大一下学期高等数学期末试题及答案__数套

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(下)试卷一

一、 填空题(每空3分,共15分)

(1

)函数

z =的定义域为 (2)已知函数

arctan

y

z x =,则z x ∂=

(3)交换积分次序,2

220

(,)y y dy f x y dx

(4)已知L 是连接(0,1),(1,0)两点的直线段,则

()L

x y ds +=⎰

(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)

(1)设直线L 为321021030x y z x y z +++=⎧⎨

--+=⎩,平面π为4220x y z -+-=,则( )

A. L 平行于π

B. L 在π上

C. L 垂直于π

D. L 与π斜交 (2)设

是由方程xyz (1,0,1)-处的dz =

( )

A.dx dy +

B.dx

D.dx (3)已知Ω是由曲面2

2

2

425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω

+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.

22

5

3

d r dr dz

πθ⎰

⎰⎰ B.

24

5

3

d r dr dz

πθ⎰

⎰⎰ C.

22

5

3

50

2r

d r dr dz

πθ⎰⎰⎰ D. 22

5

20

d r dr dz

π

θ⎰

⎰⎰

(4)已知幂级数1

2

n

n

n n

x ∞

=∑,则其收敛半径

( )

A. 2

B. 1

C. 1

2

D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *

=( )

A.

B.()x ax b xe +

C.()x

ax b ce ++

D.()x

ax b cxe ++

三、计算题(每题8分,共48分)

1、 求过直线1L :123

101x y z ---==

-且平行于直线2L :

21211x y z +-==的平面方程 2、 已知22

(,)z f xy x y =,求z

x ∂∂, z y ∂∂

3、 设

22

{(,)4}D x y x y =+≤,利用极坐标求

2D

x dxdy ⎰⎰

4、 求函数22

(,)(2)x

f x y e x y y =++的极值

5、计算曲线积分2

(23sin )()y

L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点

(0,0)O 到(,2)A π的一段弧

6、求微分方程 x

xy y xe '+=满足 11x y ==的特解

四.解答题(共22分)

1、利用高斯公式计算

2

2xzdydz yzdzdx z dxdy ∑

+-⎰⎰,其中∑

由圆锥面z =与上

半球面z =所围成的立体表面的外侧 (10

)' 2、(1)判别级数11

1(1)3n n n n ∞

--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')

(2)在(1,1)x ∈-求幂级数1n

n nx

=∑的和函数(6')

高等数学(下)试卷二

一.填空题(每空3分,共15分)

(1

)函数

z =

的定义域为 ; (2)已知函数xy

z e =,则在(2,1)处的全微分dz = ;

(3)交换积分次序,

ln 1

(,)e x dx f x y dy

= ;

(4)已知L 是抛物线2

y x =上点(0,0)O 与点(1,1)B 之

间的一段弧,

则=

(5)已知微分方程20y y y '''-+=,则其通解为 .

二.选择题(每空3分,共15分)

(1)设直线L 为300x y z x y z ++=⎧⎨

--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );

A. 0

B. 2π

C. 3π

D. 4π

(2)设(,)z f x y =是由方程33

3z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2

xy z xy -

(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *

=( );

相关文档
最新文档