江苏省盐城市射阳县实验初级中学2017届九年级上学期期末考试数学试题(原卷版)

合集下载

盐城市九年级(上)期末数学试卷

盐城市九年级(上)期末数学试卷

盐城市九年级(上)期末数学试卷一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0 B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=0 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .23.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变4.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°5.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④6.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定7.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x8.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α 9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定10.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-11.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=12.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°13.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+314.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3 15.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离B.相切C.相交D.无法判断二、填空题16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.18.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.19.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.20.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.21.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 22.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 23.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.24.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.25.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.26.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 27.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.28.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.29.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.30.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题31.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?32.已知二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),若这个二次函数与x 轴交于A .B 两点,与y 轴交于点C ,求出△ABC 的面积.33.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG 的形状,并说明理由;(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC . 34.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-35.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.四、压轴题36.问题提出(1)如图①,在ABC中,42,6,135AB AC BAC==∠=,求ABC的面积.问题探究(2)如图②,半圆O的直径10AB=,C是半圆AB的中点,点D在BC上,且2CD BD=,点P是AB上的动点,试求PC PD+的最小值.问题解决(3)如图③,扇形AOB的半径为20,45AOB∠=在AB选点P,在边OA上选点E,在边OB上选点F,求PE EF FP++的长度的最小值.37.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.38.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.39.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2, 解得,a=2,m=0, ∴a-m=2. 故选:D. 【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003;调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.4.D解析:D 【解析】 【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.5.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩,所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=, 解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.6.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm ,∴直线和圆相切,故选B .【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.7.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.8.D解析:D【解析】连接OC ,则有∠BOC=2∠A=2α,∵OB=OC ,∴∠OBC=∠OCB ,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.9.C解析:C 【解析】 【分析】点到圆心的距离大于半径,得到点在圆外.【详解】 ∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.10.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 11.C解析:C【解析】【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.12.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2,再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2.故选:A .【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.14.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.19.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.20.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.21.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 22.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 23.3【解析】【分析】由题意连接OA ,根据切线的性质得出OA⊥PA,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA解析:3【解析】【分析】由题意连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.24.140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.25.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB===PAB PBC∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,3BC =, ∴()22223323AB AC BC =+=+=∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.26.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.27.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.28.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13. 【点睛】 此题主要考查概率的求解,解题的关键是熟知几何概率的公式.29..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】 平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法. 30.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时,,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时,=0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

九年级上册数学期末试卷(附答案解析)2017

九年级上册数学期末试卷(附答案解析)2017

九年级上册数学期末试卷(附答案解析)2017九年级数学上册期末试卷(含答案)一.选择题(共12小题,每小题4分,满分48分)1.若x:y=6:5,则下列等式中不正确的是( )A. B. C. D.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )A.2:3:5B.4:9:25C.4:10:25D.2:5:254.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )A. πm2B. πm2C. πm2D. πm26.二次函数y=ax2﹣2x﹣3(a0;(4)(a+c)2其中不正确的有( )A.1个B.2个C.3个D.4个9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )A.4cmB.5cmC.10cmD.40cm10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( )A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )A. B. C. D.12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )A. B. C. D.二.填空题(共6小题,每小题4分,满分24分)13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为__________.14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=__________度.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A.B.C.D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为__________.17.如图,A.D.E是⊙O上的三个点,且∠AOD=120°,B.C是弦AD上两点,BC= ,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是__________.18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD.CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:① ;②FG=FB;③AF= ;④S△ABC=5S△BDF,其中正确结论的序号是__________. 共10页:上一页xxxx下一页。

2017-2018上学期九年级数学期末试卷

2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。

最新2017年九年级上学期期末数学试卷两套汇编四附答案解析.docx

最新2017年九年级上学期期末数学试卷两套汇编四附答案解析.docx

2017年九年级上学期期末数学试卷两套汇编四附答案解析中学九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=22.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零3.已知x=1是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()A.0 B.1 C.0或1 D.0或﹣14.△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()A.B.2 C.D.25.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146 B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146 D.50+50(1+x)+50(1+2x)=1466.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.7.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π8.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>510.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A .1B .2C .3D .412.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .S 1、S 2的大小关系不确定二、填空题(本大题共6小题,每小题3分,共18分)13.如果函数1)1(232++-=+-kx x k y k k 是二次函数,那么k 的值一定是 .14.圆内接正六边形的边心距为2cm ,则这个正六边形的面积为 cm 2. 15.如图,等腰直角三角形ABC 绕C 点按顺时针旋转到△A 1B 1C 1的位置(A 、C 、B 1在同一直线上),∠B=90°,如果AB=1,那么AC 运动到A 1C 1所经过的图形的面积是 .16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 个. 17.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高 米.18.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.三、解答题(本大题共7小题,共56分)19.(8分)如图,已知直线与双曲线(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(k>0)上一点C的纵坐标为8,求△AOC的面积.20.解方程:2x2﹣3x﹣1=0.(2)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.①求证:方程总有两个不相等的实数根.②当p=2时,求该方程的根.21.(8分)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.22.(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?23.(8分)如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC 的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.24.(8分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B 按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.25.(8分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC 的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x(x+2)=0,⇒x=0或x+2=0,解得x1=0,x2=﹣2.故选C.【点评】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,B,C选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有D,掷一枚骰子,向上一面的数字一定大于零,是必然事件,符合题意.故选D.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.已知x=1是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()A.0 B.1 C.0或1 D.0或﹣1【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将x=1代入原方程即可求得k的值.【解答】解:当k=1时,方程(1﹣k)x2+k2x﹣1=0为一元一次方程,解为x=1;k≠1时,方程(1﹣k)x2+k2x﹣1=0为一元二次方程,把x=1代入方程(1﹣k)x2+k2x﹣1=0可得:1﹣k+k2﹣1=0,即﹣k+k2=0,可得k(k﹣1)=0,即k=0或1(舍去);故选C.【点评】该题应注意方程与一元二次方程的区别,此题1﹣k可为0,同时此题也考查了因式分解.4.△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()A.B.2 C.D.2【考点】相似三角形的性质.【分析】由△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,根据相似三角形的对应边成比例,即可求得答案.【解答】解:设△DEF的第三边长为x,∵△ABC的三边长分别为、、2,△DEF的两边长分别为1和,△ABC ∽△DEF,∴,解得:x=.即△DEF的第三边长为.故选C.【点评】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例定理的应用.5.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146 B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146 D.50+50(1+x)+50(1+2x)=146【考点】由实际问题抽象出一元二次方程.【分析】根据八、九月份平均每月的增长率相同,分别表示出八、九月份生产零件的个数列出方程,即可作出判断.【解答】解:根据题意得:八月份生产零件为50(1+x)(万个);九月份生产零件为50(1+x)2(万个),则x满足的方程是50(1+x)+50(1+x)2=146,故选C【点评】此题考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:随机闭合开关S1、S2、S3中的两个出现的情况列表得,所以概率为,故选B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.7.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π【考点】扇形面积的计算;旋转的性质.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=和旋转的性质是解题的关键.8.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.【点评】本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5【考点】二次函数与不等式(组).【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.【点评】此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.10.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,1),二次函数的开口向上,据此判断二次函数的图象.【解答】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.【点评】此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【考点】正方形的性质;勾股定理.【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=,∴S2的边长为x,S2的面积为x2,S1的边长为,S1的面积为x2,∴S 1>S 2,故选:A .【点评】本题利用了正方形的性质和等腰直角三角形的性质求解.二、填空题(本大题共6小题,每小题3分,共18分)13.如果函数1)1(232++-=+-kx x k y k k 是二次函数,那么k 的值一定是 0 .【考点】二次函数的定义.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:根据二次函数的定义,得:k 2﹣3k +2=2,解得k=0或k=3;又∵k ﹣3≠0,∴k ≠3.∴当k=0时,这个函数是二次函数.【点评】本题考查二次函数的定义.14.圆内接正六边形的边心距为2cm ,则这个正六边形的面积为 24 cm 2.【考点】正多边形和圆.【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【解答】解:如图,连接OA 、OB ;过点O 作OG ⊥AB 于点G .在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos 30°,∴OA===4cm,∴这个正六边形的面积为6××4×2=24cm2.故答案为:24.【点评】此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.15.如图,等腰直角三角形ABC绕C点按顺时针旋转到△A1B1C1的位置(A、C、B1在同一直线上),∠B=90°,如果AB=1,那么AC运动到A1C1所经过的图形的面积是.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件可得,AC的长度,∠ACA1的度数,从而根据扇形的面积公式得出答案.【解答】解:由AB=1,可得AC==,∠ACA1=135°S扇形ACA1===,故答案为.【点评】本题考查图形的旋转及扇形面积公式,解此题的关键是计算求出圆的半径和圆心角.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【考点】利用频率估计概率.【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.【点评】本题考查利用频率估计概率,解题的关键是明确题意,找出所求问题需要的条件.17.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高8米.【考点】相似三角形的应用.【分析】连接AB、CD,根据相似三角形的判定定理判断出△AOB∽△COD,再由相似三角形的对应边成比例即可得出CD的长.【解答】解:连接AB、CD,由题意可知,OA=OB=1米,OC=OD=16米,AB=0.5米,在△AOB与△COD中,∵=,∠AOB=∠COD,∴△AOB∽△COD,∴=,即=,解得CD=8米.故答案为:8.【点评】本题考查的是相似三角形的应用,根据题意判断出△AOB∽△COD,再根据相似三角形的对应边成比例即可解答.18.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是3≤x ≤4.【考点】直线与圆的位置关系;勾股定理;相似三角形的判定与性质.【分析】根据已知首先找出BP取最小值时QO⊥AC,进而求出△ABC∽△OQC,再求出x的最小值,进而求出PB的取值范围即可.【解答】解:过BP中点O,以BP为直径作圆,连接QO,当QO⊥AC时,QO最短,即BP最短,∵∠OQC=∠ABC=90°,∠C=∠C,∴△ABC∽△OQC,∴=,∵AB=3,BC=4,∴AC=5,∵BP=x,∴QO=x,CO=4﹣x,∴=,解得:x=3,当P与C重合时,BP=4,∴BP=x的取值范围是:3≤x≤4,故答案为:3≤x≤4.【点评】此题主要考查了直线与圆的位置关系以及三角形的相似的性质与判定和勾股定理等知识,找出当QO⊥AC时,QO最短即BP最短,进而利用相似求出是解决问题的关键.三、解答题(本大题共7小题,共56分)19.如图,已知直线与双曲线(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(k>0)上一点C的纵坐标为8,求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据正比例函数先求出点A的坐标,从而求出了k值为8;=S△AOF,所以S梯形CEFA=S△COA=15.(2)根据k的几何意义可知S△COE【解答】解:(1)∵点A横坐标为4,∴当x=4时,y=2.∴点A的坐标为(4,2).∵点A是直线与双曲线(k>0)的交点,∴k=4×2=8.(2)如图,过点C、A分别作x轴的垂线,垂足为E、F,∵点C在双曲线上,当y=8时,x=1.∴点C的坐标为(1,8).∵点C、A都在双曲线上,∴S△COE=S△AOF=4.∴S△COE +S梯形CEFA=S△COA+S△AOF.∴S△COA=S梯形CEFA.(6分)∵S梯形CEFA=×(2+8)×3=15,∴S△COA=15.(8分)【点评】主要考查了待定系数法求反比例函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.20.(1)解方程:2x2﹣3x﹣1=0.(2)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.①求证:方程总有两个不相等的实数根.②当p=2时,求该方程的根.【考点】根的判别式;解一元二次方程-公式法.【分析】(1)应用公式法,求出方程2x2﹣3x﹣1=0的解是多少即可.(2)①判断出△>0,即可推得方程总有两个不相等的实数根.②当p=2时,应用公式法,求出该方程的根是多少即可.【解答】解:(1)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=9+8=17,∴x1=,x2=.(2)①方程可变形为x2﹣5x+6﹣p2=0,∴△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根.②当p=2时,方程变形为x2﹣5x+2=0,∵△=(﹣5)2﹣4×1×2=25﹣8=17,∴x1=,x2=.【点评】此题主要考查了用公式法解一元二次方程,以及根的判别式,要熟练掌握.21.如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.【考点】等边三角形的性质;相似三角形的判定与性质.【分析】(1)利用△ACP∽△PDB的对应边成比例和等边三角形的性质可以找到AC、CD、DB的关系;(2)利用相似三角形的性质对应角相等和等边三角形的性质可以求出∠APB的度数.【解答】解:(1)当CD2=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即=,则根据相似三角形的判定定理得△ACP∽△PDB(2)当△ACP∽△PDB时,∠APC=∠PBD∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB的度数为120°.【点评】此题是开放性试题,要熟练运用相似三角形的性质和等边三角形的性质.22.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【考点】二次函数的应用.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.23.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【考点】切线的性质.【分析】(1)连接OC,只要证明OC∥BD即可.(2)在Rt△ABF中,根据BH=计算即可.【解答】证明(1)连接OC.∵C是中点,AB是○O的直径∴OC⊥AB,∵BD是○O切线,∴BD⊥AB.∴OC∥BD.∵AO=BO,∴AC=CD(2)∵E是OB中点,∴OE=BE在△COE与△FBE中,∠CEO=∠FEBOE=BE∠COE=∠FBE△COE≌△FBE(ASA)∴BF=CO∵OB=2,∴BF=2∴AF===2,∵AB是直径∴BH⊥AF∴AB•BF=AF•BH∴BH===.【点评】本题考查圆的有关知识,切线的性质全等三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,学会条件常用辅助线,属于中考常考题型.24.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B 按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.【考点】相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.【分析】(1)由由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数;(2)由△ABC≌△A1BC1,易证得△ABA1∽△CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得△CBC1的面积;(3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值.【解答】解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.∴,=4,∵S△ABA1=;∴S△CBC1(3)①如图1,过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=,当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB 的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.【点评】此题考查了旋转的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.25.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?【考点】二次函数综合题.【分析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO 中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;(2)分两种情况进行讨论:①当∠PQC=∠DAE=90°时,△ADE∽△QPC,②当∠QPC=∠DAE=90°时,△ADE∽△PQC,分别根据相似三角形的性质,得出关于t的方程,求得t的值.【解答】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4.设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3.∴AD=3.∴点D(﹣3,10)∵抛物线y=ax2+bx+c过点O(0,0),∴c=0.∵抛物线y=ax2+bx+c过点D(﹣3,10),C(﹣8,0),∴,解得.∴抛物线的解析式为:y=﹣x2﹣x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得,AD=3,AE=4,DE=5,∵CQ=t,EP=2t,∴PC=10﹣2t,①当∠PQC=∠DAE=90°时,△ADE∽△QPC,∴=,即=,解得t=;②当∠QPC=∠DAE=90°时,△ADE ∽△PQC ,∴=,即=, 解得t=,综上所述,当t=或时,以P 、Q 、C 为顶点的三角形与△ADE 相似.【点评】本题主要考查了相似三角形的判定与性质、矩形的性质及二次函数的综合应用,解题时注意:折叠的性质叠种对称变换,属于对称,折叠前后图形的形和小不变,位变化,对边和对应角相等.解题时注意分类思想的运用.2017学年初三数学第一学期期末试卷(试卷满分130分,考试时间120分)一.选择题.(本大题共10小题,每小题3分,共30分)1.下列点中,一定在二次函数21y x =-图象上的是A .(0,0)B .(1,1)C .(1,0)D .(0,1)2.如图,△ABC 中,∠B=90°,AB=1,BC=2,则sinA=A. B. 12 C. D.3.函数2(1)(3)y x x =+-的对称轴是直线 ( )A .x=1B .x= —1C .x=—3D .x=34.一个扇形的圆心角是120°,面积3πcm 2,那么这个扇形的半径是 ( )A .1cmB .3cmC .6cmD .9cm5.如图,已知AB 是圆O 的直径,∠CAB=30°,则cosD 的值为( )A . 12B C D 6.已知二次函数2y x =的图像上有一点P (1,1).若将该抛物线平移后所得的二次函数表达式221y x x =--,则点P 经过该次平移后的坐标为( )A. (2,1)B. (2,-1)C. (1,-2)D. (0,5)7.某市2015年国内生产总值(GDP )比2014年增长了12%,预计2016年比2015年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是 ( )A .12%+7%=x %B . (1+12%)(1+7%)=2(1+x %)C . 12%+7%=2x %D .(1+12%)(1+7%)=(1+x %)28.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,220a ab b --=,则tanA=( )A. B. C. D.1 9. 如图,在平面直角坐标系xOy 中,⊙P 的圆心是(2,)a (0a >),半径是2,与y 轴相切于点C ,直线y x =被⊙P 截得的弦AB 的长为a 的值是( )A .B .2+C .D .2+第9题图 第10题图10. 如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(1,0)A -, 顶点坐标为(1,)n ,点与轴的交点在(0,2)-和(0,1)-之间(不包括端点).有下列结论:①当3x >时,0y <;②n c a =-;③30a b +>;④2-1-3a <<.其中正确的结论有 ( )A . 1 个B .2 个C .3 个D .4 个。

2016-2017江苏省九年级上册数学期末试卷(附答案)

2016-2017江苏省九年级上册数学期末试卷(附答案)
2 2
A C O E B D
21. (本题满分 8 分)如图,△ABC 中,AB=AC,AD 是△ABC 的角平分线,点 O 为 AC 的中点,连接 DO 并延长到点 E,使 OE=OD,连接 AE,CE. C (1)求证:四边形 AECD 是矩形; O E D (2)当△ABC 满足什么条件时,矩形 AECD 是正方形, 并说明理由. B A (此处答题无效) 22. (本题满分 8 分)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点 A(0,4)、B(-4, 4)、C(-6,2),请在网格图中进行如下操作: y (1)利用网格图确定该圆弧所在圆的圆心 D 的位置(保留 .. 画图痕迹 ) ,并写出 D 点坐标为 ▲ ; .... (2)连接 AD、CD,则⊙D 的半径长为 ▲ (结 果保留 根号),∠ADC 的度数为 ▲ °; (3)若扇形 DAC 是一个圆锥的侧面展开图,求该圆锥 的底面半径长(结果保留根号) . (此处答题无效)
6.如图是二次函数 y=ax +bx+c 的图象,下列关系式中,正确的是„„„„„„( ▲ ) A.a>0 且 c<0 B.a<0 且 c<0 C.a<0 且 c>0 D.a>0 且 c>0
7.如图,⊙O 过正方形 ABCD 的顶点 A、B,且与 CD 相切.若正方形 ABCD 的边长为 2,则⊙O 的半径 为„„„„„„„„„„„„„„„„„„„„„„„„„„( ▲ ) 5 4 5 A.1 B. C. D. 2 3 4 y F A B D
2

.
18.如图,Rt△AOB 中,∠O=90°,OA=OB=3 2,⊙O 的半径为 1,P 是 AB 边上的动点,过点 P 作⊙O 的一条切线 PQ,切点为 Q,则切线长 PQ 的最小值为 ▲ .

2016-2017学年江苏省盐城市射阳实验中学九年级(上)月考数学试卷

2016-2017学年江苏省盐城市射阳实验中学九年级(上)月考数学试卷

2016-2017学年江苏省盐城市射阳实验中学九年级(上)月考数学试卷(12月份)一、选择题(每小题3分,共24分)1.(3分)3是9的()A.3次方根B.相反数C.绝对值D.平方根2.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图中几何体的主视图是()A.B.C. D.4.(3分)下列运算正确的是()A.a•a3=a3B.2(a﹣b)=2a﹣b C.(a3)2=a5D.a2﹣2a2=﹣a25.(3分)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=D.y=6.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.77.(3分)下列命题:(1)一组数据a1,a2,…a n的方差为s2,则另一组数据2a1,2a2,…2a n的方差为2s2.(2)三角形中线能将该三角形的面积平分.(3)相似三角形的面积比等于相似比的平方.(4)圆绕圆心旋转37.5°后也能与原来图形重合.(5)极可能发生的事件可以看作是必然事件.(6)关于x的方程x2+3ax﹣9=0一定有两个不相等的实数根.其中正确的个数是()A.3个 B.4个 C.5个 D.6个8.(3分)如图,在平面直角坐标系xOy中,▱OABC的边OC在x轴上,A(1,4)、C(3,0)点D在AB上,D(3,4),过点D的直线l平分▱OABC的面积,现将l 绕点A逆时针旋转90°得直线l′,则直线l′的函数解析式为()A.y=﹣2x+6 B.y=﹣2x+6.5 C.D.二、填空题(每小题3分,共30分)9.(3分)数1+的相反数是.10.(3分)分解因式:a3+a2=.11.(3分)据俄罗斯《生意人报》11月19日报道称,俄罗斯将向中国供应24架多功能战机苏﹣35,每架约8300万美元,请你把数8300万用科学记数法表示为.12.(3分)从2008年起,每年10月15日世卫组织设定为“全球洗手日”.某中学为了解学生卫生习惯,随机抽取了10名同学每天洗手次数,结果是6,3,4,6,6,3,5,6,4,5,那么这组数据的众数是.13.(3分)一个直角三角形的两条直角边长为6和8,则它的斜边上的高是.14.(3分)在平面直角坐标系中,点P(2,a)在一次函数y=x+1的图象上,则点Q(a,3a﹣5)位于第象限.15.(3分)若t2﹣2t﹣1=0,则代数式2t2﹣4t+3的值为.16.(3分)一个扇形的半径为8cm,弧长为πcm,则扇形的面积为cm2.17.(3分)如图,△ABC是边长为8的等边三角形,F是边BC上的动点,且DF ⊥AB,EF⊥AC.则四边形ADFE的面积最大值是.18.(3分)如图,直线y=2x+1分别交于x、y轴于点A、C.P是该直线与双曲线y=(x>0)的交点,PB⊥x轴,B为垂足,设点M与点P在同一个反比例函数的图象上,且点M在直线PB在右则,作MN⊥x轴,N为垂足,当△MNB与△AOC相似时,点M的坐标是.三、解答题19.(8分)(1)计算:﹣2cos30°+()0﹣(﹣)﹣1;(2)解不等式组..20.(8分)化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.21.(8分)某校为了解学生课桌肚书籍讲义摆放整理情况,随机抽取了一部分九年级学生进行检查,检查结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据检查结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了名学生.请根据数据信息补全条形统计图;(2)求扇形统计图中,C所在扇形的圆心角.(3)若该校九年级有1200名学生,请估计检查结果等级在合格以上(包括合格)的学生约有多少人?22.(8分)甲、乙、丙三位老师进入“江苏省骨干教师优质课大赛”的决赛,他们通过抽签来决定上课顺序.(1)求丙第一位出场的概率.(2)用树状图写出所有可能的上课顺序,并求出乙比甲先上课的概率.23.(10分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F 点处,DF交BC于点E.连结CF(1)求证:CF∥BD(2)若CD=2,∠ADB=30°,求BE的长.24.(10分)在某张航海图上,标明了三个观测点的坐标为O(0,0)、B(12,0)、C(12,16),由三个观测点确定的圆形区域是“利剑﹣2016”中国多军种军事演习区,如图所示.(1)求圆形区域的面积.(2)某时刻海面上出现一艘可疑船A,在观测点O测得A位于北偏东45°方向上,同时在观测点B测得A位于北偏东30°方向上,求观测点B到可疑船A的距离(结果保留根号);(3)当可疑船A由(2)中的位置向正西方向航行时,是否会进入演习区?请通过计算解释.25.(10分)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若AC=6,OC=4,求PA的长.26.(10分)微商王晶经营零食坊,他销售的“鹤鸣”牌草鸡蛋糕的进价为40元/盒,售价为60元/盒,每月可卖出300盒,经市场调研发现,售价在60元/盒的基础上每涨1元,每月要少卖10盒,为获更大利润,现将售价提高x元,设月利润为y元.(1)求当售价定为多少元/盒时,才能使月利润y最大?最大月利润是多少?(2)为了使这种糕点销售的月利润不少于6090元,提价后售价应在什么范围?27.(12分)如图1,E,F分别是正方形ABCD的边AB,AD的中点.AB=4,且将△AEF绕点A逆时针旋转.(1)如图2,当△AEF绕点A逆时针旋转90°时,连结DF,BE,延长BE交DF于点P,求BP的长.(2)如图3,在△AEF绕点A逆时针旋转过程中,直线BE,DF相交于点P,则线段BE,DF有怎样的关系?利用图3的位置加以证明.(3)如图4,当△AEF旋转到图4位置时,△AED与△AFB的面积关系如何?利用图4证明.28.(12分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使△ABC的面积有最大值?若存在,求出这个最大值;若不存在,请说明理由.(3)在该坐标平面内有点Q,△ABQ是等腰直角三角形,写出所有满足条件的点Q的坐标.2016-2017学年江苏省盐城市射阳实验中学九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2016秋•射阳县校级月考)3是9的()A.3次方根B.相反数C.绝对值D.平方根【解答】解:∵9的平方根是±3,∴3是9的平方根.故选:D.2.(3分)(2016•东台市二模)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.3.(3分)(2016秋•射阳县校级月考)如图中几何体的主视图是()A.B.C. D.【解答】解:∵圆柱体的主视图为长方形,∴A选项符合题意.故选A.4.(3分)(2015•遂宁)下列运算正确的是()A.a•a3=a3B.2(a﹣b)=2a﹣b C.(a3)2=a5D.a2﹣2a2=﹣a2【解答】解:A、a•a3=a4,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a3)2=a6,错误;D、a2﹣2a2=﹣a2,正确;故选D5.(3分)(2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=D.y=【解答】解:A、y=x+2,x为任意实数,故错误;B、y=x2+2,x为任意实数,故错误;C、,x+2≥0,即x≥﹣2,故正确;D、y=,x+2≠0,即x≠﹣2,故错误;故选:C.6.(3分)(2012•三明)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.7.(3分)(2016秋•射阳县校级月考)下列命题:(1)一组数据a1,a2,…a n的方差为s2,则另一组数据2a1,2a2,…2a n的方差为2s2.(2)三角形中线能将该三角形的面积平分.(3)相似三角形的面积比等于相似比的平方.(4)圆绕圆心旋转37.5°后也能与原来图形重合.(5)极可能发生的事件可以看作是必然事件.(6)关于x的方程x2+3ax﹣9=0一定有两个不相等的实数根.其中正确的个数是()A.3个 B.4个 C.5个 D.6个【解答】解:(1)一组数据a1,a2,…a n的方差为s2,则另一组数据2a1,2a2,…2a n 的方差为4s2.故原命题错误;(2)三角形中线能将该三角形的面积平分.故原命题正确;(3)相似三角形的面积比等于相似比的平方.故原命题正确;(4)圆绕圆心旋转37.5°后也能与原来图形重合.故原命题正确;(5)一定发生的事件可以看作是必然事件.故原命题错误;(6)∵△=3a2+36>0,∴关于x的方程x2+3ax﹣9=0一定有两个不相等的实数根.故原命题正确;故选B.8.(3分)(2016秋•射阳县校级月考)如图,在平面直角坐标系xOy中,▱OABC 的边OC在x轴上,A(1,4)、C(3,0)点D在AB上,D(3,4),过点D的直线l平分▱OABC的面积,现将l绕点A逆时针旋转90°得直线l′,则直线l′的函数解析式为()A.y=﹣2x+6 B.y=﹣2x+6.5 C.D.【解答】解:∵四边形OABC是平行四边形,∵A(1,4)、C(3,0),∴B(4,4),∵直线l平分▱OABC的面积,∴OI=BD=4﹣3=1,∴I(1,0),∵AB∥x轴,AI⊥x轴,∴点I绕点A逆时针旋转90°后在AB的I′处,且AI′=AI=4,∴I′(5,4),D绕点A逆时针旋转90°后在直线IA的D′处,且AD′=AD=2,∴D′(1,6),设直线l′的函数解析式为:y=kx+b,将I′(5,4),D′(1,6)代入得:,∴,∴直线l′的函数解析式为:y=﹣x+,故选D.二、填空题(每小题3分,共30分)9.(3分)(2016秋•射阳县校级月考)数1+的相反数是﹣1﹣.【解答】解:1+的相反数是﹣1﹣,故答案为:﹣1﹣.10.(3分)(2007•太原)分解因式:a3+a2=a2(a+1).【解答】解:a3+a2=a2(a+1).11.(3分)(2016秋•射阳县校级月考)据俄罗斯《生意人报》11月19日报道称,俄罗斯将向中国供应24架多功能战机苏﹣35,每架约8300万美元,请你把数8300万用科学记数法表示为8.3×107.【解答】解:8300万用科学记数法表示为:8.3×107,故答案为:8.3×107.12.(3分)(2016秋•射阳县校级月考)从2008年起,每年10月15日世卫组织设定为“全球洗手日”.某中学为了解学生卫生习惯,随机抽取了10名同学每天洗手次数,结果是6,3,4,6,6,3,5,6,4,5,那么这组数据的众数是6.【解答】解:在这一组数据中6是出现次数最多的,故众数是6.故答案为:6.13.(3分)(2016秋•射阳县校级月考)一个直角三角形的两条直角边长为6和8,则它的斜边上的高是 4.8.【解答】解:∵直角三角形的两直角边长为6和8,斜边长为:=10,三角形的面积=×6×8=24,设斜边上的高为x,则x•10=24,解得x=4.8.故答案为:4.8.14.(3分)(2012•贵阳模拟)在平面直角坐标系中,点P(2,a)在一次函数y=x+1的图象上,则点Q(a,3a﹣5)位于第一象限.【解答】解:∵P(2,a)在一次函数y=x+1的图象上,∴a=2+1=3,∴3a﹣5=3×3﹣5=4,∴Q(3,4),∴点Q(a,3a﹣5)位于第一象限.故答案为:一.15.(3分)(2016秋•射阳县校级月考)若t2﹣2t﹣1=0,则代数式2t2﹣4t+3的值为5.【解答】解:∵t2﹣2t﹣1=0,∴t2﹣2t=1,∴2t2﹣4t+3=2(t2﹣2t)+3=2×1+3=5,故答案为:5.16.(3分)(2016秋•射阳县校级月考)一个扇形的半径为8cm,弧长为πcm,则扇形的面积为πcm2.=×8×π=π(cm2).【解答】解:根据题意得,S扇形面积故答案为π.17.(3分)(2016秋•射阳县校级月考)如图,△ABC是边长为8的等边三角形,F是边BC上的动点,且DF⊥AB,EF⊥AC.则四边形ADFE的面积最大值是12.【解答】解:作AM⊥BC于M,如图所示:∵△ABC是等边三角形,∴AB=BC=8,BM=CM=BC=4,∴AM=AB=4,∴△ABC的面积=BC•AM=×8×4=16,设BF=x,则CF=8﹣x,∵∠BDF=∠CEF=90°,∠B=∠C=60°,∴∠DFB=∠EFC=30°,∴BD=BF=x,CE=CF=(8﹣x),∴DF=BD=x,EF=CE=(8﹣x),∴△BDF的面积=BD•DF=×x×x=x2,△CEF的面积=CE•EF=×(8﹣x)×(8﹣x)=(8﹣x)2,=△ABC的面积﹣△BDF的面积﹣△CEF的面积∴S四边形ADFE=16﹣x2﹣(8﹣x)2=﹣x2+2x+8,即S与x之间的函数关系式为S=﹣x2+2x+8;又∵S=﹣x2+2x+8=﹣(x﹣4)2+12,﹣<0,∴当x=4时,S取最大值为12;故答案为12.18.(3分)(2016秋•射阳县校级月考)如图,直线y=2x+1分别交于x、y轴于点A、C.P是该直线与双曲线y=(x>0)的交点,PB⊥x轴,B为垂足,设点M与点P在同一个反比例函数的图象上,且点M在直线PB在右则,作MN⊥x 轴,N为垂足,当△MNB与△AOC相似时,点M的坐标是(,﹣1)或(3,1).【解答】解:对于直线y=2x+1,当x=0时,y=1,当y=0时,x=﹣,则点A的坐标为(﹣,0),点C的坐标为(0,1),∴OA=,OC=1,,解得,,(舍去),则OB=1,设点M的坐标为(x,),当△MNB∽△AOC时,=,即=,解得,x1=2,x2=﹣2(舍去),则点M的坐标为(3,1);当△MNB∽△COA时,=,即=,解得,x1=,x2=(舍去)则点M的坐标为(,﹣1),故答案为(,﹣1)或(3,1).三、解答题19.(8分)(2016秋•射阳县校级月考)(1)计算:﹣2cos30°+()0﹣(﹣)﹣1;(2)解不等式组..【解答】解:(1)原式=3﹣+1+3=;(2)由①得,x<6;由②得,x≥3,故此不等式组的解集为:3≤x<6.20.(8分)(2015•达州)化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.【解答】解:原式=•+=+===,∵a与2、3构成△ABC的三边,且a为整数,∴1<a<5,即a=2,3,4,当a=2或a=3时,原式没有意义,则a=4时,原式=1.21.(8分)(2016秋•射阳县校级月考)某校为了解学生课桌肚书籍讲义摆放整理情况,随机抽取了一部分九年级学生进行检查,检查结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据检查结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了60名学生.请根据数据信息补全条形统计图;(2)求扇形统计图中,C所在扇形的圆心角.(3)若该校九年级有1200名学生,请估计检查结果等级在合格以上(包括合格)的学生约有多少人?【解答】解:(1)本次测试随机抽取的学生总数:24÷40%=60,A等级人数:60﹣24﹣4﹣2=30,如图所示;故答案为60;(2)4÷60×360°=24°;(3)1200××100%=1160(人),答:测试成绩等级在合格以上(包括合格)的学生约有1160人.22.(8分)(2016秋•射阳县校级月考)甲、乙、丙三位老师进入“江苏省骨干教师优质课大赛”的决赛,他们通过抽签来决定上课顺序.(1)求丙第一位出场的概率.(2)用树状图写出所有可能的上课顺序,并求出乙比甲先上课的概率.【解答】解:(1)∵甲、乙、丙三位老师进入“江苏省骨干教师优质课大赛”的决赛,∴丙第一位出场的概率是:P(丙第一位出场)=;(2)根据题意,画树状图如下:∵出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,∴乙比甲先上课的情况有:乙甲丙,乙丙甲,丙乙甲,∴乙比甲先上课的概率为:P(乙比甲先上课)=.23.(10分)(2016秋•射阳县校级月考)如图,将矩形纸片ABCD沿对角线BD 折叠,使点A落在平面上的F点处,DF交BC于点E.连结CF(1)求证:CF∥BD(2)若CD=2,∠ADB=30°,求BE的长.【解答】解:(1)∵将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,∵AB=BF=CD,∠BFD=∠BCD=∠A=90°,∴点B,F,C,D四点共圆,∵BF=CD,∴=,∴∠BDE=∠DFC,∴CF∥BD;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=2,在Rt△ECD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴(2EC)2﹣EC2=CD2,∴CE=,∴BE=BC﹣EC=.24.(10分)(2016秋•射阳县校级月考)在某张航海图上,标明了三个观测点的坐标为O(0,0)、B(12,0)、C(12,16),由三个观测点确定的圆形区域是“利剑﹣2016”中国多军种军事演习区,如图所示.(1)求圆形区域的面积.(2)某时刻海面上出现一艘可疑船A,在观测点O测得A位于北偏东45°方向上,同时在观测点B测得A位于北偏东30°方向上,求观测点B到可疑船A的距离(结果保留根号);(3)当可疑船A由(2)中的位置向正西方向航行时,是否会进入演习区?请通过计算解释.【解答】解:(1)由O(0,0),B(12,0),C(12,16)三点的坐标可知:OB ⊥BC,即△OBC为直角三角形,所以其外接圆的直径2R=OC==20,即R=10,故所求圆形区域的面积S=πR2=100π;(2)由图可知,在△OAB中,∠AOB=90°﹣45°=45°,∠OBA=90°+30°=120°,OB=12,则∠OAB=180°﹣45°﹣120°=15°,根据正弦定理有=,即=,解得AB=12(+1);(3)设A点的纵坐标为y,则y=ABsin(180°﹣120°)=12(+1)×=6(3+)>2R,因此当可疑船由(2)中的位置向正西方向航行时,不会进入演习区.25.(10分)(2016秋•射阳县校级月考)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O 于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若AC=6,OC=4,求PA的长.【解答】(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)解:连接BE,∵OC=4,AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO==2,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC•PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3,26.(10分)(2016秋•射阳县校级月考)微商王晶经营零食坊,他销售的“鹤鸣”牌草鸡蛋糕的进价为40元/盒,售价为60元/盒,每月可卖出300盒,经市场调研发现,售价在60元/盒的基础上每涨1元,每月要少卖10盒,为获更大利润,现将售价提高x元,设月利润为y元.(1)求当售价定为多少元/盒时,才能使月利润y最大?最大月利润是多少?(2)为了使这种糕点销售的月利润不少于6090元,提价后售价应在什么范围?【解答】解:(1)由题意可得,y=(60+x﹣40)(300﹣10x)=﹣10(x﹣5)2+6250,∴当x=5时,y有最大值,此时y=6250,即售价定为65元/盒时,能使月利润最大,最大月利润是6250元;(2)解:由题意可得,﹣10(x﹣5)2+6250≥6090解得,1≤x≤9,即61≤60+x≤69,即提价后售价应在61元/盒~69元/盒.27.(12分)(2016秋•射阳县校级月考)如图1,E,F分别是正方形ABCD的边AB,AD的中点.AB=4,且将△AEF绕点A逆时针旋转.(1)如图2,当△AEF绕点A逆时针旋转90°时,连结DF,BE,延长BE交DF 于点P,求BP的长.(2)如图3,在△AEF绕点A逆时针旋转过程中,直线BE,DF相交于点P,则线段BE,DF有怎样的关系?利用图3的位置加以证明.(3)如图4,当△AEF旋转到图4位置时,△AED与△AFB的面积关系如何?利用图4证明.【解答】解:(1)∵四边形ABCD为正方形,∴AB=AD=4,∠DAB=90°,如图1,∵E,F分别是正方形ABCD的边AB,AD的中点,∴AE=AF=2,由旋转得:图2中的AE=AF=2,在△AFD和△AEB中,∵,∴△AFD≌△AEB(SAS),∴∠ADF=∠ABE,∵∠AEB=∠DEP,∴∠DPE=∠DAB=90°,在Rt△AEB中,AE=2,AB=4,由勾股定理得:BE==2,cos∠ABE=,∴,BP=;(2)BE=DF且BE⊥DF,理由如下:由旋转得:∠EAB=∠FAD,∵AE=AF,AB=AD,∴△AEB≌△AFD,∴BE=DF,∠FDA=∠ABE,∵∠PMD=∠AMB,∴∠DPM=∠MAB=90°,∴BP⊥DF,即BE⊥DF;(3)如图4,△AED与△AFB的面积相等,理由是:过F作FH⊥AB,交BA延长线于H,过E作EG⊥AD于G,∵∠EAF=90°,∴∠EAH+∠FAH=90°,∵∠HAD=90°,∴∠EAH+∠EAG=90°,∴∠FAH=∠EAG,∵AE=AF,∠EGA=∠AHF=90°,∴△AEG≌△AFH,∴EG=FH,∵S=AD•EG,△AEDS△ABF=AB•FH,∵AB=AD,∴S=S△AFB.△AED28.(12分)(2016秋•射阳县校级月考)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使△ABC的面积有最大值?若存在,求出这个最大值;若不存在,请说明理由.(3)在该坐标平面内有点Q,△ABQ是等腰直角三角形,写出所有满足条件的点Q的坐标.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=6,即B(4,6),∵A(,)和B(4,6)在抛物线y=ax2+bx+6上,∴,解得:,∴抛物线的解析式y=2x2﹣8x+6;(2)存在.设动点P的坐标为(n,n+2),点C的坐标为(n,2n2﹣8n+6),=•PC•(B x﹣A x)=PC,∵S△ABC∵PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4=﹣2(n﹣)2+,∴S=﹣(n﹣)2+,△ABC∵﹣<0,∴开口向下,有最大值,∴当n=时,△ABC的面积有最大值.(3)如图,①当B为等腰直角三角形的直角顶点时,Q1(0.5,9.5),Q2(7.5,2.5),②当A为等腰直角三角形的直角顶点时,Q3(﹣3,6),Q4(4,﹣1),③当Q为等腰直角三角形的直角顶点时,Q5(4,2.5),Q6(0.5,9.5),综上所述,满足条件的点Q的坐标为(7.5,2.5),(4,﹣1),(4,2.5),(0.5,9.5),(0.5,6),(﹣3,6).参与本试卷答题和审题的老师有:HLing;王学峰;曹先生;1987483819;sdwdmahongye;冯延鹏;2300680618;HJJ;wdxwwzy;gbl210;sjzx;CJX;zjx111;守拙;知足长乐;sks;张其铎;lantin;zgm666;tcm123;弯弯的小河(排名不分先后)菁优网2017年5月16日。

2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)

2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)

一、选择题(题型注释)1、若点P(2,m)是反比例函数图象上一点,则m的值是()A.1B.2C.3D.4来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)2、抛物线的顶点坐标是()A.(3, -5)B.(-3, 5)C.(3, 5)D.(-3, -5)来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)3、反比例函数的图象位于()A.第一、二象限B.第三、四象限C.第一、象限D.第二、四象限来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)4、如图,C是⊙O上一点,O是圆心.若∠AOB=80°,则∠ACB的度数为()A.80°B.100°C.160°D.40°来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)5、将抛物线的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是()A.B.C.D.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)6、绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)7、已知圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A.60πB.45πC.30πD.15π来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)8、已知二次函数的图象(﹣0.7≤x≤2)如图所示、关于该函数在所给自变量x的取值范围内,下列说法正确的是()A.有最小值1,有最大值2B.有最小值-1,有最大值1C.有最小值-1,有最大值2D.有最小值-1,无最大值来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)9、已知,,是反比例函数的图象上的三点,且,则的大小关系是()A.B.C.D.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)10、小明从图所示的二次函数的图象中,观察得出了下面四条信息:①;②<0;③;④方程必有一个根在-1到0之间.你认为其中正确信息的个数有( )A.1个B.2个C.3个D.4个来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)11、如图,已知∠BPC=50°,则∠BAC=来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)二、填空题(题型注释)12、抛物线与y轴的交点坐标为_________.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)13、已知正比例函数与反比例函数的图象的一个交点坐标为(-1,2),则另一个交点的坐标为来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)14、如图,已知Rt△ABC是⊙O的内接三角形,其中直角边AC=6、BC=8,则⊙O的半径是_________.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)15、如图,二次函数的图象与x轴相交于点(﹣1,0)和(3,0),则它的对称轴是_________.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)16、如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动121次时,点P所经过的路程是_________.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)三、解答题(题型注释)17、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)18、已知抛物线的图象经过点(﹣1,0),点(3,0);(1)求抛物线函数解析式;(2)求函数的顶点坐标.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)19、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,若,求证:AB=AC来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)20、如图,函数的图象与函数()的图象交于A(,1)、B (1,)两点.(1)求函数的表达式;(2)观察图象,比较当时,与的大小.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)21、二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)当x为何值时,y>0;y<0?(3)写出y随x的增大而减小的自变量x的取值范围.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)22、如图,在⊙O中,弧AB=60°,AB=6,(1)求圆的半径;(2)求弧AB的长;(3)求阴影部分的面积.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)23、某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)24、已知抛物线(1)填空:抛物线的顶点坐标是(,),对称轴是;(2)已知y轴上一点A(0,-2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点 N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.来源:2017届江苏盐城射阳县实验初中九年级上期中考试数学试卷(带解析)参考答案1、B2、C3、D4、D5、B6、D7、D8、C9、C10、C11、50°12、(0,-3)13、(1,-2)14、515、直线x=116、17、(1)、答案见解析;(2)、r=8cm18、(1)、y=x2﹣2x﹣3;(2)、(1,-4)19、证明过程见解析20、(1)、y2=; (2)、当0<x<1或x>3时,y1<y2,当x=1或x=3时,y1=y2,当1<x <3时,y1>y2.21、(1)、x1=1,x2=3;(2)、1<x<3时y>0;x<1或x>3时y<0;(3)、x≥222、(1)、r=6;(2)、弧AB的长=2π;(3)、6π﹣9.23、(1)、涨价5元,最大利润为4500;(2)、涨价3元.24、(1)、顶点(0,-1),对称轴:y轴;(2)、P1() P2();(3)、当点P的坐标为()时:N1() N2(-),N3();当点P 的坐标为()时,N4(), N5() , N6()【解析】1、试题分析:将点P代入反比例函数解析式求出m的值.根据题意得:m==2.考点:反比例函数图象上的点.2、试题分析:对于二次函数y=a+k的顶点坐标为(m,k),本题中的顶点坐标为(3,5).考点:二次函数的顶点坐标.3、试题分析:对于反比例函数,当k>0时,图象处于一、三象限;当k<0时,图象处于二、四象限.本题中k=-2<0,所以处于二、四象限.考点:反比例函数的图象.4、试题分析:同弧所对的圆心角的度数等于圆周角度数的2倍.考点:圆周角与圆心角5、试题分析:二次函数图象平移的法则:左加右减,上加下减.所以本题平移后的解析式为:.考点:二次函数的图象平移法则.6、试题分析:连接OA,根据垂径定理可得AB=2AD,根据题意可得:OA=5m,OD=CD -OC=8-5=3m,根据勾股定理可得:AD=4m,则AB=2AD=2×4=8m.考点:垂径定理.7、试题分析:根据圆锥的侧面积计算公式可得:S=πrl=π×3×5=15π.考点:圆柱的侧面积计算.8、试题分析:根据图示可得:当x=1时,函数有最大值,最大值为2;当x=-0.7,函数有最小值,最小值为-1.考点:二次函数的图象.9、试题分析:对于反比例函数,当x>0时,y>0;当x<0时,y<0,则本题中最大;在每一个象限内,y随x的增大而减小,因为,所以;∴>.考点:反比例函数图形的性质.10、试题分析:①、∵对称轴为x=,即-=,∴2a=-3b,即2a+3b=0,∴①正确;②、∵图形与x轴有两个交点,∴>0,∴②错误;③、根据图象可得:当x=-1时,y>0,即a-b+c>0,∴③正确;④、根据图象可得图象与x轴的一个交点在-1和0之间,即方程必有一个根在-1和0之间,∴④正确.考点:二次函数图象的性质.11、试题分析:在同圆中,同弧所对的圆周角度数相等,本题中圆周角∠BPC和圆周角∠BAC所对弧都是弧BC,则说明两个角的度数相等.考点:圆周角的度数.12、试题分析:抛物线与y轴的交点,即当x=0时y的值.本题中当x=0时,y=-3,∴与y 轴的交点坐标为(0,-3).考点:二次函数与y轴的交点.13、试题分析:将(-1,2)代入反比例函数得k=-2,根据题意列出方程组得:解得:、∴另一个交点坐标为(1,-2).考点:函数图象的交点坐标.14、试题分析:本题首先根据直径所对的圆周角为直角可得AB为直径,然后根据Rt△ABC的勾股定理可得AB=10,即直径为10,所以半径为5.考点:(1)、勾股定理;(2)、直径的求法.15、试题分析:在二次函数中,到对称轴距离相等的点所对应的函数值也相等,本题中说明点-1和点3到对称轴的距离相等,则对称轴为直线x=(-1+3)÷2=1.考点:二次函数图象的性质.16、试题分析:本题根据题意可得,当翻滚5次之后又回到现在的状态,则121次是翻滚了24周后多一次,本题我们只需要求出翻滚一周点P所经过的路程就可以得出121次所经过的路程.每次翻滚找准圆心、半径与圆心角,根据弧长的计算公式进行求解.考点:弧长的计算公式.17、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质18、试题分析:(1)、将两点代入列出关于b和c的二元一次方程组,然后进行求解;(2)、根据二次函数的顶点坐标的求法进行求解.试题解析:(1)、把(﹣1,0),(3,0)代入y=x2+bx+c(a≠0)得,解得∴所求函数的解析式为y=x2﹣2x﹣3,(2)、抛物线的解析式为y=x2﹣2x﹣3,∴=﹣=1,∴抛物线的顶点坐标为(1,-4)考点:(1)、待定系数法求函数解析式;(2)、二次函数顶点坐标的求法.19、试题分析:连接AD,根据直径所对的圆周角为直角得出∠ABD=∠ADC,根据等弧所对的圆周角相等得出∠BAD=∠CAD,然后根据AD为公共边判定△ABD和△ACD全等,从而说明AB=AC.试题解析:连接AD ∵AB为圆O的直径,∴∠ADB=∠ADC=90°,∵=,∴∠BAD=∠CAD,∵在△ABD和△ACD中,,∴△ABD≌△ACD(ASA).∴AB=AC考点:(1)、圆周角定理;(2)、弧、圆心角及弦之间的关系;(3)、全等三角形的判定20、试题分析:(1)、首先将点A坐标代入一次函数解析式求出a的值,然后将点A的坐标代入反比例函数解析式求出反比例函数的解析式;(2)、根据图形进行判定.试题解析:(1)、把点A坐标代入y1=﹣x+4,得﹣a+4=1,解得:a=3,∴A(3,1),把点A坐标代入y2=,∴k2=3,∴函数y2的表达式为:y2=;(2)、∴由图象可知,当0<x<1或x>3时,y1<y2;当x=1或x=3时,y1=y2;当1<x<3时,y1>y2.考点:一次函数与反比例函数的交点问题.21、试题分析:(1)、方程的解就是函数图象与x轴的交点;(2)、根据图形可以进行判定;(3)、在对称轴的右边,y随x的增大而减小.试题解析:(1)、由图形可得:x1=1,x2=3;(2)、结合图形可得:1<x<3时y>0;x<1或x>3时y<0;(3)、根据图形可得当x≥2时,y随x的增大而减小.考点:二次函数图象的性质.22、试题分析:(1)、根据弧的度数得出∠AOB=60°,然后根据OA=OB得出△AOB为等边三角形,从而得出圆的半径;(2)、根据弧长的计算公式进行求解;(3)、阴影部分的面积=扇形OAB的面积-△OAB的面积.试题解析:(1)、∵弧AB=60°,∴∠AOB=60°又∵OA=OB,∴△OAB是等边三角形,∴OA=AB=6;(2)、弧AB的长l==2π;(3)、等边△AOB的面积是:=9, S扇形OAB==6π,则S阴影=S扇形OAB﹣S△OAB=6π﹣9.考点:(1)、弧长公式;(2)、扇形的面积公式23、试题分析:(1)、首先设涨价x元,总利润为y,根据总利润=单价利润×数量列出函数解析式,然后将解析式化成顶点式进行判定,单价利润=10+x,数量=400-20x;(2)、求出当y=4420元时的x的值,要是顾客得到实惠,则x的值应取小的数.试题解析:(1)、设涨价x元时总利润为y,则y=(10+x)(400﹣20x)=﹣20x2+400x+4000=﹣20(x﹣5)2+4500答:当每千克涨价5元时,每天的盈利最多,最多为4500元.∴当x=5时,y取得最大值,最大值为4500.(2)、设每千克应涨价x元,则(10+x)(400﹣20x)=4420 解得x=3或x=7,∵为了使顾客得到实惠,所以x=3.答:每千克应涨价3元.考点:(1)、二次函数的应用;(2)、一元二次方程的应用;(3)、求二次函数的最大(小)值的方法24、试题分析:(1)、根据解析式可求得顶点坐标和对称轴;(2)、根据等边三角形的性质来进行求解,本题可以首先设出点P的坐标,然后求出PA、PB、AB的长度,然后根据等边三角形的性质进行计算;(3)、分两种情况根据菱形的性质求出点N的坐标.试题解析:(1)、顶点(0,-1),对称轴: y轴(或直线 x = 0)(2)、P1() P2()(3)、当点P的坐标为()时:N1() N2(-),N3();当点P的坐标为()时,N4(), N5() , N6().考点:(1)、二次函数的应用;(2)、等边三角形的性质.。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射阳县实验初中2016年秋学期期末考试初三数学试卷
一、选择题:(本大题共8小题,每小题3分,共24分.)
1. -3的绝对值是( )
A. -3 B. 3 C. D.
2. 下列图形中,既是轴对称图形又是中心对称图形的是( )

A. B. C. D.
3. 下列运算正确的是( )
A. B.
C. D.
4. 如图是一个由3个相同的正方体组成的立体图形,则它的主视图为( )

A. B. C. D.
5. 下列四个实数中,是无理数的为( )
A. B. C. -5 D.
6.
人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:

颜色 黄色 绿色 白色 紫色 红色
数量(件)
100 180 220 80 550

经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是
( )
A. 平均数 B. 中位数 C. 众数 D.
方差

7. 如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3
的度数是( )
.........
A. 40° B. 60° C. 80° D.
120°
8. 如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B
1

再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )

A. (0,21008) B. (21008,21008)
C. (21009,0) D. (21009,-21009)
二、填空题:(本大题共10小题,每小题3分,共30分.)
9. 分解因式:=_.
10. 函数的自变量x
的取值范围是_.

11. 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000
元,这个数用科学记数法表示

为_元.
12. 若,则代数式的值为_.
13. 如图,在□ABCD中,CE⊥AB,E为垂足,若∠A=122°,则∠BCE=_°.

14. 若反比例函数的图象经过点P(-1,4
),则它的函数关系式是_.

15. 如图,在△ABC中,AB=6,BC=8,AC=4,D、E、F分别为BC、AC、AB中点,连接DE、FE
,则

四边形BDEF的周长是_.
16. 已知圆锥的底面半径为3,侧面积为15
,则这个圆锥的高为_.

17. 如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(-1,0),若将线段BA绕点B
顺时

针旋转90°得到线段BA',则点A'的坐标为
_.

18. 如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°

DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF
的长_.

三、解答题(本大题共有10小题,共96分.)
19. (1)计算:;(2)解不等式:3(x-1)>2x+2.

20. 先化简,再求值:,其中.
21. 在一个不透明的口袋中有3个分别标有数字-1、1、2
的小球,它们除标的数字不同外无其他区别.

(1
)随机地从口袋中取出一小球,求取出的小球上标的数字为负数的概率;

(2)随机地从口袋中取出一小球,放回后再取出第二个小球,求两次取出的数字的和等于0
的概率.

22. 实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D
四个等级进行评价,

并根据统计结果绘制了如下两幅不完整的统计图.
(1
)抽取了_份作品;

(2)此次抽取的作品中等级为B
的作品有_份,并补全条形统计图;

(3)若该校共征集到600份作品,请估计等级为A
的作品约有多少份?

23. 如图,在Rt△ABC中,∠ACB=90°.

(1
)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)

①作AC的垂直平分线,交AB于点O,交AC于点
D;
②以O为圆心,OA为半径作圆,交OD的延长线于点
E.
(2)在(1
)所作的图形中,解答下列问题.

①点B与⊙O的位置关系是_;(直接写出答案)
②若DE=2,AC=8,求⊙O的半径.
24. 如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°
,因城市规划

的需要,将在A、B两地之间修建一条笔直的公路.
(1)求改直的公路AB
的长;

(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
25. 大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100
件.调查表明:

这种商品的售价每上涨1元/件,其销售量就将减少2件.
(1)为了实现每天1600
元的销售利润,超市应将这种商品的售价定为多少?

(2)设每件商品的售价为x元,超市所获利润为y
元.

①求y与x之间的函数关系式;
②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大
利润是多少?
26. 如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.
(1)求证:CD是⊙O
的切线;

(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.

27. (1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E
在同一直线上,

连接BE,易证△BCE≌△ACD.则

①∠BEC=_°;②线段AD、BE之间的数量关系是_.
(2)
拓展研究:

如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若
AE=15,DE=7,求AB
的长度.

(3)
探究发现:

如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.

28. 已知:如图1,直线与x轴、y轴分别交于点A、C两点,点B的横坐标为2.
(1)求A、C
两点的坐标和抛物线的函数关系式;

(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD ,求点P
的坐标;

(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q
为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.

相关文档
最新文档