)a<0时,a<b ,故(2)、(3)不是a>b 的充分必要条件,故答案选B 2.数的大小的比较例2. 设0.533,log 2,cos 2a b c ===,则 A .c <b a < B .c a b << C .a <b c <D .b <c a <【答案】A【解析】0.531=>,,30log 21<<,,cos 20<,所以c b a <<,选A3.含绝对值不等式的解法例3. (1)已知不等式2x x ++≤的解集不是空集,则实数的取值范围是 A . <2B .≤2C . >2D .≥2【答案】D 因为2x x ++的最小值为2,所以要使不等式的解集不是空集,则有2a ≥,选D (2)如果不等式57|1|x x ->+和不等式220ax bx +->有相同的解集,则 A .8,10a b =-=- B .1,9a b =-= C .4,9a b =-=- D .1,2a b =-=【答案】C【解析】由不等式57|1|x x ->+可知50x ->,两边平方得22(5)49(1)x x ->+,整理得24920x x ++<,即24920x x --->.又两不等式的解集相同,所以可得4,9a b =-=-,选 C(3)解不等式(1)923<-≤x ;(2)x x 2143+>-解:(1)原不等式化为:⎩⎨⎧<<-≥-≤⇒⎪⎩⎪⎨⎧<-≥-117519232x x x x x 或 }115,17{<≤-≤<-∴x x x 或原不等式的解为:(2)原不等式化为:⎩⎨⎧->-<-⎩⎨⎧->-≥-xx x x x x 21340432143043或解得 535<>x x 或 }5,53{><∴x x x 或不等式的解集为:4.一元二次不等式的解法例4.(1)已知不等式210{51}ax bx x x ++≥-≤≤的解集为a b 求、的值 解:由题意可知 0<a 且-5和1是方程012=++bx ax 的两根⎪⎪⎩⎪⎪⎨⎧-=-=⇒⎪⎪⎩⎪⎪⎨⎧-=-=+-=-∴54515141)5(b a a a b 故b a ,的值分别为54,51--(2)解不等式46522-<+-x x x 解:(1)当042≤-x 时,不等式的解集为∅ (2)当042≤-x 即22>-<x x 或时,有⎪⎩⎪⎨⎧>><⇔⎩⎨⎧<+->+-⇔-<+-<--222101050252465)4(2222x x x x x x x x x x 或 综上所述,原不等式的解集为}2{>x x 5.简单分式、高次不等式的解法例5.(1) 解不等式x x x xx ≤---2322解:由0)2)(1()1(23222≥-+-⇔≤---x x x x x x x x x 其零点分别为:-1,0,1(二重),2 ,画出数轴如下:由图知,原不等式的解集为(]{}()+∞-,210,1 (2) 求不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330的解集解法一:由题设x>0,xxx x +->+-2233,得033>+-x x ,即33<<-x ,30<<∴x , 原不等式组等价于(1)⎩⎨⎧+->+-≤<)3)(2()2)(3(20x x x x x ;(2)⎩⎨⎧+->+-<<)3)(2()2)(3(32x x x x x由(1)得20≤<x ,由(2)得62<<x ,故原不等式组解集为{}60<<x x解法二:由已知条件可知033>+-xx两边平方,原不等式组等价于 ()()[]()()[]600)6)(6(03223022<<⇔⎪⎩⎪⎨⎧⎩⎨⎧<-+>⇔+->+->x x x x x x x x x x 即原不等式组解集为{}60<<x x(3) 不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 对【答案】A【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即121<<-x 或1=x ,所以不等式的解为121≤<-x ,选A 6.指对不等式的解法 例6.(1)10log 110log 210log 4732++介于两个连续自然数之间,这两个数是答案:3, 4 提示:10log 110log 210log 4732++=lg(24×32×7)=lg1008, ∴3<10log 110log 210log 4732++<4 (2)a>0, a ≠1,P =log a (a 3+1), Q=log a (a 2+1), 则P 、Q 的大小关系是A.P>QB.P<QC.P=Q D 不能确定 答案:A(3) 设a>b>0, 0<x<π, 则a ·lg(sinx)与b ·lg(sinx)的大小关系是 A.a ·lg(sinx)> b ·lg(sinx) B.a ·lg(sinx)< b ·lg(sinx) C.a ·lg(sinx)≥ b ·lg(sinx) D.a ·lg(sinx)≤ b ·lg(sinx) 答案:D 提示:lg(sinx)≤0, ∴a ·lg(sinx)≤ b ·lg(sinx) 7.简单无理不等式例7. 若a>0, b>0, a +b=1,比较大小:12++a 2答案: ≤8.含参数不等式的问题例8. (1)解关于的不等式)(,)]1([)1(222b a x b ax x b x a ≠-+≥-+ 解:原不等式化为2222222222()()2()()()0()0001a b x b a b x a b bx b a b x x a b a b x x x -+≥-+-+⇒--≤≠∴->∴-≤≤≤则{01}x x ≤≤故原不等式的解集为(2)若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的取值范围 解:∵13642222<++++x x k kx x ⇔013642222<-++++x x k kx x ⇔03643)3(2222>++-+--x x kx k x ⇔ 03)3(222>-+--k x k x (∵4x2+6x+3恒正),∴原不等式对x 取任何实数均成立,等价于不等式2x 2-2(k-3)x+3-k>0对x 取任何实数均成立 ∴=[-2(k-3)]2-8(3-k)<0⇔k2-4k+3<0⇔1<k<3 ∴k 的取值范围是(1,3)(3)设f(x)=ax 2+bx,且1≤f(-1) ≤2, 2≤f(1) ≤4 ,求f(-2)的取值范围分析:因为f(-1)=a -b, f(1)=a+b,而1≤a -b ≤2, 2≤a+b ≤4;又a+b 与a -b 中的a,b 不是独立的,而是相互制约的,因此,若将f(-2)用a -b 与a+b,表示,则问题得解 解:设f(-2)=m f(-1)+n f(1), (m,n 为代定系数)则4a -2b=m(a -b)+n(a+b) 即4a -2b=(m+n )a -(m -n)b,于是得{42=+=-n m n m 得:m=3, n=1∴f(-2)=3 f(-1)+ f(1)∵1≤f(-1) ≤2, 2≤f(1) ≤4∴5≤3f(-1)+ f(1) ≤10, 故5≤f(-2)≤10,另法:以上解题过程简化如下:由{(1)(1)a b f a b f -=-+=得1[(1)(1)]21[(1)(1)]2a f fb f f =+-=--⎧⎨⎩∴f(-2)=4a -2b=3 f(-1)+ f(1)点评:严格依据不等式的基本性质和运算法则,是正确解答此类题目的保证若先将参数a,b 的范围求出,而后再求f(-2)的范围,这样操作是错误的,因为解题过程没有忠实题目所给条件,即变形不等价,由所求的参数a,b 的范围并不能得到已知条件所给的f(-1)及f(1)的范围,这样,已经改变了题目的条件,当然,所求的结果就不是实际的结果因此,在解题的过程中,务必尽可能保持变形的等价性,以免发生错误。

高考不等式涉及的知识点

高考不等式涉及的知识点

高考不等式涉及的知识点高考数学中,不等式是一个重要的知识点,也是学生们需要掌握的基础内容之一。

在高考中,不等式题目通常出现在数学试卷的选择题和解答题中,涉及了许多重要的数学概念和思维方法。

本文将通过逐步的思考,介绍高考不等式涉及的主要知识点。

一、不等式的基本概念不等式是用不等号连接的两个数或两个算式,表示这两个数的大小关系。

不等式中的不等号可以是大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)。

例如,1+2<4表示1+2的值小于4。

二、不等式的解集对于一个不等式,我们需要找出使得不等式成立的所有数的集合,这个集合被称为不等式的解集。

例如,不等式2x-3>5的解集表示为{x|x>4},表示当x大于4时,不等式成立。

三、不等式的性质1.加减性质:如果不等式的两边都加上(或减去)同一个数,不等式的方向不变。

例如,对于不等式2x-3>5,如果两边同时加上3,得到2x>8,方向不变。

2.乘除性质:如果不等式两边都乘以(或除以)同一个正数,不等式的方向不变;如果乘以(或除以)同一个负数,不等式的方向改变。

例如,对于不等式2x-3>5,如果两边同时乘以2,得到4x-6>10,方向不变;如果两边同时乘以-1,得到-2x+3<-5,方向改变。

3.倒数性质:如果两边同时取倒数,不等式的方向改变。

例如,对于不等式2x-3>5,如果两边同时取倒数,得到1/(2x-3)<1/5,方向改变。

四、不等式的求解方法解不等式的方法主要有图像法、试探法和代数法。

1.图像法:将不等式转化为图像在直角坐标系中的表示,通过观察图像来确定不等式的解集。

例如,对于不等式x+2>0,可以绘制出直线y=-2,然后确定直线上的点对应的x值的范围,即为不等式的解集。

2.试探法:通过尝试不同的数值,来判断不等式的解集。

例如,对于不等式x^2-4<0,可以尝试x取不同的值,如x=0、x=1、x=-1等,来确定不等式的解集。

高考数学不等式解题方法技巧

高考数学不等式解题方法技巧

不等式应试技巧总结1不等式的性质:(1 )同向不等式可以相加;异向不等式可以相减 a -c >b -d ),但异向不等式不可以相加;同向不等式不可以相减;(2) 左右同正不等式:同向的不等式可以相乘,但不能相除; 异向不等式可以相除,但不能相乘:若a ba b 0,c d 0 ,则 ac bd (右 a b 0,0 :: c : d ,贝U);C d(3) 左右同正不等式:两边可以同时乘方或开方:若a b ∙ O ,则a n ■ b n 或:a ■ nb ; (4)若ab 0 , a b , 1 1 1 1 则 ;若 ab :: 0 , a b ,则 a b a b【例】(1)对于实数a,b,c 中,给出下列命题:①若a b,则ac 2 bc 2 ;②若ac 2 bc 2,则a b ;2 21 1 b a ③ 若 a :: b :: 0,则 a ab b ; ④ 若 a ::: b ::: 0,则;⑤ 若 a :::b ::: 0,则a ba bab1 1⑥若a cb vθ,则a > b ;⑦若c >a >b >0,则 ------- >——;⑧若a >b,—> —,贝U a>O,b cθ。

其中正确的c-a c-b a b命题是 ______ (答:②③⑥⑦⑧);(2)已知一1兰x + y 兰1 , 1兰x-yW3 ,贝U 3x — y 的取值范围是 __ (答:1兰3x — y 兰7 );C( I >(3)已知a>bnc ,且a+b+c=O,则—的取值范围是 ________________ (答: —2_丄Ib a I ' 2 丿2. 不等式大小比较的常用方法 :(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商(常用于分数指数幕的代数 式) ; ( 3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 (8)图象法。

高考数学必考知识点不等式

高考数学必考知识点不等式

高考数学必考知识点不等式:不等式导语:高考数学中,不等式是必考的重要知识点之一,掌握不等式的基本性质和解题方法对提高数学成绩至关重要。

本文将重点介绍不等式的基本概念、性质和解题方法。

一、不等式的基本概念不等式是数学中比较两个数大小关系的一种符号表示法。

常见的不等式符号包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。

二、不等式的性质1. 传递性:若a>b,b>c,则a>c。

即不等式大小关系具有传递性的特点。

2. 加减性质:若a>b,则a+c>b+c;若a>b,c>0,则ac>bc。

即不等式两边同时加上或减去相同的数,不等式的大小关系不变;不等式两边同时乘以一个正数(或除以一个正数),大小关系不变;不等式两边同时乘以一个负数(或除以一个负数),不等式的大小关系发生改变。

3. 倒置性质:若a>b,则-b>-a;若a>b,c<0,则ac<bc。

即不等式两边同时乘以-1,不等式的大小关系发生倒置。

4. 倒数性质:若a>b,c>d且c>0,d>0,则1/a<1/b;若a>b,c>d且c<0,d<0,则1/a>1/b。

5. 平方性质:对于正实数a和b,若a>b,则a²>b²;若a=b,则a²=b²;若a<0,b<0,则a²>b²。

即不等式两边同时平方,不等式的大小关系不变。

三、不等式的解题方法1. 直接比较法:通过观察和比较不等式中数的大小关系,直接求解不等式。

例题1:解不等式3x+5>2x-1。

解:首先将不等式移到等式两边,得3x-2x>-1-5,即x>-6。

例题2:解不等式(x+1)(x-2)<0。

解:使用区间法解不等式,首先找出等式的零点x=-1和x=2,然后根据零点将数轴划分为三个区间:(-∞,-1),(-1,2)和(2,+∞)。

不等式的性质的解题技巧-高考理科数学热点专题

不等式的性质的解题技巧-高考理科数学热点专题
专题 32 不等式的性质的解题技巧
一.【学习目标】 1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景. 3.掌握不等式的性质及应用.
二.【知识要点】 1.不等式的定义 用不等号“>,≥,<,≤,≠”将两个数学表达式连接起来,所得的式子叫做不等式. 2.实数大小顺序与运算性质之间的关系 a-b>0⇔a >b;a-b=0⇔a=b;a-b<0⇔a <b. 3.不等式的性质 (1)对称性:a>b⇔b < a; (2)传递性:a>b,b>c⇒a >c; (3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d; (4) 可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac < bc;a>b>0,c>d>0⇒ac>bd;
A.①③ B.①② C.②③ D.①②③
【答案】B
【解析】逐一分析所给的不等式:
.其中所
由于 由于 由于
,故 ,结合 可得 ,说法①正确;
,故 幂函数
在区间
上单调递减,结合
,故

对数函数
单调递减,故
综上可得:所有的正确结论的序号是①②. 本题选择 B 选项.
,说法③错误.
可得
,说法②正确;
练习 4.已知函数
(1)求证:

(2)求函数 【答案】(1)见解析(2)1
的最小值.
【解析】(1)
a b4 , 因为 a b4 0 ,
所以
.
(2)
.
即 fmax x 1.
点睛:本题难以想到利用绝对值三角不等式进行放缩是失分的主要原因;对于需求最值的情况,可利用绝 对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项来放缩求解. (六)利用不等式求范围 例 6.已知函数 f(x)=x2-ax,h(x)=-3x+2,其中 a>1.设不等式 f (1)+f(-1)≥2|x|的解集为 A. (Ⅰ)求集合 A; (Ⅱ)若对任意 x1∈A,存在 x2∈A,满足 2f(x1)=h(x2),求 a 的取值范围. 【答案】(Ⅰ)A=[-1,1] (Ⅱ)(1, ] 【解析】(Ⅰ)f(1)+f(-1)≥2|x|可化为|x|≤1,解得-1≤x≤1, ∴A=[-1,1]

2023年新高考数学一轮复习2-1 不等式的性质及常见不等式解法(知识点讲解)解析版

2023年新高考数学一轮复习2-1   不等式的性质及常见不等式解法(知识点讲解)解析版

专题2.1 不等式的性质及常见不等式解法(知识点讲解)【知识框架】【核心素养】1.结合集合,考查不等式的概念、性质,结合作差法,凸显数学运算、逻辑推理的核心素养.2.结合函数的图象,考查不等式的解法,凸显直观想象、数学运算的核心素养.【知识点展示】(一)不等式的性质1.实数的大小(1)数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b.2.不等关系与不等式我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些符号的式子,叫做不等式.3.比较大小的常用方法(1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论.*(3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.4.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.5.求代数式的取值范围利用不等式性质求某些代数式的取值范围时.一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.6.不等式性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇒a+c>b+c.(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(5)加法法则:a>b,c>d⇒a+c>b+d.(6)乘法法则:a>b>0,c>d>0⇒ac>bd.(7)乘方法则:a>b>0⇒a n>b n(n∈N,n≥2).(8)开方法则:a>b>0⇒na>nb(n∈N,n≥2).(二)不等式的解法1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.*2.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为分式不等式.f (x )g (x )>0⇔f (x )g (x )__>__0,f (x )g (x )<0⇔f (x )·g (x )__<__0. f (x )g (x )≥0⇔⎩⎪⎨⎪⎧ f (x )g (x ) ≥ 0,g (x )≠0. ⇔f (x )·g (x )__>__0或⎩⎪⎨⎪⎧ f (x )=0g (x )≠0. f (x )g (x )≤0⇔⎩⎪⎨⎪⎧ f (x )·g (x ) ≤ 0,g (x )≠0⇔f (x )·g (x )__<__0或⎩⎪⎨⎪⎧f (x )=0g (x )≠0. 3.简单的高次不等式的解法高次不等式:不等式最高次项的次数高于2,这样的不等式称为高次不等式.解法:穿根法①将f (x )最高次项系数化为正数;②将f (x )分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集.4.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式.(3)对方程的根进行讨论,比较大小,以便写出解集.(三)绝对值不等式1.绝对值不等式的解法(1)形如|ax +b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解.(2)形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式①绝对值不等式|x|>a 与|x|<a 的解集②|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ⇔-c≤ax+b≤c (c>0),|ax +b|≥c ⇔ax +b≥c 或ax +b≤-c(c>0).2. 绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.(四)几条常用结论1.倒数性质的几个必备结论(1)a >b ,ab >0⇒1a <1b. (2)a <0<b ⇒1a <1b. (3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a. 2.两个重要不等式若a >b >0,m >0,则(1)b a <b +m a +m ;b a >b -m a -m(b -m >0). (2)a b >a +m b +m ;a b <a -m b -m(b -m >0). 【常考题型剖析】题型一 用不等式表示不等关系例1. (2010·浙江·高考真题(文))某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少至少达7000万元,则,x 的最小值_______【答案】20【解析】【详解】把一月份至十月份的销售额相加求和,列出不等式,求解.七月份:500(1+x%),八月份:500(1+x%)2.所以一月份至十月份的销售总额为:3860+500+2[500(1+x%)+500(1+x%)2]≥7000,解得1+x%≤-2.2(舍)或1+x%≥1.2,所以x min =20.【规律总结】用不等式(组)表示实际问题中不等关系的步骤:①审题.通读题目,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“至少”“至多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件用不等式表示. 题型二:比较数或式子的大小例2.(2022·全国·模拟预测(理))已知10a b a >>>,则下列结论正确的是( ) A .1a b b a -⎛⎫> ⎪⎝⎭ B .log log a a b ba b < C .log log a b b a a b < D .11b a a b-<- 【答案】D【解析】【分析】根据不等式的性质,结合指数函数、对数函数的单调性、作差法比较大小等知识,逐一分析各个选项,即可得答案.【详解】 因为10a b a>>>,所以1a >, 对于A :01b a <<,0a b ->,所以01a b b b a a -<⎛⎫⎛⎫ ⎪ ⎪⎝⎝⎭=⎭,故A 错误; 对于B :1a b>,所以log a b y x =在(0,)+∞上为增函数, 又a b >,所以log log a a b b a b>,故B 错误; 对于C :log log log log log a b a a a b a b b b b a b a ab -=+=, 因为1a b>,1ab >,所以log log 10a a b b ab =>, 所以log log a b b a a b >,故C 错误;对于D :11111()ab b a b a a b a b b a ab -⎛⎫⎛⎫---=-+-=- ⎪ ⎪⎝⎭⎝⎭, 因为0a b ->,1ab >, 所以111()0ab b a a b a b ab -⎛⎫⎛⎫---=-< ⎪ ⎪⎝⎭⎝⎭,即11b a a b -<-,故D 正确. 故选:D例3.比较大小:(1)比较x 2+y 2+1与2(x +y -1)的大小;(2)设a ∈R 且a ≠0,比较a 与1a的大小. 【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0,∴x 2+y 2+1>2(x +y -1).(2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a; 当-1<a <0或a >1时,a >1a; 当a <-1或0<a <1时,a <1a. 【领悟技法】1.比较大小的常用方法(1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、通分、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论.(3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.题型三:不等式性质及其应用例4.(2022·上海·高考真题)已知a b c d >>>,下列选项中正确的是( )A .a d b c +>+B .a c b d +>+C .ad bc >D .ac bd >【答案】B【解析】【分析】用不等式的基本性质得解.【详解】3210>>>,但3021+=+,3021⨯<⨯,A 、C 错a b c d >>>,,a c b d ∴>>,所以a c b d +>+.B 正确.30212>>->-,但()()30122⨯-<⨯-,D 错.故选:B.例5.(2014·四川·高考真题(文))若0,0,a b c d >><<则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c< 【答案】D【解析】【详解】本题主要考查不等关系.已知0,0a b c d >><<,所以110d c->->,所以a b d c ->-,故a b d c <.故选D 例6.【多选题】(2021·河北高三二模)若实数a ,b 满足43a a b <,则下列选项中一定成立的有( ) A .22a b <B .33a b <C .1a b e -<D .ln 0a b ⎛⎫< ⎪⎝⎭【答案】AD【解析】根据条件,可得0a b >>或0b a >>,逐一分析四个选项,即可得答案.【详解】因为43a a b <,所以3()0a a b -<, 所以300a a b ⎧<⎨->⎩或300a ab ⎧>⎨-<⎩,所以0a b >>或0b a >>,所以22b a >,故A 正确;若0a b >>,则33a b >,故B 错误;若0a b >>,则0a b ->,所以1a b e ->,故C 错误;因为0a b >>或0b a >>,所以01a b <<, 所以ln 0a b ⎛⎫< ⎪⎝⎭,故D 正确. 故选:AD【规律总结】1.判断不等式的真假.(1)首先要注意不等式成立的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进行证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举一反例.2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推证时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.3.求取值范围(1)建立待求范围的代数式与已知范围的代数式的关系,利用不等式的性质进行运算,求得待求的范围.(2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应用最易出错,即在不等式的两边同时乘(除)以一个数时,必须能确定该数是正数、负数或零,否则结论不确定.题型四:不等式的解法例7.(2020·全国·高考真题(理))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4B .–2C .2D .4【答案】B【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.例8.(广东高考真题(理))不等式的解集为 . 【答案】.【解析】 令,则,(][),32,-∞-⋃+∞()12f x x x =-++()21,2{3,2121,1x x f x x x x --<-=-≤≤+>(1)当时,由得,解得,此时有;(2)当时,,此时不等式无解;(3)当时,由得,解得,此时有;综上所述,不等式的解集为. 例9.(2019·天津·高考真题(文)) 设x ∈R ,使不等式2320x x +-<成立的x 的取值范围为__________. 【答案】2(1,)3- 【解析】【分析】通过因式分解,解不等式.【详解】2320x x +-<,即(1)(32)0x x +-<, 即213x -<<, 故x 的取值范围是2(1,)3-. 例10.(2022·上海·高考真题)不等式10x x-<的解集为_____________.【答案】{}01x x << 【解析】【分析】 根据分式的运算性质分类讨论求出不等式的解集.【详解】10100x x x x -<⎧-<⇒⎨>⎩或100x x ->⎧⎨<⎩,解第一个不等式组,得01x <<,第二个不等式组的解集为空集. 故答案为:{}01x x <<【规律方法】1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根.2x <-()5f x ≥215x --≥3x ≤-3x ≤-21x -≤≤()3f x =1x >()5f x ≥215x +≥2x ≥2x ≥(][),32,-∞-⋃+∞(4)写:利用“大于取两边,小于取中间”写出不等式的解集.2.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式.(3)对方程的根进行讨论,比较大小,以便写出解集.【易错警示】忽视二次项系数的符号致误3.形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)几何法:利用|x -a|+|x -b|>c(c>0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.题型五: 绝对值不等式的应用例11.(2022·陕西·交大附中模拟预测(理))已知,x y R ∈,则“1x <且2y <”是“3x y +<”的( )条件. A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】A【解析】【分析】判断充分性可利用绝对值三角不等式,由3x y +<1,2x y <<可以举反例 【详解】 解:充分性:若1,2x y <<,则3x y x y +≤+<,充分性得证; 必要性:若3x y +<,取2x =,0.5y =满足条件,但不能得出1,2x y <<,故为非必要条件;综上所述,“1,2x y <<”是“3x y +<”的充分不必要条件,故选:A .例12.(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( ) A .1,3a b ≤≥ B .1,3a b ≤≤ C .1,3a b ≥≥ D .1,3a b ≥≤【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩, 即()f x 的图像恒在()g x 的上方(可重合),如下图所示: 由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a≤≤-≤, 故选:D .【总结提升】1.两类含绝对值不等式的证明问题 一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值符号转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.2.含绝对值不等式的应用中的数学思想(1)利用“零点分段法”求解,体现了分类讨论的思想;(2)利用函数的图象求解,体现了数形结合的思想.3.求f (x )=|x +a |+|x +b |和f (x )=|x +a |-|x +b |的最值的三种方法(1)转化法:转化为分段函数进而利用分段函数的性质求解.(2)利用绝对值三角不等式进行“求解”,但要注意两数的“差”还是“和”的绝对值为定值.(3)利用绝对值的几何意义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的性质及其解法第一部分:基础回顾 一、不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>,(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,;bd ac d c b a >⇒>>>>0,0 (5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法0>∆0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象))((212x x x x a cbx ax y --=++=))((212x x x x a c bx ax y --=++=c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x x x<<∅∅注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间第二部分:不同题型不等式的解法1、高次不等式例1解不等式:(1)015223>--xxx;(2)0)2()5)(4(32<-++xxx.解:(1)原不等式可化为0)3)(52(>-+xxx把方程0)3)(52(=-+xxx的三个根3,25,0321=-==xxx顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-325xxx或(2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++245)2)(4(5)2()5)(4(32xxxxxxxxx或∴原不等式解集为{}2455>-<<--<xxx x或或说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”.2、分式不等式例2 解下列分式不等式:(1)22123+-≤-xx;(2)12731422<+-+-xxxx分析:①0)()()()(<⋅⇔<xgxfxgxf②0)()()()()()()()()()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x gx fx fx gx fx gx gx fx gx f或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-)2)(2()2)(2)(1)(6()2)(2()1)(6()2)(2(65)2)(2()2()2(32232232xxxxxxxxxxxxxxxxxxxxxxxxx∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(2)解法一:原不等式等价于027313222>+-+-xxxx212131273132273132)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔xxxxxxxxxxxxxxx或或或∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。

解法二:原不等式等价于0)2)(13()1)(12(>----xxxx)2()13)(1)(12(>-⋅---⇔xxxx∴原不等式解集为),2()1,21()31,(+∞⋂⋃-∞练习:1、解不等式04125622<-++-xxxx.2、解不等式xxxxx<-+-+222322.答案:1、}6512{><<-<xxx x,或,或.2、}321{><<-xxx或.3、绝对值不等式例3解不等式331042<--xx.分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<, 解答:去掉绝对值号得3310432<--<-x x , ∴原不等式等价于不等式组⇒⎪⎩⎪⎨⎧<-->-⇒⎪⎩⎪⎨⎧<----<-06104010433104310432222x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧<<-><⇒⎩⎨⎧<+->-.321,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或.例4解不等式242+<-x x解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或∴32<≤x 或21<<x 故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. 4、含参数二次不等式例5 设R m ∈,解关于x 的不等式03222<-+mx x m .解:当0=m 时,因03<-一定成立,故原不等式的解集为R . 当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;当0>m 时,解得m x m 13<<-; 当0<m 时,解得mx m 31-<<.∴当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13; 当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x m x31. 练习 解关于x 的不等式0)(322>++-a x a a x .解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或0<a )时,不等式的解集为:{}2a x a x x ><或; (2)当2a a >(即10<<a )时,不等式的解集为:{}a x a x x ><或2; (3)当2a a =(即0=a 或1)时,不等式的解集为:{}a x R x x ≠∈且.说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,2a a >,2a a =三种情况.5、无理不等式例6 解关于x 的不等式)0(122>->-a x a ax .分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解. 解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x 由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+. 当20≤<a 时,1212≤-+≤a a a ,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x . 当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ; 当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a . 练习: 解不等式x x x ->--81032.分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f . 解:原不等式等价于下面两个不等式组: ① ⎩⎨⎧≥--<-0103082x x x② ⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或 81374≤<x ,所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x或 即为⎭⎬⎫⎩⎨⎧>1374x x . 说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,⎭⎬⎫⎩⎨⎧-≤--=x x x x A 81032,则所求不等式的解集为A 的补集A ,由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x .即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或, ∴原不等式的解集是⎭⎬⎫⎩⎨⎧>=1374x x A .6、二次不等式与二次方程的关系例7 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根, ∴ab-=β+α,ac =β⋅α.又02>++c bx ax 的解集是{}β<<αx x , 说明0<a .而0>α,0>β000<⇒>⇒>αβ⇒c a c, ∴0022<++⇔>++cax c b x a bx cx .⎪⎪⎩⎪⎪⎨⎧--==--=+-=⇒⎪⎪⎩⎪⎪⎨⎧=⋅-=+),1)(1(1,11βααββααββαβαβαa c c b a c ab ∴02<++cax c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x. (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根, ∴ac=β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c ac. 对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+⋅+⋅c xb xa . 令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t , ∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β1. ∵β<α<0,∴β>α11. ∴不等式02>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x.练习 1若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,,Y ,求a 、b 的值. 答案:⎪⎪⎩⎪⎪⎨⎧==2325b a .2不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值.答案:∴1=a ,1-=b .课后练习一、填空与选择题1、(1)(12)0x x -->的解集是 ;2、2654x x +<的解集为__________;3、2310x x -++>的解集是 ;4、2210x x -+≤的解集是 ;5、245x x -<的解集是 ;6、已知(1)(1)0ax x -->的解集是 ;{|12}x x x <>或,则实数a 的值为 ;7、不等式220ax bx +->的解集是(1,2),则22a b +的值等于 ;8、方程220x bx ++=有两个负根,则实数b 的取值范围是 ;9、若x =1在不等式2220k x kx +-<的解集内,则k 的取值范围是 ; 10、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合M N I = ;11、“1x >”是“2x x >”的 条件(选填:“充分不必要、必要不充分或充要”);12、2110(1)x a x a a ⎛⎫-++<> ⎪⎝⎭的解为_____;13、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;14、不等式组()()()250x x x x a --≤⎧⎪⎨-≥⎪⎩与不等式()()250x x --≤同解,则a 的取值范围是____;15.若f x x ax ()=-+21有负值,则a 的取值范围是 ( )(A )a >2或a <-2 (B )-<<22a(C )a ≠±2 (D )13<<a16、二次函数1)3(2+-+=x a x y 的图象与x轴的两个交点的横坐标分别为1x 、2x ,且21<x , 22>x ,则a 的取值范围是( )(A )15a a <>或 (B )21<a (C )152a a <->或 (D )121<<-a二、解答题:17、已知集合2{|280}A x x x =--<,{|0}B x x a =-<①当A B φ=I 时,求a 的取值范围;②当A B ⊆时,求a 的取值范围;18、解关于x 的不等式()a R ∈2220x ax a --<;19、关于x 的不等式2680mx mx m +++≥在R 上恒成立,求m 的取值范围;20、要在长为800米,宽为600米的一快长方形地面上进行绿化,要求四周种花卉(花卉的宽度相等),中间种草皮,要求草皮的面积不少于总面积的一半,求花卉宽度的范围。

相关文档
最新文档