一轮复习三角函数测试题学生
2025年高考数学一轮复习课时作业-三角函数【含解析】
2025年高考数学一轮复习课时作业-三角函数【原卷版】(时间:45分钟分值:80分)【基础落实练】1.(5分)下列函数中,是周期函数的为()A.y=sin|x|B.y=cos|x|C.y=tan|x|D.y=(x-1)02.(5分)函数f(x)=ln(cos x)的定义域为()A.{x|kπ-π2<x<kπ+π2,k∈Z}B.{x|kπ<x<kπ+π,k∈Z}C.{x|2kπ-π2<x<2kπ+π2,k∈Z}D.{x|2kπ<x<2kπ+π,k∈Z}3.(5分)函数f(x)=sin(2x-π4)在区间[0,π2]上的最小值为()A.-1B.-22C.22D.04.(5分)函数f(x)=sin + cos + 2在[-π,π]上的图象大致为()5.(5分)(2024·哈尔滨模拟)方程2sin(2x+π3)-1=0在区间[0,4π)上的解的个数为()A.2B.4C.6D.8【6.(5分)(多选题)(2023·长沙模拟)已知函数f(x)=4cos2x,则下列说法中正确的是()A.f(x)为奇函数B.f(x)的最小正周期为πC.f(x)的图象关于直线x=π4对称D.f(x)的值域为[0,4]7.(5分)写出一个最小正周期为3的偶函数为f(x)=.8.(5分)已知函数y=sin(ωx+φ)(ω>0)的图象与直线y=12,距离最近的两点间的距离为π3,那么此函数的最小正周期是.9.(5分)已知f(x)=sin[π3(x+1)]-3cos[π3(x+1)],则f(x)的最小正周期为, f(1)+f(2)+…+f(2025)=.10.(5分)函数f(x)=cos x-cos2x,则f(x)是()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为9811.(10分)已知函数f(x)=sin(2x-π3)+32.(1)求函数f(x)的最小正周期及其图象的对称中心;(2)若f(x0)≤3,求x0的取值范围.即x0的取值范围为[-π2+kπ,π3+kπ](k∈Z).【能力提升练】12.(5分)(多选题)对于函数f(x)=|sin x|+cos2x,下列结论正确的是()A.f(x)的值域为[0,98]B.f(x)在[0,π2]上单调递增C.f(x)的图象关于直线x=π4对称D.f(x)的最小正周期为π13.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象的相邻两条对称轴间的距离为π2,且f(π12)=2,则f(π8)=.14.(10分)(2023·北京高考)设函数f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2).(1)若f(0)=-32,求φ的值.(2)已知f(x)在区间[-π3,2π3]上单调递增,f(2π3)=1,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使函数f(x)存在,求ω,φ的值.条件①:f(π3)=2;条件②:f(-π3)=-1;条件③:f(x)在区间[-π2,-π3]上单调递减.2025年高考数学一轮复习课时作业-三角函数【解析版】(时间:45分钟分值:80分)【基础落实练】1.(5分)下列函数中,是周期函数的为()A.y=sin|x|B.y=cos|x|C.y=tan|x|D.y=(x-1)0【解析】选B.因为cos|x|=cos x,所以y=cos|x|是周期函数.其余函数均不是周期函数.2.(5分)函数f (x )=ln(cos x )的定义域为()A .{x |k π-π2<x <k π+π2,k ∈Z }B .{x |k π<x <k π+π,k ∈Z }C .{x |2k π-π2<x <2k π+π2,k ∈Z }D .{x |2k π<x <2k π+π,k ∈Z }【解析】选C .由cos x >0,解得2k π-π2<x <2k π+π2,k ∈Z .所以函数f (x )=ln(cos x )的定义域为{x |2k π-π2<x <2k π+π2,k ∈Z }.3.(5分)函数f (x )=sin(2x -π4)在区间[0,π2]上的最小值为()A .-1B .-22C .22D .0【解析】选B .由已知x ∈[0,π2],得2x -π4∈[-π4,3π4],所以sin(2x -π4)∈[-22,1],故函数f (x )=sin(2x -π4)在区间[0,π2]上的最小值为-22.4.(5分)函数f (x )=sin + cos + 2在[-π,π]上的图象大致为()【解析】选D .由f (-x )=sin (- )+(- )cos (- )+(- )2=-sin -cos + 2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A;又f (π2)=1+π2(π2)2=4+2ππ2>1,f (π)=π-1+π2>0,排除B,C .5.(5分)(2024·哈尔滨模拟)方程2sin(2x +π3)-1=0在区间[0,4π)上的解的个数为()A .2B .4C .6D .8【解析】选D .由2sin(2x +π3)-1=0得sin(2x +π3)=12,x ∈[0,4π),分别画出y 1=sin(2x +π3)和y 2=12在x ∈0,4π上的图象,如图:两函数图象有8个交点,故方程2sin(2x +π3)-1=0在区间0,4π上的解的个数为8.6.(5分)(多选题)(2023·长沙模拟)已知函数f (x )=4cos 2x ,则下列说法中正确的是()A .f (x )为奇函数B .f (x )的最小正周期为πC .f (x )的图象关于直线x =π4对称D .f (x )的值域为[0,4]【解析】选BD .f (x )=4cos 2x =2cos 2x +2,该函数的定义域为R .因为f (-x )=2cos(-2x )+2=2cos 2x +2=f (x ),所以函数f (x )为偶函数,A 错误;函数f (x )的最小正周期为T =2π2=π,B 正确;因为f (π4)=2cos(2×π4)+2=2,所以f (π4)既不是函数f (x )的最大值,也不是该函数的最小值,C 错误;因为-1≤cos 2x ≤1,所以f (x )=2cos 2x +2∈[0,4],D 正确.7.(5分)写出一个最小正周期为3的偶函数为f (x )=.【解析】f (x )=cos(2π3x )为偶函数,且T =2π2π3=3.答案:cos(2π3x)(答案不唯一)8.(5分)已知函数y=sin(ωx+φ)(ω>0)的图象与直线y=12,距离最近的两点间的距离为π3,那么此函数的最小正周期是.【解析】根据正弦型函数的周期性,当sin(ωx+φ)=12时,若ωx1+φ=π6,则最近的另一个值为ωx2+φ=5π6,所以ω(x2-x1)=2π3,而x2-x1=π3,可得ω=2.故此函数的最小正周期是2π =π.答案:π9.(5分)已知f(x)=sin[π3(x+1)]-3cos[π3(x+1)],则f(x)的最小正周期为, f(1)+f(2)+…+f(2025)=.【解析】依题意可得f(x)=sin[π3(x+1)]-3cos[π3(x+1)]=2sinπ3x,其最小正周期T=6,且f(1)+f(2)+…+f(6)=0,故f(1)+f(2)+…+f(2025)=f(1)+f(2)+f(3)=3+3+0=23.答案:62310.(5分)函数f(x)=cos x-cos2x,则f(x)是()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为98【解析】选D.由题意,f(-x)=cos(-x)-cos(-2x)=cos x-cos2x=f(x),所以该函数为偶函数,又f(x)=cos x-cos2x=-2cos2x+cos x+1=-2(cos x-14)2+98,所以当cos x=14时,f(x)取最大值98.11.(10分)已知函数f(x)=sin(2x-π3)+32.(1)求函数f(x)的最小正周期及其图象的对称中心;【解析】(1)f(x)的最小正周期T=π.由2x-π3=kπ,k∈Z得x=π6+ π2,k∈Z,故f(x)图象的对称中心为(π6+ π2,32)(k∈Z).(2)若f(x0)≤3,求x0的取值范围.【解析】(2)因为f(x0)≤3,所以sin(2x0-π3)+32≤3,即sin(2x0-π3)≤32,所以-4π3+2kπ≤2x0-π3≤π3+2kπ,k∈Z,即-π2+kπ≤x0≤π3+kπ,k∈Z.即x0的取值范围为[-π2+kπ,π3+kπ](k∈Z).【能力提升练】12.(5分)(多选题)对于函数f(x)=|sin x|+cos2x,下列结论正确的是()A.f(x)的值域为[0,98]B.f(x)在[0,π2]上单调递增C.f(x)的图象关于直线x=π4对称D.f(x)的最小正周期为π【解析】选AD.f(x)=|sin x|+cos2x=-2|sin x|2+|sin x|+1=-2(|sin x|-14)2+98[0,98],故A正确;当x∈[0,π2]时,|sin x|∈[0,1],|sin x|=sin x在[0,π2]上单调递增,f(x)=-2(|sin x|-14)2+98,故f(x)在[0,π2]上先增后减,故B错误;f(0)=|sin0|+cos(2×0)=1,f(π2)=|sin π2|+cos(2×π2)=0,f(0)≠f(π2),故C错误;易知y=|sin x|和y=cos2x的最小正周期均为π,故f(x)的最小正周期为π,故D正确.13.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象的相邻两条对称轴间的距离为π2,且f(π12)=2,则f(π8)=.【解析】因为函数f(x)图象的相邻两条对称轴的距离为π2,所以 2=π2,得T=π,即2π =π,得ω=2,即f(x)=2sin(2x+φ),因为f(π12)=2,所以f(π12)=2=2sin(π6+φ),即sinπ6+φ)=1,因为0<φ<π2,所以π6+φ=π2,得φ=π2-π6=π3,则f(x)=2sin(2x+π3),则f(π8)=2sin(2×π8+π3)=2sin(π4+π3)=2(sinπ4cosπ3+cosπ4sinπ3)=2(22×12+22×32)=2+62.答案:2+6214.(10分)(2023·北京高考)设函数f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2). (1)若f(0)=-32,求φ的值.【解析】(1)因为f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2)所以f(0)=sin0cosφ+cos0sinφ=sinφ=-32,因为|φ|<π2,所以φ=-π3.(2)已知f(x)在区间[-π3,2π3]上单调递增,f(2π3)=1,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使函数f(x)存在,求ω,φ的值.条件①:f(π3)=2;条件②:f(-π3)=-1;条件③:f(x)在区间[-π2,-π3]上单调递减.【解析】(2)因为f(x)=sinωx cosφ+cosωx sinφ(ω>0,|φ|<π2)所以f(x)=sin(ωx+φ)(ω>0,|φ|<π2),所以f(x)的最大值为1,最小值为-1.若选条件①:因为f(x)=sin(ωx+φ)的最大值为1,最小值为-1,所以f(π3)=2无解,故条件①不能使函数f(x)存在;若选条件②:因为f(x)在[-π3,2π3]上单调递增,且f(2π3)=1,f(-π3)=-1,所以 2=2π3-(-π3)=π,所以T=2π,ω=2π =1,所以f(x)=sin(x+φ),又因为f(-π3)=-1,所以sin(-π3+φ)=-1,所以-π3+φ=-π2+2kπ,k∈Z,所以φ=-π6+2kπ,k∈Z,因为|φ|<π2,所以ω=1,φ=-π6;若选条件③:因为f(x)在[-π3,2π3]上单调递增,在[-π2,-π3]上单调递减,所以f(x)在x=-π3处取得最小值-1,即f(-π3)=-1.以下与条件②相同.。
高考数学一轮复习《三角函数》复习练习题(含答案)
高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题 1.函数tan2x y =是 A .周期为2π的奇函数 B .周期为2π的奇函数 C .周期为π的偶函数D .周期为2π的偶函数2.有一块矩形花圃ABCD 如图所示,其中10AB cm =,6BC cm =,现引进了新品种需将其扩大成矩形区域EFGH ,点A ,B ,C ,D 均落在矩形EFGH 的边上(不包括顶点),则扩大后的花圃的最大面积为( )A .2100mB .2128mC .2144mD .2196m3.已知函数()sin()(0,0,)f x A x A ωϕωϕπ=+>><,其部分图象如图所示,则()f x 的解析式为( )A .1()3sin 26f x x π⎛⎫=+ ⎪⎝⎭B .1()3sin 26f x x π⎛⎫=- ⎪⎝⎭C .15()3sin 26f x x π⎛⎫=+ ⎪⎝⎭D .1()3sin 26f x x π⎛⎫=- ⎪⎝⎭或15()3sin 26f x x π⎛⎫=+ ⎪⎝⎭ 4.若α是第四象限角,则π-α是第( )象限角.A .一B .二C .三D .四5.若一个底面半径为1的圆锥侧面展开图是一个顶角为23π的扇形,则该圆锥的体积为( )A .353π B .223πC .35πD .22π 6.已知函数()()sin 0,2f x x A πωϕϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则tan ϕ=( )A 3B .1C 3D .37.下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+8.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若()f x m =在[0,)π上有两个实根a ,b ,且||3a b π->,则实数m 的取值范围是( ) A .1,02⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭二、多选题9.设0θπ<<,非零向量()sin 2,cos a θθ=,()cos ,1b θ=,则( ) A .若1tan 2θ=,则//a b B .若34πθ=,则a b ⊥ C .存在θ,使2a b =D .若//a b ,则1tan 2θ=10.关于函数()cos 23cos f x x x x =+,下列结论正确的有( ) A .函数()f x 有最小值2-B .存在12,x x 有12x x π-=时,()()12f x f x =成立C .函数()f x 在区间,36ππ⎡⎤-⎢⎥⎣⎦上单调递增D .函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭成中心对称11.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若AB >,则sin sin A B >B .若cos cos a B b A c -=,则ABC 为直角三角形 C .若cos cos a A b B =,则ABC 为等腰三角形D .若2cos 22A c b c+=,则ABC 为直角三角形 12.已知函数()2sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列说法正确的是( )A .若函数()f x 的最小正周期为π,则其图象关于直线8x π=对称B .若函数()f x 的最小正周期为π,则其图象关于点,08π⎛⎫⎪⎝⎭对称C .若函数()f x 在区间0,8π⎛⎫⎪⎝⎭上单调递增,则ω的最大值为2D .若函数()f x 在[]0,2π有且仅有5个零点,则ω的取值范围是192388ω≤< 三、填空题13.已知tan 312πα⎛⎫-=- ⎪⎝⎭,则tan 6πα⎛⎫+= ⎪⎝⎭______.14.如图,某湖有一半径为1km 的半圆形岸边,现决定在圆心O 处设立一个水文监测中心(大小忽略不计),在其正东方向相距2km 的点A 处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B 以及湖中的点C 处,再分别安装一套监测设备,且90BAC ∠=︒,AB AC =.定义:四边形OACB 及其内部区域为“直接监测覆盖区域”,设AOB θ∠=.则“直接监测覆盖区域”面积的最大值为________.15.若1tan 3α=-,则3sin 2cos 2sin cos αααα+=-_______. 16.已知函数()sin 0,02y x πωϕωϕ⎛⎫=+><≤ ⎪⎝⎭的部分图像如图所示,则点(,)P ωϕ的坐标为___.四、解答题17.已知函数()sin 3cos 33x x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()1y f x =-的单调递增区间; (2)设函数()()()1sin g x x f x =+,求()g x 的值域.18.已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,22ππϕ-<<,x ∈R 其部分图象如图所示.(1)求函数()y f x =的解析式; (2)若23()f α=(0,)3πα∈,求cos2α的值.19.计算: (1)sin15︒;(2)sin cos cos sin 33ππαααα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭;(3)sin13sin73cos13sin17︒︒+︒︒.20.已知函数()222sin 4cos 1f x x x =-+.(1)求()f x 的最小正周期;(2)求()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最大值与最小值.21.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且()3sin cos a bC C =+.(1)求B ;(2)已知23BC =,D 为边AB 上的一点,若1BD =,2ACD π∠=,求AC 的长.22.2020年一场突如其来的疫情让亿万中华儿女的心再一次凝结在一起,为控制疫情,让广大发热患者得到及时有效的治疗,武汉市某社区决定临时修建一个医院.医院设计平面图如图所示:矩形ABCD 中,400AB =米,300BC =米,图中DMN 区域为诊断区(M 、N 分别在BC 和AB 边上),ADN △、CDM 及BMN △区域为治疗区.受诊断区医疗设备的实际尺寸影响,要求MDN ∠的大小为4π.(1)若按照200AN CM ==米的方案修建医院,问诊断区是否符合要求?(2)按照疫情现状,病人仍在不断增加,因此需要治疗区的面积尽可能的大,以便于增加床位,请给出具体的修建方案使得治疗区面积S 最大,并求出最大值.23.已知向量,a b 满足2sin ,4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭(cos ,cos sin )b x x x =-,函数()()f x a b x R =⋅∈.(1)求函数()f x 的单调区间;(2)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且()222242cos a ac B a b c -=+-,求()f B参考答案1.A2.B3.B4.C5.B6.C7.C8.D 9.ABD10.ABC11.ABD12.ACD 13.12-14252km15.35 16.2,3π⎛⎫ ⎪⎝⎭17.(1)()2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)1,42⎡⎤-⎢⎥⎣⎦18.(1)()2sin()6f x x π=+(2)cos 2α=19.(1(2);(3)12.20.(1)π;(2)最小值是-3,最大值是32.21.(1)6B π=(2)AC =22.(1)不符合要求(2)按照tan 18ADN ADN π⎛⎫∠∠= ⎪⎝⎭修建,治疗区面积最大,最大值为240000-(平方米)23.(1)单调增区间为7,,1212k k ππππ⎡⎤--⎢⎥⎣⎦k Z ∈;单调减区间为5,,1212k kππππ⎡⎤-+⎢⎥⎣⎦k Z∈;(2)。
2024届高三数学一轮复习-三角函数与解三角形 第4练 二倍角公式及应用(解析版)
B. cos A cos B
C. sin 2A sin 2B
D. cos 2A cos 2B
12.(2023·全国·高三专题练习)给出下列说法,其中正确的是( )
A.若 cos 1 ,则 cos 2 7
3
9
C.若 x 1 ,则 x 1 的最小值为 2
2
x
B.若 tan 2 4 ,则 tan 1
D. 5 或
5
5
)
D. 24 25
7.(2023·全国·高三专题练习)下列四个函数中,最小正周期与其余三个函数不同的是( )
A. f x cos2 x sin x cos x
B. f x 1 cos 2 x
2sin x cos x
C.
f
x
cos
x
π 3
cos
x
π 3
D.
f
x
sin
D
不
正确,
故选:BC.
10.AD
【分析】根据二倍角正弦公式、辅助角公式,结合正弦型函数的单调性、平移的性质、对称
性、换元法逐一判断即可.
【详解】 f (x) sin x cos x 1 sin 2x, g(x) sin x cos x 2 sin(x π ) ,
2
4
当
x
0,
π 4
时,
3 5 8
2
5 1 5 1.
16
4
故选:D.
2.B 【分析】根据三角恒等变换公式求解.
【详解】
sin
π 6
cos
3 sin 1 cos cos 3 ,
2
2
5
所以 3 sin 1 cos 3 ,
高考数学一轮复习《三角函数》复习练习题(含答案)
高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题1.已知(0,)θπ∈且满足cos 2cos θθ=,则tan θ=A .B .CD 2.在△ABC 中,7,5a c ==,则sin :sin A C 的值是( )A .75B .57C .712D .5123.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 24.函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭在下列区间内递减的是( ) A .,22ππ⎡⎤-⎢⎥⎣⎦B .[],0π-C .22,33ππ⎡⎤-⎢⎥⎣⎦D .232,ππ⎡⎤⎢⎥⎣⎦5.已知a =116116tan tan +︒-,b =⎝⎭,c a 、b 、c 的大小关系为( ) A .c a b >> B .c b a >>C .a c b >>D .b a c >> 6.函数f (x )=3sin(2x -6π)在区间[0,2π]上的值域为 A .[32-,32] B .[32-,3]C .[D .[,3] 7.将函数cos 2y x =的图象向左平移4π个单位长度,所得函数的解析式是( )A .cos 24y x π⎛⎫=+ ⎪⎝⎭B .cos 24y x π⎛⎫=- ⎪⎝⎭C .sin 2y x =-D .sin 2y x = 8.函数tan y x =周期为( )A .2πB .2πC .πD .3π9.在ABC 中,60A =︒,43a =,42b =,则B 等于( )A .45︒B .135︒C .45︒或135︒D .3010.函数()sin()f x A x b ωϕ=++的图象如下:则()f x 的解析式和(0)(1)(2)(2006)S f f f f =+++⋯+的值分别为A .1()sin 122f x x π=+,2006S = B .1()sin 122f x x π=+,120062S = C .1()sin 122f x x π=+,120072S = D .1()sin 122f x x π=+,2007S = 11.设函数f (x )=2sin(2πx +5x ).若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .12 12.如图所示,在ABC 中,D 是边AC 上的点,且AB AD =,23AB BD =,2BC BD =,若2BD =,则sin C 的值为( )A .33B .23C .223D .66二、填空题13.函数()()sin 0,0,y A x A ωϕωϕπ=+>><的图象如图所示,则该函数的解析式为y =______.14.在ABC ∆中,如果lg lg lgsin 2a c B -==-,且B 为锐角,则三角形的形状是__________.15.已知()2cos 3f x x π⎛⎫= ⎪⎝⎭,则(1)(2)(2022)f f f +++的值为________.16.sin 73cos13sin167cos 73︒︒-︒︒=________.17.已知△ABC 中,3cot 4A =-,则cos A =______. 18.252525sin cos tan 634πππ⎛⎫++-= ⎪⎝⎭______. 19.已知扇形的半径为3cm ,圆心角为60︒,则扇形的面积为 2cm .20.若sin 41cos 5γγ=+,则1cos 2sin γγ-=______.三、解答题21.求下列各式的值(1)2log 342233log 9log 2log 3log 432-++⋅; (2)()()()sin 1071sin99sin 171sin 261-︒︒+-︒-︒.22.已知一扇形的面积S 为定值,求当扇形的圆心角为多大时,它的周长最小?最小值是多少?23.在ABC 中,a 、b 、c 分别是内角A 、B 、C 的对边,()cos sin cos cos A A a C c A =+; (1)求角A 的大小;(2)若a =ABC 14b c +的最小值.24.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,b =2B A =. (1)求sin A ;(2)求△ABC 的面积.25.(1)已知tan()22βα-=,tan()32αβ-=-,求)tan(βα+的值; (2)化简:21tan 9sin (12sin 99)︒︒-︒-.26.已知在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且有2cos (cos cos )C a B b A c +=. (1)求C ;(2)若3c =,求ABC ∆面积的最大值.27.已知函数()4cos sin()16f x x x π=+-. (1)求()f x 的最大值及此时的x 的集合;(2)求()f x 的单调增区间;(3)若1()2f α=,求sin(4)6πα-. 28.已知矩形纸片ABCD 中,AB=6,AD=12,将矩形纸片右下角折起,使该角的顶点B 落在矩形的边AD 上,且折痕的两端点M 、N 分别位于边AB ,BC 上,此时的点B 记为点P ,设MNB θ∠=,MN y =.(1)当15MNB ∠=时,判断N 的位置;(2)试将y 表示成θ的函数并求y 的最小值。
高三第一轮复习12----三角函数的的图像与性质训练题
三角函数的的图像与性质训练一、选择题:1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是( ) A .0 B .4π C.2πD.π 2.函数22()lg(sin cos )f x x x =-的定义城是( ) A.322,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭ B.522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭ C.,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭ D.3,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭3.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为( )A .1个 B .2个 C .3个 D .4个4.方程1sin 4x x π=的解的个数是( )A.5 B.6 C.7 D.8 5.如果函数()sin()(02)f x x πθθπ=+<<的最小正周期是T ,且当2x =时取得最大值,那么( )A.2,2T πθ==B.1,T θπ==C.2,T θπ==D.1,2T πθ==6.已知函数()2sin()f x x ωϕ=+对任意x 都有()(),66f x f x ππ+=-则()6f π等于( ) A. 2或0 B. 2-或2 C. 0 D. 2-或07.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A. 1C. 0D.8.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,则这个多边形是( )A .正六边形B .梯形C .矩形D .含锐角菱形9.函数2cos 3cos 2++=x x y 的最小值为( )A .2 B .0 C .1 D .6 10.函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象关于( )A .点0π⎛⎫ ⎪3⎝⎭,对称B .直线x π=4对称 C .点0π⎛⎫ ⎪4⎝⎭,对称 D .直线x π=3对称 11.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数12.函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,13.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位 14.曲线sin (0,0)y A x a A ωω=+>>在区间2[0,]πω上截直线2y =及1y =-所得的弦长相等且不为0,则下列对,A a 的描述正确的是( ) A.13,22a A => B.13,22a A =≤ C.1,1a A =≥ D.1,1a A =≤ 15.使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为( ) A .π25B .π45C .πD .π2316.已知ABC ∆是锐角三角形,sin sin ,cos cos ,P A B Q A B =+=+则( ) A.P Q < B.P Q > C.P Q = D.P 与Q 的大小不能确定 二、填空题: 17.函数xxy cos 2cos 2-+=的最大值为____ ____.18.函数)sin(cos lg x y =的定义域为_____________________。
高三一轮复习三角函数专题及答案解析
三角函数典型习题 1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.2 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++C B A . (I )试判断△ABC 的形状;(II )若△ABC 的周长为16,求面积的最大值.3 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)(Ⅱ)4.在∆(1)求(2)若5(1(26(I)(II)若7(Ⅰ)(Ⅱ)当0,2x ∈⎢⎥⎣⎦时,求函数()f x 的最大值,并写出x 相应的取值.8.在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。答案解析1【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin AC A A π⎛⎫+=+π-- ⎪6⎝⎭===22∴C II.163∴ (Ⅱ)∵由(Ⅰ)∵C 2∵tan 3A =,A 为三角形的内角,∴sin A = 由正弦定理得:sin sin AB BC C A= ∴BC ==8【解析】:(1) //m n ⇒ 2sinB(2cos 2B 2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得: 4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△∴△②4=a 2∴∵△∴△42sin (2)a 2+故S 5π12sin 23x ⎛⎫=+- ⎪⎝⎭. 又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤, 即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴. (Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 6【解析】:(I)由已知得3sin 3sin 222A A a c b ⇒=⋅-+(II)而b 又S 所以7 =所以(Ⅱ)1-所以此时444428。
三角函数综合测试题(含答案)
三角函数综合测试题学生:用时:分数一、选择题:在每小题给出四个选项中,只有一项是符合题目要求(本大题共18小题,每小题3分,共54分)1.(08全国一6)2(sin cos)1y x x=--是()A.最小正周期为2π偶函数B.最小正周期为2π奇函数C.最小正周期为π偶函数D.最小正周期为π奇函数2.(08全国一9)为得到函数图象,只需将函数siny x=图像()A.向左平移π6个长度单位B.向右平移π6个长度单位C.向左平移5π6个长度单位D.向右平移5π6个长度单位3.(08全国二1)若sin0α<且tan0α>是,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.(08全国二10).函数xxxf cossin)(-=最大值为()A.1 B.2C.3 D.25.(08安徽卷8)函数图像对称轴方程可能是()A.B.C.D.6.(08福建卷7)函数(x∈R)图象向左平移2π个单位后,得到函数(x)图象,则g(x)解析式为( )7.(08广东卷5)已知函数2()(1cos2)sin,f x x x x R=+∈,则()f x是()A、最小正周期为π奇函数B、最小正周期为2π奇函数C、最小正周期为π偶函数D、最小正周期为2π偶函数8.(08海南卷11)函数()cos22sinf x x x=+最小值和最大值分别为()A. -3,1B. -2,2C. -3,32D.-2,329.(08湖北卷7)将函数sin()y xθ=-图象F向右平移3π个单位长度得到图象F′,若F′一条对称轴是直线则θ一个可能取值是()A.512π B. C.1112π D.10.(08江西卷6)函数是()A.以4π为周期偶函数 B.以2π为周期奇函数C .以2π为周期偶函数D .以4π为周期奇函数11.若动直线x a =及函数()sin f x x=和()cos g x x =图像分别交于M N,两点,则MN最大值为( )A .1 BC D .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭)A .BC .45- D .4513.(08陕西卷1)sin330︒等于( )A .B .12- C .12 D14.(08四川卷4)()2tan cot cos x x x +=( ) A.tan xB.sin x C.cos xD.cot x15.(08天津卷6)把函数sin ()y x x =∈R 图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点横坐标缩短到原来12倍(纵坐标不变),得到图象所表示函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,16.(08天津卷9)设,,,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c << 17.(08浙江卷2)函数2(sin cos )1y x x =++最小正周期是( )A.2π B .π C.32π D.2π18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 图象和直线交点个数是( )A.0B.1C.2D.41-18题答案:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18二、填空题:把答案填在答题卡相应题号后横线上(本大题共5小题,每小题3分,共 15分).19.(08北京卷9)若角α终边经过点(12)P -,,则tan 2α值为 .20.(08江苏卷1)最小正周期为5π,其中0ω>,则ω= .21.(08辽宁卷16)设,则函数最小值为 . 22.(08浙江卷12)若,则cos2θ=。
高三一轮复习三角函数过关试题
高三数学一轮复习三角函数及解三角形测试题一、选择题(每小题5分,共60分)1、点A ()02011cos ,2011sin 在直角坐标平面上位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、计算068cos 23sin 67sin 68sin -的值为( ) A 、22-B 、22C 、23D 、1 3、设23,33tan παπα<<=,则ααcos sin -的值为( ) A 、2321+-B 、2321--C 、2321+D 、2321- 4、已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边过点⎪⎭⎫⎝⎛3-54,5,则αcos 的值为( ) A 、54 B 、43- C 、54-D 、53-5、已知214tan =⎪⎭⎫ ⎝⎛+πα,且02<<-απ,则=⎪⎭⎫ ⎝⎛-+4cos 2sin sin 22πααα( )A 、552-B 、1053-C 、10103-D 、5526、已知(),cos sin sin 2x x x x f +=,则()x f 的最小正周期和一个单调增区间分别为( ) A 、],0[,ππ B 、]43,4[,2πππ-C 、]83,8[,πππ-D 、]4,4[,2πππ-7、已知函数①x x y cos sin += ②x x y cos sin 22=,则下列结论正确的是( ) A 、两个函数图象均关于点⎪⎭⎫⎝⎛-0,4π成中心对称图形; B 、两个函数的图象均关于直线4π-=x 成轴对称图形;C 、两个函数在区间⎪⎭⎫⎝⎛-4,4ππ上者是单调递增函数;D 、两个函数的最小正周期相同;8、使()()()y x y x x f +++=2cos 32sin 为奇函数,且在]4,0[π上是减函数的y 的一个值是( ) A 、3π B 、35π C 、34π D 、32π9、在∆ABC 中,2,3,600===BC AB C ,那么A 等于( )A 、0135 B 、0105 C 、045 D 、07510、在∆ABC 中角A 、B 、C 所对的边分别为a 、b 、c ,若045,4,1===B c a ,则C sin 等于( ) A 、414 B 、54 C 、254 D 、4141411、若满足条件060=C a BC AB ==,3的∆ABC 有两个,那么a 的取值范围是( ) A 、()2,1 B 、()3,2 C 、()2,3 D 、()2,112、若,2,2BC AC AB ==则∆ABC 的最大值为:( ) A 、22 B 、23 C 、32D 、23 二、填空题(每小题4分,共16分)13、设向量()θsin ,1=→a ,()1,sin 3θ=→b ,且→→b a //,则cos θ2=_____________; 14、将函数x y 2sin 2=的图象向右平移6π个单位后,其图象的一条对称轴方程是_____________; 15、函数⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+=3cos 212sin 2ππx x y 的最大值为_____________; 16、∆ABC 的三个内角A 、B 、C 所对边长分别为a 、b 、c ,已知3,2==b a ,则()=+C A Asin sin _____________;三、解答题(本题共6个小题,共74分) 17、(本小题12分) 已知函数()()R x x x x x f ∈+=2cos cos sin 2 (1)求()x f 的最小正周期和最大值;(2)若θ为锐角,且328=⎪⎭⎫⎝⎛+πθf ,求θtan 的值; 18、(本小题12分)∆ABC 的三个内角A 、B 、C 所对边长分别为a 、b 、c ,a A b B A a 2cos sin sin 2=+(1)求ab ;(2)若,3222a bc +=求B 19、(本小题12分)函数()()⎪⎭⎫⎝⎛<<>>∈+=20,0,0,sin πϕωϕωA R x x A x f 的部分图象如图所示: (1)求()x f 的解析式; (2)设()2]12[⎪⎭⎫⎝⎛-=πx f x g ,求函数()x g 在]3,6[ππ-∈x 上的最大值,并确定此时x 的值。
三角函数测试题卷
三 角 函 数测试卷(高三第一轮复习)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合},,414|{},,412|{Z k k x x N Z k k x x M ∈±==∈-==ππ则M 、N 之间的关 系是( )A .M ⊂NB .M ⊃NC .M=ND .φ=N M 2.“3πα≠”是"21cos "≠α的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件 3.函数x y 2sin =是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 4.︒-︒︒︒155sin 155cos 20sin 110sin 22的值为( )A .21-B .21 C .23 D .23-5.若πθ20<≤且同时满足θθθθsin tan sin cos <<和,那么角θ的取值范围是( )A .),2(ππB .)43,4(ππC .)23,(ππD .)45,43(ππ6.与正弦函数)(sin R x x y ∈=关于直线π23=x 对称的曲线是 ( )A .x y sin =B .x y cos =C .x y sin -=D .x y cos -=7.设︒+︒=︒+︒=16cos 16sin ,15cos 15sin b a ,则下列各式中正确的是( )A .b b a a <+<222 B .222b a b a +<<C .222b a a b +<<D .a b a b <+<222 ≠≠8.函数]4,0[sin 2)(πω在x x f =上递增,且在这个区间内的最大值为3,则ω等于( )A .32 B .38 C .2 D .349.函数4sin cos 22--=x xy 的值域是( )A .]0,1516[-B .]1516,0[C .]0,1615[-D .]1615,0[ 10.定义在R 上的偶函数)(x f ,满足]2,3[)(),()2(--=+在且x f x f x f 上是减函数,又α、β是锐角三角形的两个内角,则( )A .)(sin )(sin βαf f >B .)(cos )(cos βαf f <C .)(cos )(sin βαf f >D .)(cos )(sin βαf f <11.函数)0)(sin()(>+=ωϕωx A x f 在区间[a ,b]是减函数,且A b f A a f =-=)(,)(,则函数],[)cos()(b a x A x g 在ϕω+=上( )A .可以取得最大值-AB .可以取得最小值-AC .可以取得最大值AD .可以取得最小值A12.函数)2cos 2(sin log 21x x y +=的递减区间是( )A .))(83,8(Z k k k ∈++ππππ B . ))(83,83(Z k k k ∈+-ππππC .))(85,8(Z k k k ∈++ππππD .))(8,8(Z k k k ∈+-ππππ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.=︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin .14.如果=+-∈∈-==-βαπβπααβα则且),0,2(),2,0(1411cos ,71)cos( .15.把函数)42sin(π+=x y 的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短 为原来的21(纵坐标不变),则所得图象的解析式为 .16.设,40,2cos ,2si n πθθθ<<==b a 给出)4tan(πθ+值的四个答案;①a b -1;②ba -1; ③a b +1;④ba+1. 其中正确的是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知αααααπαtan 112cos 2sin ,55sin cos ,20-+--=-<<求的值.18.(本小题满分12分)矩形ABCD 中,AB=a ,BC=2a ,在BC 上取一点P ,使AB+BP=PD.求tan ∠APD 的值.19.(本题满分12分)是否存在锐角α、β使得(1)πβα322=+;(2)32tan 2tan -=⋅βα 同时成立?若存在,求出α和β的值;若不存在,说明理由.APD20.(本小题满分12分)半圆O 的直径为2,A 为直径延长线上的一点,OA=2,B 为半圆上任意一点,以AB 为边向外作正三角形ABC.问B 在什么位置时,四边形OACB 的面积 最大,并求出面积的最大值.21.(本小题满分13分)正三棱锥中,侧面与底面所成的二面角为α,侧面与侧面所成的二面角为β,求证:01cos 42cos 3=++βα.22.(本小题满分13分)设函数x c x b a x f sin cos )(++=的图象经过两点(0,1),(1,2π), 且在2|)(|20≤≤≤x f x 内π,求实数a 的的取值范围.测试题参考答案及评分意见三角函数一、1.C 2.B 3.C 4.B 5.A 6.A 7.B 8.D 9.A 10.C 11.D 12.D 二、13.32-; 14.3π; 15. x y 4sin =; 16.①④ 三、17.ααπααααααααααααααααsin cos )4sin(22sin sin cos )sin (cos 2sin sin cos )sin 2cos sin 2(cos tan 112cos 2sin 2-+⋅=-+=-+=-+-……5分 由51sin cos -=-αα两边平方得51)4cos(2,542sin -=+=παα又 101)4cos(-=+∴πα…9分 而103)4sin(4344,20=+<+<∴<<παππαππα于是,故原式51251103254-=-⋅⋅=……12分18.依题意2)2(BP a a BP a -+=+,解得a BP 32=……3分 设βα=∠=∠DPC APB ,,则43tan ,23tan ====CP DC BP AB βα,从而18tan tan 1tan tan )tan(-=-+=+βαβαβα………………12分 19.由3t a n 2t a n1t a n 2t a n)2t a n (,32322=-+=+∴=+=+βαβαβαπβαπβα得……4分,32tan 2tan -=βαβαβαtan ,2tan33tan 2tan于是-=+∴是一元二次方程032)33(2=-+--x x 的两根,解 得32,121-==x x ……8分. 若2090,12tan πααα<<︒==与则矛盾,不合;322tan-=∴α︒=︒=∴=45,30,1tan βαβ,故存在︒=︒=45,30βα满足条件……12分20.设∠AOB=θ,由余弦定理得AB 2=OB 2+OA 2-2·OB ·OAcos θ=5-4cos θ,∴四边形OACB 的面积)3sin(2435cos 3sin 435sin )cos 45(43sin 21432πθθθθθθ-+=-+=+-=⋅⋅+=OA OB AB S ……8分 当πθππθπθ65,23,1)3sin(==-=-即时,S 有最大值2435+…………12分 21.设正三棱锥S —ABC 的底面边长为2a ,高为SO ,D 为AB 为中点,则∠SDO=α,作AE ⊥SB ,垂足为E ,连CE ,则CE ⊥SB ,∴∠AEC=β…………4分 由a SD a OD a BD αcos 31,33,===知 aAE AE SB SD AB a SB ααα22cos 312,cos 3cos 1+=⋅=⋅+=得由……8分 CE AE AC CE AE ⋅-+=∴2cos 222β2cos 31cos 314cos 31822αα-=+-+= 22c o s 3122c o s 331c o s 31c o s 22αααβ--=+-=-=∴即 012cos 3cos 4=++αβ………………13分22.由图象过两点得1=a +b ,1=a +c ,)4sin()1(2)cos )(sin 1()(,1,1π+-+=+-+=-=-=∴x a a x x a a x f a c a b ……3分1)4sin(22,4344,20≤+≤∴≤+≤≤≤πππππx x x 则 ………6分 当a <1时,2|)(|,)21(2)(1≤-+≤≤x f a x f 要使,只须2)21(2≤-+a 解得2-≥a ……9分当1)()21(2,1≤≤-+>x f a a 时要使2)21(22|)(|-≥-+≤a x f 只须解得234+≤a ,故所求a 的范围是2342+≤≤-a ………………13分。
2021年高考数学一轮复习《三角函数》精选练习(含答案)
2021年高考数学一轮复习《三角函数》精选练习一、选择题1.若函数f(x)=ax +b 的零点是2,那么函数g(x)=bx 2-ax 的零点是( )A .0,2B .0,0.5C .0,-0.5D .2,-0.52.若函数f(x)=ax +1在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,1)C .(-∞,-1)∪(1,+∞)D .(-1,1) 3.函数f(x)=3x+x 2-2的零点个数为( )A .0B .1C .2D .3 4.函数f(x)=e x +2x-3的零点所在的一个区间为( )A .(-1,0)B .0,0.5 C.0.5,1 D .1,1.5 5.函数f(x)=3x |ln x|-1的零点个数为( )A .1B .2C .3D .4 6.下列函数中,在(-1,1)内有零点且单调递增的是( )A .y=log 0.5xB .y=2x-1 C .y=x 2-0.5 D .y=-x 37.一个扇形的弧长与面积的数值都是6,则这个扇形的圆心角的弧度数是( )A .1B .2C .3D .4 8.点P(cos 2 019°,sin 2 019°)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.-510°是( )A.第一象限B.第二象限C.第三象限D.第四象限10.某扇形的面积为1cm 2,它的周长为4cm ,那么该扇形圆心角的度数为( )A.2°B.2C.4°D.4 11.如果弓形的弧所对的圆心角为3π,弓形的弦长为4 cm ,则弓形的面积是( ) A.(344-9π)cm 2 B.(344-3π)cm 2 C.(348-3π)cm 2 D.(328-3π)cm 212.已知角θ的始边与x 轴的非负半轴重合,终边过点M(-3,4),则cos 2θ-sin 2θ+tanθ的值为( )A .-12175 B.12175 C .-7975 D.797513.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于( )A .sin 2B .-sin 2C .cos 2D .-cos 214.已知tan(α-π)=0.75,且α∈[23,2ππ],则sin(2πα+)=( ) A.0.8 B.-0.8 C.0.6 D.-0.6 15.计算:0190sin 160sin 2350cos --=( )16.若(),2,53cos παππα<≤=+则()πα2sin --的值是( ) A.3/5 B.-3/5 C.4/5 D.-4/517.在平面直角坐标系xOy 中,角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边经过点P(3,4),则sin ⎝⎛⎭⎪⎫α-2 019π2=( ) A .-45 B .-35 C.35 D.4518.已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则)222017cos(απ-的值为( ) A.0.8 B.-0.8 C.2 D.-0.5 19.)2cos()2sin(21++-ππ等于( )A.sin2-cos2B.cos2-sin2C.±(sin2-cos2)D.sin2+cos220.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则f(2018)的值为( )A .-1B .1C .3D .-3 21.已知sin ⎝ ⎛⎭⎪⎫α-π12=13,则cos ⎝⎛⎭⎪⎫α+17π12等于( ) A.13 B.223 C .-13 D .-223 22.log 2⎝⎛⎭⎪⎫cos 7π4的值为( )A .-1B .-12 C.12 D.2223.将函数f(x)=sin 2x 图象上的所有点向右平移π4个单位长度后得到函数g(x)的图象.若g(x)在区间[0,a]上单调递增,则a 的最大值为( ) A.π8 B.π4 C.π6 D.π224.关于函数y=tan ⎝⎛⎭⎪⎫2x -π3,下列说法正确的是( ) A .是奇函数 B .在区间⎝⎛⎭⎪⎫0,π3上单调递减C.⎝⎛⎭⎪⎫π6,0为其图象的一个对称中心 D .最小正周期为π25.若函数y=3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0对称,则|φ|的最小值为( )A.π6 B .π4 C.π3 D .π226.已知函数f(x)=cos ⎝⎛⎭⎪⎫2x +π3-cos 2x ,其中x∈R,给出下列四个结论:①函数f(x)是最小正周期为π的奇函数; ②函数f(x)图象的一条对称轴是直线x=2π3;③函数f(x)图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0;④函数f(x)的递增区间为⎣⎢⎡⎦⎥⎤kx +π6,k π+2π3,k ∈Z.则正确结论的个数是( ) A .1 B .2 C .3 D .4 27.函数y=sin x +cos x 的最小值和最小正周期分别是( )A.-2,2πB.-2,2πC.-2,πD.-2,π 28.y=|cos x|的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π] C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π29.设函数f(x)=3sin ωx+cos ωx(ω>0),其图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内,且f(x)的最小正周期大于π,则ω的取值范围为( )A.⎝ ⎛⎭⎪⎫12,1 B .(0,2) C .(1,2) D .[1,2) 30.已知函数f(x)=2cos ⎝⎛⎭⎪⎫2x +π4,则以下判断中正确的是( ) A .函数f(x)的图象可由函数y=2cos 2x 的图象向左平移π8个单位长度得到B .函数f(x)的图象可由函数y=2cos 2x 的图象向左平移π4个单位长度得到C .函数f(x)的图象可由函数y=2sin 2x 的图象向右平移3π8个单位长度得到D .函数f(x)的图象可由函数y=2sin 2x 的图象向左平移3π4个单位长度得到31.已知函数f(x)=Asin(ωx+φ)( ω>0,-π2<φ<π2)的部分图象如图所示,则φ的值为( )A .-π3 B.π3 C .-π6 D.π632.将函数y=f(x)=2sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再把所有点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是( )A .函数g(x)=2sin ⎝⎛⎭⎪⎫x +π3B .函数g(x)的周期为πC .函数g(x)的一个对称中心为点⎝ ⎛⎭⎪⎫-π12,0D .函数g(x)在区间⎣⎢⎡⎦⎥⎤π6,π3上单调递增33.已知函数f(x)=2sin(ωx+φ)( ω>0,φ∈⎣⎢⎡⎦⎥⎤π2,π )的部分图象如图所示,其中f(0)=1,|MN|=52,将f(x)的图象向右平移1个单位长度,得到函数g(x)的图象,则g(x)的解析式是( )A .g(x)=2cos π3xB .g(x)=2sin ⎝ ⎛⎭⎪⎫π3x +2π3C .g(x)=2sin ⎝ ⎛⎭⎪⎫2π3x +π3 D .g(x)=-2cos π3x34.已知函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx+π3(ω>0)图象的最高点与相邻最低点的距离是17,若将y=f(x)的图象向右平移16个单位长度得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是( )A .x=56B .x=13C .x=12 D .x=0二、填空题35.函数f(x)=3x -7+ln x 的零点位于区间(n ,n +1)(n∈N)内,则n=________. 36.已知α是第二象限角,则α3是第________象限角.37.已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan = . 38.已知向量a=(sin θ,-2)与b=(1,cos θ)互相垂直,其中θ∈(20π,),则cos θ=________.39.已知θ是第三象限角,且sinθ-2cosθ=-25,则sinθ+cosθ=________.40.已知函数f(x)=sin(ωx+φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和与它相邻的一个最低点的距离为22,且图象过点⎝ ⎛⎭⎪⎫2,-12,则函数f(x)=____________.答案解析41.答案为:C ; 42.答案为:C ;解析:由题意知,f(-1)f(1)<0,即(1-a)(1+a)<0,解得a<-1或a>1. 43.答案为:C ;解析:函数f(x)=3x+x 2-2的零点个数即为函数y=3x与函数y=2-x 2的图象的交点个数, 由图象易知交点个数为2,则f(x)=3x+x 2-2的零点个数为2,故选C. 44.答案为:C ; 45.答案为:B ;解析:选B.函数f(x)=3x|ln x|-1的零点即3x|ln x|-1=0的解,即|ln x|=⎝ ⎛⎭⎪⎫13x的解, 作出函数g(x)=|ln x|和函数h(x)=⎝ ⎛⎭⎪⎫13x的图象,由图象可知,两函数图象有两个公共点, 故函数f(x)=3x|ln x|-1有2个零点.46.答案为:B ;解析:选B.函数y=log 12x 在定义域上单调递减,y=x 2-12在(-1,1)上不是单调函数,y=-x 3在定义域上单调递减,均不符合要求.对于y=2x-1, 当x=0∈(-1,1)时,y=0且y=2x-1在R 上单调递增.故选B. 47.答案为:C ; 48.答案为:C ;49.[答案] C [解析] -510°=-720°+210°,∴-510°角与210°角终边相同,故选C. 50.B 51.C 52.答案为:A解析:由已知得|OM|=5,因而cosθ=-35,sinθ=45,tanθ=-43,则cos 2θ-sin 2θ+tanθ=925-1625-43=-12175.故选A.53.答案为:D ; 54.B. 55.D. 56.C57.答案为:C ;解析:∵角α的终边经过点P(3,4),∴sin α=45,cos α=35.∴sin ⎝ ⎛⎭⎪⎫α-2 019π2=sin ( α-2 020π2+π2 )=sin ( α+π2 )=cos α=35.故选C. 58.A . 59.A60.答案为:C ;解析:∵f(4)=asin(4π+α)+bcos(4π+β)=asinα+bcosβ=3,∴f(2018)=asin(2018π+α)+bcos(2018π+β)=asinα+bcosβ=3.故选C. 61.答案为:A ;解析:cos ⎝ ⎛⎭⎪⎫α+17π12=cos ⎣⎢⎡⎦⎥⎤3π2+⎝ ⎛⎭⎪⎫α-π12=sin ⎝ ⎛⎭⎪⎫α-π12=13.故选A. 62.答案为:B ;解析:log 2⎝ ⎛⎭⎪⎫cos 7π4=log 2⎝ ⎛⎭⎪⎫cos π4=log 222=-12.故选B.63.答案为:D ;f(x)的图象向右平移π4个单位长度得到g(x)=sin [ 2⎝ ⎛⎭⎪⎫x -π4 ]=-cos 2x 的图象.根据余弦函数的图象可知,当0≤2x≤π,即0≤x≤π2时,g(x)单调递增,故a 的最大值为π2. 64.答案为:C ;函数y=tan ⎝ ⎛⎭⎪⎫2x -π3是非奇非偶函数,A 错;函数y=tan ⎝ ⎛⎭⎪⎫2x -π3在区间⎝ ⎛⎭⎪⎫0,π3上单调递增,B 错;最小正周期为π2,D 错;由2x -π3=kπ2,k ∈Z ,得x=kπ4+π6,k ∈Z.当k=0时,x=π6,所以它的图象关于⎝ ⎛⎭⎪⎫π6,0对称.65.答案为:A.解析:由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos(2π3+φ+2π)=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0,∴2π3+φ=kπ+π2,k ∈Z ,∴φ=k π-π6,k ∈Z. 取k=0,得|φ|的最小值为π6. 66.答案为:C.解析:f(x)=cos ⎝ ⎛⎭⎪⎫2x +π3-cos 2x=cos 2xcos π3-sin 2xsin π3-cos 2x=-sin ⎝ ⎛⎭⎪⎫2x +π6,不是奇函数,故①错误;当x=2π3时f ⎝ ⎛⎭⎪⎫2π3=-sin ⎝ ⎛⎭⎪⎫4π3+π6=1,故②正确;当x=5π12时f ⎝ ⎛⎭⎪⎫5π12=-sin π=0,故③正确;令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,故④正确.综上,正确的结论个数为3. 67.A68.答案为:D ;将y=cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y=|cos x|的图象(如图).故选D.69.答案为:C ;由题意f(x)=3sin ωx+cos ωx=2sin ⎝ ⎛⎭⎪⎫ωx+π6(ω>0).令ωx+π6=π2+kπ,k ∈Z , 得x=π3ω+kπω,k ∈Z.∵函数图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内,∴π6<π3ω+kπω<π3,k ∈Z ,∴3k +1<ω<6k+2,k ∈Z. 又∵f(x)的最小正周期大于π,∴2πω>π,解得0<ω<2.∴ω的取值范围为(1,2).故选C.70.答案为:A;解析:因为f(x)=2cos ⎝⎛⎭⎪⎫2x +π4,所以函数f(x)的图象可由函数y=2cos 2x 的图象向左平移π8个单位长度得到,故选A.71.答案为:B;解析:由题意,得T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,所以T=π,由T=2πω,得ω=2,由图可知A=1,所以f(x)=sin(2x +φ).又因为f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+φ=0,-π2<φ<π2,所以φ=π3.72.答案为:C.解析:将函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位,可得函数y=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6=2sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再把所有点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)=2sin ⎝ ⎛⎭⎪⎫4x +π3的图象,故g(x)的周期为2π4=π2,排除A ,B.令x=-π12,求得g(x)=0,可得g(x)的一个对称中心为⎝ ⎛⎭⎪⎫-π12,0,故C 满足条件. 在区间⎣⎢⎡⎦⎥⎤π6,π3上,4x +π3∈⎣⎢⎡⎦⎥⎤π,5π3,函数g(x)没有单调性,故排除D.73.答案为:A ;解析:设函数f(x)的最小正周期为T.由题图及|MN|=52,得T 4=32,则T=6,ω=π3.又由f(0)=1,φ∈⎣⎢⎡⎦⎥⎤π2,π得sin φ=12,φ=5π6.所以f(x)=2sin ( π3x +5π6 ).则g(x)=2sin ⎣⎢⎡⎦⎥⎤π3x -1+5π6=2cos π3x.故选A.74.答案为:B ;解析:函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx+π3的最大值为2,由172-42=1可得函数f(x)的周期T=2×1=2,所以ω=π,因此f(x)=2sin ⎝⎛⎭⎪⎫πx+π3.将y=f(x)的图象向右平移16个单位长度得到的图象对应的函数解析式为g(x)=2sin ⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫x -16+π3=2sin ⎝ ⎛⎭⎪⎫πx+π6,当x=13时,g ⎝ ⎛⎭⎪⎫13=2sin ⎝ ⎛⎭⎪⎫π3+π6=2, 为函数的最大值,故直线x=13为函数y=g(x)图象的一条对称轴.故选B.75.答案为:2;解析:因为f(x)在(0,+∞)上单调递增,且f(2)=-1+ln 2<0,f(3)=2+ln 3>0,所以函数f(x)的零点位于区间(2,3)内,故n=2.76.[答案] 一或第二或第四 [解析] 将平面直角坐标系中的每一个象限进行三等分,从x 轴右上方开始在每一等份中依次标数字1、2、3、4,如图所示.∵α第二象限角,∴图中标有数字2的位置即为α3角的终边所在位置,故α3是第一或第二或四象限角. 77.答案为:0.2; 78.答案:55. 79.答案为:-3125;解析:观察得sinθ=45,cosθ=35满足方程,但此时θ是第一象限角,不合题意.由⎩⎪⎨⎪⎧sinθ-2cosθ=-25,sin 2θ+cos 2θ=1,得5cos 2θ-85cosθ-2125=0,解得cosθ=35或-725.因为θ是第三象限角,所以cosθ=-725,从而sinθ=-2425,所以si nθ+cosθ=-3125.80.答案为:sin ⎝⎛⎭⎪⎫π2x +π6; 解析:依题意得22+⎝ ⎛⎭⎪⎫πω2=22,ω>0,所以ω=π2,所以f(x)=sin ⎝ ⎛⎭⎪⎫π2x +φ.因为该函数图象过点⎝ ⎛⎭⎪⎫2,-12,所以sin(π+φ)=-12,即sin φ=12. 因为-π2≤φ≤π2,所以φ=π6,所以f(x)=sin ⎝ ⎛⎭⎪⎫π2x +π6.。
2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-4 Word版含答案
课时规范训练[A 级 基础演练]1.设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:选C.∵a =sin 33°,b =cos 55°=sin 35°,c =tan 35°=sin 35°cos 35°,又0<cos 35°<1,∴c >b >a .2.函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) 解析:选B.由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ). 3.(2022·高考山东卷)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.32πD .2π解析:选B.法一:由题意得f (x )=3sin x cos x -3sin 2x +3cos 2x -sin x cos x =sin 2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3 .故该函数的最小正周期T =2π2=π.故选B.法二:由题意得f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6×2cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3.故该函数的最小正周期T =2π2=π.故选B.4.(2022·高考全国甲卷)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )解析:选B.法一:将函数y =2sin 2x 的图象向左平移π12个单位长度,得到y =2sin 2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象.由2x +π6=π2+k π(k ∈Z )得,∴x =π6+k 2π.(k ∈Z ),即平移后图象的对称轴为x =k π2+π6(k ∈Z ). 法二:∵y =2sin 2x 的对称轴为x =π4+k 2π,向左平移π12个单位后为x =π4-π12+k 2π=π6+k2π,故选B.5.(2021·长春模拟)函数f (x )=sin(2x +ф)⎝ ⎛⎭⎪⎫|φ|<π2向左平移π6个单位后是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为 . 解析:函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2向左平移π6个单位后得到函数为f ⎝ ⎛⎭⎪⎫x +π6=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于此时函数为奇函数,所以π3+φ=k π(k ∈Z ),所以φ=-π3+k π(k ∈Z ).由于|φ|<π2,所以当k =0时,φ=-π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.当0≤x ≤π2时,-π3≤2x -π3≤2π3,即当2x -π3=-π3时,函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3有最小值为sin ⎝ ⎛⎭⎪⎫-π3=-32. 答案:-326.当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x = .解析:由已知条件可得y =2sin ⎝ ⎛⎭⎪⎫x -π3,又由0≤x <2π得-π3≤x -π3<5π3,当x -π3=π2时y 取得最大值,此时x =5π6.答案:5π67.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为 .解析:分析三角函数图象,依据最小值求k ,再求最大值.依据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.答案:88.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为 .解析:利用正弦函数的对称性求周期. ∵f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,∴T 2≥π2-π6,∴T ≥2π3.∵f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,∴f (x )的一条对称轴为x =π2+2π32=7π12.又∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴f (x )的一个对称中心的横坐标为π2+π62=π3. ∴14T =7π12-π3=π4,∴T =π.答案:π9.(2022·高考北京卷)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解:(1)由于f (x )=2sin ωx cos ωx +cos 2ωx=sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π4, 所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ), 得k π-3π8≤x ≤k π+π8(k ∈Z ).∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-38π,k π+π8k ∈Z .10.已知函数y =f (x )=23sin x cos x +2cos 2x +a (x ∈R ),其中a 为常数. (1)求函数y =f (x )的最小正周期;(2)假如y =f (x )的最小值为0,求a 的值,并求此时f (x )的最大值及图象的对称轴方程. 解:(1)y =f (x )=3sin 2x +cos 2x +1+a =2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1,所以函数的最小正周期T =π.(2)f (x )的最小值为0,所以-2+a +1=0,故a =1,所以函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6+2的最大值等于4.当2x +π6=k π+π2(k ∈Z ),即x =k π2+π6(k ∈Z )时函数有最大值或最小值, 故函数f (x )的图象的对称轴方程为x =k π2+π6(k ∈Z ). [B 级 力量突破]1.同时具有性质:“①最小正周期为π;②图象关于直线x =π3对称;③在⎝ ⎛⎭⎪⎫-π6,π3上是增函数”的一个函数是( )A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6B .y =cos ⎝ ⎛⎭⎪⎫x 2-π6C .y =sin ⎝ ⎛⎭⎪⎫2x -π6D .y =cos ⎝ ⎛⎭⎪⎫2x +π3解析:选C.对于A ,y =sin ⎝ ⎛⎭⎪⎫x 2+π6的最小正周期为4π,故排解A ;对于B ,y =cos ⎝ ⎛⎭⎪⎫x 2-π6的最小正周期为4π,故排解B ;对于D ,当x ∈⎝ ⎛⎭⎪⎫-π6,π3时,2x +π3∈(0,π),此时y =cos ⎝ ⎛⎭⎪⎫2x +π3单调递减,故排解D.选C.2.函数f (x )=|sin x |+2|cos x |的值域为( ) A .[1, 5 ] B .[1,2] C .[2, 5 ]D .[5,3]解析:选A.∵f (x +π)=|sin(x +π)|+2|cos(x +π)|=|-sin x |+2|-cos x |=|sin x |+2|cos x |, ∴f (x )为偶函数,f (x )为周期函数,其中的一个周期为π,故只需考虑f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域即可.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x +2cos x =5sin(x +α),其中cos α=15,sin α=25,∴f (x )max=f ⎝ ⎛⎭⎪⎫π2-α=5,f (x )≥f ⎝ ⎛⎭⎪⎫π2=1.当x ∈⎣⎢⎡⎦⎥⎤π2,π时, f (x )=sin x -2cos x =5sin(x +β),其中cos β=15, sin β=-25,∴f (x )max =f ⎝ ⎛⎭⎪⎫π2-β=5,f (x )min =f ⎝ ⎛⎭⎪⎫π2=1,∴f (x )的值域为[1, 5 ].3.(2021·江西南昌一模)如图,M (x M ,y M ),N (x N ,y N )分别是函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与两条直线l 1:y =m (A ≥m ≥0),l 2:y =-m 的两个交点,记S (m )=|x N -x M |,则S (m )的图象大致是( )解析:选C.如图所示,作曲线y =f (x )的对称轴x =x 1,x =x 2,点M 与点D 关于直线x =x 1对称,点N 与点C 关于直线x =x 2对称,所以x M +x D =2x 1,x C +x N =2x 2,所以x D =2x 1-x M ,x C =2x 2-x N ,又点M 与点C 、点D 与点N 都关于点B 对称,所以x M +x C =2x B ,x D +x N =2x B ,所以x M +2x 2-x N =2x B ,2x 1-x M +x N =2x B , 得x M -x N =2(x B -x 2)=-T2, x N -x M =2(x B -x 1)=T2,所以|x M -x N |=T2(常数),其中,T 为f (x )的周期,选C.4.设函数f (x )=|cos x |+|sin x |,下列四个结论正确的是 .①f (x )是奇函数;②f (x )的图象关于直线x =3π4对称;③当x ∈[0,2π]时,f (x )∈[1,2];④当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )单调递增.解析:对于①,f (-x )=|cos(-x )|+|sin(-x )|=|cos x |+|sin x |,∴f (-x )=f (x )是偶函数,①不正确;对于②,留意到f ⎝ ⎛⎭⎪⎫3π2-x =⎪⎪⎪⎪⎪⎪cos ⎝ ⎛⎭⎪⎫3π2-x +⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫3π2-x =|sin x |+|cos x |=f (x ),因此函数f (x )的图象关于直线x =3π4对称,②正确;对于③④,留意到f ⎝ ⎛⎭⎪⎫x +π2=⎪⎪⎪⎪⎪⎪cos ⎝ ⎛⎭⎪⎫x +π2+⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π2=|sin x |+|cos x |=f (x ),因此函数f (x )是以π2为周期的函数,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=|sin x |+|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4的值域是[1,2],故当x ∈[0,2π]时,f (x )∈[1,2],又f ⎝ ⎛⎭⎪⎫π4=2>1=f ⎝ ⎛⎭⎪⎫π2,因此f (x )在⎣⎢⎡⎦⎥⎤0,π2上不是增函数,故③正确,④不正确.综上所述,其中正确的结论是②③.答案:②③5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个长度单位得到函数g (x )的图象恰好经过点⎝ ⎛⎭⎪⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间.解:(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π6-4sin 2ωx +2=32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2=32sin 2ωx +32cos 2ωx =3sin ⎝ ⎛⎭⎪⎫2ωx +π3(ω>0),依据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1,故函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)将f (x )的图象向左平移m (m >0)个长度单位得到函数g (x )=3sin ⎣⎢⎡⎦⎥⎤2(x +m )+π3=3sin ⎝ ⎛⎭⎪⎫2x +2m +π3的图象, 依据g (x )的图象恰好经过点⎝ ⎛⎭⎪⎫-π3,0,可得3sin ⎝ ⎛⎭⎪⎫-2π3+2m +π3=0,即sin ⎝ ⎛⎭⎪⎫2m -π3=0,所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ),由于m >0,所以当k =0时,m 取得最小值,且最小值为π6. 此时,g (x )=3sin ⎝ ⎛⎭⎪⎫2x +2π3.令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12,k ∈Z .结合x ∈⎣⎢⎡⎦⎥⎤-π6,7π12,可得g (x )在⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间为⎣⎢⎡⎦⎥⎤-π6,-π12和⎣⎢⎡⎦⎥⎤5π12,7π12.。
2023年九年级中考数学一轮复习:锐角三角函数(含答案)
2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。
2024届高三数学一轮复习--三角函数与解三角形第2练 同角三角函数的基本关系及诱导公式(解析版)
参考答案:
【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母
(1 sin2 cos2 ),进行齐次化处理,化为正切的表达式,代入 tan 2 即可得到结果. 【详解】将式子进行齐次化处理得:
sin 1 sin 2 sin sin2 cos2 2sin cos sin sin cos
上逆时针做匀速圆周运动,同时出发.P 的角速度大小为 2rad/s ,起点为 e O 与 x 轴正半轴
的交点;Q 的角速度大小为 5rad/s ,起点为射线 y 3x x 0 与 e O 的交点.则当 Q 与
P 重合时,Q 的坐标可以为( )
A.
cos
2 9
, sin
2 9
C.
cos
9
20.(2023·全国·高三专题练习)已知 VABC 的内角 A,B,C 的对边分别为 a,b,c,
b
3
,
a
c
,且
sin
π 3
A
cos
π 6
A
1 4
.
(1)求 A 的大小;
(2)若 a sin A c sin C 4 3 sin B ,求 VABC 的面积.
学科网(北京)股份有限公司
1.C
B.
cos
7π 8
1 3
C.
sin
13π 8
2
2 3
D.
tan
π 8
2
2
10.(2023·全国·高一假期作业)已知 sin cos 1 , 0, π ,则( )
5
A. sin cos 12 25
B. sin cos 12 25
C. sin cos 7 5
D. tan 4 3
06-三角函数、诱导公式、三角函数的图像(高三数学第一轮复习同步测试题)
高三数学第一轮复习同步测试题(06)—三角函数、诱导公式、三角函数的图像 一、 选择题:(本大题共12小题,每小题5分,共60分) 1. 已知角α的终边过点(-1,2),则cos α的值为( ). A .-55 B.255 C .-255 D .-122.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6 C .-π3 D .-π63.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A .2 B .2sin1 C.2sin1 D .sin2 4.已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-|cos α|cos α=() A .2 B .1 C.0 D .-2 5.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( ) A .-32 B.32 C .-12D.126. 已知f (cos x )=cos 3x ,则f (sin 30°)的值为( ). A .0 B .1 C .-1 D.327.已知sin α-cos α=43,则sin2α=( )A .-79B .-29 C.29 D.79 8. 若sin α是方程5x 2-7x -6=0的根,则sin (-α-3π2)sin (3π2-α)tan 2(2π-α)cos (π2-α)cos (π2+α)sin (π+α)=( )A.35B.53C.45D.549. 下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2) 10.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11. 已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23B.32 C .2 D .3 12.函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2二、 填空题(本大题共4小题,每小题5分,共20分)13.若sin θcos θ=12,则tan θ+cos θsin θ=________.14. 已知cos ⎝ ⎛⎭⎪⎫π2-φ=32,且|φ|<π2,则tan φ=________.15. 已知cos ⎝ ⎛⎭⎪⎫π6-α=23,则sin ⎝⎛⎭⎪⎫α-2π3=________.16. 若*()sin ,()6n f n n N π=∈,则(1)(2)(102)f f f +++=________. 三、解答题(本大题共6小题,共70分。
高考数学一轮复习全套课时作业4-4三角函数的图像和性质
题组层级快练4.4三角函数的图像和性质一、单项选择题1.函数y =3sin2x +cos2x 的最小正周期为()A.π2B.2π3C .πD .2π2.函数y =tan(π4-x)的定义域是()A .{xx ≠π4}B .{xx ≠-π4}C .{xx ≠k π+π4,k ∈Z }D .{xx ≠k π+3π4,k ∈Z }3.下列函数中,既是奇函数,又是周期函数的是()A .y =sin|x|B .y =cos2xC .y =D .y =x 34.(2018·课标全国Ⅲ)函数f(x)=tanx1+tan 2x 的最小正周期为()A.π4B.π2C .πD .2π5.(2021·南昌大学附中)设f(x)=sin(ωx +φ),其中ω>0,则f(x)是偶函数的充要条件是()A .f(0)=1B .f(0)=0C .f ′(0)=1D .f ′(0)=06.函数f(x)=sin 在区间0,π2上的最小值为()A .-1B .-22C.22D .07.已知f(x)=sin 2x +sinxcosx ,则f(x)的最小正周期和一个单调递增区间分别为()A .π,[0,π]B .2π,[-π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]8.(2021·安徽皖江名校高三联考)已知函数f(x)=3sin(2x +φ)+cos(2x +φ)为偶函数,且在0,π4上是增函数,则φ的一个可能值为()A.π3B.2π3C.4π3D.5π39.(2020·辽宁大连一模)若方程2sin(2x +π6)=m 在区间[0,π2]上有两个不相等实根,则m 的取值范围是()A .(1,3)B .[0,2]C .[1,2)D .[1,3]二、多项选择题10.(2017·课标全国Ⅲ,改编)设函数f(x)=cos(x +π3),则下列结论正确的是()A .f(x)的一个周期为-2πB .y =f(x)的图象关于直线x =8π3对称C .f(x +π)的一个零点为x =π6D .f(x)在(π2,π)上单调递减11.已知函数f(x)=sinx +cosx ,g(x)=22sinx ·cosx ,则下列结论中正确的是()A -π4,B .两函数的图象均关于直线x =-π4成轴对称C -π4,D .两函数的最大值相同三、填空题与解答题12.函数y =cos ________.13.(2020·保定市一模)设函数f(x)=2sinxsin(x +π3+φ)是奇函数,其中φ∈(0,π),则φ=________.14.已知函数f(x)=sinx +acosx 的图象的一条对称轴是x =5π3,则函数g(x)=asinx +cosx 的初相是________.15.已知函数f(x)=(1+cos2x)sin 2x(x ∈R ),则f(x)的最小正周期为________;当x ∈0,π4时,f(x)的最小值为________.16.已知函数f(x)=3cos 2ωx +sin ωxcos ωx -32(ω>0)的最小正周期为π.(1)求函数f(x)的单调递减区间;(2)若f(x)>22,求x 的取值集合.17.(2017·北京)已知函数f(x)=3cos(2x -π3)-2sinxcosx.(1)求f(x)的最小正周期;(2)求证:当x ∈[-π4,π4]时,f(x)≥-12.18.(2021·衡水中学调研)已知函数y =sin ωx 在[-π3,π3]上是增函数,则ω的取值范围是()A .[-32,0)B .[-3,0)C .(0,32]D .(0,3]19.(2018·北京,理)设函数f(x)=cos(ωx -π6)(ω>0).若f(x)≤f(π4)对任意的实数x 都成立,则ω的最小值为________.4.4三角函数的图像和性质参考答案1.答案C 2.答案D解析y =tan(π4-x)=-tan(x -π4),由x -π4≠π2+k π,k ∈Z ,得x ≠k π+3π4,k ∈Z .故选D.3.答案C 4.答案C解析f(x)=tanx 1+tan 2x =sinx cosx 1+sin 2x cos 2x=sinxcosx cos 2x +sin 2x=sinxcosx =12sin2x ,所以f(x)的最小正周期T =2π2=π.故选C.5.答案D解析若f(x)=sin(ωx +φ)是偶函数,则有φ=k π+π2,k ∈Z .∴f(x)=±cos ωx.而f ′(x)=∓ωsin ωx ,∴f ′(0)=0,故选D.6.答案B 7.答案C解析由f(x)=12(1-cos2x)+12sin2x =2sin (2x -π4)+12,得该函数的最小正周期是π.当2k π-π2≤2x-π4≤2k π+π2,k ∈Z ,即k π-π8≤x ≤k π+3π8,k ∈Z 时,函数f(x)是增函数,即函数f(x)的单调递增区间是[k π-π8,k π+3π8],其中k ∈Z .由k =0得函数f(x)的一个单调递增区间是[-π8,3π8],结合各选项知,选C.8.答案C解析根据题意,f(x)=3sin(2x +φ)+cos(2x +φ)=+φ若f(x)为偶函数,则有φ+π6=k π+π2,即φ=k π+π3,k ∈Z ,所以可以排除B 、D ,对于A ,当φ=π3时,f(x)=2cos2x ,在0,π4上是减函数,不符合题意,对于C ,当φ=4π3时,f(x)=2cos2x ,在0,π4上是增函数,符合题意.故选C.9.答案C解析因为x ∈[0,π2],所以2x +π6∈[π6,7π6].当2x +π6∈[π6,π2]时,函数f(x)=2sin(2x +π6)单调递增,此时,m ∈[1,2];当2x +π6∈(π2,7π6]时,函数f(x)=2sin(2x +π6)单调递减,此时,m ∈[-1,2),因此要有两个不相等实根,即m 与函数f(x)=2sin 在π6,7π6上有两个交点,结合图象可知,m 的取值范围是[1,2).故选C.10.答案ABC解析由三角函数的周期公式可得T =2π1=2π,所以周期是-2π也正确,所以A 正确;由于三角函数在对称轴上取得最值,所以把对称轴x =8π3代入函数,得f(x)=cos(8π3+π3)=cos3π=-1,所以B 正确;f(x +π)=cos(x +π+π3)=-cos(x +π3)=0,解得其中一个解是x =π6,所以C 正确;函数f(x)在区间(π2,π)有增有减,D 不正确.11.答案CD解析f(x)=sinx +cosx =2sing(x)=2sin2x ,因为=2sin -π4+=2sin0=0,所以f(x)-π4,因为=2sin 2=2sin =-2≠0,所以g(x)-π4,A 错误.由于f(x)-π4,g(x)关于x =-π4成轴对称,故B 错误.若-π4<x<π4,则0<x +π4<π2,此时函数f(x)为增函数,若-π4<x<π4,则-π2<2x<π2,此时函数g(x)为增函数,-π4,C 正确.两函数的最大值相同,都为2,故D 正确.12.答案k π+π8,k π+5π8(k ∈Z )13.答案π6解析因为f(x)=2sinxsin +π3+y =sinx 也是奇函数,所以函数y =sin +π3+函数,所以π3+φ=k π+π2(k ∈Z ),则φ=k π+π6(k ∈Z ),又φ∈(0,π),所以φ=π6.14.答案2π3解析f ′(x)=cosx -asinx ,∵x =5π3为函数f(x)=sinx +acosx 的一条对称轴,∴f ′(5π3)=cos 5π3-asin 5π3=0,解得a =-33.∴g(x)=-33sinx +cosx =233(-12sinx +32cosx)=233sin(x +2π3).15.答案π216.答案(1)π12+k π,7π12+k π,k ∈Z|-π24+k π<x<5π24+k π,k ∈解析(1)f(x)=3cos 2ωx +sin ωxcos ωx -32=32(1+cos2ωx)+12sin2ωx -32=32cos2ωx +12sin2ωx =因为最小正周期为2π2ω=π,所以ω=1,所以f(x)=由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π12+k π≤x ≤7π12+k π,k ∈Z ,所以函数f(x)的单调递减区间为[π12+k π,7π12+k π],k ∈Z .(2)f(x)>22,即>22,由正弦函数的性质得π4+2k π<2x +π3<3π4+2k π,k ∈Z ,解得-π24+kπ<x<5π24+k π,k ∈Z ,则x -π24+k π<x<5π24+k π,k ∈17.答案(1)π(2)证明见解析解析(1)f(x)=32cos2x +32sin2x -sin2x =12sin2x +32cos2x =sin(2x +π3).所以f(x)的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6.所以sin(2x +π3)≥sin(-π6)=-12.所以当x ∈[-π4,π4]时,f(x)≥-12.18.答案C解析方法一:由于y =sinx 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32.故选C.方法二(特值法):取ω=-1,则y =sin(-x)=-sinx ,不合题意,故A 、B 不对.取ω=2,则y =sin2x ,不合题意,故D 不对,所以选C.19.答案23解析由于对任意的实数都有f(x)≤f(π4)成立,故当x =π4时,函数f(x)有最大值,故f(π4)=1,即πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ),又ω>0,∴ωmin =23.。
2020年中考数学一轮复习训练:锐角三角函数
2020年中考数学一轮复习训练:锐角三角函数一.选择题(共8小题)1.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.2.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.3.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.4.sin58°、cos58°、cos28°的大小关系是()A.cos28°<cos58°<sin58°B.sin58°<cos28°<cos58°C.cos58°<sin58°<cos28°D.sin58°<cos58°<cos28°5.在△ABC中,∠C=90°,cos A=,那么sin A的值等于()A.B.C.D.6.在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.7.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°8.将一副三角板如图摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值等于()A.B.C.D.二.填空题(共6小题)9.已知α是锐角,sinα=,那么cosα=.10.在Rt△ABC中,∠C=90°,sin A=,则tan A=.11.已知:实常数a、b、c、d同时满足下列两个等式:①a sinθ+b cosθ﹣c=0;②a cosθ﹣b sinθ+d=0(其中θ为任意锐角),则a、b、c、d之间的关系式是:.12.计算:cos245°﹣tan30°sin60°=.13.如果,那么锐角A的度数为.14.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于.三.解答题(共6小题)15.如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sin A=,sin B=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.16.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:(1)BC的长;(2)sin∠ADC的值.17.如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?18.某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈19.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)20.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE =30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)参考答案一.选择题(共8小题)1.【解答】解:由勾股定理得,AC===则sin B==,故选:C.2.【解答】解:∵AC=4,BC=3,∴tan A==,故选:A.3.【解答】解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.4.【解答】解:sin58°=cos32°.∵58°>32°>28°,∴cos58°<cos32°<cos28°,∴cos58°<sin58°<cos28°.故选:C.5.【解答】解:∵cos2A+sin2A=1,cos A=,∴sin2A=1﹣=,∴sin A=或sin A=﹣(舍去).故选:B.6.【解答】解:∵在Rt△ABC,∠C=90°,∴∠A+∠B=90°,∴sin2A+sin2B=1,sin A>0,∵sin B=,∴sin A==.故选:B.7.【解答】解:由∠A为锐角,且sin A=,得∠A=45°,故选:C.8.【解答】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CED=90°,∠CDE=45°∴设DE=CE=1,则CD=在Rt△ACD中,∵∠CAD=30°,∴tan∠CAD=,则AC=,在Rt△ABC中,∠BAC=∠BCA=45°∴BC=,∴在Rt△BED中,tan∠CBD===故选:D.二.填空题(共6小题)9.【解答】解:∵α是锐角,sinα=,∴α=30°,∴cosα=.故答案为:.10.【解答】解:由sin A=知,可设a=4x,则c=5x,b=3x.∴tan A=.故答案为:.11.【解答】解:由①得a sinθ+b cosθ=c,两边平方,a2sin2θ+b2cos2θ+2ab sinθcosθ=c2③由②得a cosθ﹣b sinθ=﹣d,两边平方,a2cos2θ+b2sin2θ﹣2ab sinθcosθ=d2④③+④得a2(sin2θ+cos2θ)+b2(sin2θ+cos2θ)=c2+d2∴a2+b2=c2+d2.故答案为:a2+b2=c2+d2.12.【解答】解:cos245°﹣tan30°sin60°=﹣×=﹣=0,故答案为:0.13.【解答】解:∵cos A=,∴锐角A的度数为30°.故答案为:30°.14.【解答】解:设等腰三角形的底边长为a,|5﹣a|=3,解得,a=2或a=8,当a=2时,这个等腰三角形底角的余弦值是:,当a=8时,这个等腰三角形底角的余弦值是:,故答案为:或三.解答题(共6小题)15.【解答】解:==,理由为:过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sin B=,即AD=c sin B,在Rt△ADC中,sin C=,即AD=b sin C,∴c sin B=b sin C,即=,同理可得=,则==.16.【解答】解:(1)过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°,在Rt△ACE中,CE=AC•cos C=1,∴AE=CE=1,在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.17.【解答】解:如图,延长OC,AB交于点P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC•tan60°=2米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△P AO,∴,∴P A===10米,∴AB=P A﹣PB=(10﹣4)米.答:路灯的灯柱AB高应该设计为(10﹣4)米.18.【解答】解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.19.【解答】解:能,理由如下:延长EF交CH于N,则∠CNF=90°,∵∠CFN=45°,∴CN=NF,设DN=xm,则NF=CN=(x+3)m,∴EN=5+(x+3)=x+8,在Rt△DEN中,tan∠DEN=,则DN=EN•tan∠DEN,∴x≈0.6(x+8),解得,x=12,则DH=DN+NH=12+1.2=13.2(m),答:点D到地面的距离DH的长约为13.2m.20.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一轮复习三角函数测试题
一、选择题
1. 已知sinθ=53,sin2θ<0,则tanθ等于( ) A .-43 B .43 C .-43或43 D .5
4 2. ()2
tan cot cos x x x +=( )(A)tan x (B)sin x (C)cos x (D)cot x
3. 设5sin
7a π=,2cos 7b π=,2tan 7
c π=,则( ) A .a b c << B .a c b << C .b c a <<
D .b a c <<
4. 2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数
5. 为得到函数πcos 3y x ⎛⎫
=+ ⎪⎝
⎭
的图象,只需将函数sin y x =的图像( ) A .向左平移
π
6个长度单位 B .向右平移
π
6个长度单位 C .向左平移5π
6个长度单位
D .向右平移5π
6
个长度单位
6. 若f(sinx)=3-cos2x ,则f(cosx)=( ) A .3-cos2x B .3-sin2x C .3+cos2x
D .3+sin2x
7. 已知πcos sin 6αα⎛
⎫-
+= ⎪⎝
⎭7πsin 6α⎛
⎫+ ⎪⎝⎭
的值是( )A . B C .45- D .45 8. f (x
≤x ≤2π)的值域是 ( ) A .[-11,44] B .[-11,33] C .[-11,22] D . [-22,33]
9. 已知α、β均为锐角,若P :sinα<sin(α+β),q :α+β<2
π
,则P 是q 的( ) A .充分而不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 10.在△ABC 中,已知tan
A +B
2
=sinC ,则以下四个命题中正确的是( ) (1)tanA ·cotB =1. (2)1<sinA +sinB ≤2.(3)sin 2A +cos 2B =1.(4)cos 2A +cos 2B =sin 2C . A .①③ B .②④
C .①④
D .②③
11. 把曲线y cosx +2y -1=0先沿x 轴向右平移
2
π
,再沿y 轴向下平移1个单位,得到的曲线方程为 ( )
A .(1-y)sinx +2y -3=0
B .(y -1)sinx +2y -3=0
C .(y +1)sinx +2y +1=0
D .-(y +1)sinx +2y +1=0
12 .函数tan sin tan sin y x x x x =+--在区间3(
,)22
ππ
内的图象是( )
二、填空题:
13. 若3
sin(
)25
π
θ+=,则cos 2θ=_________。
14. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若
()C a A c b cos cos 3=-,则=A cos 。
15. 设02x π⎛⎫
∈ ⎪⎝⎭
,,则函数22sin 1sin 2x y x +=的最小值为 .
16.平移f (x)=sin(ωx +ϕ)(ω>0,-2π<ϕ<2π
),给出下列4个论断: ⑴ 图象关于x =12
π对称 ⑵图象关于点(
3π,0)对称 ⑶ 最小正周期是π ⑷ 在[-6
π
,0]上是增函数 以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:
(1) .(2) .
三、解答题:
17
.已知函数2
π()sin
sin 2
f x x x x ωωω⎛⎫
=++ ⎪⎝
⎭(0ω>)的最小正周期为π.
(Ⅰ)求ω的值; (Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦
,上的取值范围.
A
B
-C
D
-
18.设函数f(x)=2)0(sin sin cos 2
cos
sin 2
πϕϕϕ
<<-+x x x 在π=x 处取最小值.
(1)求ϕ的值; (2)∆ABC 中,c b a ,,分别是角A,B,C 的对边,已知,2,1==b a 2
3
)(=
A f ,求角C.
19.已知f (x)=2sin(x +
2θ)cos(x +2θ)+23cos 2(x +2
θ
)-3。
⑴ 化简f (x)的解析式; ⑵ 若0≤θ≤π,求θ使函数f (x)为偶函数; ⑶ 在⑵成立的条件下,求满足f (x)=1,x ∈[-π,π]的x 的集合。
20.已知函数f (x )=A sin(x +ϕ)(A >0,0<ϕ<π),x ∈R 的最大值是1,其图像经过点M 132π⎛⎫
⎪⎝⎭
,.(1)求f (x )的解析式;(2)已知α,β∈02π⎛⎫
⎪⎝
⎭
,,且f (α)=
35,f (β)=12
13
,求f (α-β)的值.
21.△ABC 中,,,A B C 所对的边分别为,,a b c ,sin sin tan cos cos A B
C A B
+=
+,sin()cos B A C -=.
(1)求,A C ; (2)若3ABC S ∆=求,a c .
22.已知奇函数f(x)的定义域为实数集,且f(x)在[0,)+∞上是增函数,当02
π
θ≤≤时,是否存在这样的实
数m ,使2
(42cos )(2sin
2)(0)f m m f f θθ--+>对所有的[0,]2
π
θ∈均成立?若存在,求出所有
适合条件的实数m ;若不存在,说明理由。