第8章 弹性的应力和应变
第八章弹性体的应力和应变-盐城师范学院
第八章弹性体的应力和应变学时安排:3课时教学目的与要求:1、掌握应力和应变的相互关系、拉伸形变的胡克定律及其适用范围;2、了解杨氏模量、泊松比、剪切模量、固体的弹性形变势能、弹性形变势能密度等概念;3、了解梁的弯曲、杆的扭转的基本知识和结论。
教学重点:弹性体的拉伸和压缩。
教学难点:应力、杨氏模量、剪切模量、泊松比等概念的物理意义。
习题:8.1.2 8.1.3 8.1.6Chapter8 弹性体的应力和应变形变的分类:塑性形变:外力撤消后,形变不完全消失;弹性形变:外力撤消后,形变完全消失,此类物体为弹性体——理想模型;本章的研究范围:各向同性的均匀弹性体的弹性形变,均匀弹性体:体内各点的弹性相同。
各向同性的弹性体:体内各点的弹性与方向无关。
弹性形变的种类:伸长、缩短、切变、扭转、弯曲……; 弹性形变的基本种类:长应变、切应变。
§8—1 弹性体的拉伸和压缩一、外力、内力与应力1.外力:对于给定物体,外界(其它物体)对它的作用力2.内力:物体内部各部分之间的相互作用力。
内力的求法:外力→物体形变→内力,为了研究内力,用一假想的平面S 将物体分为两个部分:则S 面的两侧的相互作用力——内力F ' 、F求内力的方法:隔离体法,S 面的两侧分别为一个隔离体。
物体处于平衡时,列出左侧(或右侧)隔离体的平衡方程式,由外力求内力。
S 面上受力不均匀时,在S 面上任一点(O 点)处取面元S ∆,0n 自受力一侧指向施力物一侧,是S ∆的外法向,S ∆确定了即可确定S ∆的受力(内力)。
3.应力:描述物体内部各点处内力强度的物理量(1)定义:①平均应力:F p S ∆=∆ ②应力:0lim S F p S∆→∆=∆ 物理意义:作用于物体某点处某有向面元的平均应力,当面元0S ∆→时的极限——该无限小有向面元上的应力。
③正应力:p n σ=⋅ σ正应力为p 在无穷小有向面元的外法向上的投影,σ取“+”——有向面元的某一侧受到另一侧的拉力σ取“-”——有向面元的某一侧受到另一侧的压力 ④剪切应力:τ,p 在无穷小有向面元的外法线垂直方向上的投影。
第八章 弹性体的应力和应变
第八章弹性体的应力和应变8.1弹性体的拉伸和压缩四种物体的形变:拉伸压缩、剪切、扭转、弯曲本节从弹性均质直杆的情况出发讨论拉伸、压缩的正应力与形变的关系。
(一)外力、内力和应力:对于直杆整体来说作用在直杆的拉力(或压力)F'和F F'''=-是外力,设想在直杆上某位置作与轴线垂直的假想截面AB,截面上半部分通过假想截面对下半部分施以向上(或向下)的拉(或压)力F-,下半部分通过假想截面对上半部分施以向下(或向下)的拉(或压)力F,对直杆整体而言,这对力为内力。
当作用力远大于自重时,可把自重忽略不计,据平衡条件得出内力和外力大小相等即:F F F'''==二、直杆的应力:如果杆的直径比长度小很多,则可认为直杆横向假想截面应力分布均匀的,应力大小为:nFSσ=nF→内力在假想截面外法线方向的投影,S表示横截面的面积,拉伸应力0σ>,压缩应力0σ<。
FF(a)FF(b)(二)直杆的线应变以杆的拉伸为例,如图所示,直杆在竖直方向拉力作用下发生拉伸形变。
设 0l 直杆的原长l 形变后的长度0l l l ∆=- 0l ∆>为绝对伸长0l ∆<为绝对压缩一、线应变:绝对伸长和压缩之比称相对伸长(或压缩)又叫线应变。
l l ε∆=0ε> 为拉伸 0ε< 为压缩二、泊松系数:直杆拉伸压缩时,还产生横向形变。
直杆沿轴向拉伸时,则横向收缩,直杆沿轴向压缩时,则横向膨胀。
设想直杆横截面是正方形,每边长为0b ,横向形变后边长为b ,则横向相对形变或应变为:010b b b b bε-∆== 实验证明,对于大多数教材1ε的绝对值比相对线应变ε的绝对值小3~4倍。
横向应 变与纵向应变之比的绝对值称为泊松系数,μ是描写物质弹性特征的物理量。
1εμε= (三)胡克定律一、内容:对于有拉伸压缩形变的弹性体,当应变较小时,应变与应力成正比。
第八章 弹性体的应力和应变
第八章 弹性体的应力和应变习题解答8.1.1一钢杆的截面积为,所受轴向外力如图所示,试计算A 、B,B 、C ,C 、D之间的应力。
、、。
解:在AB 段、BC 段、CD 段各假想一截面、、,对整体取为隔离体为拉应力取为隔离体为压应力取为隔离体为拉应力8.1.2利用直径为0.02m的钢杆CD固定刚性杆AB。
若CD杆内的应力不得超过,问至多悬挂多大重量(不计杆自重)。
解:设B处悬挂W重的物体时AB杆刚好能承受,由于CD杆静止,故对过A点的垂直轴力矩代数和为零。
由得8.1.3图中上半段横截面等于且杨氏模量为的铝制杆,下半段横截面等于且杨氏模量为的钢杆,铝杆内允许最大应力为,钢杆内允许最大应力为。
不计杆的自重,求杆下端所能承受的最大负荷以及在此负荷下杆的总伸长量。
解:钢杆能承受的最大拉力:铝杆能承受的最大拉力:杆下端能承担的最大负荷为。
由胡克定律:8.1.4电梯用不在一条直线上的三根钢索悬挂,电梯质量为500kg。
最大负载极限5.5KN。
每根绳索都能独立承担总负载,且其应力仅为允许应力的70%,若电梯向上的最大加速度为g/5,求钢索的直径为多少?将钢索看作圆柱体,且不计其自重,取钢的允许应力为。
解:电梯与负载总质量:m=500+550=1050(kg)当电梯向上的加速度上升时,由牛顿第二定律:因为:,所以钢索拉力为:该力与绳索内力相等即:8.1.5(1)矩形横截面杆在轴向拉力作用下拉伸应变为,此材料的柏松系数为。
求证杆体积的相对改变为。
表示原体积,V表示变形后的体积。
(2)上式是否适用于压缩?(3)低碳钢杨氏模量为,柏松系数受到的应力为,求杆件体积的相对改变量。
(1)、解:设杆原长,经过拉伸后变为两者之间关系分别为:由纵向应变公式:,横向相对应变公式:泊松系数公式:含有两个或三个项,为高阶无穷小量,可省略。
(2)、压缩证明同上,同样适用。
(3)、解:,,,代入(1)的证明结果:体积相对变化8.1.6(1)杆件受轴向拉力F,其横截面积为S,材料的重度(单位体积物质的重量)为,证明考虑材料的重量时横截面内的应力为:(2)杆内应力如上式,证明杆的总伸长量:(1)、解:建立如图所示坐标,任意一点x 处做一微分截面,以斜面下方物体为隔离体: 因为处于平衡状态所以,为拉应力。
弹性体的应力与应变
弹性体的应力与应变弹性体是一种在受力作用下可以发生形变,但当受力停止时,能够恢复原来形状和大小的材料。
了解弹性体的应力与应变关系对于工程设计和材料科学具有重要意义。
在本文中,我们将探讨弹性体的应力与应变之间的关系,分析材料的弹性性质以及应力与应变的计算方法。
1. 应力的概念与计算方法应力是指单位面积上作用的力,合理地计算应力是分析弹性体性质的关键。
在计算应力时,常用到两种基本的力学概念:张力和压力。
张力是指沿一维方向的受力情况,通常用F表示,单位为牛顿。
而压力是指在一个平面上均匀分布的力,用P表示,单位是帕斯卡。
应力的计算公式如下:应力 = 受力 / 横截面积2. 应变的概念与计算方法应变是指材料在受力作用下发生的形变,一般用ΔL / L表示。
其中,ΔL是材料长度的变化量,L是材料的初始长度。
应变可以分为线性弹性应变和非线性应变。
线性弹性应变是指材料在受力作用下,形变与受力成正比的状态。
计算线性弹性应变的方法如下:应变 = 形变 / 初始长度而非线性应变则需要更复杂的计算方法来进行分析,涉及到材料的本构关系等。
3. 应力与应变的关系应力与应变之间存在一定的关系,即应力-应变曲线。
弹性体的应力-应变曲线通常可以分为三个阶段:弹性阶段、屈服点和塑性阶段。
在弹性阶段,材料受力时会产生应变,但当受力停止时,材料会完全恢复到原来的状态。
这是因为材料内部的原子或分子只发生了相对位移,而没有发生永久性的结构变化。
当应力超过材料的屈服点时,就进入了屈服点阶段。
在这个阶段中,材料开始发生塑性变形,不再能够完全恢复到原来的状态,具有一定的永久性形变。
塑性阶段是材料的应力与应变不再成正比,继续增加应力会导致更大的应变。
这是由于材料的内部结构发生了永久性的改变,无法恢复原状。
4. 弹性模量和刚度弹性模量是描述材料抵抗形变的能力,可以用来评估材料的刚度。
弹性模量越大,表示材料越难发生形变,具有较高的刚度。
常用的弹性模量有三种:杨氏模量、剪切模量和体积模量。
材料力学:第八章-应力应变状态分析
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态
弹性力学中的应力与应变关系
弹性力学中的应力与应变关系弹性力学是力学的一个重要分支,研究物体在外力的作用下产生的形变与应力的关系。
在弹性力学理论中,应力与应变关系是最为核心的概念之一。
本文将探讨弹性力学中的应力与应变关系的基本原理,并从不同角度对其进行分析。
一、基本概念在弹性力学中,应力是描述物体内部单位面积受力情况的物理量。
它可以分为正应力和剪应力。
正应力表示物体在垂直于某一平面上的受力情况,剪应力表示物体在平行于某一平面上的受力情况。
应力的大小一般采用希腊字母σ表示。
应变是描述物体形变情况的物理量。
它可以分为线性应变和体积应变。
线性应变表示物体中某一方向上的长度相对变化,体积应变表示物体在各个方向上的体积变化。
应变的大小可以用希腊字母ε表示。
二、胡克定律胡克定律是描述弹性体材料中应力与应变关系最基本的定律。
其数学表达式为σ = Eε,即应力等于弹性模量与应变之积。
其中,弹性模量E是描述物体对应变的抵抗能力的物理量。
根据胡克定律,应力与应变之间的关系是线性的,即若应变增大,则应力也会相应增大。
胡克定律适用范围有限,对于非线性应力-应变关系的材料,需要采用其他力学模型进行描述。
例如,当外力作用超出一定范围时,弹性体会发生塑性变形,此时应力和应变之间的关系就无法再用胡克定律来描述。
三、材料力学模型由于胡克定律的局限性,研究者们提出了各种各样的材料力学模型来描述应力与应变之间的关系。
其中,最常用的有线性弹性模型、非线性弹性模型和本构模型。
线性弹性模型是胡克定律的拓展,它适用于应力与应变关系呈线性关系的情况。
在这种模型中,应力与应变之间的关系是单一的、唯一的。
当外力作用停止后,物体能够完全恢复到初始状态。
非线性弹性模型适用于应力与应变关系不再呈线性关系的情况。
它可以更好地描述材料的实际变形情况。
在这种模型中,应力与应变之间的关系可以是非线性的、曲线状的。
本构模型是一种综合考虑多种因素的力学模型,它可以更全面地描述材料的应力与应变关系。
弹性力学中的应力与应变理论
弹性力学中的应力与应变理论弹性力学是研究物体在受力作用下的变形与恢复的力学分支。
应力与应变理论是弹性力学的重要组成部分,它描述了物体在受到外力作用时产生的应力和应变之间的关系。
在本文中,我们将深入探讨弹性力学中的应力与应变理论。
一、应力的概念与分类应力是物体在受力作用下产生的单位面积的内力。
根据受力方向的不同,应力可以分为三类:拉应力、压应力和剪应力。
1. 拉应力:拉应力是指物体在受到拉伸力作用下产生的应力。
拉应力可分为轴向拉应力和切向拉应力。
轴向拉应力是指沿物体轴线方向产生的应力,而切向拉应力则是指垂直于轴线方向产生的应力。
2. 压应力:压应力是指物体在受到压缩力作用下产生的应力。
与拉应力类似,压应力也可分为轴向压应力和切向压应力。
3. 剪应力:剪应力是指物体在受到剪切力作用下产生的应力。
剪应力沿着物体内部平面的切线方向产生。
二、应变的概念与分类应变是物体在受力作用下发生的长度、面积或体积的变化。
根据变形形式的不同,应变可分为三类:线性应变、平面应变和体积应变。
1. 线性应变:线性应变是指物体在受力作用下产生的长度变化与初始长度之比。
它是最基本的应变形式,常用符号ε表示。
线性应变假设变形产生的应力与应变之间呈线性关系。
2. 平面应变:平面应变是指物体在受到外力作用下产生的面积变化与初始面积之比。
平面应变常用符号γ表示。
3. 体积应变:体积应变是指物体在受到外力作用下产生的体积变化与初始体积之比。
体积应变常用符号η表示。
三、胡克定律与应力应变关系胡克定律是弹性力学中最基本的定律之一,它描述了由于外力作用下物体的弹性变形情况。
胡克定律可以简要表述为:应力与应变成正比。
根据胡克定律,可以得出应力与应变的数学关系,即应力等于弹性模量与应变之积。
根据具体的应力类型和应变类型,应力与应变的关系可以用不同的公式来表示。
四、应力与应变的计算方法在实际应用中,为了计算物体在受力作用下的应变情况,可以使用不同的方法来计算应力和应变。
弹性体的应力和应变
5
数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、 数学弹性力学的典型问题 主要有 一般性理论 、 柱体扭转和弯曲 、 主要有一般性理论 平面问题、变截面轴扭转,回转体轴对称变形等方面 平面问题、变截面轴扭转,回转体轴对称变形等方面。 等方面。 在近代,经典的弹性理论得到了新的发展。例如, 在近代 , 经典的弹性理论得到了新的发展 。 例如 , 把切应力的成 对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各 对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续, 应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律, 应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除 机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本 机械运动本身外 , 还考虑其他运动形式和各种材科的物理方程称为 本 构方程。对于弹性体的某一点的本构方程, 构方程 。 对于弹性体的某一点的本构方程 , 除考虑该点本身外还要考 虑弹性体其他点对该点的影响,发展为非局部弹性力学等。 虑弹性体其他点对该点的影响,发展为非局部弹性力学等。 但是,由于课程所限, 但是 , 由于课程所限 , 我们在以下几节里仅对弹性体力学作简单 的介绍,为振动部分和波动部分作准备。 的介绍,为振动部分和波动部分作准备。
6
§8.1 弹性体力学--弹性体的应力和应变简介 弹性体力学-- --弹性体的应力和应变简介
弹性体有四种形变 拉伸压缩、剪切、扭转和弯曲。其实, 弹性体有四种形变:拉伸压缩、剪切、扭转和弯曲。其实,最基本的形 四种形变: 变只有两种 拉伸压缩和剪切形变; 两种: 变只有两种:拉伸压缩和剪切形变;扭转和弯曲可以看作是由两种基本形变 的组成。 的组成。
Fn ∆l =Y S l0
其中:Y 称为杨氏模量,反映材料对于拉伸或压缩变形的抵抗能力。 杨氏模量, 其中: 称为杨氏模量 反映材料对于拉伸或压缩变形的抵抗能力。
弹性力学中的应力和应变
弹性力学中的应力和应变弹性力学是物理学中的一个重要分支,研究物体在外力作用下的变形和应力分布规律。
在弹性力学中,应力和应变是两个关键的概念。
本文将详细介绍弹性力学中的应力和应变,并探讨它们之间的关系和物体在外力作用下的行为。
一、应力的概念与分类在弹性力学中,应力是描述物体内部受力状况的物理量。
它的定义是单位面积上的力,即单位面积上所受的力。
在材料力学中,通常将力的作用面积取无限小,这样就可以得到面积趋于无穷小的情况下的应力。
根据作用方向的不同,应力可以分为三种类型:正应力、剪应力和体应力。
1. 正应力:即垂直于物体截面的力在该截面上单位面积的作用力。
正应力可以分为正拉应力和正压应力,正拉应力是指物体上的拉力,正压应力是指物体上的压力。
2. 剪应力:即平行于物体截面的力在该截面上单位面积的作用力。
剪应力是指物体上的切力,它使得物体相对于截面沿切应变方向发生形变。
3. 体应力:即物体内部体积元素上的力在该体积元素上单位体积的作用力。
体应力是指物体中各个点处的压力或拉力。
二、应变的概念与分类应变是描述物体变形程度的物理量,它是物体的形状改变相对于初始形状的相对变化量。
应变也可以分为三种类型:线性应变、剪应变和体应变。
1. 线性应变:即物体在受力下沿作用力方向产生的长度变化与初始长度的比值。
线性应变通常用拉伸应变表示。
2. 剪应变:即物体在受剪力作用下发生的相对位移与物体初始尺寸的比值。
3. 体应变:即物体受力时体积的相对变化量与初始体积的比值。
三、应力和应变的关系应力和应变之间存在着一定的关系,它们之间通过杨氏模量来联系。
杨氏模量是描述物体在拉伸应力作用下的应变程度的物理量。
弹性体的材料有两个重要的杨氏模量:弹性模量(或称杨氏模量)和剪切模量。
1. 弹性模量(E):它描述的是物体在正应力作用下的正应变情况。
根据材料的不同,弹性模量也不同。
2. 剪切模量(G):它描述的是物体在剪应力作用下的剪应变情况。
弹性力学平面应力问题和平面应变问题
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。
弹性力学弹性体的应力与应变关系
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
力学(专)第八章 弹性体的应力和应变
( 3)
b b 0
其中:设想直杆横截面是正方形每边长为 b,横向形变后为 b。 其中: 0 横向形变和纵向形变之比为泊松系数 横向形变和纵向形变之比为泊松系数: 泊松系数:
7
用S表示横截面面积, n 表示内力在 en 上的投影,则 表示横截面面积, 上的投影, F
F σ= n S
称作假想截面S上的拉伸或压缩应力,又统称正应力 称作假想截面S上的拉伸或压缩应力,又统称正应力 为正, σ为正,表示有向面元 为负, σ 为负,表示有向面元
(1) 若内力与有向假想截面外法向方向相同,则 若内力与有向假想截面外法向方向相同, 某一侧受到另外一侧的拉力, 某一侧受到另外一侧的拉力,为拉伸应力 (2) 若内力与有向假想截面外法向方向相反,则 若内力与有向假想截面外法向方向相反, 某一侧受到另外一侧的压力, 某一侧受到另外一侧的压力,为压缩应力
4
弹性力学的基本内容 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和 基本规律有三个 运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。 运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中 许多定理、公式和结论等,都可以从三大基本规律推导出来。 许多定理、公式和结论等,都可以从三大基本规律推导出来。 连续变形规律是指弹性力学在考虑物体的变形时, 连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变 形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展 形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的 裂纹不扩展的 情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。 情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。 求解一个弹性力学问题,就是设法确定弹性体中各点的位移、 求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和 应力共15个函数。从理论上讲,只有15个函数全部确定后,问题才算解决。 应力共15个函数。从理论上讲,只有15个函数全部确定后,问题才算解决。 15个函数 15个函数全部确定后 但在各种实际问题中,起主要作用的常常只是其中的几个函数, 但在各种实际问题中,起主要作用的常常只是其中的几个函数,有时甚至 只是物体的某些部位的某几个函数。所以常常用实验和数学相结合的方法, 只是物体的某些部位的某几个函数。所以常常用实验和数学相结合的方法, 就可求解。 就可求解。
第八章弹性力学问题一般解·空间轴对称问题
所求问题的边界条件给定的是边界上的位移 ui ui,则可直接进行计算。 如果全部边界或部分边界上给出的是应力边界条件, ij l j F i 就要将应力 形式的边界条件转换成为位移形式。 其方法与将应力形式的平衡方程转化为Lame方程的方法大致相同。现推导如 下:先后将式(4-6)、式(4-2)代人式(4-13)得 E E ij ij e ij ij e 2G ij (4 6) (1 )(1 2 ) (1 )
将 2G 换成 , E 来表示,则位移解答为
显然最大位移发生在边界上,由式(8-7)可知
将式(8-7)代入几何方程(4-2)求出应变,再引用式本够方程(4-6)可得应力分量解答
x y
1
( q pz ), z ( q pz ), xy yz zx 0
采用半逆解法。由于载荷和几何形状都对称于z 轴,则各点位移只在z向有变化。试假设
于是 而
因此由Lame方程式(8-3)的前两式知,它们成为恒等式自然满足,而第三式给出
式中A、B为积分常数。 边界上
边界条件式(8-6)前两式自然满足,
lx l y 0
lz 1
u u u u v w lx ly lz ) G ( lx ly lz ) x y z x x x v v v u v w F y el y G ( lx ly lz ) G ( lx ly lz ) x y z y y y w w w u v w F z el z G ( lx ly lz ) G ( lx ly lz ) x y z z z z F x el x G (
利用式(4-5),式(1)中 简化后得
弹性力学平面应力问题和平面应变问题
弹性力学与材料科学、计算科学、生物学等学科的交叉融合,为解决 复杂工程问题提供了新的思路和方法。
数值模拟与计算
随着计算机技术的进步,数值模拟和计算在弹性力学领域的应用越来 越广泛,能够更精确地模拟和预测材料的力学行为。
多尺度分析
从微观到宏观的多尺度分析方法,能够更好地理解材料的微观结构和 宏观性能之间的关系。
它们简化了问题的复杂性,使得 弹性力学成为一种实用的工程工 具。
02
基本假设的局限性
03
限制条件的考虑
在某些情况下,这些假设可能不 成立,例如在处理非均匀、非各 项同性或大变形问题时。
在应用弹性力学时,必须考虑这 些限制条件,以确保结果的准确 性和可靠性。
06 弹性力学的发展趋势和未 来研究方向
弹性力学的发展趋势
非线性力学
随着工程结构的复杂性和非线性特征的增加,非线性力学的研究越来 越受到重视,为解决复杂工程问题提供了新的理论和方法。
未来研究方向
新材料和新结构的力学行为
智能材料的力学行为
研究新型材料和复杂结构的力学行为,探 索其性能优化和设计方法。
研究智能材料的响应机制和调控方法,探 索其在传感器、驱动器和自适应结构等领 域的应用。
生物医学中的弹性力学问题
研究生物组织的力学行为和生理功能,探 索其在生物医学工程和再生医学等领域的 应用。
环境与可持续发展的弹性力学问 题
研究环境因素对材料和结构的影响,探索 其在环保和可持续发展等领域的应用。
THANKS FOR WATCHING
感谢您的观看
材料力学性能的测试
材料弹性模量的测定
通过实验测定材料的弹性模量,可以了解材料的力学性能,为工程设计和材料选择提供依据。
应力和应变之间的关系
应力和应变的关系曲线
描述
应力和应变的关系曲线是描述应力与应变之间关系的图形表示。
形状
在弹性范围内,曲线呈直线上升;超过弹性极限后,曲线出现弯曲。
应用
通过应力和应变的关系曲线,可以确定材料的弹性模量、屈服点和 极限强度等机械性能参数。
04
应力和应变的应用
弹性力学
弹性力学是研究弹性物体在外力作用下 变形和内力的规律的科学。在弹性力学 中,应力和应变是描述物体变形和受力 状态的基本物理量。
公式
σ=Eεsigma = E varepsilonσ=Eε
解释
σ为应力,E为弹性模量,ε为应变。 当应力增加时,应变也相应增加, 且两者成正比关系。
非线性关系
描述
当材料受到超过其弹性极限的应力时 ,应力与应变之间的关系不再是线性 的,而是呈现非线性关系。
特征
在非线性阶段,应变随应力的增加而 急剧增加,可能导致材料发生屈服或 断裂。
设计优化
优化结构设计
通过对应力和应变的分析,优化结构设计,提高结构的承载能力 和稳定性。
考虑材料特性
在设计过程中,充分考虑材料的力学特性和性能,合理选择和使 用材料,以降低应力和应变对结构的影响。
引入减震和隔震措施
通过引入减震和隔震措施,降低地震等外部载荷对结构产生的应 力和应变,提高结构的抗震性能。
时间
蠕变
在长期恒定应力作用下,材料会发生 缓慢的塑性变形,即蠕变。蠕变会影 响材料的应力和应变关系,特别是在 高温和长期载荷作用下。
时间依赖性
某些材料的力学性能会随时间发生变 化,对应力和应变的关系产生影响。 例如,疲劳和时效等现象会导致材料 性能随时间发生变化。
07
应力和应变在工程实践中的 注意事项
弹性体的应力和应变
第八章 弹性体的应力和应变迄今为止,我们总是把研究对象简化为“质点”或“刚体”这样的理想模型。
我们都知道刚体是在任何情况下形状大小都不发生变化的力学对象,用质点系的观点来说,就是内部质点之间没有相对运动。
但是,任何物体在力的作用下都或多或少的发生形变,而且,有些物理现象,从本质上来讲,就是形变引起的,如声音在弹性媒质中的传播和媒质内的形变有关。
因此,讨论物体在力作用下形变的规律,也是力学不可缺少的内容。
本章及后面两章将讨论连续媒质力学:连续媒质的共同特点是其内部质点间可以有相对运动。
宏观地看,连续媒质可以有形变或非均匀流动。
弹性体:若物体所受外力撤消后,在外力作用下所发生的形状和体积的变化能够消失的物体,相应的形变叫弹性形变。
显然,弹性体也是一种理想模型。
即不存在绝对弹性体,只有近似的弹性体,例如,房屋的地基,水库的堤坝等在形变极小时,均可视为弹性体。
若弹性体内各点弹性相同,则叫作均匀弹性体,若每点的弹性不仅相同,而且与方向无关,则叫均匀、各向同性弹性体。
处理连续媒质的办法不是把它们看成一个个离散的质点,而是取“质元”,即有质量的体积元。
在连续媒质力学中,力也不再看作是作用在一个个离散的质元上,而看成是作用在“质元”的表面上,因而需要引进作用在单位面积上的力,即“应力”的概念,为止,我们先来讨论弹性体的拉伸和压缩。
§8.1 弹性体的拉伸和压缩在上一章中采用的是刚体模型,要把固体的一切形变都忽略了,在本章中我们将讨论固体的弹性,即讨论固体在外力作用的形变规律。
(一) 外力、内力和应力我们先来研究横截面线度远小于其长度的直杆的拉伸和压缩形变。
如图所示,直杆的典型受力情况为两端受到沿轴线的力且处于平衡。
称一对拉力或压力F和连续媒质F '' 为外力,一般情况下 |F ' |>>mg(忽略不计)|F '' |>> mg内力:假想截面AB 两侧相互施以向上(下)的拉(压)力:F 和–F 于忽略重力,且处于平衡,故而 |F | = |F ' | = |F ''| (正)应力:s nF =σ其中: s — 横截面积n F — 内力在横截面处法线(即nˆ方向)上的投影 拉伸应力 > 0 F 与nˆ同向 σ压缩应力 < 0 F 与nˆ反向σσ的单位: 2m N 称为 “帕斯卡” (国际单位制)σ的量纲:21--MT L(L — 长度 M — 质量 T — 时间)〔例题1〕P333求壁内沿圆周切向的应力(忽略容器自重和大气压力)解:过圆心沿纵向取假想截面,其长度取为一个单位,将一半圆柱形容器和气体作为研究对象,受力情况如下图:按平衡条件:022=+⋅-d R p σ(R p 2⋅-下方气体对上方气体的力 d σ2下方器壁对上方气壁的力)则有: ⇒=d Pp σ器壁内沿圆周的拉伸压力,由此可见: 圆柱形容器外部受压而内部压强较小时,刚沿圆周切向有压缩压力。
工程力学基础第8章 应力、应变和应力应变关系
第8章 应力、应变和应力-应变关系
第一节 第二节 第三节 第四节 第五节
一点处的应力状态 平面应力状态分析 应变状态分析 广义胡克定律 材料失效和失效判据
第一节 一点处的应力状态
一、引言 在本章中,将应用微元体法,从力、变形、力与变形的关系三 方面研究变形固体内一点处的性态。本章的内容覆盖了固体力 学的三大理论基础:应力理论、应变理论和本构关系(主要是对 理想弹性体)。在此基础上建立复杂受载条件下,材料的失效判 据和构件的强度设计准则,从而为解决杆件在复杂受载条件下 的强度、刚度和稳定性问题创造条件。
(1)一点处的应变状态由六个应变分量εx、εy、εz、γxy、γyz、 γzx完全决定,即由它们可以确定该点处任一方向的线应变和任
第三节 应变状态分析
(2)在任一点处都存在三个互相垂直的方向,它们在变形过 程中保持垂直,即切应变为零,这三个方向称为应变主方向, 沿应变主方向的线应变称为主应变,记为ε1≥ε2≥ε3。主应变ε1 和ε3 试验证明,对于各向同性的线弹性材料的小变形问题,应变主 方向与应力主方向重合,即一对切应力为零的正交截面在变形 过程中保持垂直。应变和应力由材料的力学性能相联系。在工 程中除接触应力等少数情形外,直接测量应力是很困难的,而 变形则比较容易测量。通常是从测得的应变来确定应力。应变 分析的实际意义在于:通过测得的应变确定主方向和主应变,
第一节 一点处的应力状态 三、主应力和主方向 如果微元体某对截面上的切应力等于零,该对截面就称为主平 面,主平面的法向称为主方向,主平面上的正应力称为主应力。 按不等于零的主应力的个数分类,可以把一点处的应力状态分
(1)单向(单轴)应力状态,也称为简单应力状态,只有一个主 应力不为零,如受轴向拉压的直杆和纯弯曲直梁中各点处的应
应力和应变关系
第四章应力和应变关系一. 内容介绍前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。
由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。
应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。
分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。
本章的任务就是建立弹性变形阶段的应力应变关系。
二. 重点1. 应变能函数和格林公式;2. 广义胡克定律的一般表达式;3. 具有一个和两个弹性对称面的本构关系;4. 各向同性材料的本构关系;3. 材料的弹性常数。
知识点应变能原理应力应变关系的一般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式广义胡克定理一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系§4.1 弹性体的应变能原理学习思路:弹性体在外力作用下产生变形,因此外力在变形过程中作功。
同时,弹性体内部的能量也要相应的发生变化。
借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。
本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。
根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。
因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。
第八章弹性体的应力和应变§81弹性体的拉伸和压缩弹性体有四种
第八章 弹性体的应力和应变§8.1 弹性体的拉伸和压缩弹性体有四种形变:拉伸压缩、剪切、扭转和弯曲。
其实,最基本的形变只有两种:拉伸压缩和剪切形变;扭转和弯曲可以看作是由两种基本形变的组成。
1. 正压力(拉伸压缩应力) 其中, 沿作用力截面的法线方向。
2. 线应变(相对伸长或压缩)绝对伸长(或压缩)与原长之比称为相对伸伸长nF Sσ=(1)例:如图示, 0σ>(或压缩)。
公式:当 时,为拉伸形变; 时,为压缩形变,因而,它很好地反映形变程度。
如直杆拉伸压缩时,还产生横向形变,则对应的应变(或形变)为:其中:设想直杆横截面是正方形每边长为 ,横向形变后为 。
横向形变和纵向形变之比为泊松系数:3. 胡克定律当应变较小时,应力与应变成正比:其中:Y 称为杨氏模量,反映材料对于拉伸或压缩变形的抵抗能力。
l l ε∆=(2)0100b b b b b ε-∆==(3)1εμε=(4)Y σε=(5) 或n F lY S l ∆=(6) 0ε<0ε<设一纵波传播中,t 时刻 x 处媒质的变形情况, 表示 所取媒质的长度,x 处媒质的位移为 y(x) ,处媒质的位移为 ,因此 媒质的应变为: ,取,即为 x 处媒质的应变:拉伸或压缩的形变势能同时有:弹性势能密度,即单位体积中的弹性势能:§8.2 弹性体的剪切形变 一、剪切形变·剪切应力与应变(9)()y x x +∆0()()lim x y x x y x y x x ε∆→+∆-∂==∆∂xy ∆ ∆ / 0x ∆→x ∆x x +∆所以: (7)n F y Y S x ∂=∂212pE Y V ε=(8)0212pE Y ε=当物体受到力偶作用使物体的两个平行截面间发生相对平行移动时的形变叫做剪切形变。
例如:用剪刀剪断物体前即发生这类形变。
1.剪应力其中:S 为假想截面ABCD 的面积,力F 在该面上均匀分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
F
B
D 断裂点 弹性极限
l
C
O
P P 是塑性应变.
上页
O
下页
返回
结束
第八章 弹性的应力和应变
表8.3 密质骨的弹性模量/GPa
骨 股骨 胫骨 肱骨 桡骨 股骨 胫骨 马 25.5 23.8 17.8 22.8 牛 猪 人 17.6 18.4 17.5 18.9
拉伸弹性模量 25.0 14.9 24.5 17.2 18.3 14.6 25.9 15.8
πGR4 c 2l
上页 下页 返回 结束
第八章 弹性的应力和应变 扭转形变实质上是由剪切形变组成的. 微小形变时,狭长体元的切应变为
r l
内外层切应变不同,根据胡克定律,内外层 切应力也不同,靠外层切应力较大.
可以证明,扭转力偶矩M和扭转角 的关系为
πGR4 M c 2l
R和 l 分别表示圆柱体的半径与长度,G为切变模量, 圆柱体扭转系数
b
b
c d
c
切应变 : 平行截面间相对滑 移与截面垂直距离之比. 即
tan bb ab
a
形变小时,
tan
bb ab
又称切变角.
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.2.2剪切形变的胡克定律
1. 剪切形变的胡克定律 剪切形变的胡克定律——若形变在一定限度内,切 应力与切应变成正比.
和’分别表示上下底面和左右侧面的切应力 ( a c ) b ( b c ) a
剪切应力互等定律:作用于互相垂直的假想截面上并 垂直于该两平面交线的切应力相等.
上页
下页
返回
结束
第八章 弹性的应力和应变 3.剪切应变描述
bb cc
剪切形变特征:
伸压缩应力.如图表示装高压气体的薄壁圆柱形容器的横 断面。壁厚为d 且圆柱的半径为R. 气体压强为p ,求壁内 沿圆周切向的应力.不计容器自重且不计大气压. [解] 受力如图所示。按平衡条件得
d R
2 pR 2d 0
Rp / d
即器壁沿圆周切向受拉应力.
2pR d d
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.2 弹性体的剪切形变
§8.2.1剪切形变· 切应力与切应变 §8.2.2剪切形变的胡克定律
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.2 弹性体的剪切形变
§8.2.1剪切形变· 切应力与切应变
1.切应力 剪切形变——物体受到力偶作用使物体两个平行 截面间发生相对平行移动. 物体受到力偶 F F 发生剪切变形 切应力
en
F
不计杆自身重量 应力
Fn S
单位:帕, N/m2 S是横截面积
下页 返回 结束
Fn是内力在外法线方向的投影,
上页
第八章 弹性的应力和应变
§8.1.2直杆的线应变
直杆原长与形变后长度之差
Δl l l0
绝对伸长 Δl 0 线应变 横向应变 泊松系数 绝对压缩 Δl 0
压缩弹性模量 8.7 4.9 9.4±0.4 7 8.5 5.1
肱骨 桡骨
9.0 8.4
上页
5.0 5.3
下页 返回 结束
第八章 弹性的应力和应变
§8.1.4拉伸和压缩的形变势能
弹性力是保守力. 弹性力所做的功等于弹性体弹性势能的减少. 设形变量 ,直杆形变前=0;发生形变l , = l 胡克定律 外力做功 A 0
§8.1 弹性体的拉伸和压缩
§8.1.1外力· 内力与应力
外力 F F F F
F' F' F
B
F'
A
F
F
B
en
F
内力 F
A
F F F
F F F
F F F
C´ B´
上页
C B
下页
C´ B´
返回 结束
第八章 弹性的应力和应变
弯曲形变特点: 弯曲后,靠近上缘各层发生压缩形变;靠近下
缘各层,发生拉伸形变. 处于中间的的CC´ 层(中性 层)既不伸长也不压缩.
M
A
h
A´
b
12M K Ebh3
中性层曲率
M是加于梁的力偶矩,E为材料的杨氏模量,b为梁 宽度,h为梁的高度.
G 即 G称切变模量,由材料弹性决定. G反映材料抵抗剪
切形变的能力, 单位与弹性模量相同.
弹性模量E、切变模量G和泊松系数 之间的关系为
G E 2(1 )
上页
下页
返回
结束
第八章 弹性的应力和应变 2. E、G和 之间关系的定性说明 设杆所受外界拉力一定.
F
一定时,E与G成正比.
第八章 弹性的应力和应变
第八章 弹性体的应力和应变
弹性形变——当物体所受外力撤除后,在外力作 用下所发生的形状和体积的变化完全消失,而恢 复原状的形变. 弹性体——弹性形变的物体,是一种理想模型. 弹性的形变有拉伸压缩、剪切、扭转和弯曲. 拉伸压缩和剪切形变是最基本的形变.
上页
下页
返回
结束
第八章 弹性的应力和应变
F S
F
A
D C
S是截面ABCD的面积,
F
B
切应力具有与正应力相同的量纲和单位.
上页 下页 返回 结束
第八章 弹性的应力和应变
2.剪切应力互等
力偶矩
F
b
M ( F , F ) M ( F , F ) F
F
c
F a
Δl
Fn SE
ES Fnd l0
l0
0
Δl
1 Δl 2 d E ( ) Sl0 2 l0
1 E 2 2
结束
设未形变时势能为零, 则
弹性势能
1 Ep E 2V 2
弹性势能密度
0 Ep
上页
下页
返回
第八章 弹性的应力和应变
[例题]本段标题为杆的拉伸压缩,但并非仅直杆内存在拉
和剪切形变两种基本形变的组合.
§8.3.1梁的弯曲
矩形横截面梁 ,不计自重 ,如图 Fp1 Fp 2
FN1和Fp1
FN1
Fp1
A C B
FN1 FN2 Fp1 Fp2 FN 2和Fp 2形成二力偶使梁在Fp 2和Fp 2之间弯曲 Fp 2 M2 M F 1 N2 A A´ A
Δl l0
b b0
l0 l
b b0 Δb 1 b0 b0
1
反映物质形变程度, 反映物质弹性特征.
上页 下页 返回 结束
第八章 弹性的应力和应变
§8.1.3胡克定律
胡 Δl E S l0
E是弹性模量(杨氏模量),是描写材料本身弹性的物理量.
E一定时, 大G小, 小G大
单位体积剪切形变的弹性势能为
0 Ep
1 G 2 2
F
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.3弯曲和扭转
§8.3.1梁的弯曲 §8.3.2杆的扭转
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.3弯曲和扭转
梁的弯曲和杆的扭转都可以看成是由拉伸压缩
上页 下页 返回 结束
第八章 弹性的应力和应变
§8.3.2杆的扭转
圆柱体受到作用在与其轴线垂直的两个平面上 大小相等方向相反的两个力偶矩,发生扭转形变.
M
A
r
M
A
l
扭转形变
体元剪切形变
l 、 r、 和 物理意义
是扭转角, r 表示体元所在半径,l 表示柱长.
上页 下页 返回 结束