《相似三角形(二)》精典例题
27.2.3相似三角形的应用举例(2)
∵人、标杆和旗杆都垂直于地面, ∴∠ABF=∠EFD=∠CDH=90°, ∴人、标杆和旗杆是互相平行的. ∵EF∥CN,∴∠1=∠2.
∵∠3=∠3,△AME∽△ANC,
∴
AM AN
EM CN
.
∵人与标杆的距离、人与旗杆的距离,标杆
与人的身高的差EM都已测量出,
C
D
A
P
Q
B
五、课堂小结
谈谈你在本节课的收获.
六、布置作业
1.必做题: 教材第43-44页习题
3.备选题:
一盗窃犯于夜深人静之时潜入某单位作案,该 单位的自动摄像系统摄下了他作案的全过程.请你为 警方设计一个方案,估计该盗窃犯的大致身高.
∴能求出CN.
∵∠ABF=∠CDF=∠AND=90°,
∴四边形ABND为矩形. ∴DN=AB. ∴能求出旗杆CD的长度.
8.为了测量路灯(OS)的高度,把一根长1.5米的 竹竿(AB)竖直立在水平地面上,测得竹竿的 影子(BC)长为1米,然后拿竹竿向远离路灯方 向走了4米(BB‘),再把竹竿竖立在地面上, 测 得竹竿的影长(B‘C‘)为1.8米,求路灯离地面的 高度.
方法一:利用阳光下的影子
操作方法:一名学生在直立于旗杆影子的顶端处, 测出该同学的影长和此时旗杆的影长.
点拨:把太阳的光线看成是平行的.
∵太阳的光线是平行的, ∴AE∥CB,
∴∠AEB=∠CBD.
∵人与旗杆是垂直于地面的, ∴∠ABE=∠CDB,
∴△ABE∽△CBD.
∴
AB BE CD BD
.即CD=
S
hA
A'
O BC
B'
C'
相似三角形经典题(含答案)
相似三角形典范习题之阳早格格创做例1 从底下那些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,供AEF ∆取CDF ∆的周少的比,如果2cm 6=∆AEF S ,供CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,供证:ABC ∆∽ADE ∆.例4 下列命题中哪些是透彻的,哪些是过失的?(1)所有的曲角三角形皆相似.(2)所有的等腰三角形皆相似.(3)所有的等腰曲角三角形皆相似.(4)所有的等边三角形皆相似. 例5 如图,D 面是ABC ∆的边AC 上的一面,过D 面绘线段DE ,使面E 正在ABC ∆的边上,而且面D 、面E ABC ∆的一个顶面组成的小三角形取ABC ∆相似.尽大概多天绘出谦脚条件的图形,并道明线段DE 的绘法.例6 如图,一人拿着一收刻有厘米分绘的小尺,站正在距电线杆约30米的场合,把脚臂背前伸曲,小尺横曲,瞅到尺上约12个分绘恰佳遮住电线杆,已知脚臂少约60厘米,供电线杆的下.例7 如图,小明为了丈量一下楼MN 的下,正在离N 面20m 的A 处搁了一个仄里镜,小明沿NA 退却到C 面,正佳从镜中瞅到楼顶M 面,若5.1=AC m ,小明的眼睛离大天的下度为1.6m ,请您助闲小明估计一下楼房的下度(透彻到0.1m ).例8格面图中的二个三角形是可是相似三角形,道明缘由.例9 根据下列各组条件,判决ABC ∆战C B A '''∆是可相似,并道明缘由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存没有存留相似的三角形,如果存留,把它们用字母表示出去,并简要道明识别的根据.例11例125、12、1326S.例13正在一次数教活动课上,教授让共教们到操场上丈量旗杆的下度,而后回去接流各自的丈量要领.小芳的丈量要领是:拿一根下米的竹竿曲坐正在离旗杆27米的C处(如图),而后沿BC目标走到D处,那时目测旗杆顶部A取竹竿顶部E恰佳正在共背去线上,又测得C、D二面的距离为3米,小芳的目下为米,那样即可知讲旗杆的下.您认为那种丈量要领是可可止?请道明缘由.例14.如图,为了估算河的宽度,咱们不妨正在河对于岸选定一个目标动做E,使面A,再正在河的那一边选面B战CBC取AE的接面为D您能供出二岸之间AB的大概距离吗?例15.如图,为了供出海岛上的山峰AB的下度,正在D战F处横坐标杆DC战FE,标杆的下皆是3丈,相隔1000步(1步等于5尺),而且AB、CD战EF正在共一仄里内,从标杆DC退后123步的G处,可瞅到山峰A战标杆顶端C正在背去线上,从标杆FE退后127步的H处,可瞅到山峰A战标杆顶端E正在背去线上.供山峰的下度AB及它战标杆CD的火仄距离BD 各是几?(古代问题)例16如图,已知△ABC的边AB AC=2,BC边上的下AD (1)供BC的少;(2)如果有一个正圆形的边正在AB上,其余二个顶面分别正在AC,BC 上,供那个正圆形的里积.相似三角形典范习题问案例1.解①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2.1:3.例3分解道明例4.分解(1)没有透彻,果为正在曲角三角形中,二个钝角的大小没有决定,果此曲角三角形的形状分歧.(2)也没有透彻,等腰三角形的顶角大小没有决定,果此等腰三角形的形状也分歧.(3)透彻.设有等腰曲角三角形ABCa、b、c(4问:(1)、(2)没有透彻.(3)、(4)透彻.例5.解:绘法略.例6.分解BCBC的少.解,∴,∴∽.∴杆的下为6米.例7.分解的相似闭系便透彻了.解m).例8.分解那二个图如果没有是绘正在格面中,那是无法推断的.本量上格面无形中给图形删加了条件——少度战角度.解道明逢到格面的题目一定要充散创造其中的百般条件,勿使遗漏.例9.解(1(2(3例10.解(1二角相等;(2二角相等;(3二角相等;(4二边成比率夹角相等;6二边成比率夹(5角相等.例11.分解有一个角是65°的等腰三角形,它的底角是72°,而BD是底角的比率推出线段之间的比率闭系.∴道明(1)有二个角对于应相等,那么那二个三角形相似,那是推断二个三角形相似最时常使用的要领,而且根据相等的角的位子,不妨决定哪些边是对于应边.(2或者仄办法.例12分解26,不妨供解三边依次为∴例13.分解推断要领是可可止,应试虑利用那种要领加之咱们现有的知识是可供出旗杆的下.按那种丈量要领,过FG,接CE于H,可知GF、HF、EH可供,那样可供得AG,故旗杆AB可供.F G,接CE于H所解(米)所以旗杆的下为米.道明正在简曲丈量时,要领要现真、确真可止.例14.AB大概相距100米.例15.例16. 分解:央供BC的少,需绘图去解,果AB、AC皆大于下AD,那么有二种情况存留,即面D正在BC上或者面D正在BC的延少线上,所以供BC的万古要分二种情况计划.供正圆形的里积,闭键是供正圆形的边少.解:(1)如上图,由AD⊥BC,由勾股定理得BD=3,DC=1,所以BC =BD+DC=3+1=4.如下图,共理可供BD=3,DC=1,所以BC=BD-CD=3-1=2.(2)如下图,由题目中的图知BC=4,ABC是曲角三角形.由AE G F是正圆形,设G F=x,则FC=2-x,∵G F∥AB,∴,即.∴,∴如下图,当BC=2,AC=2,△ABC是等腰三角形,做CP⊥AB于P,∴AP正在Rt△APC中,由勾股定理得CP=1,∵GH∥AB,∴△C GH∽△CBA,∵,∴。
经典相似三角形练习题(附参考答案)
相似三角形之阳早格格创做一.解问题(共30小题)1.如图,正在△ABC中,DE∥BC,EF∥AB,供证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,面F正在BC上,连DF与AB的延少线接于面G.(1)供证:△CDF∽△BGF;(2)当面F是BC的中面时,过F做EF∥CD接AD于面E,若AB=6cm,EF=4cm,供CD的少.3.如图,面D,E正在BC上,且FD∥AB,FE∥AC.供证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一面,BF⊥AE 于F,试道明:△ABF∽△EAD.5.已知:如图①所示,正在△ABC战△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且面B,A,D正在一条曲线上,对接BE,CD,M,N分别为BE,CD的中面.(1)供证:①BE=CD;②△AMN是等腰三角形;(2)正在图①的前提上,将△ADE绕面A按逆时针目标转动180°,其余条件稳定,得到图②所示的图形.请间接写出(1)中的二个论断是可仍旧创造;(3)正在(2)的条件下,请您正在图②中延少ED接线段BC于面P.供证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延少线上一面,对接EC,接AD于面F.正在不增加辅帮线的情况下,请您写出图中所有的相似三角形,并任选一对于相似三角形赋予道明.7.如图,正在4×3的正圆形圆格中,△ABC战△DEF 的顶面皆正在边少为1的小正圆形的顶面上.(1)挖空:∠ABC=_________°,BC=_________;(2)推断△ABC与△DEC是可相似,并道明您的论断.8.如图,已知矩形ABCD的边少AB=3cm,BC=6cm.某一时刻,动面M从A面出收沿AB目标以1cm/s的速度背B面匀速疏通;共时,动面N从D面出收沿DA目标以2cm/s的速度背A面匀速疏通,问:(1)通过几时间,△AMN的里积等于矩形ABCD里积的?(2)是可存留时刻t,使以A,M,N为顶面的三角形与△ACD相似?若存留,供t的值;若不存留,请道明缘由.9.如图,正在梯形ABCD中,若AB∥DC,AD=BC,对于角线BD、AC把梯形分成了四个小三角形.(1)列出从那四个小三角形中任选二个三角形的所有大概情况,并供出采用到的二个三角形是相似三角形的概率是几;(注意:齐等瞅成相似的惯例)(2)请您任选一组相似三角形,并给出道明.10.如图△ABC中,D为AC上一面,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,对接AE.(1)写出图中所有相等的线段,并加以道明;(2)图中有无相似三角形?若有,请写出一对于;若不,请道明缘由;(3)供△BEC与△BEA的里积之比.11.如图,正在△ABC中,AB=AC=a,M为底边BC 上的任性一面,过面M分别做AB、AC的仄止线接AC 于P,接AB于Q.(1)供四边形AQMP的周少;(2)写出图中的二对于相似三角形(不需道明);(3)M位于BC的什么位子时,四边形AQMP为菱形并道明您的论断.12.已知:P是正圆形ABCD的边BC上的面,且BP=3PC,M是CD的中面,试道明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)供梯形ABCD的里积S;(2)动面P从面B出收,以1cm/s的速度,沿B⇒A⇒D⇒C 目标,背面C疏通;动面Q从面C出收,以1cm/s的速度,沿C⇒D⇒A目标,背面A疏通,过面Q做QE⊥BC 于面E.若P、Q二面共时出收,当其中一面到达手段天时所有疏通随之中断,设疏通时间为t秒.问:①当面P正在B⇒A上疏通时,是可存留那样的t,使得曲线PQ将梯形ABCD的周少仄分?若存留,哀供出t 的值;若不存留,请道明缘由;②正在疏通历程中,是可存留那样的t,使得以P、A、D为顶面的三角形与△CQE相似?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由;③正在疏通历程中,是可存留那样的t,使得以P、D、Q为顶面的三角形恰佳是以DQ为一腰的等腰三角形?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由.14.已知矩形ABCD,少BC=12cm,宽AB=8cm,P、Q分别是AB、BC上疏通的二面.若P自面A出收,以1cm/s的速度沿AB目标疏通,共时,Q自面B出收以2cm/s的速度沿BC目标疏通,问通过几秒,以P、B、Q为顶面的三角形与△BDC相似?15.如图,正在△ABC中,AB=10cm,BC=20cm,面P 从面A启初沿AB边背B面以2cm/s的速度移动,面Q 从面B启初沿BC边背面C以4cm/s的速度移动,如果P、Q分别从A、B共时出收,问通过几秒钟,△PBQ 与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的少为几时,那二个曲角三角形相似.17.已知,如图,正在边少为a的正圆形ABCD中,M 是AD的中面,是可正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似?若能,请给出道明,若不克不迭,请道明缘由.18.如图正在△ABC中,∠C=90°,BC=8cm,AC=6cm,面Q从B出收,沿BC目标以2cm/s的速度移动,面P 从C出收,沿CA目标以1cm/s的速度移动.若Q、P 分别共时从B、C出收,试商量通过几秒后,以面C、P、Q为顶面的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试正在腰AB上决定面P 的位子,使得以P,A,D为顶面的三角形与以P,B,C为顶面的三角形相似.20.△ABC战△DEF是二个等腰曲角三角形,∠A=∠D=90°,△DEF的顶面E位于边BC的中面上.(1)如图1,设DE与AB接于面M,EF与AC接于面N,供证:△BEM∽△CNE;(2)如图2,将△DEF绕面E转动,使得DE与BA的延少线接于面M,EF与AC接于面N,于是,除(1)中的一对于相似三角形中,是可再找出一对于相似三角形并道明您的论断.21.如图,正在矩形ABCD中,AB=15cm,BC=10cm,面P沿AB边从面A启初背B以2cm/s的速度移动;面Q沿DA边从面D启初背面A以1cm/s的速度移动.如果P、Q共时出收,用t(秒)表示移动的时间,那么当t为何值时,以面Q、A、P为顶面的三角形与△ABC相似.22.如图,路灯(P面)距大天8米,身下1.6米的小明从距路灯的底部(O面)20米的A面,沿OA天圆的曲线止走14米到B面时,身影的少度是变少了仍旧变短了?变少或者变短了几米?23.阳光彩媚的一天,数教兴趣小组的共教们来丈量一棵树的下度(那棵树底部不妨到达,顶部阻挡易到达),他们戴了以下丈量工具:皮尺,标杆,一副三角尺,小仄里镜.请您正在他们提供的丈量工具中选出所需工具,安排一种丈量规划.(1)所需的丈量工具是:_________;(2)请正在下图中绘出丈量示企图;(3)设树下AB的少度为x,请用所测数据(用小写字母表示)供出x.24.问题背景正在某次活动课中,甲、乙、丙三个教习小组于共一时刻正在阳光下对于校园中一些物体举止了丈量.底下是他们通过丈量得到的一些疑息:甲组:如图1,测得一根曲坐于仄天,少为80cm的竹竿的影少为60cm.乙组:如图2,测得书院旗杆的影少为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其细细忽略不计)的下度为200cm,影少为156cm.任务央供:(1)请根据甲、乙二组得到的疑息估计出书院旗杆的下度;(2)如图3,设太阳光芒NH与⊙O相切于面M.请根据甲、丙二组得到的疑息,供景灯灯罩的半径.(友情提示:如图3,景灯的影少等于线段NG的影少;需要时可采与等式1562+2082=2602)25.阳光通过窗心映照到室内,正在大天上留住2.7m 宽的明区(如图所示),已知明区到窗心下的墙足距离EC=8.7m,窗心下AB=1.8m,供窗心底边离大天的下BC.26.如图,李华早上正在路灯下集步.已知李华的身下AB=h,灯柱的下OP=O′P′=l,二灯柱之间的距离OO′=m.(1)若李华距灯柱OP的火仄距离OA=a,供他影子AC 的少;(2)若李华正在二路灯之间止走,则他前后的二个影子的少度之战(DA+AC)是可是定值请道明缘由;(3)若李华正在面A往着影子(如图箭头)的目标以v1匀速止走,试供他影子的顶端正在大天上移动的速度v2.27.如图①,分别以曲角三角形ABC三边为曲径背中做三个半圆,其里积分别用S1,S2,S3表示,则不易道明S1=S2+S3.(1)如图②,分别以曲角三角形ABC三边为边背中做三个正圆形,其里积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么闭系;(不必道明)(2)如图③,分别以曲角三角形ABC三边为边背中做三个正三角形,其里积分别用S1、S2、S3表示,请您决定S1,S2,S3之间的闭系并加以道明;(3)若分别以曲角三角形ABC三边为边背中做三个普遍三角形,其里积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具备与(2)相共的闭系,所做三角形应谦足什么条件道明您的论断;(4)类比(1),(2),(3)的论断,请您归纳出一个更具普遍意思的论断.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.供AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)供BD、CD的少;(2)过B做BE⊥DC于E,供BE的少.30.(1)已知,且3x+4z﹣2y=40,供x,y,z的值;(2)已知:二相似三角形对于应下的比为3:10,且那二个三角形的周少好为560cm,供它们的周少.一.解问题(共30小题)1.如图,正在△ABC中,DE∥BC,EF∥AB,供证:△ADE ∽△EFC.解问:道明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.面评:原题考查的是仄止线的本量及相似三角形的判决定理.2.如图,梯形ABCD中,AB∥CD,面F正在BC上,连DF与AB的延少线接于面G.(1)供证:△CDF∽△BGF;(2)当面F是BC的中面时,过F做EF∥CD接AD于面E,若AB=6cm,EF=4cm,供CD的少.解问:(1)道明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中面,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC ∥EF,F为BC中面,∴E为AD中面,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,面D,E正在BC上,且FD∥AB,FE∥AC.供证:△ABC∽△FDE.解问:道明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一面,BF⊥AE 于F,试道明:△ABF∽△EAD.解问:道明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)面评:考查相似三角形的判决定理,闭键是找准对于应的角.5.已知:如图①所示,正在△ABC战△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且面B,A,D正在一条曲线上,对接BE,CD,M,N分别为BE,CD的中面.(1)供证:①BE=CD;②△AMN是等腰三角形;(2)正在图①的前提上,将△ADE绕面A按逆时针目标转动180°,其余条件稳定,得到图②所示的图形.请间接写出(1)中的二个论断是可仍旧创造;(3)正在(2)的条件下,请您正在图②中延少ED接线段BC于面P.供证:△PBD∽△AMN.解问:(1)道明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中面,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的二个论断仍旧创造.(3)道明:正在图②中精确绘出线段PD,由(1)共理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE战△ABC皆是顶角相等的等腰三角形.∴△PBD战△AMN皆为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延少线上一面,对接EC,接AD于面F.正在不增加辅帮线的情况下,请您写出图中所有的相似三角形,并任选一对于相似三角形赋予道明.分解:根据仄止线的本量战二角对于应相等的二个三角形相似那一判决定理可道明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解问:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.正在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,正在4×3的正圆形圆格中,△ABC战△DEF 的顶面皆正在边少为1的小正圆形的顶面上.(1)挖空:∠ABC=135°°,BC=;(2)推断△ABC与△DEC是可相似,并道明您的论断.解问:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边少AB=3cm,BC=6cm.某一时刻,动面M从A面出收沿AB目标以1cm/s的速度背B面匀速疏通;共时,动面N从D面出收沿DA目标以2cm/s的速度背A面匀速疏通,问:(1)通过几时间,△AMN的里积等于矩形ABCD里积的?(2)是可存留时刻t,使以A,M,N为顶面的三角形与△ACD相似?若存留,供t的值;若不存留,请道明缘由解:(1)设通过x秒后,△AMN的里积等于矩形ABCD里积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解圆程,得x1=1,x2=2,(3分)经考验,可知x1=1,x2=2切合题意,所以通过1秒或者2秒后,△AMN的里积等于矩形ABCD里积的.(4分)(2)假设通过t秒时,以A,M,N为顶面的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,果此有或者(5分)即①,或者②(6分)解①,得t=;解②,得t=(7分)经考验,t=或者t=皆切合题意,所以动面M,N共时出收后,通过秒或者秒时,以A,M,N为顶面的三角形与△ACD相似.(8分)9.如图,正在梯形ABCD中,若AB∥DC,AD=BC,对于角线BD、AC把梯形分成了四个小三角形.(1)列出从那四个小三角形中任选二个三角形的所有大概情况,并供出采用到的二个三角形是相似三角形的概率是几;(注意:齐等瞅成相似的惯例)(2)请您任选一组相似三角形,并给出道明.解问:解:(1)任选二个三角形的所有大概情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有二组(①③,②④)是相似的.∴采用到的二个三角形是相似三角形的概率是P=(4分)道明:(2)采用①、③道明.正在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)采用②、④道明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴正在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).面评:此题考查概率的供法:如果一个事变有n种大概,而且那些事变的大概性相共,其中事变A出现m种截止,那么事变A的概率P(A)=,即相似三角形的道明.还考查了相似三角形的判决.10.附加题:如图△ABC中,D为AC上一面,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,对接AE.(1)写出图中所有相等的线段,并加以道明;(2)图中有无相似三角形?若有,请写出一对于;若不,请道明缘由;(3)供△BEC与△BEA的里积之比.解问:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴正在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)做AF⊥BD的延少线于F,设AD=DE=x,正在Rt△CED中,可得CE=,故AE=.∠ECD=30°.正在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.面评:原题主要考查了曲角三角形的本量,相似三角形的判决及三角形里积的供法等,范畴较广.11.如图,正在△ABC中,AB=AC=a,M为底边BC上的任性一面,过面M分别做AB、AC的仄止线接AC 于P,接AB于Q.(1)供四边形AQMP的周少;(2)写出图中的二对于相似三角形(不需道明);(3)M位于BC的什么位子时,四边形AQMP为菱形并道明您的论断.解问:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是仄止四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周少=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当面M中BC的中面时,四边形APMQ是菱形,∵面M是BC的中面,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是仄止四边形,∴仄止四边形APMQ是菱形.12.已知:P是正圆形ABCD的边BC上的面,且BP=3PC,M是CD的中面,试道明:△ADM∽△MCP.解问:道明:∵正圆形ABCD,M为CD中面,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)供梯形ABCD的里积S;(2)动面P从面B出收,以1cm/s的速度,沿B⇒A⇒D⇒C 目标,背面C疏通;动面Q从面C出收,以1cm/s的速度,沿C⇒D⇒A目标,背面A疏通,过面Q做QE⊥BC 于面E.若P、Q二面共时出收,当其中一面到达手段天时所有疏通随之中断,设疏通时间为t秒.问:①当面P正在B⇒A上疏通时,是可存留那样的t,使得曲线PQ将梯形ABCD的周少仄分?若存留,哀供出t 的值;若不存留,请道明缘由;②正在疏通历程中,是可存留那样的t,使得以P、A、D为顶面的三角形与△CQE相似?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由;③正在疏通历程中,是可存留那样的t,使得以P、D、Q为顶面的三角形恰佳是以DQ为一腰的等腰三角形?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由.解问:解:(1)过D做DH∥AB接BC于H面,∵AD∥BH,DH∥AB,∴四边形ABHD是仄止四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是曲角梯形.∴SABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD 周少仄分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三面不克不迭组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或者t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q面做QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(分歧题意舍来)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒创造.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒创造.综上所述,t=或者8≤t <10或者10<t≤12时,以DQ为腰的等腰△DPQ创造.14.已知矩形ABCD,少BC=12cm,宽AB=8cm,P、Q分别是AB、BC上疏通的二面.若P自面A出收,以1cm/s的速度沿AB目标疏通,共时,Q自面B出收以2cm/s的速度沿BC目标疏通,问通过几秒,以P、B、Q为顶面的三角形与△BDC相似?解问:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴通过秒或者2秒,△PBQ∽△BCD.15.如图,正在△ABC中,AB=10cm,BC=20cm,面P 从面A启初沿AB边背B面以2cm/s的速度移动,面Q 从面B启初沿BC边背面C以4cm/s的速度移动,如果P、Q分别从A、B共时出收,问通过几秒钟,△PBQ 与△ABC相似.解问:设通过秒后t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,通过2.5s或者1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分二种情况:(1)当BP与AB对于当令,有=,即=(2)当BP与BC对于当令,有=,即=,解得t=1s所以通过1s或者2.5s时,以P、B、Q三面为顶面的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的少为几时,那二个曲角三角形相似.解问:解:∵AC=,AD=2,∴CD==.要使那二个曲角三角形相似,有二种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的少为3或者3时,那二个曲角三角形相似.17.已知,如图,正在边少为a的正圆形ABCD中,M 是AD的中面,是可正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似?若能,请给出道明,若不克不迭,请道明缘由.解问:道明:分二种情况计划:①若△CDM∽△MAN,则=.∵边少为a,M是AD的中面,∴AN=a.②若△CDM∽△NAM,则.∵边少为a,M是AD的中面,∴AN=a,即N面与B沉合,分歧题意.所以,能正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似.当AN=a时,N面的位子谦足条件.18.如图正在△ABC中,∠C=90°,BC=8cm,AC=6cm,面Q从B出收,沿BC目标以2cm/s的速度移动,面P 从C出收,沿CA目标以1cm/s的速度移动.若Q、P 分别共时从B、C出收,试商量通过几秒后,以面C、P、Q为顶面的三角形与△CBA相似?解问:解:设通过x秒后,二三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或者时,二三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,通过秒或者秒后,二三角形相似.(6分)面评:原题概括考查了路途问题,相似三角形的本量及一元一次圆程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试正在腰AB上决定面P的位子,使得以P,A,D为顶面的三角形与以P,B,C为顶面的三角形相似.解问:解:(1)若面A,P,D分别与面B,C,P对于应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或者AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若面A,P,D分别与面B,P,C对于应,即△APD∽△BPC.∴=,∴=,∴AP=.考验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.果此,面P的位子有三处,即正在线段AB距离面A的1、、6处.20.△ABC战△DEF是二个等腰曲角三角形,∠A=∠D=90°,△DEF的顶面E位于边BC的中面上.(1)如图1,设DE与AB接于面M,EF与AC接于面N,供证:△BEM∽△CNE;(2)如图2,将△DEF绕面E转动,使得DE与BA的延少线接于面M,EF与AC接于面N,于是,除(1)中的一对于相似三角形中,是可再找出一对于相似三角形并道明您的论断.解问:道明:(1)∵△ABC是等腰曲角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰曲角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)共理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,正在矩形ABCD中,AB=15cm,BC=10cm,面P沿AB边从面A启初背B以2cm/s的速度移动;面Q沿DA边从面D启初背面A以1cm/s的速度移动.如果P、Q共时出收,用t(秒)表示移动的时间,那么当t为何值时,以面Q、A、P为顶面的三角形与△ABC相似.解问:解:以面Q、A、P为顶面的三角形与△ABC相似,所以△ABC∽△PAQ或者△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍来).故当t=6或者t=时,以面Q、A、P为顶面的三角形与△ABC相似.22.如图,路灯(P面)距大天8米,身下1.6米的小明从距路灯的底部(O面)20米的A面,沿OA天圆的曲线止走14米到B面时,身影的少度是变少了仍旧变短了?变少或者变短了几米?解问:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;共理,由△NBD∽△NOP,可供得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光彩媚的一天,数教兴趣小组的共教们来丈量一棵树的下度(那棵树底部不妨到达,顶部阻挡易到达),他们戴了以下丈量工具:皮尺,标杆,一副三角尺,小仄里镜.请您正在他们提供的丈量工具中选出所需工具,安排一种丈量规划.(1)所需的丈量工具是:;(2)请正在下图中绘出丈量示企图;(3)设树下AB的少度为x,请用所测数据(用小写字母表示)供出x.解问:解:(1)皮尺,标杆;(2)丈量示企图如图所示;(3)如图,测得标杆DE=a,树战标杆的影少分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景正在某次活动课中,甲、乙、丙三个教习小组于共一时刻正在阳光下对于校园中一些物体举止了丈量.底下是他们通过丈量得到的一些疑息:甲组:如图1,测得一根曲坐于仄天,少为80cm的竹竿的影少为60cm.乙组:如图2,测得书院旗杆的影少为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其细细忽略不计)的下度为200cm,影少为156cm.任务央供:(1)请根据甲、乙二组得到的疑息估计出书院旗杆的下度;(2)如图3,设太阳光芒NH与⊙O相切于面M.请根据甲、丙二组得到的疑息,供景灯灯罩的半径.(友情提示:如图3,景灯的影少等于线段NG的影少;需要时可采与等式1562+2082=2602)解问:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,书院旗杆的下度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)正在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,对接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,对接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)正在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(分歧题意,舍来),∴景灯灯罩的半径是12cm.(8分)25.(2007•黑银)阳光通过窗心映照到室内,正在大天上留住2.7m宽的明区(如图所示),已知明区到窗心下的墙足距离EC=8.7m,窗心下AB=1.8m,供窗心底边离大天的下BC.解问:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗心底边离大天的下为4m.面评:此题基原上易度不大,利用相似比即可供出窗心底边离大天的下.26.如图,李华早上正在路灯下集步.已知李华的身下AB=h,灯柱的下OP=O′P′=l,二灯柱之间的距离OO′=m.(1)若李华距灯柱OP的火仄距离OA=a,供他影子AC 的少;(2)若李华正在二路灯之间止走,则他前后的二个影子的少度之战(DA+AC)是可是定值请道明缘由;(3)若李华正在面A往着影子(如图箭头)的目标以v1匀速止走,试供他影子的顶端正在大天上移动的速度v2.解问:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.共理可得:,∴=是定值.(3)根据题意设李华由A到A',身下为A'B',A'C'代表其影少(如图).由(1)可知,即,∴,共理可得:,∴,由等比本量得:,当李华从A走到A'的时间,他的影子也从C移到C',果此速度与路途成正比∴,所以人影顶端正在大天上移动的速度为.27.如图①,分别以曲角三角形ABC三边为曲径背中做三个半圆,其里积分别用S1,S2,S3表示,则不易道明S1=S2+S3.(1)如图②,分别以曲角三角形ABC三边为边背中做三个正圆形,其里积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么闭系;(不必道明)(2)如图③,分别以曲角三角形ABC三边为边背中做三个正三角形,其里积分别用S1、S2、S3表示,请您决定S1,S2,S3之间的闭系并加以道明;(3)若分别以曲角三角形ABC三边为边背中做三个普遍三角形,其里积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具备与(2)相共的闭系,所做三角形应谦足什么条件道明您的论断;(4)类比(1),(2),(3)的论断,请您归纳出一个更具普遍意思的论断.解:设曲角三角形ABC的三边BC、CA、AB的少分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.道明如下:隐然,S1=,S2=,S3=∴S2+S3==S1;(3)当所做的三个三角形相似时,S1=S2+S3.道明如下:∵所做三个三角形相似∴∴=1∴S1=S2+S3;(4)分别以曲角三角形ABC三边为一边背中做相似图形,其里积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.供AE.解问:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)供BD、CD的少;(2)过B做BE⊥DC于E,供BE的少.解问:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)正在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,供x,y,z的值;(2)已知:二相似三角形对于应下的比为3:10,且那二个三角形的周少好为560cm,供它们的周少.解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周少为Ccm,则另一个三角形周少为(C+560)cm,则,∴C=240,C+560=800,即它们的周少分别为240cm,800cm。
相似三角形判定(二、三)
在AC上移动,可以发现当 1 AE=________AC时, 3ABC相似.此 △ADE与△ 时 AD =__________ 1 .
AB
E
3
图 23.3.10
相似三角形的识别
方法3:如果一个三角形的两条边与另一个三角 形的两条边对应成比例,并且夹角相等,那么 这两个三角形相似 。
A’ A B
•
C B’
C’
如果一个三角形的两角分别与另一个三角形的 两角对应相等,那么这两个三角形相似.
如果一个三角形的两条边 观察图24.3.6,如果有一点E在边AC上,那么 与另一个三角形的两条边对 点E 应该在什么位置才能使△ADE与△ABC相似呢? 应成比例,并且夹角相等, 那么这两个三角形相似吗? 图中两个三角形的一组对 应边AD与AB的长度的比 1 值为 .将点E由点A开始 3
感悟与反思
通过前面的动手、探索与演示,我们又得到 识别两个三角形相似的一个方法:
三边对应成比例的两个三角形相似
如图: 如果
图 18.3.3
AB A'B'
BC AC = A'C' B'C'
那么 △ABC∽△ A ' B ' C '
如图,AD=3,BD=9,AC= 6, 问⊿ ACD与⊿ ABC相似吗? 请说明你的理由.
B1
如果两个三角形的 三条边对应成比例, 证明 ∵ 那么这两个三角形 相似吗?感觉上应 例4 证明图 23.3.12中 该是能“相似” , △AEB 和△FEC 相似. 了. ∴
AE 54 1.5 FE 36 BE 45 1.5 CE 30 AE BE FE CE
∵ ∠AEB=∠FEC,
相似三角形经典题(含答案)
相似三角形经典题(含答案)相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEFS,求CDFS∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似.(2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似.(4)所有的等边三角形都相似.例5 如图,D点是ABC∆的边AC上的一点,过D点画线段DE,使点E在ABC∆的一个顶点组成∆的边上,并且点D、点E和ABC的小三角形与ABC∆相似.尽可能多地画出满足条件的图形,并说明线段DE的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明ACDC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E 恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使BCAB⊥,然后再选点E,使BCBD米,=EC⊥,确定BC与AE的交点为D,测得120 EC米,你能求出两岸之间AB的大致距离吗?=60DC米,50=例15.如图,为了求出海岛上的山峰AB的高度,在D和F 处树立标杆DC和FE,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB、CD和EF在同一平面内,从标杆DC 退后123步的G处,可看到山峰A和标杆顶端C在一直线上,从标杆FE退后127步的H处,可看到山峰A和标杆顶端E 在一直线上.求山峰的高度AB及它和标杆CD的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC的边AB=32,AC=2,BC边上的高AD=3.(1)求BC的长;(2)如果有一个正方形的边在AB上,另外两个顶点分别在AC,BC上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似 例2. 解 ABCD Θ是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3.又)cm (6,)31(22==∆∆∆AEF CDFAEF S SS,∴)cm (542=∆CDFS.例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证. 证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠. 又DAC BAD BAC ∠+∠=∠Θ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同.(3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C , 则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b aa '=''=',,∴ABC ∆∽C B A '''∆.(4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆. 答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GF EC DF =,从而可以求出BC 的长. 解ECDF EC AE //,⊥Θ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =.又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//,∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =. 又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米.例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆. 所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ).说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度. 解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E ,又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆;(2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等;(5)ABD ∆∽ACB ∆两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36Θ,∴︒=∠=∠72C ABC . 又BD Θ平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CDAB BC⋅=2,∴CDAC AD⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bca=2,一般都是证明比例式,b d c a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB +=Θ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC ,又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S . 例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F 作ABFG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH可求,这样可求得AG ,故旗杆AB 可求. 解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米)所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB Θ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米.例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4.如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB,162=BC ,∴222BC AC AB=+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴ACFCAB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形.如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1,∵GH ∥AB ,∴△C GH ∽△CBA ,∵xxx -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形因此,正方形的面积为3612-或121348156-.。
相似三角形典型例题精选
相似三角形的判定与性质综合运用经典题型考点一:相似三角形的判定与性质:例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD.例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值X 围,并求出当x 为何值时AE 取得最小值?(3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由?例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ;2)若AB=4,33 AD ,AE=3,求AF 的长。
A BC DF考点二:射影定理:例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。
例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=14AD ,EG ⊥CF 于点G ,(1)求证:△AEF ∽△BCE ; (2)试说明:EG 2=CG ·FG.例6、已知:如图所示的一X 矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE .(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.A B C D EFG考点三:相似之共线线段的比例问题:例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB 的延长线分别相交于点E 、F 、G 、H. 求证:PG PH PF PE例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2=PE •PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长.例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD •CF=CD •DF .例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2=DC •DF .例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG⊥AC,垂足为G,BG交AE于点H.(1)找出与△ABH相似的三角形,并证明;(2)若E是BC中点,BC=2AB,AB=2,求EM的长.例12、如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=•MN.例13、如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC 的延长线交于点E.求证:(1)△AED∽△CBM;(2)AE•CM=AC•CD.例14、如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED 的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.例15、如图,四边形ABCD、CDEF、EFGH都是正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.考点四:相似三角形的实际应用:例16、如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长PQ是宽PN的2倍,则边长是多少?例17、已知左,右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。
相似三角形经典练习题
相似三角形经典练习题一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:23.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为( )A.B.C.D.4.如图,▱ABCD中,Q是CD上的点,AQ交BD于点P,交BC的延长线于点R,若DQ:CQ=4:3,则AP:PR=( )A.4:3 B.4:7 C.3:4 D.3:75.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.6.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.7.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于( )A.B.10C.或10D.以上答案都不对8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A.B.C.D.9.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 .11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.12.如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= .13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= .14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .15.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= .16.如图,若∠B=∠DAC,则△ABC∽ ,对应边的比例式是 .17.如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ,结论是 .(注:填序号)18.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= .19.如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 度.20.一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 张.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.22.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.23.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.25.如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.26.已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC 于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.28.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O 开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.29.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC 方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.相似三角形经典练习题20161115参考答案与试题解析一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.【考点】勾股定理.【分析】本题主要利用勾股定理和面积法求高即可.【解答】解:∵在直角三角形中,两直角边分别为3和4,∴斜边为5,∴斜边上的高为=.(由直角三角形的面积可求得)∴这个三角形的斜边与斜边上的高的比为5:=.故选A.【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:2【考点】相似三角形的判定与性质.【分析】根据已知及相似三角形的面积比等于相似比的平方,即可求解.【解答】解:∵∠ADC=∠ADB=90°,∠C=∠BAD∴△ACD∽△BAD∵S △CAD =3S △ABD ,且这两三角形高相等∴AB :AC=1:故选C .【点评】本题考查了三角形的面积公式,及相似三角形的判定及性质. 3.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1,S 2,那么的值为( )A .B .C .D .【考点】三角形中位线定理;相似三角形的判定与性质.【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得的值.【解答】解:根据三角形的中位线定理,△ADE ∽△ABC ,DE :BC=1:2,所以它们的面积比是1:4,所以=,故选C .【点评】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比. 4.(2012秋•桐城市校级月考)如图,▱ABCD 中,Q 是CD 上的点,AQ 交BD 于点P ,交BC 的延长线于点R ,若DQ :CQ=4:3,则AP :PR=( )A .4:3B .4:7C .3:4D .3:7【考点】相似三角形的判定与性质;平行四边形的性质.【分析】利用“平行线法”证得△ADQ∽△RCD,则对应边成比例:=;同理,证得△ADP∽△RBP,则=,即=.【解答】解:如图,∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADQ∽△RCD,∴=,即=,∴RC=AD.同理,△ADP∽△RBP,则=,即=,∴==,即AP:PR=4:7.故选:B.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质.平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.5.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.【考点】相似三角形的性质.【分析】本题可根据相似三角形的性质求解,已知了∠AED和∠B对应相等,因此AD、AC是对应边,AE、AB是对应边,DE、BC是对应边,根据相似三角形的对应边的比例相等,即可判断哪个选项正确.【解答】解:∵△ADE∽△ACB,且∠AED=∠B∴AD、AE、DE的对应边分别是AC、AB、BC因而有故本题选A.【点评】本题主要考查了相似三角形的性质,找准相似三角形的对应边是解题的关键.6.(2008•安徽)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.7.(2012秋•杞县校级期末)如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC 相似,则AE等于( )A.B.10C.或10D.以上答案都不对【考点】相似三角形的性质.【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.【解答】解:如图(1)当∠AED=∠C时,即DE∥BC则AE=AC=10(2)当∠AED=∠B时,△AED∽△ABC∴,即AE=综合(1),(2),故选C.【点评】会利用相似三角形求解一些简单的计算问题.8.(2009•新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.9.(2006•大兴安岭)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.【考点】翻折变换(折叠问题).【分析】先判定四边形C′DCE是菱形,再根据菱形的性质计算.【解答】解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△ABC中,AC==10,,EB=x;故可得BC=x+x=8;解得x=.故选A.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 ±6 .【考点】比例线段.【分析】根据比例中项的概念,设a、b的比例中项是c,则c2=ab,再利用比例的基本性质计算得到c的值.【解答】解;设a、b的比例中项是c,则c2=ab∵a=4,b=9,∴c2=ab=36,解得:c=±6;故填: 6或6.【点评】此题考查了比例中项,关键是理解比例中项的概念,当比例式中的两个内项相同时,即叫比例中项.11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 ①③④ (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.【考点】相似三角形的判定与性质.【分析】由在△ABC中,∠ACB=90°,CD⊥AB,易证得∠BDC=∠BCA=∠CDA=90°,又由∠A=∠A,∠B=∠B,根据有两角对应相等的三角形相似,即可证得△ACD∽△ABC,△BDC∽△BCA,则可得△ACD∽△CBD,根据相似三角形的对应边成比例,即可求得答案.【解答】解:∵在△ABC中,∠ACB=90°,CD⊥AB,∴AC•BC=AB•CD,即∴AC•BC=AB•CD,故①正确;∵△ABC中,∠ACB=90°,CD⊥AB于点D,∴BC2=BD•BA,故③正确;∴△ACD∽△CBD,∴,∴AC2=AD•AB,CD2=AD•DB,故②错误,④正确.故答案为:①③④.【点评】此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意对应线段的对应关系与比例变形.12.(2011春•武侯区校级期末)如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= 6.4 .【考点】相似三角形的判定与性质;勾股定理.【分析】由于AC⊥BC,CD⊥AB,可得一组对应角相等,再加上一对公共角,可证△ACD∽△ABC,利用比例线段可求AD.(可先利用勾股定理求出AB)【解答】解:∵AC⊥BC,CD⊥AB,∴∠ACB=90°,∠ADC=90°,∠A=∠A,∴△ADC∽△ACB,∴=,又∵在Rt△ABC中,AB===10,∴=,AD=6.4.【点评】解答此题不仅用到相似三角形的性质,还要结合勾股定理求出相应的边长,方可进行计算.13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= 8 .【考点】相似三角形的判定与性质;平行线的性质.【分析】根据DE∥AC,证得△BED∽△BCA,再由相似三角形对应线段成比例可得出答案.【解答】解:由DE∥AC可得△BED∽△BCA,∴==,又AC=12,可得DE=8.故填8.【点评】本题考查平行线的知识,注意相似三角形对应线段成比例的性质.14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的定义得出AB∥CD,再根据平行线的性质得到∠ABE=∠FDE,∠EAB=∠EFD,然后根据两角对应相等的两三角形相似即可证明△ABE∽△FDE;根据相似三角形对应边成比例得出①,再证明△BEG ∽△DEA,得出②,等量代换得到,于是得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠FDE,∠EAB=∠EFD,∴△ABE∽△FDE,∴①,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠GBE=∠ADE,∠G=∠DEA,∴△BEG∽△DEA,∴②,由①②可得,,∵AE=4,EG=3,∴EF=.故答案为:.【点评】此题考查了相似三角形的判定和性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.15.(2012•通州区校级模拟)如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= 5:3:12 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.【解答】解:由已知得:△AMP∽△CDP,∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①△ANQ∽△CDQ,∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②解①、②得:AQ=AC,PQ=AQ AP=AC,QC=AC AQ=AC,∴AP:PQ:QC=5:3:12.【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.16.(2014秋•肥西县期末)如图,若∠B=∠DAC,则△ABC∽ △DAC ,对应边的比例式是 == .【考点】相似三角形的性质.【分析】根据两角对应相等的两个三角形相似可解,再根据相似三角形的性质写出对应边的比例式.【解答】解:在△ABC和△DAC中,∵∠C=∠C,∠B=∠DAC;∴△ABC∽△DAC;∴==【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.17.(2012•牡丹江模拟)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ① ,结论是 ③或④ .(注:填序号)【考点】命题与定理.【分析】根据相似三角形的判定和性质进行分析.【解答】解:因为若∠BAD=∠C,则△ABC∽△DBA,故=,=,条件是①,结论是③或④.【点评】解答此题的关键是要熟知真命题与假命题的概念.真命题:判断正确的命题叫真命题;假命题:判断错误的命题叫假命题.18.(2014春•江都市期末)已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= 8:5 .【考点】平行线分线段成比例.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF即可得出结论.19.(2012秋•桐城市校级月考)如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 90 度.【考点】相似三角形的判定与性质;正方形的性质.【分析】设正方形的边长为1,根据正方形的性质得到∠ABE=45°,BE=,再利用勾股定理计算出CE=,则BE:BD=BC:BE=:2,加上公共角,于是可判断△CBE∽△EBD,则∠BDE=∠BEC,再利用三角形外角性质得∠ABE=∠BEC+∠BCE=45°,然后计算∠ABE+∠ACE+∠ADE.【解答】解:设正方形的边长为1,∵四边形AEFB为正方形,∴∠ABE=45°,BE=,在Rt△AEC中,AC=2∴CE==,∴BE:BD=:2,BC:BE=1:=:2,∴BE:BD=BC:BE,而∠CBE=∠EBD,∴△CBE∽△EBD,∴∠BDE=∠BEC,∵∠ABE=∠BEC+∠BCE=45°,∴∠ABE+∠ACE+∠ADE=45°+45°=90°.故答案为90.【点评】本题考查了相似三角形得判定与性质:如果两个三角形的两条对应边的比相等,且它们所夹的角也相等,那么这两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了勾股定理以及正方形的性质.20.(2011•连云港一模)一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 6 张.【考点】相似三角形的判定与性质;等腰三角形的性质;正方形的性质.【分析】设第x张为正方形,如图,△ADE∽△ABC,则=,从而计算出x的值即可.【解答】解:如图,设第x张为正方形,则DE=3,AM=22.5 3x,∵△ADE∽△ABC,∴=,即=,解得x=6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定证△ADE∽△ABC,根据相似三角形的性质求出△ADE的面积,相减即可求出答案.【解答】解:∵,∠A=∠A,∴△ADE∽△ABC,∴=,∵△ABC的面积为60cm2,∴△ADE的面积是×60cm2=cm2,∴四边形BCDE的面积是60cm2 cm2=cm2,答:四边形BCDE的面积是cm2.【点评】本题主要考查对相似三角形的性质和判定的理解和掌握,能熟练地运用性质进行推理是解此题的关键.22.(2015春•苏州校级期末)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF 离地面的高度AC=1.5m,CD=8m,求树高AB.【考点】相似三角形的应用.【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解.【解答】解:在△DEF 和△DBC 中,,∴△DEF ∽△DBC ,∴=,即=,解得BC=4,∵AC=1.5m ,∴AB=AC+BC=1.5+4=5.5m ,即树高5.5m .【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.23.(2015秋•北京校级期中)已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:CF 2=GF•EF .【考点】平行线分线段成比例;平行四边形的性质.【分析】根据平行四边形的性质得AD ∥BC ,AB ∥CD ,再根据平行线分线段成比例定理得=,=,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴=,=,∴=,即CF 2=GF•EF .【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据已知条件,先证明△AEM∽△CED,然后利用相似三角形的对应边成比例这一性质求得AM=AB;再来证明△AFM∽△CFN,依据相似三角形的性质求的CN的长度.【解答】解:在△AEM和△CED中,∠CAB=∠DCA(内错角相等),∠AEM=∠CED,∴△AEM∽△CED,∴,∵AE=EF=FC,∴=,∴AM=CD;∵AB=CD,∴AM=AB=14,①;在△AFM和△CFN中,∠FAM=∠FCN(内错角相等),∠AFM=∠CFN(对顶角相等),∴△AFM∽△CFN,∴=2,∴CN=AM②;∵AB=28 ③由①②③解得,CN=7.【点评】本题主要考查了相似三角形的判定定理:两个三角形中,两个对应角相等,则这两个三角形相似,以及相似三角形的性质:对应边成比例.25.(2006•长沙)如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.【考点】切割线定理;相似三角形的判定与性质.【分析】(1)证△CDE∽△CAB,再根据相似三角形的性质得到所求的比例式;(2)根据割线定理即可求得CD•CB的值.根据三角形的三边关系求得BC的取值范围.【解答】(1)证明:∵四边形ABDE内接于⊙O,∴∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴;(2)解:∵直径AE=8,OC=12,∴AC=12+4=16,CE=12 4=8.又∵=,∴CD•CB=AC•CE=16×8=128.连接OB,在△OBC中,OB=AE=4,OC=12,∴故BC的范围是:8≤BC<16.【点评】本题主要考查圆、相似三角形等初中几何的重点知识,考查学生的几何论证能力,属于中等难度题.26.(2009•潍坊)已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.【考点】三角形中位线定理;平行线分线段成比例;相似三角形的判定与性质.【分析】(1)过点F作FM∥AC,交BC于点M.根据平行线分线段成比例定理分别找到AE,CE与FM之间的关系,得到它们的比值;(2)结合(1)中的线段之间的关系,进行求解.【解答】解:(1)过点F作FM∥AC,交BC于点M,∵F为AB的中点,∴M为BC的中点,FM=AC.∵FM∥AC,∴∠CED=∠MFD,∠ECD=∠FMD.∴△FMD∽△ECD.∴.∴EC=FM=×AC=AC.∴.(2)∵AB=a,∴FB=AB=a.∵FB=EC,∴EC=a.∵EC=AC,∴AC=3EC=a.【点评】此类题要注意作平行线,能够根据平行线分线段成比例定理和相似三角形对应边成比例即可求得线段的比.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)根据矩形的性质得到HG∥BC,PD=x,AP=AD x=40 x,再三角形三角形相似的判定得到△AHG∽△ABC,利用相似比可表示出HG=(40 x),然后根据矩形的周长确定y与x的关系;(2)根据矩形的面积公式求解.【解答】解:(1)∵AD⊥BC,四边形EFGH是矩形,∴HG∥BC,PD=x,AP=AD x=40 x,∴△AHG∽△ABC,∴=,即=∴HG=(40 x),∴y=2HE+2HG=2x+2×(40 x)=2x+120 3x=120 x(0<x<40);(2)S=HE•HG=x•(40 x)= x2+60x(0<x<40).【点评】本题考查了相似三角形的判定与性质:平行于三角形一边的直线与其他两边所截得的三角形与原三角形相似;相似三角形对应角相等,对应边的比相等.也考查了矩形得性质.28.(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.【考点】二次函数综合题.【分析】(1)根据P、Q的速度,用时间t表示出OQ和OP的长,即可通过三角形的面积公式得出y,t的函数关系式;(2)先根据(1)的函数式求出y最大时,x的值,即可得出OQ和OP的长,然后求出C点的坐标和直线AB的解析式,将C点坐标代入直线AB的解析式中即可判断出C是否在AB上;(3)本题要分△OPQ∽△OAB和△OPQ∽△OBA两种情况进行求解,可根据各自得出的对应成比例相等求出t的值.【解答】解:(1)∵OA=12,OB=6,由题意,得BQ=1×t=t,OP=1×t=t.∴OQ=6 t.∴y=×OP×OQ=×t(6 t)= t2+3t(0≤t≤6);(2)∵y= t2+3t,∴当y有最大值时,t=3∴OQ=3,OP=3,即△POQ是等腰直角三角形.把△POQ沿直线PQ翻折后,可得四边形OPCQ是正方形.∴点C的坐标为(3,3).∵A(12,0),B(0,6),∴直线AB的解析式为y= x+6当x=3时,y=≠3,∴点C不落在直线AB上;(3)①若△POQ∽△AOB时,,即,12 2t=t,∴t=4.②若△POQ∽△BOA时,,即,6 t=2t,∴t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.【点评】本题主要考查了直角三角形的性质、图形的翻折变换、相似三角形的判定和性质等知识点.要注意(3)题要根据不同的相似三角形分类进行讨论. 29.(2007秋•安岳县期末)如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?【考点】相似三角形的判定.【分析】此题要根据相似三角形的性质设出未知数,即经过x秒后,两三角形相似,然后根据速度公式求出他们移动的长度,再根据相似三角形的性质列出分式方程求解.【解答】解:设经过x秒后,两三角形相似,则CQ=(8 2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)【点评】本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y 轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.【考点】相似形综合题.【分析】(1)先根据A、B两点的坐标分别为(40,0),(0,30)得出OA及OB的长,再由EF∥x轴得出EF是△BOA的中位线,再根据三角形的面积公式即可得出结论;(2)用t表示出OE及OP的长,再分△EOP∽△BOA与△EOP∽△AOB两种情况进行讨论.【解答】解:(1)∵A、B两点的坐标分别为(40,0),(0,30),∴OA=40,OB=30.∵动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x 轴),∴t=15时,BE=30 15=15,∵EF∥x轴,∴EF是△BOA的中位线,∴EF=OA=20,∴S△PEF=EF•OE=×20×15=150;(2)∵动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),∴OE=t,OP=40 2t,∴当△EOP∽△BOA时,=,即=,解得t=12(秒);当△EOP∽△AOB时,=,即=.解得t=(秒).综上所述,当t=12秒或t=秒时,△EOP与△BOA相似.【点评】本题考查的是相似形综合题,涉及到三角形中位线定理、三角形的面积公式及相似三角形的判定与性质等知识,在解答(2)时要注意进行分类讨论.。
相似三角形判定-(2)
一、知识回顾
相似三角形的判定定理:
A'
定理1:两角对应相等,两三角形相似。
∠A= ∠A' ∠B= ∠B'
△ABC∽△A'B'C'
B'
C'
定理2:两边对应成比例且夹角相等,两三角形相似。
AB BC A' B' B'C'
△ABC∽△A'B'C'
A
∠B= ∠B'
定理3:三边对应成比例,两三角形相似。
⑵ ∵∠A=∠A,
A
∴当AC:AP=AB:AC时,
P1
△ ACP∽△ABC.
B
2 C
答:当∠1= ∠ACB 或∠2= ∠B 或
AC:AP=AB:AC,△ ACP∽△ABC.
三、随堂练习
1、已 条知 过, 点△D的AB直C线中(,不D与为ABA重B上合一),点交,AC画于一E, 使所得三角形与原三角形相似,这样的 直线最多能画出多少条?
解:(1)∵∠A=∠A
∴ 当∠ACP=∠B时, △ACP∽△ABC. A
(2)∵∠A=∠A
P
∴当AC:AP=AB:AP 时,
△ACP∽△ABC.
B
C
如果将题目变为:
已知:如图,△ABC中,P是AB边上的一点,连结 CP.满足什么条件时,△ ACP∽△ABC. 解:⑴∵∠A=∠A,
∴当∠1= ∠ACB (或∠2= ∠B)时,△ACP∽△ABC .
A D
E
A D
E
B
CB
C
如果将题目变为:
已知,△ABC中,D为AB上一点,画一条过
点D的直线(不与AB重合),交另一边于E,
相似三角形练习题
相似三角形练习题题目一已知三角形ABC中,∠A = 60°,AC = 6 cm,BC = 8 cm。
将三角形ABC沿着边BC剪开,使得三角形ABD与三角形ACD相似,连接BD。
求BD的长度。
解答一由已知条件可知∠A = ∠ADC = 60°,而∠ABD与∠ACD互为对应角,故∠ABD = ∠ACD = 60°,说明三角形ABD与三角形ACD相似。
根据相似三角形的性质,相似三角形中对应边的比例相等,即有:BD/AD = AC/CD将已知数值代入,得到:BD/AD = 6/8进一步化简,可得:BD/AD = 3/4将上式两侧同乘以AD,可得:BD = (3/4) * AD由直角三角形ADC中,利用三角函数可得AD的值:AD = AC * sin(60°) = 6 * √3 / 2 = 3√3 cm代入上式,可得:BD = (3/4) * 3√3 = 9√3 / 4 cm所以,BD的长度为9√3 / 4 cm。
题目二已知∆ABC与∆DEF相似,∠B = 40°,∠E = 20°,AB = 5 cm,FE = 3 cm。
求BC、DE的长度。
解答二由已知条件可知∠B = ∠F,即∠B = 40°。
而∆ABC与∆DEF相似,根据相似三角形的性质,相似三角形中对应边的比例相等,即有:AB/FE = BC/DE将已知数值代入,得到:5/3 = BC/DE进一步化简,可得:5DE = 3BC根据已知条件,我们还可以得到∠E = ∠C。
联立上述两个条件,可以列出方程组:{5DE = 3BC∠E = ∠C}要求BC和DE的长度,需要求解以上方程组。
我们可以通过求解方程组来得到BC和DE的长度。
题目三AG和EK是∆ABC和∆EFD的高,点G和点K分别位于边BC和边DE上,且∆AGK和∆EKG相似。
已知∠B = 45°,AB = 12 cm,BC = 10 cm,ED = 8 cm。
初中数学相似三角形经典练习难题易错题(附详解)
.相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。
第5课 相似三角形的判定(2)
2.(例1)如图,根据条件证明:△ABC∽△A′B′C′.
3. 根据下面条件证明△ABC∽△A′B′C′. 已知:AB=10,BC=8,CA=6,A′B′=5,B′C′=4,C′A′=3.
4. 网格图中每个方格都是边长为1的正方形.
求证:△ABC∽△DEF.
提示:先用勾股定理求出各边,
AC= 12 12 2 , DF= 22 22 2 2
知识点3:相似三角形的判定3
若两个三角形的两组对应边的比________ 相等 ,并且这两边
相等 ,则这两个三角形相似. 的夹角________
几何语言
AB CA AB C A ∵________________ ,
________________ ∠A=∠A' ; △ABC∽△A'B'C' ∴_______________________.
提示:利用中位线定理 11.如下图所示,在4×4的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:AC=_______ 2 ,BC=_______ 2 ; (2)△ABC与△DEF是否相似?证明你的结论.
12.如图,点D在AB上,如果AC2=AD· AB,那么△ACD 与△ABC相似吗?为什么? ∵ AC2=AD· AB
PPT课程
主讲老师:
第二十七章
第5课
一、知识储备 知识点1:相似三角形的判定1 DE∥BC ∵________________ , △ADE∽△ABC ∴________________.
相似
相似三角形的判定(2)
1.如图,已知BC∥DE,求证:△ADE∽ABC.
二、新课学习 知识点2:相似三角形的判定2 相等 ,则这两个三角 若两个三角形的对应边的比________ 形相似. 几何语言 ∵________________, ∴________________.
中考相似三角形经典练习题及答案
相似三角形分类练习题(1)一、填空题1、如图,DE是△ABC的中位线,那么△ADE面积与△ABC面积之比是________。
2、如图,△ABC中,DE∥BC,,且,那么=________。
3、如图,△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AD=8cm,DB=2cm,则CD=________cm。
4、如图,△ABC中,D、E分别在AC、AB上,且AD:AB=AE:AC=1:2,BC=5cm,则DE=________ cm。
5、如图,AD、BC相交于点O,AB∥CD,OB=2cm,OC=4cm,△AOB面积为4.5cm2,则△DOC面积为___cm2。
6、如图,△ABC中,AB=7,AD=4,∠B=∠ACD,则AC=_______。
7、如果两个相似三角形对应高之比为4:5,那么它们的面积比为_____。
8、如果两个相似三角形面积之比为1:9,那么它们对应高之比为_____。
9、两个相似三角形周长之比为2:3,面积之差为10cm2,则它们的面积之和为_____cm2。
10、如图,△ABC中,DE∥BC,AD:DB=2:3,则=______。
二、选择题1、两个相似三角形对应边之比是1:5,那么它们的周长比是()。
(A);(B)1:25;(C)1:5;(D)。
2、如果两个相似三角形的相似比为1:4,那么它们的面积比为()。
(A)1:16;(B)1:8;(C)1:4;(D)1:2。
3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是()。
(A)1;(B)2;(C)3;(D)4。
4、如图,梯形ABCD,AD∥BC,AC和BD相交于O点,=1:9,则=()。
(A)1:9;(B)1:81;(C)3:1;(D)l:3。
三、如图,△ABC中,DE∥BC,BC=6,梯形DBCE面积是△ADE面积的2倍,求DE长。
四、如图,△ABE中,AD:DB=5:2,AC:CE=4:3,求BF:FC的值。
相似三角形的判定定理2(201911)
由三角形全等的判定定理(SAS)
猜想得出相似的判定定理2
判定定理2:如果两个三角形的两组对应边的比
相等,并且相应的夹角相等,
那么这两个三角形相似
已知在△ABC 和△DEF中,
AB AC DE DF
∠A=∠D 求证:△ABC∽△DEF
B
A
D
E
F
C
例1.如图,在△ABC中,D在AC上,已知AD=2 cm, AB=4cm,AC=8cm,
练一练
1.如下图所示,在△ABC中,D﹑E分别在AC﹑AB上, 且AD:AB=AE:AC=1:2,BC=5,则DE=________
2.如图,在4×4的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= °,BC= ;
(2)判断△ABC与△DEF是否相似,并证明你的结论.
例2. 如图,在正方形ABCD中,已知P是BC上的点,
且BP=3PC,Q是CD的中点,试判断△ADQ∽△QCP吗?
说明理由.
A
D
Q
B
PC
这是探索结论的题型,要先观察,猜测
例3.如图,D为Δ ABC内一点,E为Δ ABC外一点, 且∠1=∠2,AB=6,BC=4,BD=3,BE=2.
(1)Δ ABD与Δ CBE相似吗?请说明理由. (2)Δ ABC与Δ DBE相似吗?请说明理由.
知识回顾
我们学习了哪些判定三角形相似的方法,请你
用符号语言叙述。
A
A
D
A D
D
E
E
F
B
CE
F
(B2)∵DE∥BC
CB (3)∵
C
AB
AC
相似三角形的判定方法(二)
相似三角形的判定方法(二)(一)三角形中的平行线①定理:三条平行线截两条直线,所得的对应线段成比例;②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
【经典例题1】如图,已知DE ∥BC ,EF ∥AB ,则下列比例式错误的是:___________A A D AB A E AC B C E C F E A F B ..==C D E B C A D B D D E F A B C F C B..== 【搭配练习1】将三角形ABC 纸片的一面沿DE 向下翻折,使点A 落在BC 边上,且DE 平行于BC ,则下列结论中不成立是 ( )A 、角AED=角CB 、AD/DB=DE/BCC 、DE=1/2BCD 、三角形ADB 是等腰三角形【搭配练习2】如图在□ABCD 中P ,Q 三等分AC ,DP 的延长线交BC 于E ,EQ 的延长线交AD 于F ,已知BC=18,求AF 的长。
(二)两角对应相等,三角形相似【经典例题1】如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD=60°,B PCD A B C ==123,,求△的边长。
【搭配习题】如图,在矩形ABCD 中,AB=12cm ,AD=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/秒的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/秒的速度移动,如果P 、Q 同时出发,用t (秒)表示运动时间(0≤t ≤6),那么当t 为何值时,△APQ 与△ABD 相似?说明理由.F E C BAB'C'(三)两边对应成比例,夹角相等,三角形相似【典型例题1】已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD求证:△DBE ∽△ABC【典型例题2】如图,△ABC 中,若a ∶b ∶c=4∶5∶6,求证:∠ACB=2∠A【搭配练习1】 如图,△ABC 中,D 是AB 上一点,且AB=3AD ,∠B=75°,∠CDB=60°,求证:△ABC ∽△CBD 。
相似三角形基本知识点+经典例题(完美打印版)
相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
它们的对应角度相等,对应边长成比例。
以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。
2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。
b. 对应边成比例:两个相似三角形的对应边的比值相等。
3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。
b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。
二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。
如果两个三角形是相似的,则对应边的比值相等。
以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。
则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。
例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。
解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。
例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。
若AB= 10cm,BC = 15cm,求AD的长度。
解析:由于ABCD是平行四边形,所以∠B = ∠D。
根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。
《相似三角形》经典练习题(附答案)
相似三角形经典练习题1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.6.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.7.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.8.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.9.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.10.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.11.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.12.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?13.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.14.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.15.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.16.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C 出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?17.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.18.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.19.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?20.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.21.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)22.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.23.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.24.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.25.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.26.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.27.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.。
初中数学经典相似三角形练习题(附参考答案)
初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。
本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。
本文附有详细的参考答案,供学生进行自我检测和复习。
二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。
2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。
3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。
若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。
4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。
若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。
5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。
6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。
如果小树的影子长度为10cm,求大树的影子长度。
7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。
如果航拍无人机的长度为120cm,求离地面的垂直距离。
8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。
如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。
求这两个旅游小组的总年龄之比。
三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。
即 EF/AC = DE/BC。
代入已知值,得 EF/10 = 9/8。
相似三角形经典题(含答案)(Si...
相似三角形经典题(含答案)(Similar triangle classic questions(including answers))Similar triangle classical exercisesExample 1. Choose a similar triangle from the following trianglesExample 2 is known: as in figure ABCD, the ratio of the perimeter to the sum if...Figure 3 cases, known to, to prove that.Example 4 which of the following statements are true and which ones are wrong?(1) all right triangles are similar. (2) all isosceles triangles are alike(3) all isosceles right triangles are similar. (4) all equilateral triangles are alikeFigure 5 example, D is a point on the AC, D DE E the dotted line, in the side, the small triangle and point D, point E and a vertex with similar composition. Draw as much as possible to meet the conditions of the graphics, and that of line DE painting.Figure 6 cases, a person holding a small scale paintings engraved with cm, standing about 30 meters away from the poles, the arm straight forward, small scale vertical ruler, see about 12 paintings just over the poles, the known arm length of about60 cm high, for the wire rod.Figure 7 cases, in order to measure a high-rise MN Xiaoming, put a mirror in the A from N 20m, NA back to C along the Xiao Ming, just from the mirror to see the roof of M, if m, his eyes from the ground height of 1.6m, please help you calculate Xiaoming the height of the building (accurate to 0.1M).The two triangles in the 8 lattice diagram are similar triangles, and the reasons are givenExample 9 determines whether the case is similar and explains the reasons for the following groups of conditions:(1)(2)(3)Example 10. In the following graph, there is no similar triangle. If it exists, show them in letters, and briefly explain the basis for identificationExample 11 is known: as in Fig., in the case of angular bisector, try using a triangle similar relation descriptionExample 12, the known three side length is 5, 12 and 13, and its similar maximum length is 26, the area of S.13 cases in a mathematics activity class, the teacher let thestudents to the playground to measure the height of the flagpole, and then come back to AC measurement method for their measurement is. Xiaofang: take a 3.5 meter high pole upright in the 27 meters away from the flagpole at C (pictured), then walk along the BC direction D, the top of the flagpole and pole top A visual E is in the same line, C D, and measured the distance between two points is 3 meters, Xiaofang mesh is 1.5 meters high, so that you can know the high flagpole. Do you think this measurement method is feasible? Please explain the reasonFigure 14. cases, in order to estimate the width of the river on the other side of the river, we can select a target as A, on this side of the river and then points B and C, so, then choosing E, BC and AE to determine the intersection point is D, measured in meters, meters, meters, you can find the distance between the two sides of AB roughly?Figure 15. cases, in order to find the island peak height of AB, DC and FE to establish a benchmark in D and F, the benchmark is 3 feet high, separated by 1000 step (step 1 is equal to 5 feet), and AB, CD and EF in the same plane, from the G DC benchmark back the 123 step, can see peaks A and C benchmark top end in a straight line, from the H FE benchmark 127 steps back, can see peaks A and E benchmark top on a straight line. How much is the horizontal distance BD AB and its peak height and benchmark CD? (ancient problems)Figure 16 example, known Delta ABC boundary AB = AD, AC = 2, BC = high on the side.(1) seeking the length of BC;(2) if there is a square edge on AB, the other two vertices are on AC, BC, respectively, and the area of this square is calledSimilar triangle classic Exercises answer1. cases of the solution, five and six, and the similar, similar, three or four, and similar2. solution is a parallelogram, so, l ~,Again, so, and the perimeter of the perylene ratio is 1:3.Again, dry.3 cases analysis, so as to, if further proof, the problem must pass.To prove dreams, *.Again, l,Star.To dreams, *.In dreams, and in R ~Case 4. analysis (1) is incorrect, because in the right triangle, the size of the two angles is uncertain, so the shape of the right triangle is different(2) not correct either,The vertices of an isosceles triangle are not of definite size, so the shape of an isosceles triangle is also different(3) right. There are isosceles right triangle ABC and, among them,Then,The three sides are a, B, and C, and the edges are,Then,So, l ~.(4) is correct, and is an equilateral triangle, the corresponding angles are equal, the corresponding edge is proportional to it.Answer: (1) and (2) incorrect. (3) and (4) correctExample 5. solutions:Painting slightly.The analysis of 6. cases of the narrative can draw the geometry as shown below, the CM cm m, m, m, and BC. ~ ~ because, again, so, so you can find the BC long.So, l ~ solution. Hence.Again, l,So, l ~ *,.And cm cm meters, meters, meters, meters. The pole star is 6 meters high.Example 7. analysis according to the law of Physics: the incident angle of light is equal to the angle of reflection, so that the similarity relation is clearBecause the solution, so so.So, that is. So (m)This shows that this is a practical application, the method seems simple, but in fact it is very clever, saving the use of instrumentation to measure the troubleExample 8.. It is impossible to judge these two graphs if they are not painted in the grid. In fact, the lattice virtually adds to the condition the length and the angleThe solution is in the grid, so..,Again. So. So ~.Explain the problems encountered in the grid point, we must fully find the various conditions, do not make omissionsIn 9. cases (1) because the solution to it;(2) because the two triangles only, the other two are not equal, and not so similar;(3) because, so it is similarIn 10. cases (1) and two equal solution; (2) to two equal;(3) to two equal; (4) to both sides proportionally equal angles;(5) to both sides proportionally equal angles; (6) to both sides proportionally equal angles.Analysis of 11. cases with a 65 degree angle of the isosceles triangle, the angle is 72 degrees, and BD is the bisector of the corner, so, you can launch to, and then by the similar triangle corresponding edge is proportional to the ratio between the line launched.That star.But equally, dry.And so, so, so, so, L.That (1) has two angles equal, then the two triangles are similar, this is the judgment of two triangles. The most commonly used method, and according to the equal angle position, can determine which side is the corresponding edge.(2) to explain the product of a line, or the square formula, usually to prove the scaling formula, or, again, to derive the product formula or the square formula according to the basic nature of the proportionBy the analysis of 12 cases of the three sides can be judged as a right triangle, and because it is also a right triangle, so, then by the maximum edge length is 26, can calculate the similarity ratio, two right angle side to calculate, and obtain the area.The solution of a three side in order,,, L.And to dreams, *,Again, *. *.13. cases analysis method to judge whether it is feasible, should consider the use of this method combined with our existing knowledge can be obtained according to the flagpole high. This measuring method, F to G, CE to H, so that, and GF, HF, EH and AG, this can be obtained, so the AB can be obtained. The flagpoleThe solution is feasible. The reasons are as follows:The flagpoles high. F for G, CE H (pictured). So ~.Because, soSo, that is, by, so the solution (m)So the height of the flagpole is 21.5 metersIt shows that the method should be practical and feasible in concrete measurementExample 14. solutions:,L ~, (m), a: between the two sides of AB is roughly 100 meters away.Example 15. answer: rice, step, (Note:.)16. cases analysis: BC long, need to draw solution, because AB and AC are higher than AD, so there are two kinds of situations, namely D in BC or D in the BC extension line, so long for the BC to two to discuss the situation. For the area of a square key is the length of the side for a square.Solution: (1) as above, by the AD BC group, by the Pythagorean theorem BD = 3, DC = 1, BC = so BDDC = 3 + 1 = 4.As follows, BD = 3, DC = 1, so BC = BD = CD = 3-1 = 2.(2) as shown by the graph, BC = 4, and so is ABC. Hence, the right triangle.The AEGF is a square, set GF = x, FC = 2x,GF "AB dreams, so, that is. So, dry.As follows, when BC = 2,AC = 2, Delta ABC is an isosceles triangle, as an CP AB in P, AP = r,In Rt APC, by the Pythagorean theorem CP = 1,Dreams GH / / AB, R ~ Delta CGH Delta CBA, dreams, RTherefore, the square has an area of orThird (lower) similar triangleFirst pages, 6 pages(similarity triangle's nature and application) practice rollFill in the blanks1. When the similarity ratio between two similar triangles is 3, their perimeter ratio is..;2, if the delta delta A to ABC 'B' C ', and the perimeter of delta ABC is 12cm, then the perimeter of delta A' B 'C' for;3, as shown in Figure 1, in ABC, BE, CD line intersect at point G, then the delta GED:S Delta GBC= = S;4, as shown in Figure 2, the ABC / B= / AED, AB=5, AD=3, CE=6, AE=;5, as shown in Figure 3, ABC, M AB is the midpoint of the N on BC, BC=2AB / BMN= / C, is a ~ Delta, similarity ratio =;6, as shown in Figure 4, the trapezoidal ABCD, AD / / BC S, Delta ADE:S Delta BCE=4:9, Delta ABD:S Delta ABC= S;The perimeter of 7 and two similar triangles are 5cm and 16cm, respectively, and the ratio of the bisector of their corresponding angles is;8, as shown in Figure 5, the BC=12cm in ABC, D, and F are three points AB, E, G is three points AC, DE+FG+BC=;The ratio of the area of the two and the 9 triangles is 2:3, and the ratio of them to the angle is equal to the ratio of the height of the opposite side;10, it is known that there are two triangles similar, one side length is 2, 3 and 4 respectively, and the other side length is x, y and 12 respectively. Then the values of X and y are respectively;Two, multiple-choice questions11, the following polygon must be similar to (), A, two rectangles, B, two diamond, C, two squares, D, two parallelogramIn 12, ABC, BC=15cm, CA=45cm, AB=63cm, the shortest edge of another and it is similar to the triangle is 5cm, is the longestside (18cm) is A, B, 21cm C, 24cm D, 19.5cm13, as shown in ABC, BD, CE to the high point of O, the following conclusion is wrong ()A, CO, CE=CD, CA, B, OE, OC=OD, OBC, AD, AC=AE, AB, D, CO, DO=BO, EO14, known in ABC / ACB=900, CD, AB in group D, if BC=5, CD=3, AD (long)A, 2.25 B, 2.5 C, 2.75 D, 315, as shown in figure ABCD, the edge of square BC is on the bottom QR of the isosceles right triangle PQR,The other two vertices, A and D, are on PQ and PR, and PA:PQ equals ()A, 1:B, 1:2, C, 1:3, D, 2:316, as shown in figure D, and E are Delta ABC edge AB and AC point, ==3,And / AED= / B, Delta AED and delta ABC is the area ratio is ()A, 1:2, B, 1:3, C, 1:4, D, 4:9Three, answer questions17, figure, known in the delta ABC, CD=CE / A= / ECB, CD2=AD - BE test.18, known as shown in ABC, DE, BC, AD=5, BD=3, S and delta ADE:S Delta ABC value.19, known square ABCD, C straight line, respectively, AD, AB extension line at points E, F, and AE=15, AF=10, square ABCD for the length of the side.20, known as shown in the equilateral Delta CDE and B respectively, A ED, DE extension line, DE2=AD and EB, and the degree of angle ACB.21, known as shown in ABC / C=600, AD, BC in D group, BE group AC E, Delta CDE Delta CBA to explain.22, known, as shown in figure F, ABCD edge, DC extension of the line point, link AF, pay BC at G, hand in BD at E, try to explain AE2=EG EF24. ABC, D, E / C=900, respectively AB, AC on AD, AB=AE AC, ED AB (13) to verify the aboveIn 25, ABC, M and AC is the midpoint, side of the AE=BA connection EM, and extend the BC line to D, verify the BC=2CDAB=AC, the 26 known isosceles triangle ABC, AD, BC in group D, CG, AB, AD, AC BG respectively in E, F, BE2=EF and EG prove:27, known in ABC, AD / BAC=900 BC in D P group, AD midpoint, BP extension line AC to E EF BC in F, an EF2=AE AC confirmation:28., as shown in the parallelogram,1. APD ~ CDQTwoMap your own painting, with a triangle of 30 degrees can be drawn outDreams of an isosceles triangle ABC / ABC = 120 DEGL / DAP= / DCQ=30 / CDQ / PDA=150 ~ * ~ / ADP / APD=150 degrees and dreamsL / CDQ= / APD / DAP= / QCD and dreamsStar delta APD Delta CDQ ~ AP/CD=PD/DQ frequencyD is the midpoint of AC AD=DC dreams AP/DP=AD/DQ AP/AD=PD/QD perylene perylene perylene / PDQ= / PAD dreamsStar delta APD to DPQ3. a triangle has 1 angles of 30, and the other has 2 30 degrees angles, in favor of the 155| review (6)(1) dreams / ABC=120 / A= / L degrees, C=30 degrees,Dreams / ADP+ / APD=150 / ADP+ / QDC=150 degrees degrees,L / APD= / CDQ,Star delta APD to CQD(2) set up; as shownDreams / ADP+ / APD=150 / ADP+ / QDC=150 degrees, degrees, R / APD= / CDQ / A= / C, andStar delta APD to CQD / A= / C only, the other corresponding angle are not equal, therefore, Delta APD and delta DPQ is similar;(3), two triangle into a more general condition, but the ABC must be an isosceles triangle, and / EDF= / A, otherwise it is not established.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似三角形(二)》精典例题
【例1】如图,在△ABC 中,AB =14cm ,9
5
=BD AD ,DE ∥BC ,CD ⊥AB ,CD =12cm ,求△ADE 的面积和周长。
分析:由AB =14cm ,CD =12cm 得ABC S ∆=84,再由DE ∥BC 可得△ABC ∽△
ADE ,有2
⎪⎭⎫
⎝⎛=∆∆AB AD S S ABC ADE 可求得ADE S ∆,利用勾股定理求出BC 、AC ,再用相似三
角形的性质可得△ADE 的周长。
答案:△ADE 的面积为7
75
cm 2,周长为15 cm 。
例1图
E
D
C
B
A
例2图
Q P
M F E
D C B A 变式1图
P
N M
C
B
A
【例2】如图,正方形DEMF 内接于△ABC ,若1=∆ADE S ,4=D EFM S 正方形,求ABC S ∆
分析:首先利用正方形的面积求出其边长,过A 点作AQ ⊥BC 于Q ,交DE 于P ,利用ADE S ∆可得AP 及AQ 的长,再由△ADE ∽△ABC 求出BC ,从而求得
ABC S ∆。
解:∵正方形的面积为4,∴DE =MF =2。
过A 点作AQ ⊥BC 于Q ,交DE 于P
∵1=∆ADE S ,∴AP =1
∵DE ∥BC ,∴△ADE ∽△ABC ,∴BC
DE
AQ AP =,即BC 231=
∴BC =6,故ABC S ∆=9
变式1:如图,已知菱形AMNP 内接于△ABC ,M 、N 、P 分别在AB 、BC 、AC 上,如果AB =21 cm ,CA =15 cm ,求菱形AMNP 的周长。
答案:35 cm
变式2:如图,在△ABC 中,有矩形DEFG ,G 、F 在BC 上,D 、E 分别在
AB 、AC 上,AH ⊥BC 交DE 于M ,DG ∶DE =1∶2,BC =12 cm ,AH =8 cm ,求矩形的各边长。
变式2图
H
M
D E F G
C B
A
3
S 2
S 1
S 例3图 T
R
N
M
P
C
B A
问题一图
P
N
M
D C
B
A
答案:
724cm ,7
48cm 【例3】如图,已知P 为△ABC 内一点,过P 点分别作直线平行于△ABC 的
各边,形成小三角形的面积1S 、2S 、3S ,分别为4、9、49,求△ABC 的面积。
解:设MP =p ,RT =r ,PN =q ,由于1S 、2S 、3S 都相似于△ABC ,设△ABC 的面积为S ,AB =c ,则有
c q
S =
2,
c p S =3,c
r S =7,三式相加得: 17
32==++=
++c
c
c r q p S
∴12=S ,故144=S
【例4】如图,已知,在边长为1的正方形ABCD 的一边上取一点E ,使AE
=4
1
AD ,从AB 的中点F 作HF ⊥EC 于H 。
(1)求证:FH =FA ; (2)求EH ∶HC 的值。
证明:(1)连结EF ,FC ,在正方形ABCD 中,AD =AB =BC ,∠A =∠B =900
∵AE =41AD ,F 为AB 的中点,∴BC
FB
AF AE =
∴△EAF ∽△FBC ,∴∠AEF =∠BFC ,∠EFA =∠CFB ∴∠EFC =900,
2
1
=FC EF 又∵∠EFC =∠B =900∴△EFC ∽△FBC
∴∠HEF =∠BFC ,∠ECF =∠BCF
∴∠AEF =∠HEF ,∠AFE =∠HFE ∴△EAF ≌△HEF ∴FH =FA
(2)由(1)得
2
1
=FC EF ,由(1)易证△EHF ∽△EFC ,从而可得EC EH EF ⋅=2,同理CE CH FC ⋅=2,于是EH ∶HC =
例1图 H F E D C
B
A F
D A
2EF ∶2FC =1∶4
变式:如图,在矩形ABCD 中,6
5
=BC AB ,点E 在BC 上,点F 在CD 上,且EC =
61BC ,FC =5
3
CD ,FG ⊥AE 于G ,。
求证:AG =4GE 。
(提示:证△ECF ∽△FDA 得EF ∶AF =1∶2,再证△EFG ∽△EAF ∽△FAG 即可)
【例5】已知,在△ABC 中,∠ACB =900,过C 作CD ⊥AB 于D ,AD =m ,BD
=n ,2AC ∶2BC =2∶1,又关于x 的方程012)1(24
1
22=-+--m x n x 的两实
数根的差的平方小于192,求整数m 、n 的值。
分析:如图,易证△ABC ∽△ADC ,2AC ∶2BC =AD ∶BD =m ∶n =2∶1,即n m 2=,再由方程两根差的平方小于192可得2
1
>n ,又由判别式△≥0知n ≤2
∴
2
1
<n ≤2,又n 为整数,∴n =1,2 ∴m =2,n =1或m =4,n =2
例2图 D
C
B A
13 F
E
D
C
B A
问题一图 13 F
E
D
C
B A G
问题一图
探索与创新:
【问题一】已知:如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC (AB >AE )。
(1)△AEF 与△EFC 是否相似,若相似,证明你的结论;若不相似,请说明理由。
(2)设
BC
AB
=k ,是否存在这样的k 值,使得△AEF 与△BFC 相似,若存在,证明你的结论并求出k 的值;若不存在,说明理由。
解:(1)相似,如图
证明:延长FE 与CD 的延长线交于点G 。
在Rt △AEF 与Rt △DEG 中 ∵E 是AD 的中点
∴AE =ED ,∠AEF =∠DEG ,∠A =∠EDG
∴△AFE ≌△DGE
∴E 为FG 的中点。
又CE ⊥FG ,∴FC =GC ∴∠CFE =∠G 。
∴∠AFE =∠EFC ,又△AEF 与△EFC 均为直角三角形
∴△AEF ∽△EFC 。
(2)①存在。
如果∠BCF =∠AEF ,即k =2
3
=BC AB 时,△AEF ∽△BCF 。
证明:当
2
3=BC AB 时,3=DE DC 。
∴∠ECG =300。
∴∠ECG =∠ECF =∠AEF
=300,∴∠BCF =900-600=300。
又△AEF 和△BCF 均为直角三角形。
∴△AEF ∽△BCF 。
②因为EF 不平行于BC ,∴∠BCF ≠∠AFE 。
∴不存在第二种相似情况。