数学2.1.2《离散型随机变量的分布列(二)》课件(新人教A版选修2-3) (2)

合集下载

2[1].1.2离散型随机变量的分布列导学案(选修2-3)1

2[1].1.2离散型随机变量的分布列导学案(选修2-3)1

§2.1.2离散型随机变量的分布列预习案一、教学目标1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题.3. 理解二点分布的意义.二、预习自测:问题一:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一种情况吗?随机变量是如何定义的?问题二:按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。

那么,随机变量与函数有类似的地方吗?问题三:下列试验的结果能否用离散型随机变量表示?为什么?(1)已知在从汕头到广州的铁道线上,每隔50米有一个电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差;(3)某城市1天之内的温度;(4)某车站1小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的等级。

导学案重点:离散型随机变量的分布列的意义及基本性质. 难点:分布列的求法和性质的应用.1.离散型随机变量 随着试验结果的变化而变化的变量称为随机变量,通常用字母X 、Y 表示。

如果对于随机变量可能取到的值,可以按 一一列出,这样的变量就叫离散型随机变量。

2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的值为12,,,,i x x x ,X 取每一个值(1,2,)i x i = 的概率()i i P X x p ==,则表称为随机变量X 的概率分布,简称X 的分布列。

离散型随机变量的概率分布还可以用条形图表示, 如图所示。

离散型随机变量的分布列具有以下两个性质:① ;②一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 。

2020高中数学 第二章2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量学案 新人教A版选修2-3

2020高中数学 第二章2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量学案 新人教A版选修2-3

2.1.1 离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.能写出离散型随机变量的可能取值,并能解释其意义.(难点)[自主预习·探新知]1.随机变量(1)定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母X,Y,ξ,η,…表示.思考:随机变量与函数有怎样的关系?[提示](1)定义:所有取值可以一一列出的随机变量,称为离散型随机变量.(2)特征:①可用数值表示.②试验之前可以判断其出现的所有值.③在试验之前不能确定取何值.④试验结果能一一列出.思考:离散型随机变量的取值必须是有限个吗?[提示]离散型随机变量的取值可以是有限个,例如取值为1,2,…,n;也可以是无限个,如取值为1,2,…,n,….[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.(3)离散型随机变量的取值是任意的实数.()[解析](1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)×由离散型随机变量的定义可知它的取值能够一一列出,因此离散型随机变量的取值是任意的实数的说法错误.[答案](1)√(2)√(3)×2.下列变量中,是离散型随机变量的是( )【导学号:95032116】A.到2019年10月1日止,我国发射的人造地球卫星数B.一只刚出生的大熊猫,一年以后的身高C.某人在车站等出租车的时间D.某人投篮10次,可能投中的次数D[根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出,试验前可以判断其出现的所有值.选项A、B、C的数值均有不确定性,而选项D中,投篮10次,可能投中的次数是离散型随机变量.]3.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能取值为( )A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5B[由于取到白球游戏结束,由题意可知X的可能取值为1,2,3,4,5,6,7.]4.下列随机变量不是离散型随机变量的是________.【导学号:95032117】①某景点一天的游客数X;②某手机一天内收到呼叫次数X;③水文站观测到江水的水位数X;④某收费站一天内通过的汽车车辆数X.[解析]①②④中的随机变量X可能取的值,我们都可以按一定的次序一一列出,因此都是离散型随机变量;③中X可以取一区间内的一切值,无法按一定次序一一列出,故③不是离散型随机变量.[答案]③[合作探究·攻重难]随机变量的概念A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率(2)判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.①北京国际机场候机厅中明天的旅客数量;②2018年5月1日至10月1日期间所查酒驾的人数;③2018年6月1日济南到北京的某次动车到北京站的时间;④体积为1 000 cm3的球的半径长.(1)B[A中取到的产品的件数是一个常量不是变量,C、D也是一个定值,而B中取到正品的件数可能是0,1,2,是随机变量.](2)[解]①旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.②所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.③动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.④球的体积为1 000 cm3时,球的半径为定值,不是随机变量.[规律方法]随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.[跟踪训练]1.判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某天腾讯公司客服接到咨询电话的个数;(2)标准大气压下,水沸腾的温度;(3)在一次绘画作品评比中,设一、二、三等奖,你的一件作品获得的奖次;(4)体积为64 cm3的正方体的棱长.[解](1)接到咨询电话的个数可能是0,1,2,…出现哪一个结果都是随机的,因此是随机变量.(2)标准大气压下,水沸腾的温度100℃是定值,所以不是随机变量.(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机的,因此是随机变量.(4)体积为64 cm3的正方体的棱长为4 cm为定值,不是随机变量.离散型随机变量的判定(1)某教学资源网站一天内的点击量.(2)你明天上学进入校门的时间.(3)某市明年下雨的次数.(4)抽检一件产品的真实质量与标准质量的误差.【导学号:95032118】[思路探究]根据随机变量的实际背景,判断随机变量的取值是否可以一一列出,从而判断是否为离散型随机变量.[解](1)某教学资源网站一天内的点击量可以一一列出,是离散型随机变量.(2)你明天上学进入校门的时间,可以是某区间内任意实数,不能一一列出,不是离散型随机变量.(3)某市明年下雨的次数可以一一列出,是离散型随机变量.(4)抽检一件产品的真实质量与标准质量的误差可以在某区间内连续取值,不能一一列出,不是离散型随机变量.[规律方法]离散型随机变量判定的关键及方法(1)关键:判断随机变量X的所有取值是否可以一一列出.(2)具体方法:①明确随机试验的所有可能结果;②将随机试验的试验结果数量化;③确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.2.给出下列四种变量(1)某电话亭内的一部电话1小时内使用的次数记为X.(2)某人射击2次,击中目标的环数之和记为X.(3)测量一批电阻,在950 Ω和1 200 Ω之间的阻值记为X.(4)一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中离散型随机变量的个数是( )A.1个B.2个C.3个D.4个B[(1)某电话亭内的一部电话1小时内使用的次数记为X,X是离散型随机变量;(2)某人射击2次,击中目标的环数之和记为X,X是离散型随机变量;(3)测量一批电阻,阻值在950 Ω~1 200 Ω之间,是连续型随机变量;(4)一个在数轴上运动的质点,它在数轴上的位置记为X,X不是随机变量.故离散型随机变量个数是2个.]3.有下列问题:(1)某单位一天来往的人数X;(2)从已编号的5张卡片中(从1号到5号)任取一张,被取出的卡片号数X;(3)一天内的温度为X;(4)某人一生内的身高为X;(5)全民运动会上,一选手进行射箭比赛,击中目标得10分,未击中目标得零分,用X表示该选手在比赛中的得分;(6)某林场树木最高达50米,此林场树木的高度X.上述问题中的X是离散型随机变量的是________.[解析](1),(2),(5)都可以一一列出,故都是离散型随机变量,而(3),(4)都是连续型随机变量,不能一一列出,(6)也不能一一列出,树木高度有无限多个,也不是离散型随机变量.[答案](1),(2),(5)随机变量的可能取值及试验结果1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示]可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X,则X可取哪些数字?[提示]X=0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示]“ξ≥4”表示出现的点数为4点,5点,6点.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.【导学号:95032119】[思路探究]分析题意→写出X可能取的值→分别写出取值所表示的结果[解](1)X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X=3表示取出的球编号为1,2,3.X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.母题探究:1.(变换条件、改变问法)在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解]ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.2.(改变问法)本例(2)中,“最大”改为“最小”,其他条件不变,应如何解答?[解]X可取1,2,3.X=3表示取出的3个球的编号为3,4,5;X=2表示取出的3个球的编号为2,3,4或2,3,5或2,4,5;X=1表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或1,2,4或1,3,4或1,2,3.[规律方法]用随机变量表示随机试验的结果的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值对应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.4.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示. [解] (1)X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.[当 堂 达 标·固 双 基]1.袋中有2个黑球、6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率B [A 的取值不具有随机性,C 是一个事件而非随机变量,D 中概率值是一个定值而非随机变量,只有B 满足要求.]2.下列变量中,不是随机变量的是( )【导学号:95032120】A .2020年奥运会上中国取得的金牌数B .2018年冬奥会上中国取得的奖牌数C .某人投篮2次,投中的次数D .某急救中心每天接到的呼救次数B [2018年我国冬奥会上取得的奖牌数是一个具体的数字,不是随机变量,其他三个均为随机变量.] 3.随机变量X 是某城市1天之中发生的火警次数,随机变量Y 是某城市1天之内的温度,随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( )A .X 和ξB .只有YC .Y 和ξD .只有ξB [某城市1天之内的温度不能一一列举,故Y 不是离散型随机变量.]4.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【导学号:95032121】[解析] 甲可能在3次射击中,一次也未中,也可能中1次,2次,3次. [答案] 0,1,2,35.甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”.用ξ表示需要比赛的局数,写出“ξ=6”时表示的试验结果.[解] 根据题意可知,ξ=6表示甲在前5局中胜3局且在第6局中胜出或乙在前5局中胜3局且在第6局中胜出.。

数学:2.1.2《离散型随机变量的分布列》课件(新人教A版选修2-3)

数学:2.1.2《离散型随机变量的分布列》课件(新人教A版选修2-3)

P
的变 0.2 离散型随机变量分布列 .如在 化情况可以用图象表示 ,掷出的点数 0.1 X 掷骰子试验中 的分布列在直角坐标系 中的 O 2 . 图象如图 .1− 2所示
1
2 3
4 5
6
X
在图 2.1 − 2 中, 横坐标是随 机变量的取值, 纵坐标为概 率 .从中可以看出, X 的取值 范围是 { ,2,3,4,5, 6},它取每 1 1 个值的概率都是 . 6
表2 −1
X P
1 1 6
2 1 6
3 1 6
4 1 6
5 1 6
6 1 6
利用表2 − 1可以求出能由X表示的事件的概率.例如, 在这个随机试验中事件{X < 3} = {X = 1} ∪ {X = 2}, 由概率的可加性得 1 1 1 P(X < 3 ) = P(X = 1) + P(X = 2) = + = . 6 6 3
3 3 4 4 5 5 C10C5−−10 C10C5−−10 C10C5−−10 30 30 30 = + + ≈ 0.191. 5 5 5 C30 C30 C30 55 左右 , 思考 如果要将这个游戏的中 奖控制在 % 那么应该如何设计中奖 ? 规则
Байду номын сангаас 作业:P49A组(4—6)和B组 P49A 4—6 B
X
P
0
0 n CMCN−0 −M n CN
1
n C1 CN−1 M −M n CN
⋅⋅⋅ ⋅⋅⋅
3
m n CMCN−m −M n CN
.如果随机变量 的分布列为 X 为 超几何分布列 , 超几何分布列 则称随机变量X服从超几何分 布(hypergeome tric distributi on).

新人教版选修2-3第2章第3节离散型随机变量的分布列

新人教版选修2-3第2章第3节离散型随机变量的分布列

那么上表称为离散型随机变量X的 概率分布列 ,简称为 X的分布列 .
( 2 )离散型随机变量分布列的表示方法: ①表格法. ②解析法:P(ξ=xi)=pi,ቤተ መጻሕፍቲ ባይዱ=1、2、„、n. 特别注意下标i的取值范围. ③图象法.
(3)性质:离散型随机变量的分布列具有如 下性质: ①pi ≥ 0,i=1,2,„,n; ② =1. (4)求离散型随机变量的分布列的步骤: ①找出随机变量ξ的所有可能取值xi(i=1、 2、3、„、n); pi ② 求出取各值的概率P(X=xi)= ; ③列成表格.
3.某同学计算得一离散型随机变量 ξ 的分布列如下表: ξ P -1 1 2 0 1 4 1 1 6
试说明该同学的计算结果是 ________ 的 ( 填“正确”或 “错误”).
2.一个特殊分布列 (1)两点分布列 如果随机变量X的分布列是
X 0 1 P 1-p p 这样的分布列叫做 两点分布列 . 如 果 随 机 变量X的分布列为两点分布列,就称X服从 两点分布 .而称p=P(X=1)为 成功概率 .
1 η= 0
掷出点数小于4 掷出点数不小于4
显然 η 只取 0,1 两个值. 3 1 且 P(η=1)=P(掷出点数小于 4)=6=2,故 η 的分布列为 η P 0 1 2 1 1 2
三、解答题 6.设随机变量 ξ 的分布列为: i P(ξ=i)=10(i=1,2,3,4),求: (1)P(ξ=1 或 ξ=2);
ξ 1 2 3 4 5 6 1 1 5 7 1 11 P 36 12 36 36 4 36
一批产品分一,二,三级品,每个外观都 一样,但一经使用便知道其是在哪个品级 上.已知其中一级品的数量是二级品的数 量的二倍;三级品的数量又是二级品的数 量的一半.从中随机抽取一个检查其品级 为ξ,试写出它的分布列.

人教a版数学【选修2-3】2.1.2《离散型随机变量的分布列习题课》课件

人教a版数学【选修2-3】2.1.2《离散型随机变量的分布列习题课》课件

∴X 的分布列为 X P 0 1 210 1 4 35 2 3 7 3 8 21 4 1 14
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
典例探究学案
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
27 B.38 27 D.19
[答案] B
[解析]
2 2 2 27 2 3 ∵m3+3 +3 =1,∴m=38. Biblioteka 第二章2.12.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3.袋中有6个红球、4个白球,从袋中任取4个球,则至少
有2个白球的概率是________.
[答案]
23 42
[解析] 设取出的白球个数为离散型随机变量 X,则 X 的 所有可能取值为 0、1、2、3、4,则 P(X≥2)=P(X=2)+P(X=
2 3 1 4 0 90+24+1 115 23 C2 C C C C 4 6 4 6 4C6 3) + P(X = 4) = C4 + C4 + C4 = = 210 = 42 . 故至 210 10 10 10
2.1.2 离散型随机变量的分布列
第2课时 离散型随机变量的分布列习题课
第二章
随机变量及其分布
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1
自主预习学案
2
典例探究学案
3
巩固提高学案
第二章
2.1
2.1.2

离散型随机变量 ppt课件

离散型随机变量 ppt课件
4
观察总结
随机试验中可能出现的每一种结果都 可以用一个数来表示
2020/4/11
问题3:把一枚硬币向上抛,可能会出现哪几种结果? 能否用数字来刻划这种随机试验的结果呢?
试验的结果 正面向上 反面向上 还可不可以用其他的数字
用数字表示
试验结果
1
0
来刻画?
问题4:从装有黑色,白色,黄色,红色四个球的箱子
2020/4/11
从对应的角度看
• 函数可以是一一对应,也可以是多对一 • 随机试验的结果与随机变量的对应也可
以是一对一的,也可以是多对一的
2020/4/11
随机变量和函数的联系和区别
袋子中有2个黑球6个红球,从中任取3个,可以 作为这个随机试验的随机变量的是( ) (A)取到的球的个数 (B)取到的红球的个数 (C)取到有红球又有黑球时红球的个数 (D)至少取到1个红球的概率
复习回顾
什么是随机事件? 在条件S下可能发生也可能不发生的事件,叫 做相对于条件S的随机事件。
概率是指什么?
概率是描述在一次随机试验中的某个随机 事件发生可能性大小的度量
2020/4/11
数字化?
• 随机试验的结果可以数字化吗?
2020/4/11
知识探究
问题1:某人在射击训练中,射击一次,命中的环数
中摸出一个球,可能会出现哪几种结果?能否用数字
来刻划这种随机试验的结果呢?
试验的结果
用数字表示试 验结果
黑色
1
白色2黄色来自红色342020/4/11
还可不可以用其他的数字来刻画??
观察总结
有些随机试验的结果虽然不具有数量 性质,但也可以用数量来表述,我们可 以将试验结果赋值,并且可以赋不同 的值。

高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新

高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新

2.1.2 离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求某些简单的离散型随机变量的分布列.3.理解两点分布和超几何分布及其推导过程,并能简单的运用.,1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即X 0 1 … mPC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.(1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n .(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( ) (2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( ) (4)超几何分布的模型是放回抽样.( ) 答案:(1)× (2)× (3)√ (4)×下列表中能成为随机变量ξ的分布列的是( ) A.ξ -1 0 1 P0.30.40.4B.ξ 1 2 3 P0.40.7-0.1C.ξ -1 0 1 P0.30.40.3D.ξ 1 2 3 P0.30.10.4答案:C若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y 为整数,则ξ=0;若x y为小于1的分数,则ξ=-1;若x y为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使x y为整数的有以下8种: (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 离散型随机变量的分布列的性质设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值;(2)求P (X ≥35);(3)求P (110<X <710).【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=ck (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为X 0 1 2 3 P120920920 1201.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为η 0 1 P12122.[变条件]将本例的条件“一次随机抽取3个球”改为“有放回地抽取3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为X 0 1 2 3 P18383818求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.(2018·昆明质检)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( ) A.1220 B.2755C.27220D.2125解析:选C.X =4表示取出的3个球为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.3.随机变量η的分布列如下η 1 23 4 5 6 P0.2x0.350.10.150.2则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2). 解:由题意可知,ξ的可能取值为0,1,2,3. 则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为ξ 0 1 2 3 P13512351835435P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.知识结构深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义., [A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10D .25解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14C.16D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C.3.设随机变量X 的概率分布列为则P (|X -3|=1)=A.712 B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B.4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2D .1≤x <2解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )287C.1556 D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.68.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, 所以m =0.3. 列表为:(1)2X +1的分布列为:(2)|X -1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r :集合中的所有元素之和为10,求所取出的非空子集满足性质r 的概率; (2)记所取出的非空子集的元素个数为X ,求X 的分布列. 解:(1)记“所取出的非空子集满足性质r ”为事件A . 基本事件总数n =C 15+C 25+C 35+C 45+C 55=31.事件A 包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A 包含的基本事件数m =3.所以P (A )=m n =331.(2)依题意,X 的所有可能值为1,2,3,4,5. 又P (X =1)=C 1531=531,P (X =2)=C 2531=1031,P (X =3)=C 3531=1031,P (X =4)=C 4531=531,P (X =5)=C 5531=131.故X 的分布列为11.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13 B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3]D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列. 解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为Y 0 1 2 P6313028651113014.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为则P (C )=P (X =3)+P (X =4)=215+310=1330.。

高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列

高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列

所以随机变量ξ的分布列为:
ξ3
4
5
6
P
1 20
3 20
3 10
1 2
[规律方法] 1.确定离散型随机变量ξ的分布列的关键是 要搞清ξ取每一个值对应的随机事件,进一步利用排列、组 合知识求出ξ取每一个值的概率.对于随机变量ξ取值较多或 无穷多时,应由简单情况先导出一般的通式,从而简化过 程.
2.一般分布列的求法分三步:(1)首先确定随机变量ξ的 取值有哪些;(2)求出每种取值下的随机事件的概率;(3)列 表对应,即为分布列.
人教版高中数学选修2-3 第二章 随机变量及其分布
2.1.2 离散型随机变量的分布列
课前预习
1.抛掷一个骰子,用X表示骰子向上一面的点数. [问题1] X的可能取值是什么? [提示] X=1、2、3、4、5、6. [问题2] X取不同值时,其概率分别是多少? [提示] 都等于16.
2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3 只,以ξ表示取出的3只球中的最小号码.
特别提醒: 两点分布的试验结果只有两个可能性,且 其概率之和为1.
2.解决超几何分布问题的关注点 (1)超几何分布是概率分布的一种形式,一定要注意公 式中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆; (2)超几何分布中,只要知道M,N,n就可以利用公式 求出X取不同m的概率P(X=m),从而求出X的分布列.
课堂练习
1.下列表中能成为随机变量X的分布列的是( )
A. X -1
0
1
P -0.1 0.5 0.6
B. X -1
0
1
P 0.3 0.7 -0.1
C. X
-1
0

2014年人教A版选修2-3课件 2.1 离散随机变量及其分布

2014年人教A版选修2-3课件 2.1  离散随机变量及其分布

练习: (课本45页) 第 1、 2 题 .
练习: (课本45页)
1. 下列随机试验的结果能否用离散型随机变量表示? 若能, 请写出各随机变量可能的取值, 并说明这些值所表 示的随机试验的结果. (1) 抛掷两枚骰子, 所得点数之和; (2) 某足球队在 5 次点球中射进的球数; (3) 任意抽取一瓶某种标有 2500 ml 的饮料, 其实际量 与规定量之差. 解: (1) 能用离散型随机变量表示. 随机变量的可能取 值为 X{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. {X=2} 表示两枚都出现 1 点. {X=3} 表示一枚出现 1 点, 另一枚出现 2 点. {X=4} 表示一枚出现 1 点, 另一枚出现 3 点; 或两枚 都出现 2 点.
2. 什么是离散型随机变量? 变量的取值是 否有一个确定的范围? 每一个取值表示怎样的 一个试验结果?
问题 1. 你能说出下列各试验的结果吗? 各试验 结果是否能用数量表示? (1) 掷一枚骰子; (2) 掷一枚硬币; (3) 测一病人体温.
(1) 掷一枚骰子的试验结果有: 1 点向上, 2 点向上, 3 点向上, 4 点向上, 5 点向上, 6 点向上. 可分别用
出现点数
1 2 3 4 5 6
1 2 3 4 5 6
正面 向上 反面 向上
1
正常 低热 高烧
0 1 2
0
随机变量也是一种映射, 与函数比较, 函数是把 实数映射为实数, 随机变量是把试验结果映射为实数. 试验结果的范围相当于函数的定义域, 随机变量的取 值范围相当于函数的值域.
出现点数
1 2 3 4 5 6
数字 1, 2, 3, 4, 5, 6 表示上面的六个试验结果.

人教a版数学【选修2-3】2.1.2《离散型随机变量的分布列》ppt课件

人教a版数学【选修2-3】2.1.2《离散型随机变量的分布列》ppt课件

离散型随机变量的分布列 温故知新 回顾复习古典概型的特点及概率计算、离散型随机变量的 特点.
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
思维导航 1 .想一想,投掷一颗骰子,所得点数记为 ξ ,则 ξ 可取哪 些数字?ξ取各个数字的概率分别是多少?可否用列表法表示ξ 的取值与其概率的对应关系?投掷两颗骰子,将其点数之和记
X P0Βιβλιοθήκη 1-p1 p这样的分布列叫做两点分布列.如果随机变量 X的分布列 两点分布 .而称 p = P(X = 1) 为 为两点分布列,就称 X 服从 __________ 成功概率 . __________
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
若其中所含教师人数记为ξ,则ξ可能的取值有哪些?怎样求其
概率?你能将这一问题一般化表达,并再找出类似的例子吗? 其一般概率公式如何推导?
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
新知导学 2.两个特殊分布列
(1)两点分布列
如果随机变量X的分布列是
为ξ,则ξ可能的取值有哪些,你能列表表示ξ取各值的概率与ξ
取值的对应关系吗?
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
新知导学
1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X可能取的不同值为 x1、x2、„、xi、„、xn,X取每一个值xi(i=1,2,„,n)的概率 P(X=xi)=pi,以表格的形式表示如下: X P x1 p1 x2 p2 „ „ xi pi „ „ xn pn

数学:2.1《离散型随机变量及其分布列-离散型随机变量分布列》课件(新人教A版-选修2-3)

数学:2.1《离散型随机变量及其分布列-离散型随机变量分布列》课件(新人教A版-选修2-3)
P 1 p, P 0 q, 0 p, q 1,
p q 1.
想一想
X 2 5 是两点分布吗? P 0.3 0.7 提示:不是.两点分布的X的取值只能是0,1. 分布列
什么是超几何分布? 先思考一个例子: 思考 1.在含有 5 件次品的 100 件产品中,任取 3 件,求:(1)取到的次品数 X 的分布列.
例1
甲、乙两人参加一次数学知识竞赛 , 已知在备
选的 10 道试题中 , 甲能答对其中的 6 道试题 , 乙能答
对其中的8道试题.规定每次考试都从备选试题中
随机抽出3题进行测试,答对一题得5分,答错一题得 0分.求: (1)甲答对试题数X的分布列; (2)乙所得分数Y的分布列.
【解】
(1)X 的可能取值为 0,1,2,3. C3 4 1 4 P(X=0)= 3 = = ,2 分 C10 120 30 1 C2 36 3 4C6 P(X=1)= 3 = = 3分 C10 120 10 2 C1 60 1 4C6 P(X=2)= 3 = = ,4 分 C10 120 2 C3 20 1 6 P(X=3)= 3 = = .5 分 C10 120 6 所以甲答对试题数 X 的分布列为 X 0 1 1 3 P 30 10 6分
设摸出的红球的个数为 X k n k CM CN M 则 P( X k ) (k 0,1, 2 , m), m min M , n n CN
C
1分
2 1 2
3 1 6
(2)乙答对试题数可能为 1,2,3,所以乙所得分数 Y=5,10,15. 1 C2 C 8 1 2 8 P(Y=5)= 3 = = ,9 分 C10 120 15 2 C1 C 56 7 2 8 P(Y=10)= 3 = = ,10 分 C10 120 15 C3 56 7 8 P(Y=15)= 3 = = .11 分 C10 120 15 所以乙所得分数 Y 的分布列为 Y 5 10 15 1 7 7 P 15 15 15 12 分

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

预习探究
[探究] 以下随机变量是离散型随机变
量的是
.
①某部手机一小时内收到短信的次数
ξ;
②电灯泡的寿命ξ; ③某超市一天中的顾客量ξ; ④将一颗骰子掷两次出现的点数之和
ξ.
⑤连续不断地射击,首次命中目标所需
要的射击次数ξ.
④将一颗骰子掷两次出现点数之和ξ的取
值为2,3,…,12,是离散型随机变量;
三维目标
3.情感、态度与价值观 使学生感悟数学与生活的和谐之美,学会合作探讨,体验成功,提 高学习数学的兴趣.
重点难点
[重点] (1)随机变量、离散型随机变量的意义; (2)离散型随机变量的分布列的概念.
[难点] (1)随机变量、离散型随机变量的意义; (2)求简单的离散型随机变量的分布列.
教学建议
例1 指出下列变量中,哪些是随机变量, 哪些不是随机变量,并说明理由. (1)任意掷一枚质地均匀的硬币5次,出 现正面向上的次数; (2)投一颗质地均匀的骰子出现的点数 (最上面的数字); (3)某个人的属相随年龄的变化; (4)在标准状况下,水在0℃时结冰.
(3)属相是出生时便确定的,不随年龄的变化 而变化,不是随机变量. (4)标准状况下,水在0℃时结冰是必然事件, 不是随机变量.
P
分别求出随机变量η1=2ξ1,η2=ξ2的分布列.
当ξ取-1与1时,η2=ξ2取相同的值,故η2的分布 列为 η2 0 1 4 9
考点类析
例2 指出下列随机变量是不是离散型 随机变量,并说明理由. (1)从10张已编好号码的卡片(从1号到 10号)中任取1张,被取出的卡片的号数; (2)一个袋中装有5个白球和5个黑球,从 中任取3个,其中所含白球的个数; (3)某林场树木最高达30 m,则此林场中 树木的高度; (4)某加工厂加工的某种铜管的外径与 规定的外径尺寸之差.

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列
付款,其利润为250元;分4期或5期付款,其利润为300元.若η表示经
销一件该商品的利润,求η的分布列.
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:由题易得,η的可能取值为200元,250元,300元,
则P(η=200)=P(ξ=1)=0.12,
P(η=250)=P(ξ=2)+P(ξ=3)=0.24+0.18=0.42,
=1
【做一做1】 离散型随机变量X的分布列为
X
1
1
4
)
P
则m的值为(
A.
C.
1
2
1
4
B.
2
3
m
4
1
3
1
3
1
D.
6
1
1
1
1
4
3
6
4
解析:由概率分布列的性质知, +m+ + =1,得 m= .
答案:C
1
6
2.两点分布
随机变量X的分布列为
X
P
0
1-p
1
p
若随机变量X的分布列具有上表的形式,则称X服从两点分布,并
C 345
C 350
C 350
.
,
探究一
探究二
探究三
探究四
思维辨析
当堂检测
离散型随机变量的分布列
例1 从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱
中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球
输1元,取出黄球无输赢.
(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;

高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分

高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分

所以P(X=0)=CC06C13034=310,P(X=1)=CC16C13024=330, P(X=2)=CC26C13014=12,P(X=3)=CC36C13004=130. 所以X的概率分布为:
X
0
1
2
3
P
1 30
3 10
1
1
2
6
(2)由(1)知他能及格的概率为P(X=2)+P(X=3)=
4.从4名男生和2名女生中选3人参加演讲比赛,则 所选3人中女生人数不超过1人的概率是________.
解析:设所选女生人数为X,则X服从超几何分布, 其中N=6,M=2,n=3,
则P(X≤1)=P(X=0)+P(X=1)=CC02C36 34+CC12C36 24=45. 答案:45
5.在掷一枚图钉的随机试验中,令X=
复习课件
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分布与超几何分布同步课件 新人教A版选修2-3
1
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.2 离散型随机变量的分布列 第 2 课时 两点分布与超几何分布
[学习目标] 1.理解两点分布,并能进行简单的应用 (重点). 2.理解超几何分布及其推导过程,并能进行简 单的应用(重点、难点).
X0
1 …M
P
C0MCnN--0M CnN
C1MCnN--1M CnN

CmMCnN--mM CnN
如果随机变量 X 的分布列为超几何分布列,则称随
机变量 X 服从超几何分布.
温馨提示 两点分布的随机变量 X 只能取 0 和 1,否 则,只取两个值的分布不是两点分布.

选修2-3 第二章 2.1.2 离散型随机变量的分布列

选修2-3 第二章  2.1.2 离散型随机变量的分布列


2.1.2 离散型随机变量的分布列 刷基础
题型4 超几何分布
11.[吉林吉化一中2018高二期末]一袋中装有10个大小相同的黑球和白球,已知从袋中任意摸出2个球, 至少得到1个白球的概率是 .
(1)求白球的个数; (2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.

2.1.2 离散型随机变量的分布列 刷基础
2.1.2 离散型随机变量的分布列 刷基础
题型1 离散型随机变量的分布列
2.设X是一个离散型随机变量,其分布列如下表,则q等于________.
X
-1
0
1
P
0.5
1- q
q2
解析
2.1.2 离散型随机变量的分布列
题型2 离散型随机变量分布列的性质
刷基础
3.[河南2019高二期中]已知随机变量X的分布列如表所示.
解析
将50名学生看作一批产品,其中选修A课程为不合格品,选修B课程为合格品,随机抽取两名学生
,X表示选修A课程的学生数,则X服从超几何分布,其中N=50,M=15,n=2.依题意所求概率
为P(X=1)=
=.
2.1.2 离散型随机变量的分布列 刷基础
题型4 超几何分布
10.[广西南宁四中2019高二月考]现有一批产品共10件,其中8件为正品,2件为次品,从中抽取3件. (1)恰有1件次品的抽法有多少种; (2)求取到次品数X的分布列.
2.1.2 离散型随机变量的分布列
题型5 综合问题
刷基础
12.[四川成都外国语学校2019高二月考]在10件产品中,有3件一等品,4件二等品,3件三等品.从这10 件产品中任取3件.求:
(1)取出的3件产品中一等品件数X的分布列; (2)取出的3件产品中一等品件数多于二等品件数的概率.

离散型随机变量的分布列选修2-3

离散型随机变量的分布列选修2-3

(3)将 随 机 变 量 的 值 和 对 应 的 概 率 用 表 格 表 示 出 来
试一试:
盒子中装有2个白球和2个黑球,现从盒中任取2个 球,若X表示从盒中取出的2个球中包含的黑球数, 求X的分布列.
解:X的可能取值有: 0,1,2
当 X 0时 , 表 示 取 到 的 2个 小 球 中 有 0个 黑 球 即 : P(X=0)=
C2 C4
2
2

1
1 6
1
; 4 6 2 3
当 X 1 时 , 表 示 取 到 的 2 个 小 球 中 有 1 个 黑 球 即 : P ( X 1) 1
C 2C 2 C4
2


;
同 理 P( X = 2 ) =
;
6 X的分布列为:
X P
0
1 6
1
2 3
2
1 6
3.分布列的性质 ●观察思考 观察例1和变式练习的分布列中随机变量对应的概率之 和有何特点? ●归纳概括 由上面几个例子的观察,你由此得出一般随机变量分 布列的性质?
(3 ) 分 布 列 随 机 变 量 的 取 值 可 以 一 一 列 举
(2)分布列与我们已学习的函数有何关系?
分布列就是由随机变量到概率的函数关系
2. 分布列的表示法 ●类比猜想 类比函数的几种表示法,你能猜想得出随机变量分布列 有几种表示法?请把它写在下面: ( (1) 解 析 法 ( 形 式 简 单 , 能 精 确 取 值 ) 抽 象 且 不 直 观 ) ( 简 单 , 且 直 观 )( 不 适 用 随 机 变 量 取 值 较 多 ) (2) 列 表 法 (3) 图 象 法 (直观) (不精确)
P(A)=
m n

离散型随机变量(共30张PPT)

离散型随机变量(共30张PPT)

①抛掷两用枚骰数子字,所表得点示数之和
1 所引有入取 新值课试可以验一结一列果出的随机变量,称为离散型随机变量
0
刻画?
某在城前市 面一的问年例内子题下中雨,4的哪:天些数是离从散型装随机有变量?黑色,白色,黄色,红色四个球的箱子中
某商人场一 内分的摸钟促内销出眨活眼动一的可次获数得个经济球效益,2万元可; 能会出现哪几种结果?能否用数字来刻
新课标人教A版选修2-3
离散型随机变量
广东广雅中学 查扬波改编
引入新课
商场内的促销活动可获得经济效益2万元; 商场外的促销活动,如果不遇雨天那么带来经 济效益10万元,如果下雨那么带来经济损失4万 元。
假设国庆节有雨的概率是0.4,请问商场 应该选择哪种促销方式较好?
为了解决类似的问题,从今天开始学习本章内容-----随机变量及 其分布列
• 某林场树木最高达30米,林场树木的高度
• 某人一分钟内眨眼的次数
随机变量和函数的联系和区别
随机变量和函数都一种映射,
函数把实数映射为实数。
随机变量把随机试验的结果映射为实数,
试验结果的范围相当于函数的定义域,
随机变量的取值范围相当于函数的值域。
再回去看看!在抛掷骰子的试验中,如果我们关心的点数是 否为偶数,应该如何定义随机变量?
随机变量常用字母X,Y,ξ、η等表示. 例如:〔1〕射击训练中,命中的环数X
〔2〕在含有次品的100件产品中,任意抽取4件,含次品的件数 Y
随 机 变 量的特点
在随机试验中,确定了一个对应关系,使得每一个试验结果 都用一个确定的数字表示.在这个对应关系下,数字随着试验结果
变化而变化,像这样随着试验结果变化而变化的变量称做随机变量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)取到的次品数X的分布列; (2)至少取到1件次品的概率.
解:(1)从100件产品中任取3件结Biblioteka 数为求C1分300 ,布列一定要说
从100件产品中任取3件,其中恰有K件次明品k的的结取果值为范围!
C5k

C 3k 95
那么从100件产品中任取3件, 其中恰
好有K件次品的概率为
p(
k)
C5k

C 3k 95
则 P(X k
3.盒中有 4
)个白C球MkCC,NnNn5kM个(k红球0,,1, 2从中, m任)取, m
3
minM , n
个球,则抽
C 出 1 个白球和 2 个红球的概率是( )
(A) 37 42
(B) 17 42
(C) 10 21
(D) 17 21
(注:许多问题其实就是超几何分布问题)
课堂小结
∴ξ的可能取值为 0,1,2.

P(
k)
C3k C22 k C52
(k
0,1, 2)
∴随机变量ξ的分布列是
ζ0
1
2
P1
3
3
10
5
10
多做练习:
2.设袋中有 N 个球,其中有 M 个红球,N M 个黑球,
从中任取 n 个球,问恰有 k 个红球的概率是多少?
(注:记忆公式的前提是要会推导)
设摸出的红球的个数为 X
离散型随机变量的分 布列(2)
回顾复习
1. 随机变量 如果随机试验的结果可以用一个变量来表示,那么
这样的变量叫做随机变量. 2.离散型随机变量
对于随机变量可能取的值,我们可以按一定次序 一一列出,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列的性质:
(1)P( xi ) pi (i 1, 2,..., n);(2)0 pi 1(i 1, 2,..., n);
率为
P(X
k)
C
k M

C
nk N M
,
k
0,1, 2,
,m
C
n N
其中m min{M , n},且n N , M N , n, M , N N *
称分布列 为超几何 分布
X
0
1 …m
P
C C C C 0 n0 M NM
1 n1 M NM
… C C m nm M NM
CNn
CNn
CNn
则称随机变量 X 服从超几何分布.记为:x H(n,M,N),
C3 100
,k
0,1, 2, 3
ξ
P
0
C50C935 C3
100
1
C51C925 C3
100
2
C52C915 C3
100
3
C53C905 C3
100
形成结论 2注⑵、:超超⑴几几超何何几分分何布布分中布的的参模数型是是M不,N放,n回抽样
一般地,在含有M件次品的N件产品中,任取n
件,其中恰有X件次品数,则事件{X=k}发生的概
模型得中奖的概率
P( X ≥ 3) P( X 3) P( X 4) P( X 5)
C130C220 C350
C140C210 C350
C150C200 C350
≈0.191
多做练习:
1.从装有 3 个红球,2 个白球的袋中随机取出 2 个球,
设其中有 个红球,求 的分布列.
解:设摸出红球的个数为ξ,则ξ服从超 几何分布,其中 N 5, M 3, n 2 ,
轮流摸取1球,甲先取7,乙后取,然后甲再取…… 取后不放回,直到两人中有一人取到白球时即终 止,每个球在每一次被取到的机会是等可能的,
用 表示取球终止时所需要的取球次数。
(1)求袋中原有白球的个数;
(2)求随机变量 的概率分布;
(3)求甲取到白球的概率。
形成结论
两点分布又称0-1分布,或伯努
利分布,在两点分布中,X=1对应的
试验结果为“成功”,p=P(X=1)
称为成功概率,能否将分布列P(X=2)
=0.4,P(X=5)=0.6变换为两点分
布?
令Y
0, X=2
,则Y服从两点分布.
1,X=5
理论迁移
例1 已知随机变量ξ服从两点分布, 其分布列如下,求ξ的成功概率.
P
1
5
15
35
70
126
252
252
252
252
252
252
例 3.在某年级的联欢会上设计了一个摸奖游戏,在一 个口袋中装有 10 个红球和 20 个白球,这些球除颜色 外完全相同.游戏者一次从中摸出 5 个球.至少摸到 3 个红球就中奖,求中奖的概率.
解:设摸出红球的个数为 X,则 X 服从超几何分 布,其中 N 30, M 10, n 5,于是由超几何分布
(3) p1 p2 ... pn 1;(4)离散型随机变量在某一范围内 取值的概率等于其在这个范围内取每一个值的概率之和。
探求新知
篮球比赛中每次罚球命中得1分, 不中得0分.若姚明罚球命中的概率为 0.95,则其罚球命中的分布列用列表 法怎样表示?
ξ0 1 P 0.05 0.95
探求新知
1.两点分布中随机变量只有0和1两 个不同取值.
2.在有多个结果的随机试验中,如 果我们只关心一个随机事件是否发生, 可以将它化归为两点分布来研究.
课堂小结
3.超几何分布是一种常见的概率分 布模型,它有统一的概率计算公式, 其分布列用解析法表示较简单.
例球都4:是袋白中球装的有概黑率球为和1白。球现共有7个甲,、从乙中两任人取从2袋个中
ξ
0
1
P 9c2-c 3-8c
P(X=1)= 1 3
练习:
1、在射击的随机试验中,令ξ= 0,射中, 1,未射中
如果射中的概率为0.8,求随机变量ξ的分布列。
2、设某项试验的成功率是失败率的2倍,用随机
变量 去描述1次试验的成功次数,则失败率p等
于( C )
1
A.0
B. 2
1
2
C.
D.
3
3
例2:在含有5件次品的100件产品中,任取3件,试求:
练习从1~10这10个数字中随机取出5个数字,令ξ
表示取出的5个数字中的最大值.试求ξ的分布 列.
求分布列一定要说 解: ξ的可能取值为 5,6,7,8明,9k,的1取0.值范并围且!
P( k) =—C—k41 k 5, 6, , 10.
C 150
具体写出,即可得 ξ 的分布列:
ξ 5 6 7 8 9 10
在抛掷一枚图钉的随机试验中,

10,,针针尖尖向向上下;.,若针尖向上的概率为
p,则随机变量ξ的分布列用列表法怎样
表示? ξ 0
1
P 1-p p
形成结论
1、两点分布列? 随机试验只有两个可能结果.
如果随机变量X的分布列为两点分 布列,则称X服从两点分布,在两点分 布中随机变量的值域是什么?分布列 P(X=2)=0.4,P(X=5)=0.6是否为 两点分布?{0,1} 否
相关文档
最新文档