CRUISE纯电动车动力性能仿真及优化

合集下载

基于Cruise的纯电动轿车动力学仿真研究

基于Cruise的纯电动轿车动力学仿真研究
4)黑 盒 子 功 能 可 嵌 入 用 户 自定 义的 模 块 和 控 制算 法 ; 5)和 一 维 流 体 动 力 学 软 件 F 0 s e l Wm t r和
是 精 确 , 即 能 够 使 不 同 结 构 的 动 力 传 动 系 统
间 的 比 较 具 有 意 义 ; 二 是 快 速 , 即 能 快 速 进 行 汽 车 分 析 和 空 间 研 究 设 计 ,例 如 对 多 维 变 量 参
的方 案 。
也可 以 用于混 合 动 力汽 车 、 电动汽 车的 动力 系
统 、传 动 系 统 及 控 制 系 统 的 开 发 和 优 化 。
C r i 基 于 全 面 满 足 汽 车 开 发 全 过 程 要 u e是 s
求的 思想 而设 计 的 。它具有 以 下特 点 : 1)模块化 的概念可进 行各种汽车和动 力总
Re e r h 0 n m ia i l t g 0 e t i rBa e n Cr ie s a c n Dy a c l mu a i f S n Elc rcCa s d 0 u s
Y n C a , W Z i n a g h 0 u h xi
数 的 研 究 和 优 化 等 ; 三 是 灵 活 , 即 能 对 不 同 控
dy m i a i ultn ol na c lsm ai g f lowe d,r s ls o na i ror a e a d e u t fdy m cpe f m nc n wor ng p oces ae g v n,,a he hea ayss ki r s r i e nd t n t n l i o he r s t a h a e o ptm ii e ce pe f m a e. ft e ulsc n be t e b s sf r o i z ng v hil ror nc

Cruise汽车仿真分析

Cruise汽车仿真分析

AVL-Cruise整车性能分析1 模型的构建要求1.1 整车动力性、经济性计算分析参数的获取收集与整理关于该车的整车配置组件参数数据。

主要包括发动机动力性、经济性参数;变速箱档位速比参数;后桥主减速比参数;轮胎参数;整车参数等。

具体参数项目见附录1。

1.2 各配置组件建模1.2.1 启动软件在桌面或程序中双击AVL-Cruise快捷图标,进入到AVL-Cruise 用户界面,点击下图所示工具图标,进入模型创建窗口。

进入模型创建窗口1.2.2 建立整车参数模型进入模型创建窗口后,将鼠标选中Vehicle Model,鼠标左键点击整车图标,按住左键将图标拖曳到建模区,如下图所示:双击整车图标后打开整车参数输入界面,根据参数输入要求依次填写数据:Author:此处填写计算者,不能用中文,可以用汉语拼音与英文,该软件所有填写参数处均不能出现中文。

Comment:此处填写分析的车型号。

Notice1、Notice2、Notice3:此处填写分析者认为需要注意的事项,比如特殊发动机型号等,没有可以不填。

1.2.2.1 整车参数数据填写规则 序号 驾驶室形式 迎风面积风阻系数备注1奇兵车身(平顶)5.0(1830*2760)0.7迎风面积=前轮距*整车高度2奇兵车身(高顶)6.422(1900*3380) 0.7536系、9系平顶车身 6.1(2020*3020)0.8重卡风阻系数参考值:0.7-14 6系、9系高顶车身 7.0(2020*3460) 0.95高顶加导流7.3(2020*3637)0.92作者名称、注注解说明,可油箱容内外温试验台架内外压牵引点轴距空载、半载、满载下整车重心到前轴中心距离、整备整车迎风风阻前轮举后轮罩1.2.3发动机模型建立进入模型创建窗口后,将鼠标选中Engine Model,鼠标左键点击发动机图标,按住左键将图标拖曳到建模区,如下图所示:双击发动机图标后打开发动机参数输入界面,根据参数输入要求依次填写数据:1.2.3.1 发动机参数输入规则序号发动机惯量达到全功率的响应时间柴油热值柴油密度1参考值:1.25参考值:0.1参考值:44000kj/kg0.82kg/L2型是否发动机发动机缸冲程数怠速额定最惯达到全功燃油热值燃油作者名陈、注解说明31.2.3.2 发动机外特性曲线输入按照图示箭头位置单击按钮,弹出外特性输入窗口:此处根据厂家提供的发动机数据输发动机转速与扭矩的关系从外特性数据表中可以直接得到;填写时注意对应关系即可。

基于CRUISE的某款纯电动汽车的动力系统匹配及参数优化

基于CRUISE的某款纯电动汽车的动力系统匹配及参数优化
基于CRUISE的某款纯电动汽车的动力 系统匹配及参数优化
全球的石油能源正在以很快的速度被消耗,而目前已探明的石油 资源很少,随着时间的推移,全球可能会出现极其可怕的能源危 机。传统汽车也会面临被淘汰的局面。
目前国内传统汽车的保有量正在逐年地高速增加,传统汽油、柴 油汽车废气排放带来的环境污染不容小觑,比如目前造成北方城 市的严重的雾霾天气的罪魁祸首之一就是汽车尾气的大量排放。 处在这种形势之下,研发新能源汽车就显得尤为的重要与紧迫。
纯电动汽车作为新能源汽车,最具发展前景,对它的研究尤为重 要。动力系统技术作为电动汽车核心技术之一,其参数的合理匹 配设计关系到电动汽车整车的某款城市家庭型纯电动汽 车(EV01)为研究的对象,参与其动力系统参数的匹配及优化工作。 根据整车的各个参数以及性能的各个设计目标结合汽车纵向动 力学知识,对动力系统参数进行初步的理论匹配设计。
然后利用车辆仿真软件AVL CRUISE进行整车的建模仿真,并对试 制车进行严格的试验,对比仿真结果与试制车试验结果,得出利 用该软件进行整车仿真的正确性与准确性。在保证动力性能前 提下,本文提出利用PSO(粒子群)优化算法对动力系统参数进行 优化,以达到改善整车性能表现的优化过程。
优化后的参数再次利用CRUISE进行仿真,仿真表明在动力性能得 以保证的前提下,整车性能有了很大程度的提升,优化后的性能 指标均达到设计目标并有不同程度的改善,表明运用该优化算法 的合理性及准确性。

CRUISE纯电动车动力性能仿真及优化

CRUISE纯电动车动力性能仿真及优化

虚 拟与仿 真CRU ISE 纯电动车动力性能仿真及优化姜海斌,黄宏成(上海交通大学汽车工程研究院汽车电子控制技术国家工程实验室,上海200240)Simulation and Optimization of the Electric Vehicle s Dynamic Perf ormance on CRUISEJIANG Hai bin,HUANG Hong cheng(N ational Eng ineer ing L abor ator y of Automo tiv e Elect ronics,I nstitute o f Automo tiv e Eng ineer ing,Shang hai Jiao T ong U niv ersity ,Shang hai 200240,China)摘要:以后轮驱动纯电动车为例,利用CRU ISE 软件建立了电动车的动力系统模型,并用此软件模拟得到其动力性能,验证了该模型分析车辆动力性能的可行性.分析了影响续驶里程及最大爬坡度的各种因素,提出的措施和方法能够很好地提高电动汽车动力性能.关键词:纯电动车;建模;CRUISE;续驶里程;优化中图分类号:U 469.7文献标识码:A 文章编号:10012257(2010)04006104收稿日期:20091203Abstract:T aking r earw heel dr iv e as an ex -am ple,the mo del of the electric vehicle is estab -lished in CRUISE.Also this softw are is used to simulate the perfo rmance of the vehicle.T he simu -lation results validate that CRU ISE can analyze the feasibility of vehicle per for mance.Then,various facto rs that affect continued driving range and lar -g est gr adeability ar e analyzed.The applied methods ar e all useful for the improvement of perform anceof the vehicle.Keywords:electricvehicle;m odeling;CRUISE;co ntinued driving rang e;optimization0 引言随着能源和环境对人类生活和社会发展的影响越来越大,全球石油危机和大气污染日趋严重,各种电动汽车也应运而生.纯电动汽车没有内燃机车辆工作时产生的废气,是目前最环保的车型之一[1].与传统的燃油汽车相比,由于电动车所具有的节能、环保优点,使其成为未来汽车产业发展的趋势之一.在研究和开发电动汽车的部件及选择最佳结构时,为缩短开发周期,降低开发成本,缩小研究范围,找到技术的突破口,特别是在技术方案的选择阶段,在系统和关键部件的选择上,可依靠高效的计算机对系统和关键部件进行建模,然后进行模拟仿真,从而找到最佳方案.1 纯电动汽车建模纯电动汽车的建模和动力总成系统的选择,对于整车系统的建立是非常重要的.电动汽车的运行性能主要由动力总成系统来决定.电动汽车动力总成系统的组成部分主要包括电池、电机、离合器、变速箱、减速器以及车轮.本文设计的纯电动车模型和动力总成系统如图1所示.图1 整车模型和动力系统1.1 电机模块电机是纯电动汽车惟一的驱动单元,它的技术性能直接影响到车辆的运行性和经济性.因此,必须按照电动车的技术要求合理地选择电机的参数和指标.在CRU ISE 中,电机的参数设置定义了电机的额定电压,电机在各种工作过程状态中的转矩和转速,电机效率关系以及其它一些参数[2].模型中电机的基本参数如表1所示.表1 电机的基本参数额定转速(r/m in)1430峰值转速(r/m in)5600额定转矩(N m)20峰值转矩(N m)40额定功率(kW)3峰值功率(kW)6额定电压(V)481.2 电池模块电池是制约电动汽车发展的关键因素,目前可采用的电池有铅酸电池、镍镉电池、镍氢电池、锂电池和燃料电池等.铅酸电池虽然比能量比较低,但其技术可靠,生产工艺成熟,成本低,拥有适合电动汽车使用的良好的大电流输出性能以及多种型号和尺寸.考虑到整车的成本,本车型选用了铅酸电池作为动力源.在CRU ISE中,根据电池建模的参数做出电池的SOC与电池电压之间的关系曲线,SOC 值的大小直接反映了电池所处的状态,由此可限定电池的最大放电电流,并可在仿真过程中更精确地计算各种工况下电动车的续驶里程.所选用的电池在试验室经过不同状态下的充放电试验,根据在试验中测得电池电压、电流和放电时间等参数,推断出SOC与电压的关系.2 CRU ISE中建模与仿真CRUISE软件可以用于车辆的动力性,燃油经济性以及排放性能的仿真,其模块化的建模理念使得用户可以便捷地搭建不同布置结构的车辆模型,其复杂完善的求解器可以确保计算的速度.它可用于汽车开发过程中的动力和传动系统的匹配、汽车性能预测和整车仿真计算;可以进行发动机、变速器、轮胎的选型及其与车辆的匹配优化;可以用于混合动力汽车、纯电动汽车的动力、传动及控制系统的开发和优化[3].CRUISE软件的主要特点是:a.模块化的设计思想使得用户能够便捷地进行车辆的整车模型和动力总成系统的建模,并且能够方便地进行修改和优化.b.智能化的驾驶员模块,能够很好的模拟驾驶员的意图.c.M atlab接口模块,使得用户能够使用比较复杂的控制算法.2.1 CRUISE中车辆模型按照上述结构,在CRUISE中进行建模. CRU ISE采用图形化的界面,用户可以从已有的模型箱中选择自己想要的模型.将电池、电机、离合器、变速箱、驾驶员模块以及车轮等模块拖入CRUISE 的工作区中,建立模型.输入系统中各个模块的参数,如车辆模块的满载重量、迎风面积和阻力系数等;电机的电压、转矩和转速等;车轮的摩擦系数;主减速器的主减速比等.在CRUISE仿真时,系统会提示所有必须要输入的参数,按照这个要求,把参数一一输入即可.建立系统的物理连接和信号连接.首先完成物理连接,当各子系统模型选定之后,应根据汽车配置方案和部件连接关系建立模型的物理连接.只需用connect连接功能建立物理连接.传动系各部件之间有直接的物理连接关系,车轮和制动器之间也有物理连接关系,但驾驶室与动力传动系和制动系之间没有物理连接.在仿真过程中,它们之间是通过信号连接来传递信息.信号连接是汽车建模过程中比较关键内容之一,也有较大难度.要想正确建立汽车各子模型之间的信号连接关系,必须对汽车系统内部各部件之间的连接、控制关系以及信息传递关系,有比较深刻的理解.如驾驶员模块需要连接来自电机的转速信号,变速箱的档位信号等;制动器需要连接制动压力信号;摩擦离合器需要来自驾驶员期望的结合程度[4].系统需要把所需的信号连接全部定义准确,如果有一个错误,那么将无法运行仿真程序.2.2 仿真及结果分析根据纯电动汽车仿真的要求,选择和编辑相应的任务及工况,设置合适的仿真步长和精度进行仿真计算.设定的计算任务有:在任务Cycle Run中仿真续驶里程;在任务Climbing Per for mance中仿真最大爬坡度;在任务Constant Dr iv e中仿真最高速度.运行CRUISE,得到仿真结果如下所述.a.续驶里程.建立一个25km/h匀速行驶工况,通过对电池SOC的变化对应的时间来得到纯电动车的续驶里程所需要的电量值.运行这个任务,得到纯电动车的SOC变化图.考虑到电池的输出效率为85%,得到当电动汽车以25km/h行驶100km 后,电池所消耗的电量约为130.6A h,行驶120km所消耗的电量为156.8A h.和理论所求得结果一致.b.爬坡性能.根据CRUISE软件result的报告,可以得到最大爬坡度和最高速度确切值.爬坡表现:档位,1;最大爬坡度,15.43%;车速,5.00km/ h;电机转速,602.86r/min;速度率,0.00.最大车速理论值,51.41km/h;实际值,43.71km/h.从仿真结果可以看出,根据目前车辆的参数,当电池的容量为160A h时,在25km/h的匀速运行工况下,电动汽车的续驶里程约为120km.电动汽车的最大爬坡度为16.05%,最高速度为43.71 km/h.与通过汽车理论计算得到以及车辆所要求的性能参数基本一致.这证明了利用CRU ISE软件对车辆整车性能仿真和分析是可行的.3 整车性能影响因素分析3.1 续驶里程设f为滚动阻力系数;r为轮胎滚动半径;m为汽车总质量;i g为传动系速比;C D为迎风阻力系数; t为传动系效率;A为迎风面积;Q为电池的额定容量;U E为电池的端电压; 为电机效率.则汽车以速度v等速行驶时所需的电机输出扭矩M和功率P 分别为:M=(f m+C D A v2/21.15)ri g t(1)P=(f m+C D Av2/21.15)(v/3.6)ri g t(2)电池携带的额定总能量为:W0=QU E(3)理想状态下等速行驶的续驶里程s为:s=W0vP/=QU E vP(4)从式(4)可以看出,在整车携带的电池总量和电池比能量不变的条件下,续驶里程指标与行驶阻力功率P有关[5].而行驶阻力功率又与滚动阻力系数f,迎风阻力系数C D,整车总质量m,迎风面积A,车速v,传动系效率 t,车轮半径r和传动系速比i g 有关.以电动车参数(总质量m=1100kg;f= 0 012;A=3m2;C D=0.45; t=0.9;r=0.26m)为例作分析.a.不同等速v对续驶里程的影响.在不同速度的匀速状态下运行,车辆的续驶里程是不同的[6].设置电池的电量为160A h(为确保安全,视电量剩20%时一次运行结束),不同匀速行驶状态对车辆的续驶里程的影响,如图2所示.图2 不同匀速行驶状态下车辆续驶里程的影响从图2中可以看到,各种不同的匀速行驶中,以速度接近零行驶时,车体所消耗的能量最小,对于拥有固定能量的系统来讲,其续驶里程也最长.因此,若想增加续驶里程,应尽可能以低速行驶.b.整车参数对续驶里程的影响.图3,图4和图5分别表示在匀速25km/h行驶下,迎风阻力系数C D,滚动阻力系数f和整车总质量m对一次充图3 迎风阻力系数对续驶里程的影响图4轮胎滚动阻力系数对续驶里程的影响图5 整车总质量对续驶里程的影响电续驶里程的影响.可见携带能源极为有限的电动汽车对降低滚动阻力系数、迎风阻力系数和整车总质量的要求非常迫切.c.电池参数对续驶里程的影响.由式(4)可知,电动汽车携带的电池总量以及电池的端电压的大小都会影响续驶里程,并且它们与续驶里程成正比.可见提高电池的最大容量及电池端电压,对提高电动汽车续驶里程意义重大.另外,电池放电效率同样对续驶里程有着重要的影响,电池放电效率越高,续驶里程的数值也越大.d.电机对续驶里程的影响.电机参数中电机的效率 对续驶里程的影响最大.效率越高,续驶里程的数值越大.同时在各种工况下的效率对续驶里程的影响更大.因此对电动车用电机而言,不仅要求电机在额定状态下具有较高的效率,而且要求电机具有很宽的高效率区域,这样才能在各种行驶工况下充分利用有限的能量.对此,提出了增加一次充电续驶里程的措施:尽可能选择较低的行驶速度;降低轮胎的滚动阻力系数,选用低阻力轮胎;降低迎风阻力系数,进行车身的流线型改进;减轻汽车总质量;扩大电机的高效区范围及提高电机效率.3.2 最大爬坡度汽车的最大爬坡度,是指汽车满载时在良好路面上用第一档克服的最大坡度,它表征汽车的爬坡能力.爬坡度用坡度的角度值(以度数表示)的百分数来表示.设T tq为电机最大转矩;i g为变速器加速档传动比;i0为主减速器传动比; t为传动系的机械效率;r 为轮胎半径.则对于电动汽车来说,车辆的最大驱动力为[7]:F t=T tq i g i0 tr(5)而车辆的滚动阻力F f=mf cos ,坡度阻力为F i=m sin ,加速阻力.同时由于在计算最大爬坡度时车速很小,故可忽略空气阻力F W.由驱动力行驶阻力平衡公式F t= F=F f+F W+F i+F j,得到最大爬坡度 max的计算公式为:T tq i g i0 tr=mf cos max+m sin max(6)由式(6)可以看出,最大爬坡度与电机最大转矩T tq、轮胎半径r、整车总质量m和滚动摩擦系数f 等参数有关.a.电机参数对最大爬坡度的影响.在电机参数中,电机最大转矩的大小与车辆最大爬坡度的大小有着直接的联系[8].电机的最大转矩越大,最大爬坡度也越大.因此,从电机方面来说,若想提高车辆的爬坡性能,可以通过提高电机的最大转矩来实现.b.车辆参数对最大爬坡度的影响.图6,图7分别表示轮胎滚动阻力系数f和整车总质量m对车辆最大爬坡度的影响.从图6,图7中可见,轮胎滚动阻力系数和整车总重量都对最大爬坡度有很大的影响[9].要想获得合适的最大爬坡度,就必须合理地设置这2个参数.图6轮胎滚动阻力系数对最大爬坡度的影响图7 整车总质量对最大爬坡度的影响对此,提出了增加爬坡性能的措施:选择拥有较高最大转矩的电机;降低轮胎的滚动阻力系数,选用低阻力轮胎;减轻汽车总重量.4 结束语运用CRUISE软件对纯电动车进行建模和动力性能的仿真,得到了续驶里程、最大速度及最大爬坡度等指标,仿真结果验证了CRU ISE仿真动力性能的可行性.通过本文的仿真和分析,为电动汽车的参数选择以及结构优化提供了依据.参考文献:[1] 康龙云.电动汽车最新技术[M].北京:机械工程出版社,2008.[2] 王 斌,李 征,等.CR U ISE 软件在混合动力汽车性能仿真中的应用[J].计算机应用,2007,9(3):1-3.[3] 赵海峰.基于CR U ISE 软件的AM T 车辆性能仿真分析与实验研究[D].重庆:重庆大学,2005.[4] 王保华,罗永革.基于CRU ISE 的汽车建模与仿真[J].湖北汽车工业学院学报,2005,19(2):2-3.[5] 李国良,初 亮,鲁和安.电动汽车续驶里程的影响因素[J].吉林工业大学自然科学学报,2000,30(3):1-3.[6] 杜发荣,吴志新.电动汽车传动系统设计与续驶里程研究[J].农业机械学报,2006,37(11):3-4.[7] 余志生.汽车理论.3版[M ].北京:机械工程出版社,2000.[8] Cheng Chang T ing.H y br id electric vehicle design tominimize ener gy use [C].T he U niv ersity of T ex as at A rling ton,2000.[9] Sha Y L.T he pow er desig n and calculation o f EV S[A].T he 16t h Inter nat ional Batter y,H ybrid and F uel Cell Elect ric Vehicle Symposium &Ex hibitio n [C ].Beijing ,1999.作者简介:姜海斌 (1985-),男,江苏张家港人,硕士研究生,研究方向为汽车动力系统仿真以及汽车系统控制等;黄宏成 (1972-),男,江苏苏州人,副教授,研究方向为汽车系统控制以及底盘开发.ARM 7参数自整定模糊PID 控制器的仿真及设计王朝宁1,姜学东1,马立刚2(1.北京交通大学电气工程学院,北京100044;2.山西省电力公司吕梁供电分公司,山西吕梁033000)Design and Simulation of Self tuning PID type Fuzzy Controller Based on A RM 7ProcessorWANG C hao ning 1,JIANG Xuedong 1,MA Li gang 2(1.Schoo l o f Electrica l Eng ineering ,Beijing Jiaoto ng U niver sity,Beijing 100044;2.Shanx i L vliang P ower Supply Co mpany ,L v liang 033000,China)摘要:常规PID 控制器参数设定之后,运行环境改变时不能实现参数的在线整定,这样会影响系统的控制效果.本设计以误差e 和误差变化率ec 作为输入,经过一定的模糊推理规则,对PID 控制器的参数进行自动整定.在M atlab 环境下对系统进行了仿真,从仿真的结果可以看出,添加模糊控制环节后,系统的动静态性能得到了提高.同时基于ARM 7处理器完成了该控制器的软硬件设计.关键词:参数自整定模糊控制PID;M atlab;ARM 7处理器中图分类号:T P273文献标识码:A 文章编号:10012257(2010)04006505收稿日期:20091203Abstract:When operating environmentchang ed,the traditio nal PID contro ller can t online regulate its parameters,w hich are co nfigured w ellat the beginning.And that w ould affect contro l per for mance o f system.Taking erro r and decay r ate of err or as inputs in the desig n,arg um ents o f PID contro ller can reach self tuning function,as to some accurate fuzzy sets.From the result of simu -latio n done w ith M atlab,dy namic and static per -formances of system added fuzzy controller are im -proved.T he autho r also com pleted the hardw are and so ftw are desig n of the contro ller based on ARM7processor.Key words:self tuning PID type fuzzy con -troller;M atlab;ARM7processor0 引言模拟PID 闭环控制在常规的电源控制技术中应用很普遍,效果比较理想并且稳定,但其缺点是一。

CRUISE-电动车整车仿真输入参数

CRUISE-电动车整车仿真输入参数

齿轮传动比表
传动比
变速器(AMT)
输入处齿数 输出处齿数
各档位传动比
各档位效率
主减速器(Final Drive)速效比率
差速锁
转矩分配因子
输入转动惯量
差速器(Differential) 输出转动惯量1
差速器(Differential)
输出转动惯量2
固定效率 静态滚动半径
车轮(Tire)
动态滚动半径
gear ratio table
transmission ratio number of teeth input number of teeth output
Transmission Ratio Efficiency Differential lock
Torque split factor Inertia moment in(kg* m2) inertia moment out 1(kg* m2)
Inertial moment(kg* m2)
inertia moment in(kg* m2) inertia moment out(kg* m2) maximum transferable torque(Nm pressure force brake piston surface specific brake factor Effective friction radius(mm)
drag coefficient Nominal Voltage Maximum Speed Torque-Speed Speed-Torque-Efficiency mass Initial Temperature
Maximum Mharge Initial Charge Nominal Voltage Maximum Voltage Minimum Voltage Number of cell Number of Cells per Cell-Row Number of Cell-Rows Operating Temperature Idle Voltage-Charge Idle Voltage-Discharge Ohimic Resistance-Charge Ohimic Resistance-Discharge

CRUISE纯电动车动力性能仿真及优化

CRUISE纯电动车动力性能仿真及优化

万方数据万方数据万方数据万方数据万方数据CRUISE纯电动车动力性能仿真及优化作者:姜海斌, 黄宏成作者单位:上海交通大学汽车工程研究院汽车电子控制技术国家工程实验室,上海,200240刊名:机械与电子英文刊名:MACHINERY & ELECTRONICS年,卷(期):2010,""(4)被引用次数:0次1.康龙云电动汽车最新技术 20082.王斌.李征CRUISE软件在混合动力汽车性能仿真中的应用 2007(3)3.赵海峰基于CRUISE软件的AMT车辆性能仿真分析与实验研究 20054.王保华.罗永革基于CRUISE的汽车建模与仿真 2005(2)5.李国良.初亮.鲁和安电动汽车续驶里程的影响因素 2000(3)6.杜发荣.吴志新电动汽车传动系统设计与续驶里程研究 2006(11)7.余志生汽车理论 20008.Cheng Chang Ting Hybrid electric vehicle design to minimize energy use 20009.Sha Y L The power design and calculation of EVS 19991.学位论文曹明柱混合动力电动车驱动电机控制系统研究2006随着能源枯竭和环境污染问题的日益突出,人们把目光转向了纯电动车和混合动力电动车。

由于纯电动车电池技术尚有待进一步提高,导致纯电动车距离市场化的目标仍然有一段距离,为此,开发混合动力电动车意义重大。

混合动力电动车中,一般同时采用驱动电机和发动机作为动力装置,通过先进的控制系统使两种动力装置有机协调匹配工作,实现最佳能量分配,达到低能耗、低污染及高度自动化。

因而,对混合动力电动车及其部件的控制是其关键技术之一。

现代电子控制单元开发流程——V模式采用计算机辅助工具进行,可以支持从需求定义直到最终产品的全过程。

采用V模式开发电子控制单元可以缩短开发周期、节约开发成本,而dSPACE仿真平台是支持这一流程的重要工具。

AVL_CRUISE整车动力性经济性仿真分析一点技巧

AVL_CRUISE整车动力性经济性仿真分析一点技巧

A VL CRUISE整车动力性经济性仿真分析
CRUISE软件可以用于车辆的动力性,燃油经济性以及排放性能的仿真,其模块化的建模理念使得用户可以便捷的搭建不同布置结构的车辆模型,其复杂完善的求解器可以确保计算的速度CRUISE的一个典型应用是对车辆传动系统和发动机的开发,它可以计算并优化车辆的燃油经济性,排放性,动力性(原地起步加速能力、超车加速能力)、变速箱速比、制动性能等,也可以为应力计算和传动系的振动生成载荷谱
一、简化计算任务
通常计算任务会有这样一种情况,选择多种变速器与多种发动机或者主减速器进行搭配计算。

这在CRUISE中其实很好实现的,如下图操作即可
然后在计算中心里添加对应的模型即可,如图
当你有多个组件进行搭配的时候,可以在DOE plan中进行搭配的选择。

如此一来,可以使计算任务变得非常简单了。

二、简化结果提取
在模型里添加一个special model中的ms-export的模块,按下图配置输出的参数
在总线里配置好ms-export模块的参数总线连接
然后对计算任务的输出进行修改,勾上output of ms-exports
然后开始计算,如果你的任务是有很多case(各种组件的组合计算)这样计算的结果会生成相应很多个excel工作簿,然后我们可以
编相应的程序或者宏就可以对这些工作簿进行处理,可以把结果生成到一个另外一个工作簿中,如此工作就变得很轻松了,我们可以把更多的精力放在真正的研究上了。

目前我可以用这种方法很方便的提取以下结果:
爬坡度的结果如何提取,我还没有找到办法,如果你找到了的话,请告诉我一下,谢谢。

08-利用CRUISE进行整车动力性和经济性仿真分析_东风有限

08-利用CRUISE进行整车动力性和经济性仿真分析_东风有限

利用CRUISE进行整车动力性和经济性仿真分析钟军斌余建华周杰敏东风汽车有限公司商用车技术中心,武汉经济技术开发区东风大道10号摘要:本文论述了利用CRUISE软件进行汽车建模的过程,并对某重型商用车的动力性和燃油经济性进行了仿真分析。

关键词:动力传动系统,动力性,经济性主要软件:A VL CRUISE1. 前言汽车仿真技术是当前汽车研发的重要手段,在汽车产品开发初期进行汽车动力传动系统参数匹配和性能仿真不仅能节约大量新产品开发和试验等带来的人力和物力投入,还降低了劳动强度,缩短了开发周期,提高了工作效率。

动力传动系统模型的建立是参数匹配及性能仿真的基础,采用专业软件对其进行建模及仿真研究不仅可以节省大量的时间,使建模过程简单化,而且程序运行可靠、调试方便,利于分析研究[1]。

A VL公司开发的CRUISE是研究车辆动力性、燃油经济性、排放性能及制动性能等的高级仿真分析软件,它包含了车辆的基本模块和控制模块,用户可利用模型生成器建立所需的车辆系统模型,并在此基础上进行仿真分析,利用仿真结果优化传动系的参数,从而快速完成系统的设计。

2. 整车动力传动系统建模整车动力传动系统建模主要是通过对整车动力传动系统的结构和功能进行分析,简化物理模型,选择合理的子系统模块,搭建仿真模型,建立汽系统的各总成和部件的机械连接和信号连接,并对各部件和总成进行参数化处理,完成汽车建模过程。

2.1 整车结构分析和子系统模块选择该车配备有250KW柴油发动机,12挡机械变速箱,总重42000Kg,驱动形式是发动机前置后轮驱动(4x8)。

根据整车结构和驱动形式的分析,选用模型库中汽车模块(Vehicle)、驾驶室模块(Cock-pit)、发动机模块(Engine)、机械式摩擦离合器模块(Friction Clutch)、机械手动变速箱模块(Gear Box)、单级减速器模块(Single Ratio,作为主减速器),以及车轮(Wheel)和机械制动器模块(Brake),发动机和传动系统以及汽车上其它耗能部件可用风扇模块(Auxiliary)代替。

基于AVL Cruise的纯电动卡车动力性、经济性仿真分析

基于AVL Cruise的纯电动卡车动力性、经济性仿真分析

1 概述整车动力和传动系统的匹配,直接影响车辆动力性和经济性。

对于商用车而言,动力匹配的传统思路是根据车辆应用工况,结合零部件资源,着重零部件可靠性与成本进行选型,车辆动力性、经济性一般在样车试制完成后,基于实车试验进行验证。

这种传统设计思路大大延长了产品开发周期和开发成本。

目前,整车动力和传动系统匹配仿真技术快速发展,新能源卡车设计开发过程中,在整车方案设计阶段,利用AVL 软件对车辆性能进行仿真分析,再利用实车试验验证设计精度,并逐步优化车辆模型的正向开发思路,已经得到广泛应用。

2 整车模型建立2.1 车辆构型和基本参数根据纯电动卡车的使用场景,确定车辆动力、传动系统构型和性能指标。

现基于某款6×4纯电动牵引车工况,选用驱动电机和多挡AMT 变速器构型,整车设计参数见表1,整车性能指2。

表1 整车设计参数表2 整车性能指标2.2 仿真模型建立根据车辆构型和基本参数状态,在AVL Cruise 软件界面,添加整车、驾驶员、驱动电机、动力电池、变速器、换挡控制、主减速器、轮胎等模块,并进行参数设置,建立机械和数据总线连接,构建仿真模型,如图1所示。

图1 整车仿真模型2.3 后桥速比的确定根据驱动电机和变速器参数、最高车速性能要求,由可得,主减速比i 0≤5.53。

根据整车轴核和附着力、坡道起步能力要求,由可得,主减速比i 0≥5.04。

基于AVL Cruise 的纯电动卡车动力性、经济性仿真分析/郭晓勐 刘国庆 崔红雨 公彦峰(中国重汽集团汽车研究总院)【摘要】文章根据整车设计参数和性能要求,进行动力系统匹配。

基于AVL Cruise 建立整车模型,对车辆动力性、经济性进行仿真分析,通过样车试验验证匹配方案的合理性。

基于匹配和仿真的纯电动卡车正向设计开发流程,有效保证产品匹配方案的合理性,降低产品开发风险,缩短新产品开发周期。

项 目量 值尺寸参数驱动型式6×4外形尺寸/mm 7 480×2 500×3 335轴距/mm 3 800/1 400质量参数整备质量/kg 10 500满载质量/kg 49 000驱动电机持续/峰值功率/kW 220/360持续/峰值扭矩/Nm 1 500/2 100最高转速/rpm3 400变速器型式4AMT Ⅰ挡速比 5.53Ⅱ挡速比 3.05Ⅲ挡速比 1.66Ⅳ挡速比 1.00额定扭矩/Nm 2 500驱动桥主减速比待定轮胎型号12R22.5滚动半径/m0.538项 目设计指标最高车速/(km/h)11030 min 最高车速/(km/h)750-50 km/h 加速时间/s 2280-110 km/h 超越加速时间/s200坡道起步能力/(%)20电量消耗经济性/(kWh/km)<2.2图2 整车滑行阻力曲线3 整车性能仿真分析3.1 动力性分析对整车的最高车速、0-50km/h 加速、80-110km/h超越加速、坡道起步能力等动力性项目进行仿真计算,整车动力性仿真结果见图3至图5。

基于CRUISE软件的车辆动力性能建模与仿真

基于CRUISE软件的车辆动力性能建模与仿真

风阻系数
排 量( mL 1
0 . 6 5
2 7 9 8
速箱。 其基本传动路径为 : 发动机一离合器一变速 箱一传 动轴一 主减 速器一 差速 器一 车轮 。根据 结
构 和 布 置形 式 的分 析 选 用 模 型库 中 的整 车 模 块
( V e h i c l e) , 发 动机 模块 ( E n g i n e ) , 变 速 箱 模 块
轻 型汽 车技 术
2 0 1 3 ( 9) 总2 8 9
技 件的车辆动力性能建模与仿真
曹 玮
( 南 京依 维柯 汽车 有 限公 司 )


本文 以 某款 车型 为研 究对 象 , 基于 C RUI S E软 件平 台 , 建 立 了其 整 车仿 真模 型. 确 定行 驶 工 况和 动 力性 的仿 真 任 务 , 对 于 两种 主减 速 比 的动 力 总成 匹配设 计
确 性 和 可行 性 。 所建 立的仿 真 分析模 型 和仿 真分析 结 果为后 续 对该 车动 力传 动 系 统参 数进 行优 化设 计打 下 了坚实基础 。
关键 词 : 车辆
动力 性
C R U I S E 仿真
Ft =F r 卜 F + F_ + F
1 前 言
动力性 是 车辆最基 本 、 最重要 的性 能之一 。 汽 车 动力传 动 系统 参数 匹配 的好坏 直 接影 响着 汽 车 的动 力性 ,合 理优 化 匹配 的传动 系不 仅 可 以提高 动 力性 、 减 少燃油 消耗 , 而 且还可 以取 得 良好 的排
进行 , 其效率 高 、 成本大幅降低 , 目前在工程上得 到 了越来 越广 泛 的应用 。
F _一 坡度阻力 , N F 口 速阻力 , N T 一 发 动机转 矩 , N・ m

CRUISE纯电动车动力性能仿真及优化

CRUISE纯电动车动力性能仿真及优化

1 纯 电动 汽 车 建模
纯 电动 汽车 的建模 和 动力 总 成 系统 的选 择 , 对 于 整 车系统 的建立 是非 常重要 的 。电动 汽车 的运 行
a l, h o e f t e ee ti e il s e tb mp e t e m d lo h lcrc v hce i sa —
0 引 言
随着能 源 和环境对 人类 生活 和社会 发展 的影 响
须 按照 电动 车的技术 要求 合理 地选择 电机 的参数 和
指标 。
能的可行 性 。分析 了影响 续驶 里程及 最 大爬 坡度 的
与传统 的燃 油汽 车相 比 , 由于 电动 车所具 有 的节能 、
环 保优 点 , 其成 为未来 汽 车产业 发展 的趋势之 一 。 使 在 研究 和开 发 电动 汽车 的部 件及 选 择 最佳 结 构 时 ,
为缩 短 开发周 期 , 低开 发 成 本 , 小研 究 范 围 , 降 缩 找
J ANG i i HUANG n I Ha —bn, Ho g—c e g hn ( t n lEn i e r g L b r t r fA u o t eElc r n c ,n t u e o t mo i e En i e r g Na i a o gn e i a o a o y o t mo i e t o is I s i t fAu o tv g n e i 。 n v t n
l h d i i e n CRU I E.Alo t i s fwa e i s d t s S s hs o t r s u e o smu a e t e p r o ma c f h e il . e smu i l t h e f r n e o e v h c e Th i — t l t n r s ls v l a e t a RUI E c n a a y e t e a i e u t a i t h tC o d S a n l z h f a i i t o v h ce e f r a c . Th n,v ro s e sb l y f e il p ro m n e i e a iu f c o s t a fe t c n i u d d i i g r n e a d l r a t r h ta f c o t e rv n a g n a - n g s r d a i t r n l z d Th p l d me h d e tg a e b l y a ea a y e . ea p i t o s i e a e a l u e u o h mp o e n f p ro m a c r l s f lf r t e i r v me t o e f r n e o h e il . ft ev hce

利用Cruise对某款车型进行动力性、经济性仿真分析

利用Cruise对某款车型进行动力性、经济性仿真分析

利用Cruise对某款车型进行动力性、经济性仿真分析上次对某电动车的驱动电机和动力电池进行了选型计算,本次就该选型方案进行Cruise仿真,已验证整车性能。

整车动力性、经济性仿真报告1 目的与范围1.1 目的本车型是在成熟的底盘平台上开发,因此需要对动力传动系统进行重新匹配设计。

本文档根据所提出的动力性、经济性能指标,完成动力传动系统的正向匹配计算和电机、电池的初步选型工作,可为性能指标的实现提供理论指导。

1.2 适用范围本文适用于纯电动汽车的动力性、经济性的概念设计阶段。

2 工作内容工作内容主要分为:a) 纯电动载货汽车整车参数b) 纯电动载货汽车设计性能目标c) 电机电池参数d) 动力性、经济性能仿真分析3 纯电动载货汽车整车参数表1 EV整车参数参数名称数值整车整备质量(kg)6300整车最大设计总质量(kg)12000半载质量(kg)9150长x宽x高(mm)8000X2500X3180前悬/后悬长度(mm)1370/2130轴距(mm)4500迎风面积(m^2) 5.79风阻系数0.77滚动阻力系数0.01主减速器传动比 5.833传动效率0.9轮胎型号9.00R20轮胎滚动半径(mm) 4965 纯电动载货汽车整车设计性能目标表2 电动车性能指标设计项目目标值最大爬坡度(%)≥20 0-50km/h加速时间(s)≤20 30分钟最高车速(km/h)≥80 1km最高车速(km/h)≥80等速40km/h续驶里程(km)≥200注:其中电池+电机效率为估计值。

6 电机参数7 电池参数电池电池类型锂电池单体电压(V) 3.2单体容量(Ah)25电压平台(V)576成组后总容量(Ah)175成组后总电量(kWh)100.8串并方式7并180串8动力系统方案验证为验证搭载电机后整车的动力性、经济性,应用AVL-CRUISE 软件,建立的整车纵向动力学模型根据GB/T 18385 《电动汽车动力性能试验方法》和GB/T 18386 《电动汽车能量消耗率和续驶里程试验方法》相关规定完成仿真模型的设置依次对各指标进行仿真计算,搭建整车模型如下:图1整车模型8.1 NEDC循环工况NEDC工况,半载质量,NEDC循环工况(最高车速80km/h)仿真结果如下,电池SOC由100%放电到10%,续驶里程为113km,百公里电耗为79.4kwh(未考虑电网充电效率)。

基于Cruise的纯电动汽车能量流仿真优化分析

基于Cruise的纯电动汽车能量流仿真优化分析
图4不带制动能量回收能量流分布图图5带制动能量回收能量流分布图图8优化后能量流分布图图2制动能量回收map图1008801502503505506506505503508070070006040200020406080车速kmh踏板开度100120140图7优化后制动能量回收map图3505507509509507505503501008060402000204060车速kmh制动踏板开度80100120140图6带制动能量回收能量流分配比例图风阻功耗内阻功耗制动损失电机损失附件功耗能量回收635413313662749052262330123242能量流分布仿真结果2230412147298滚阻功耗图3cwtvc循环曲线1009080706050403020100020040060080010001200140016001800市区循环0s900s公路循环900s1368s时间s速度kmh高速循环1368s1800s万方数据86autotimenewenergyautomobile新能源汽车5能量流测试验证为了验证整车能量流仿真模型的准确性通过台架试验测试系统对主要系统的能量流损失进行测试搭建测试台架如图10所示
1.0 350 550
0.8 750 950
0.6
0.4
对于不带制动能量回收节油能耗 12.3%。 带制动能量回收情况下整车各系统能量
流损失分配比例情况如图 6 所示,能量损耗 主 要 用 于 了 克 服 行 驶 阻 力, 约 占 总 能 耗 的 66.5%。减速制动能量约占 20%,回收了 12% 左右。
2 能量流仿真建模
2.1 整车模型建立 纯电动汽车与传统燃油车一样都是由动
力传动系统、车身、底盘和电器系统组成, 主要区别在于纯电动汽车是电力驱动系统, 同 时 增 加 电 源 管 理 系 统。 应 用 AVL-Cruise 建立整车能量流仿真模型如下:

201_基于CRUISE的纯电动轿车动力总成参数优化匹配及性能仿真分析_一汽技术中心_王燕等

201_基于CRUISE的纯电动轿车动力总成参数优化匹配及性能仿真分析_一汽技术中心_王燕等

表 2 整车性能指标要求
项目 最高车速,km/h 0-100km/h 加速时间,s 动力性 0-50km/h 加速时间,s 爬坡度,% 马路台阶,mm NEDC 电耗,kWh/100km 经济性 NEDC 续驶里程,km ≥140 指标 ≥140 ≤12 ≤5 ≥30 100mm ≤15 加载 100kg 备注 半载 半载 半载 满载 满载
4.
4.1
动力总成参数匹配
驱动电机参数匹配 驱动电机参数匹配重点工作集中在电机峰值输出扭矩、电机峰值输出/输入功率、额定
输出功率、电机最高转速;同时在匹配电机参数时,需考虑不同工况工作点范围,为电机后 续设计提供数据支持。 4.1.1 电机峰值扭矩
电机峰值扭矩主要影响整车破路起步能力、攀爬马路台阶(curb hight)能力、起步加 速度,因此在减速器速比固定的前提下,主要考虑这些方面即可,峰值扭矩 Tmax=MAX (Tmax1,Tmax2) 。 (1)满足最大爬坡度的峰值扭矩 Tmax1 Tmax1 由最大爬坡度和最大速比(固定减速比)共同确定,关系式如式(1)所示:
(2)满足马路台阶(或 curb hight,100mm)的电机最大扭矩 Tmax2
此处考虑的是极端情况,即整车满载,正向,静止开始爬上马路台阶(100mm)即可, 对电机的需求扭矩较大。攀爬马路台阶是否有需求,这可根据整车设计需求而定。当电机需 求扭矩过大,无法进行合理的设计时,此处要求可降低。 考虑 curb hight,驱动轮受力情况如图 4 所示,由公式(2)可知,满足 100mm 的 curb hight 需求时,电机扭矩为 260Nm,同样考虑整车后续开发中,整备质量有增加的风险,预 留一定余量,选电机扭矩为 265Nm。验证其起步加速度为 4.04m/s^2,可满足典型工况起步 加速度要求。

cruise 的学习 汽车动力经济性仿真(1)

cruise 的学习 汽车动力经济性仿真(1)

2021/10/10
32
从数据文件中录入数据
2021/10/10
33
拷贝与粘贴方式输入输出数据
2021/10/10
34
道路环境和驾驶员模型的定义
可以自己定义道路环境,也可以默认CRUISE 给定的标准的道路模型
根据不同的驾驶员可以自由定义不同的操作特 性和习惯
2021/10/10
35
驾驶员换挡过程
计算任务的条件设置: 给定初速度50公里/小时 档位置于空挡
由制动力的大小确定滑行和刹车特性 由Brake/Coast/Thrust任务完成
2021/10/10
11
2021/10/10
给定刹车力非零是制动 为零时是滑行
空档
12
2021/10/10
13
汽车最高车速试验仿真
可计算出每档位的最高车速 由Constan Drive 任务的 Maximum
Velocity模块完成
2021/10/10
14
2021/10/10
不同档位的最高车速
15
汽车加速度性能仿真
在加速度性能分析中, CRUISE完成了以下任务: ✓ 汽车的原地起步加速性能仿真,可以满 足GB/T 12544-90试验要求 ✓ 各档位的最高加速度计算仿真,可以满 足GB/T 12544-90试验要求 ✓ 汽车的超车性能仿真(符合日本标准的 超越加速试验)
2021/10/10
16
原地起步加速
从静止开始,汽车以起步档位迅速起步并 将油门踩到底,使汽车尽快加速行使, 当发动机达到该档位的最大功率转速时, 迅速换档,并相应将油门全开,直至最 高档最高车速的80%以上。
2021/10/10
17

基于CRUISE的ISG混合动力系统匹配与仿真分析

基于CRUISE的ISG混合动力系统匹配与仿真分析

本文以ISG混合动力系统汽车的动力系统作为主要研究对象,确定其主要系统参数,详细分析ISG混合动力系统的结构和工作原理。

并以某一传统燃油车为基础,为其匹配ISG混动系统,采用AVL公司的汽车仿真分析软件CRUISE作为仿真工具,分析匹配ISG混动相较传统燃油车的性能变化1 ISG混合动力系统介绍ISG混合动力系统主要由发动机、ISG电机、动力电池、整车控制系统等组成。

与传动的纯燃油发动机汽车相比,采用ISG混合动力系统的汽车可以选择功率相对较小的发动机做主动力源,使其基本保持在高效区域工作。

当遇到车辆需要大功率输出情况时,ISG电机会输出功率,辅助发动机动力输出,满足汽车的实际功率需求。

ISG混合动力系统把起动/发电一体电机与发动机曲轴的输出端固定连接在一起,这样就可以取消了原有的发动机飞轮。

根据实际设计需要,I SG混合动力系统可在发动机与变速器之间添加自动离合器。

这样使得ISG系统比BSG混合动力系统控制上更为灵活。

ISG混合动力系统具有发动机和ISG电机两个动力源输出动力,同时ISG还可以回收制动能量。

因此,ISG混合动力系统的控制策略对整车的动力性和经济性都有较大影响。

优秀的混动控制策略功能能够保证混合动力系统在不同使用工况下,根据发动机和ISG电机各自不同的特性,使整个混合动力系统在满足汽车实际工况需求的情况下高效运行。

控制策略要对ISG混合动力系统的实际工作模式进行控制和判断,同时还要保证发动机和ISG电机高效运行。

所有控制策略保证系统运行满足发动机最低和最高转速、ISG电机最大转速和转矩、动力电池SOC 范围、车速最大值等诸多限制条件。

2 CRUISE软件的特点CRUISE软件是由奥地利AVL公司开发的一款应用于车辆动力学的仿真软件,该软件可以实现传统燃油车、纯电动汽车和各种结构的混合动力电动汽车整车动力性、经济性分析,既可以应用在传统车的开发流程中,也可以应用在新能源汽车以及特种车辆的开发流程中。

基于Cruise的整车动力经济性优化分析

基于Cruise的整车动力经济性优化分析

10.16638/ki.1671-7988.2020.24.031基于Cruise的整车动力经济性优化分析肖波,徐磊,袁进(三一集团有限公司,湖南长沙410100)摘要:采用CRUISE软件搭建载货车整车动力链仿真模型,建立在同一款成熟发动机基础上,通过Quasi-stationary 等算法对不同动力链匹配的载货车动力性及经济性展开分析,优选出综合性能较好的动力链。

基于此动力链在试验样车上进行道路试验,对比试验与仿真数据,结果表明仿真与试验数据在误差范围内,通过仿真分析不同主减速比,确定的最佳动力链对产品研发阶段配置选择有重要指导意义,极大节约试验费用,改善经济性,提高产品市场竞争力。

关键词:载货车;Cruise仿真;动力性;经济性;试验验证中图分类号:U462.3 文献标识码:A 文章编号:1671-7988(2020)24-92-04Cruise-based Optimization Analysis of Vehicle Power EconomyXiao Bo, Xu Lei, Yuan Jin( Sany Group Co., Ltd., Hunan Changsha 410100 )Abstract: The CRUISE software is used to build the simulation model of the power chain of the truck, based on the same mature engine, and the power and economy of the truck with different power chains are analyzed through Quasi-stationary and other algorithms. Power chain with better performance. Based on this power chain, the road test is carried out on the test sample car, and the test and simulation data are compared. The results show that the simulation and test data are within the error range, and the different main reduction ratios are analyzed through simulation to determine the optimal power chain configuration selection for the product development stage. It has important guiding significance, greatly saves test costs, improves economy, and improves product market competitiveness.Keywords: Words truck; Cruise simulation; Power performance; Economy; Test verificationCLC NO.: U462.3 Document Code: A Article ID: 1671-7988(2020)24-92-04前言汽车的燃油经济性与动力性是衡量车辆性能与产品竞争力的两项重要指标。

基于Cruise的乘用车动力性经济性仿真及优化

基于Cruise的乘用车动力性经济性仿真及优化

基于Cruise的乘用车动力性经济性仿真及优化摘要:我国乘用车动力性和经济性是汽车开发的重要内容,本文根据某个乘用车为例子,初步针对动力传动系统参数进行分析,应用Cruise软件进行了整车动力性、经济性仿真;根据仿真计算结果。

对整车动力传动系统参数进行了相应的优化,在满足整车动力性要求的前提下,提高了燃油经济性能力,使其满足国家第四阶段油耗限值的要求。

关键词:Cruise;动力性;经济性;仿真前言:我国汽车的动力性是汽车性能中最基本的一项技能,同时也是汽车开发过程当中需要考虑到的重点问题。

在分析如何满足现代化的汽车动力性的前提之下,提升汽车的经济性是目前汽车研究的主要内容。

随着我国现如今能源消耗的提升,新标准对乘用车燃油经济性提出了新型的挑战。

目前,应用先进性分析方法针对汽车动力性经济以及汽车生产企业单位进行综合性评价。

一、关于Cruise软件概述社会发展进步的过程,会随着社会需要的变化而出现优胜略汰的情况。

对于能源的利用,人们更是十分的上心。

以往人们使用的是利用燃油或其他燃料,让其在燃烧的过程驱动车辆行驶,如今,人们提倡低碳环保,节能减排,政府更是大力的扶持这一政策的实施。

现在一种新型的代步工具,电动汽车的出现更是响应了政府的政策号召,因此,电动汽车这一新兴产业未来的发展趋势必将不可限量[1]。

Cruise软件作为奥地利公司研发的一种汽车动力性和燃油经济性模拟分析的软件,其可以应用汽车开发过程当中的传动性系统的搭配,汽车性预测可以将整个车子的仿真进行综合计算,在车辆设计的前期,应用初步选择的动力传统系统数据,应用该软件实施动力性和经济性的效仿模拟,并且根据结果实施进一步的提升优化管理,可以很有效的减少新车辆的开发时间,并且还可以做到提升整个车的动力性经济性研发模式。

二、动力性经济性乘用车和传统燃油汽车的差异乘用车是利用电能的转化,将电能转化成机械能去驱动车子的运作行驶,和传统的车辆相比,会更加的环保,能耗也相对较低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

虚 拟与仿 真CRU ISE 纯电动车动力性能仿真及优化姜海斌,黄宏成(上海交通大学汽车工程研究院汽车电子控制技术国家工程实验室,上海200240)Simulation and Optimization of the Electric Vehicle s Dynamic Perf ormance on CRUISEJIANG Hai bin,HUANG Hong cheng(N ational Eng ineer ing L abor ator y of Automo tiv e Elect ronics,I nstitute o f Automo tiv e Eng ineer ing,Shang hai Jiao T ong U niv ersity ,Shang hai 200240,China)摘要:以后轮驱动纯电动车为例,利用CRU ISE 软件建立了电动车的动力系统模型,并用此软件模拟得到其动力性能,验证了该模型分析车辆动力性能的可行性.分析了影响续驶里程及最大爬坡度的各种因素,提出的措施和方法能够很好地提高电动汽车动力性能.关键词:纯电动车;建模;CRUISE;续驶里程;优化中图分类号:U 469.7文献标识码:A 文章编号:10012257(2010)04006104收稿日期:20091203Abstract:T aking r earw heel dr iv e as an exam ple,the mo del of the electric vehicle is estab lished in CRUISE.Also this softw are is used to simulate the perfo rmance of the vehicle.T he simulation results validate that CRU ISE can analyze the feasibility of vehicle per for mance.Then,various facto rs that affect continued driving range and lar g est gr adeability ar e analyzed.The applied methods ar e all useful for the improvement of perform ance of the vehicle.Keywords:electricvehicle;m odeling;CRUISE;co ntinued driving rang e;optimization0 引言随着能源和环境对人类生活和社会发展的影响越来越大,全球石油危机和大气污染日趋严重,各种电动汽车也应运而生.纯电动汽车没有内燃机车辆工作时产生的废气,是目前最环保的车型之一[1].与传统的燃油汽车相比,由于电动车所具有的节能、环保优点,使其成为未来汽车产业发展的趋势之一.在研究和开发电动汽车的部件及选择最佳结构时,为缩短开发周期,降低开发成本,缩小研究范围,找到技术的突破口,特别是在技术方案的选择阶段,在系统和关键部件的选择上,可依靠高效的计算机对系统和关键部件进行建模,然后进行模拟仿真,从而找到最佳方案.1 纯电动汽车建模纯电动汽车的建模和动力总成系统的选择,对于整车系统的建立是非常重要的.电动汽车的运行性能主要由动力总成系统来决定.电动汽车动力总成系统的组成部分主要包括电池、电机、离合器、变速箱、减速器以及车轮.本文设计的纯电动车模型和动力总成系统如图1所示.图1 整车模型和动力系统1.1 电机模块电机是纯电动汽车惟一的驱动单元,它的技术性能直接影响到车辆的运行性和经济性.因此,必须按照电动车的技术要求合理地选择电机的参数和指标.在CRU ISE 中,电机的参数设置定义了电机的额定电压,电机在各种工作过程状态中的转矩和转速,电机效率关系以及其它一些参数[2].模型中电机的基本参数如表1所示.表1 电机的基本参数额定转速(r/m in)1430峰值转速(r/m in)5600额定转矩(N m)20峰值转矩(N m)40额定功率(kW)3峰值功率(kW)6额定电压(V)481.2 电池模块电池是制约电动汽车发展的关键因素,目前可采用的电池有铅酸电池、镍镉电池、镍氢电池、锂电池和燃料电池等.铅酸电池虽然比能量比较低,但其技术可靠,生产工艺成熟,成本低,拥有适合电动汽车使用的良好的大电流输出性能以及多种型号和尺寸.考虑到整车的成本,本车型选用了铅酸电池作为动力源.在CRU ISE中,根据电池建模的参数做出电池的SOC与电池电压之间的关系曲线,SOC 值的大小直接反映了电池所处的状态,由此可限定电池的最大放电电流,并可在仿真过程中更精确地计算各种工况下电动车的续驶里程.所选用的电池在试验室经过不同状态下的充放电试验,根据在试验中测得电池电压、电流和放电时间等参数,推断出SOC与电压的关系.2 CRU ISE中建模与仿真CRUISE软件可以用于车辆的动力性,燃油经济性以及排放性能的仿真,其模块化的建模理念使得用户可以便捷地搭建不同布置结构的车辆模型,其复杂完善的求解器可以确保计算的速度.它可用于汽车开发过程中的动力和传动系统的匹配、汽车性能预测和整车仿真计算;可以进行发动机、变速器、轮胎的选型及其与车辆的匹配优化;可以用于混合动力汽车、纯电动汽车的动力、传动及控制系统的开发和优化[3].CRUISE软件的主要特点是:a.模块化的设计思想使得用户能够便捷地进行车辆的整车模型和动力总成系统的建模,并且能够方便地进行修改和优化.b.智能化的驾驶员模块,能够很好的模拟驾驶员的意图.c.M atlab接口模块,使得用户能够使用比较复杂的控制算法.2.1 CRUISE中车辆模型按照上述结构,在CRUISE中进行建模. CRU ISE采用图形化的界面,用户可以从已有的模型箱中选择自己想要的模型.将电池、电机、离合器、变速箱、驾驶员模块以及车轮等模块拖入CRUISE 的工作区中,建立模型.输入系统中各个模块的参数,如车辆模块的满载重量、迎风面积和阻力系数等;电机的电压、转矩和转速等;车轮的摩擦系数;主减速器的主减速比等.在CRUISE仿真时,系统会提示所有必须要输入的参数,按照这个要求,把参数一一输入即可.建立系统的物理连接和信号连接.首先完成物理连接,当各子系统模型选定之后,应根据汽车配置方案和部件连接关系建立模型的物理连接.只需用connect连接功能建立物理连接.传动系各部件之间有直接的物理连接关系,车轮和制动器之间也有物理连接关系,但驾驶室与动力传动系和制动系之间没有物理连接.在仿真过程中,它们之间是通过信号连接来传递信息.信号连接是汽车建模过程中比较关键内容之一,也有较大难度.要想正确建立汽车各子模型之间的信号连接关系,必须对汽车系统内部各部件之间的连接、控制关系以及信息传递关系,有比较深刻的理解.如驾驶员模块需要连接来自电机的转速信号,变速箱的档位信号等;制动器需要连接制动压力信号;摩擦离合器需要来自驾驶员期望的结合程度[4].系统需要把所需的信号连接全部定义准确,如果有一个错误,那么将无法运行仿真程序.2.2 仿真及结果分析根据纯电动汽车仿真的要求,选择和编辑相应的任务及工况,设置合适的仿真步长和精度进行仿真计算.设定的计算任务有:在任务Cycle Run中仿真续驶里程;在任务Climbing Per for mance中仿真最大爬坡度;在任务Constant Dr iv e中仿真最高速度.运行CRUISE,得到仿真结果如下所述.a.续驶里程.建立一个25km/h匀速行驶工况,通过对电池SOC的变化对应的时间来得到纯电动车的续驶里程所需要的电量值.运行这个任务,得到纯电动车的SOC变化图.考虑到电池的输出效率为85%,得到当电动汽车以25km/h行驶100km 后,电池所消耗的电量约为130.6A h,行驶120km所消耗的电量为156.8A h.和理论所求得结果一致.b.爬坡性能.根据CRUISE软件result的报告,可以得到最大爬坡度和最高速度确切值.爬坡表现:档位,1;最大爬坡度,15.43%;车速,5.00km/ h;电机转速,602.86r/min;速度率,0.00.最大车速理论值,51.41km/h;实际值,43.71km/h.从仿真结果可以看出,根据目前车辆的参数,当电池的容量为160A h时,在25km/h的匀速运行工况下,电动汽车的续驶里程约为120km.电动汽车的最大爬坡度为16.05%,最高速度为43.71 km/h.与通过汽车理论计算得到以及车辆所要求的性能参数基本一致.这证明了利用CRU ISE软件对车辆整车性能仿真和分析是可行的.3 整车性能影响因素分析3.1 续驶里程设f为滚动阻力系数;r为轮胎滚动半径;m为汽车总质量;i g为传动系速比;C D为迎风阻力系数; t为传动系效率;A为迎风面积;Q为电池的额定容量;U E为电池的端电压; 为电机效率.则汽车以速度v等速行驶时所需的电机输出扭矩M和功率P 分别为:M=(f m+C D A v2/21.15)ri g t(1)P=(f m+C D Av2/21.15)(v/3.6)ri g t(2)电池携带的额定总能量为:W0=QU E(3)理想状态下等速行驶的续驶里程s为:s=W0vP/=QU E vP(4)从式(4)可以看出,在整车携带的电池总量和电池比能量不变的条件下,续驶里程指标与行驶阻力功率P有关[5].而行驶阻力功率又与滚动阻力系数f,迎风阻力系数C D,整车总质量m,迎风面积A,车速v,传动系效率 t,车轮半径r和传动系速比i g 有关.以电动车参数(总质量m=1100kg;f= 0 012;A=3m2;C D=0.45; t=0.9;r=0.26m)为例作分析.a.不同等速v对续驶里程的影响.在不同速度的匀速状态下运行,车辆的续驶里程是不同的[6].设置电池的电量为160A h(为确保安全,视电量剩20%时一次运行结束),不同匀速行驶状态对车辆的续驶里程的影响,如图2所示.图2 不同匀速行驶状态下车辆续驶里程的影响从图2中可以看到,各种不同的匀速行驶中,以速度接近零行驶时,车体所消耗的能量最小,对于拥有固定能量的系统来讲,其续驶里程也最长.因此,若想增加续驶里程,应尽可能以低速行驶.b.整车参数对续驶里程的影响.图3,图4和图5分别表示在匀速25km/h行驶下,迎风阻力系数C D,滚动阻力系数f和整车总质量m对一次充图3 迎风阻力系数对续驶里程的影响图4轮胎滚动阻力系数对续驶里程的影响图5 整车总质量对续驶里程的影响电续驶里程的影响.可见携带能源极为有限的电动汽车对降低滚动阻力系数、迎风阻力系数和整车总质量的要求非常迫切.c.电池参数对续驶里程的影响.由式(4)可知,电动汽车携带的电池总量以及电池的端电压的大小都会影响续驶里程,并且它们与续驶里程成正比.可见提高电池的最大容量及电池端电压,对提高电动汽车续驶里程意义重大.另外,电池放电效率同样对续驶里程有着重要的影响,电池放电效率越高,续驶里程的数值也越大.d.电机对续驶里程的影响.电机参数中电机的效率 对续驶里程的影响最大.效率越高,续驶里程的数值越大.同时在各种工况下的效率对续驶里程的影响更大.因此对电动车用电机而言,不仅要求电机在额定状态下具有较高的效率,而且要求电机具有很宽的高效率区域,这样才能在各种行驶工况下充分利用有限的能量.对此,提出了增加一次充电续驶里程的措施:尽可能选择较低的行驶速度;降低轮胎的滚动阻力系数,选用低阻力轮胎;降低迎风阻力系数,进行车身的流线型改进;减轻汽车总质量;扩大电机的高效区范围及提高电机效率.3.2 最大爬坡度汽车的最大爬坡度,是指汽车满载时在良好路面上用第一档克服的最大坡度,它表征汽车的爬坡能力.爬坡度用坡度的角度值(以度数表示)的百分数来表示.设T tq为电机最大转矩;i g为变速器加速档传动比;i0为主减速器传动比; t为传动系的机械效率;r 为轮胎半径.则对于电动汽车来说,车辆的最大驱动力为[7]:F t=T tq i g i0 tr(5)而车辆的滚动阻力F f=mf cos ,坡度阻力为F i=m sin ,加速阻力.同时由于在计算最大爬坡度时车速很小,故可忽略空气阻力F W.由驱动力行驶阻力平衡公式F t=!F=F f+F W+F i+F j,得到最大爬坡度 max的计算公式为:T tq i g i0 tr=mf cos max+m sin max(6)由式(6)可以看出,最大爬坡度与电机最大转矩T tq、轮胎半径r、整车总质量m和滚动摩擦系数f 等参数有关.a.电机参数对最大爬坡度的影响.在电机参数中,电机最大转矩的大小与车辆最大爬坡度的大小有着直接的联系[8].电机的最大转矩越大,最大爬坡度也越大.因此,从电机方面来说,若想提高车辆的爬坡性能,可以通过提高电机的最大转矩来实现.b.车辆参数对最大爬坡度的影响.图6,图7分别表示轮胎滚动阻力系数f和整车总质量m对车辆最大爬坡度的影响.从图6,图7中可见,轮胎滚动阻力系数和整车总重量都对最大爬坡度有很大的影响[9].要想获得合适的最大爬坡度,就必须合理地设置这2个参数.图6轮胎滚动阻力系数对最大爬坡度的影响图7 整车总质量对最大爬坡度的影响对此,提出了增加爬坡性能的措施:选择拥有较高最大转矩的电机;降低轮胎的滚动阻力系数,选用低阻力轮胎;减轻汽车总重量.4 结束语运用CRUISE软件对纯电动车进行建模和动力性能的仿真,得到了续驶里程、最大速度及最大爬坡度等指标,仿真结果验证了CRU ISE仿真动力性能的可行性.通过本文的仿真和分析,为电动汽车的参数选择以及结构优化提供了依据.参考文献:[1] 康龙云.电动汽车最新技术[M].北京:机械工程出版社,2008.[2] 王 斌,李 征,等.CR U ISE 软件在混合动力汽车性能仿真中的应用[J].计算机应用,2007,9(3):1-3.[3] 赵海峰.基于CR U ISE 软件的AM T 车辆性能仿真分析与实验研究[D].重庆:重庆大学,2005.[4] 王保华,罗永革.基于CRU ISE 的汽车建模与仿真[J].湖北汽车工业学院学报,2005,19(2):2-3.[5] 李国良,初 亮,鲁和安.电动汽车续驶里程的影响因素[J].吉林工业大学自然科学学报,2000,30(3):1-3.[6] 杜发荣,吴志新.电动汽车传动系统设计与续驶里程研究[J].农业机械学报,2006,37(11):3-4.[7] 余志生.汽车理论.3版[M ].北京:机械工程出版社,2000.[8] Cheng Chang T ing.H y br id electric vehicle design tominimize ener gy use [C].T he U niv ersity of T ex as at A rling ton,2000.[9] Sha Y L.T he pow er desig n and calculation o f EV S[A].T he 16t h Inter nat ional Batter y,H ybrid and F uel Cell Elect ric Vehicle Symposium &Ex hibitio n [C ].Beijing ,1999.作者简介:姜海斌 (1985-),男,江苏张家港人,硕士研究生,研究方向为汽车动力系统仿真以及汽车系统控制等;黄宏成 (1972-),男,江苏苏州人,副教授,研究方向为汽车系统控制以及底盘开发.ARM 7参数自整定模糊PID 控制器的仿真及设计王朝宁1,姜学东1,马立刚2(1.北京交通大学电气工程学院,北京100044;2.山西省电力公司吕梁供电分公司,山西吕梁033000)Design and Simulation of Self tuning PID type Fuzzy Controller Based on A RM 7ProcessorWANG C hao ning 1,JIANG Xuedong 1,MA Li gang 2(1.Schoo l o f Electrica l Eng ineering ,Beijing Jiaoto ng U niver sity,Beijing 100044;2.Shanx i L vliang P ower Supply Co mpany ,L v liang 033000,China)摘要:常规PID 控制器参数设定之后,运行环境改变时不能实现参数的在线整定,这样会影响系统的控制效果.本设计以误差e 和误差变化率ec 作为输入,经过一定的模糊推理规则,对PID 控制器的参数进行自动整定.在M atlab 环境下对系统进行了仿真,从仿真的结果可以看出,添加模糊控制环节后,系统的动静态性能得到了提高.同时基于ARM 7处理器完成了该控制器的软硬件设计.关键词:参数自整定模糊控制PID;M atlab;ARM 7处理器中图分类号:T P273文献标识码:A 文章编号:10012257(2010)04006505收稿日期:20091203Abstract:When operating environment chang ed,the traditio nal PID contro ller can t online regulate its parameters,w hich are co nfigured w ellat the beginning.And that w ould affect contro l per for mance o f system.Taking erro r and decay r ate of err or as inputs in the desig n,arg um ents o f PID contro ller can reach self tuning function,as to some accurate fuzzy sets.From the result of simu latio n done w ith M atlab,dy namic and static per formances of system added fuzzy controller are im proved.T he autho r also com pleted the hardw are and so ftw are desig n of the contro ller based on ARM7processor.Key words:self tuning PID type fuzzy controller;M atlab;ARM7processor0 引言模拟PID 闭环控制在常规的电源控制技术中应用很普遍,效果比较理想并且稳定,但其缺点是一。

相关文档
最新文档