高等代数2学期07-08A[1].答案doc

合集下载

高等代数习题答案

高等代数习题答案

《高等代数》习题答案一、1、存在多项式()()()()()()1,=+x v x g x u x f x v x u 使得与2、()()x f x f '和互质3、()()的重因式为x f x p4、05、1,-26、()k n n --121 7、3 8、- 48 9、相 10、相11、1或2(有非零解) 12、()()A r A r = 13、无 14、12 15、9816、⎥⎦⎤⎢⎣⎡-0001 17、E 18、()2222121,,r n Z Z Z x x x f ++= 19、()22122121,,r p p n Z Z Z Z x x x f --++=+ 20、大于零21、α为非零向量,α不能由β线性表出 22、无 23、关于V 的加法和数乘封闭 24、对于 V 中任意向量α、β和数域P 中任意数K 都有()()()βαβαA A A +=+和()()ααkA k A = 25、相似 26、线性无关的27、线性变量A 在数域P 中有个互异的特征的值 28、1 29、T A ,1 30、线性无关的 31、正交矩阵二、1、1)()()7422+--x x x 有理根22)()()333122+⎪⎭⎫ ⎝⎛-+x x x 有理根31,2-2、()()()n mx x n mx x n mx x x ---++=++-2342211=b ax x x x +++-23463 由7,37,3-==⇒=-=b a n m3、1)0211211211=+++→cba2)31131031605510019182402113------→9532001235250019182402113-----→409201235250019182402113=-----→3)1103100321011111033100321011111993952032101111=→→→4)()()()xaan x a x an x a a an x111-+-+-+→()[]a n x 1-+=xaa x a a111→()[]a n x 1-+ax a x a a --001=()[]()11---+n a x a n x5)n n y x +6)nna a a a a1001010011110---→nn a a a a a a 211011⎥⎦⎤⎢⎣⎡---=4、1)系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11178424633542 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→572527003542 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→000570005442通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-===-=24231221157522t x t x t x t t x 则基础解系[]⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--==57,1,0,520,0,1,221x x2)系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----7931181332111511⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→0000004720123018144472047201511通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=--=241321221122723t x t x t t x t t x 则基础解系为[]⎪⎩⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-=1,0,2,10,1,27,2321x x5、1)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----112131111202121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→00000151505205301151501515002121通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-+===+=21423122151515352t t x t x t x t x 令21,t t 为0,则特解⎥⎦⎤⎢⎣⎡=51,0,0,520x通解⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=511053101051005221t t x , 21,t t 为任意常数2)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---787695754636323⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→0000015100090232102001510036323通解为⎪⎪⎩⎪⎪⎨⎧=-==+=24231221151332t x t x t x t t x 令21,t t 为0,则特解[]0,1,0,00=x通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=150300132010021t t x , 21,t t 为任意常数6、扩展矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------11111111112111111111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→00220020201220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→022********220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→02200020*******11111 则⎪⎪⎩⎪⎪⎨⎧=+-=--=-=+++022022141434244321x x x x x x x x x ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒414141454321x x x x则432141414145ααααβ--+=5、因四元非齐次线性方程组的系数矩阵秩为3, 则通解形式为110x t x x +=则通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=432154321t x , 1t 为任意常数6、()()A A x A x A 122--=⇒=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1111221124100111032100111011x ⎥⎥⎦⎤⎢⎢⎣⎡411010103⎥⎥⎦⎤⎢⎢⎣⎡-----=3222352257、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1012010411001210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→1012001210010411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1283001210010411⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→2112311240101120011232001210011201则逆矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----21123124112 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1243012210011101101201221000111110111010012001111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→3132341032313201031313100112430323132010313131001,则逆矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3132343231323131318、原式=()1123---AA A 3421322123111=⎪⎭⎫⎝⎛⋅=⋅-=--A9、⎥⎦⎤⎢⎣⎡22211211X X X X ⎥⎦⎤⎢⎣⎡00CA ⎥⎦⎤⎢⎣⎡==A X CX A X CX E 21221112⎪⎪⎩⎪⎪⎨⎧====⇒--112121221100C A AX X X 则⎥⎦⎤⎢⎣⎡=---00111ACX10、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----524212425,,011225,05>=>01524212425>=---- 正定 2)064320222210,02422210,010,3020222210<-=-<-=->⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 不正定11、0545212111,0111,01,521211122>--=-->-=>⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--t t t tt t t t t则054<<-t12、1)031610213510610213112311213≠-=---→---→----03321021112210211131021211≠=-→--→,故为3P 的两组基 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----173510101610211213131112021311211213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→0721010161031280313、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----00000110201000003306031155033033311341335512333则基为[][]3,3,1,34,5,2,3---与, 维数为214、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100,0010101001M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡131211232221333231a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111213212223313233a a a a a a a a a2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10010001,11000011k M k M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211111a a a a k a k a k a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33323123222113121111a ka a a k a a k a ka a3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100011001,100110011M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-333231231322122111131211a a a a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-++--+=33323231231322122221121113121211a a a a a a a a a a a a a a a a15、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111101011B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101则=B 110010001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111101011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21122011016、1)()()215122212221+-=---------=-λλλλλλA E 特征值1,521-==λλ(二重)51=λ代入()01=-X A E λ得基础解系[],1,1,11=X 特征向量为321εεε++12-=λ代入()02=-X A E λ得基础解系[][]1,1,0,1,0,132-=-=X X特征向量为3231εεεε--和由3dim dim dim 21P w w =+λλ知可对角化。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

(完整word版)高等代数(二)期末考试样卷

(完整word版)高等代数(二)期末考试样卷

《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。

(完整word版)高等代数期中考试题答案

(完整word版)高等代数期中考试题答案

高等代数期中考试题答案一、填空题(每小题3分,共15分)1、___1___,__1/a__2、______3_.3、若4、 (n+1)类5、___n-r__二、1 D 2、 C 3、( D )4、( B )5、 A三、1、解:(1)由于A ),,(),,(321321αααβββ=,其中⎪⎪⎪⎭⎫ ⎝⎛---=101110111A于是 1321321),,(),,(-=A βββααα………………………… (2分) 故由基321,,βββ到基321,,ααα的过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛--==-1111010111A C ………………………… (3分)(2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=241),,(321),,(321),,(321321321ββββββααααC即向量3α在基321,,βββ下的坐标为)2,4,1('.………………………… (5分) 2、故该向量组的一个极大线性无关组为124,,ααα。

3、所以解空间的维数是2, 它的一组基为⎪⎭⎫ ⎝⎛-=0,1,38,911a ,⎪⎭⎫ ⎝⎛-=1,0,37,922a 四、 证明题(本题共4个小题,每小题10分,共计40分) 1、证:因为复数域C 作为实数域R 上的向量空间,维数是2; 而2dim 2=R ,两者维数相同,所以同构。

另证:建立映射),(;:2b a bi a R C →+→σ,验证它为同构映射。

2、证明:向量β可以由r ααα,,,21 线性表示, 则不妨设r r r r a a a a ααααβ++++=--112211 ,其中0≠r a , 若0=r a ,则112211--+++=r r a a a αααβ , 这与β不能由121,,,-r ααα 表示矛盾。

于是11111-----=r rr r r r a a a a a ααβα 。

故向量r α可以由βααα,,,,121-r 线性表示, 即向量组),,,,(121r r αααα- 与),,,,(121βααα-r 能够相互线性表示, 从而),,,,(121r r αααα- 与),,,,(121βααα-r 等价。

高等代数习题解答(第一章)(完整资料).doc

高等代数习题解答(第一章)(完整资料).doc

【最新整理,下载后即可编辑】高等代数习题解答第一章 多项式补充题1.当,,a b c取何值时,多项式()5f x x =-与2()(2)(1)g x a x b x =-++ 2(2)c x x +-+相等?提示:比较系数得6136,,555a b c =-=-=. 补充题2.设(),(),()[]f x g x h x x ∈,2232()()()f x xg x x h x =+,证明:()()()0f x g x h x ===.证明 假设()()()0f x g x h x ===不成立.若()0f x ≠,则2(())f x ∂为偶数,又22(),()g x h x 等于0或次数为偶数,由于22(),()[]g x h x x ∈,首项系数(如果有的话)为正数,从而232()()xg x x h x +等于0或次数为奇数,矛盾.若()0g x ≠或()0h x ≠则232(()())xg x x h x ∂+为奇数,而2()0f x =或2(())f x ∂为偶数,矛盾.综上所证,()()()0f x g x h x ===.1.用g (x ) 除 f (x ),求商q (x )与余式r (x ): 1)f (x ) = x 3- 3x 2 -x -1,g (x ) =3x 2 -2x +1; 2)f (x ) = x 4 -2x +5,g (x ) = x 2 -x +2. 1)解法一 待定系数法.由于f (x )是首项系数为1的3次多项式,而g (x )是首项系数为3的2次多项式,所以商q (x )必是首项系数为13的1次多项式,而余式的次数小于 2.于是可设q (x ) =13x +a , r (x ) =bx +c 根据 f (x ) = q (x ) g (x ) + r (x ),即x 3-3x 2 -x -1 = (13x +a )( 3x 2 -2x +1)+bx +c 右边展开,合并同类项,再比较两边同次幂的系数,得 2333a -=-,1123a b -=-++,1a c -=+解得79a =-,269b =-,29c =-,故得17(),39q x x =- 262().99r x x =--解法二 带余除法.3 -2 1 1 -3 -1 -1 1379-1 23- 1373-43- -173-14979- 269- 29-得17(),39q x x =- 262().99r x x =--2)2()1,()57.q x x x r x x =+-=-+ 262().99r x x =--2.,,m p q 适合什么条件时,有1)231;x mx x px q +-++ 2)2421.x mx x px q ++++ 1)解21x mx +-除3x px q++得余式为:2()(1)()r x p m x q m =+++-,令()0r x =,即210;0.p m q m ⎧++=⎨-=⎩故231x mx x px q +-++的充要条件是2;10.m q p m =⎧⎨++=⎩2)解21x mx ++除42x px q++得余式为:22()(2)(1)r x m p m x q p m =-+-+--+,令()0r x =,即22(2)0;10.m p m q p m ⎧-+-=⎪⎨--+=⎪⎩解得2421x mx x px q ++++的充要条件是0;1m p q =⎧⎨=+⎩ 或 21;2.q p m =⎧⎨=-⎩ 3.求()g x 除()f x 的商()q x 与余式()r x : 1)53()258,()3;f x x x x g x x =--=+2)32(),()12.f x x x x g x x i =--=-+1)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0: -3 2 0 -5 0 -8 0 + -6 18 -39 117 -3272 -6 13 -39 109 -327 所以432()261339109,()327.q x x x x x r x =-+-+=-2)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0:()f x1-2i 1 -1 -1 0 + 1-2i -4-2i -9+8i 1 -2i -5-2i -9+8i 所以2()2(52),()98.q x x ix i r x i =--+=-+4.把()f x 表成0x x -的方幂和,即表成 201020()()c c x x c x x +-+-+的形式:1)50(),1;f x x x == 2)420()23,2;f x x x x =-+=-3)4320()2(1)37,.f x x ix i x x i x i =--+-++=-注 设()f x 表成201020()()c c x x c x x +-+-+的形式,则0c 就是()f x 被x x -除所得的余数,1c 就是()f x 被x x -除所得的商式212030()()c c x x c x x +-+-+再被0x x -除所得的余数,逐次进行综合除法即可得到01,,,.n c c c1)解用综合除法进行计算1 1 0 0 0 0 0+ 1 1 1 1 11 1 1 1 1 1 1+ 1 2 3 41 2 3 4 51 + 1 3 61 3 6 101 + 1 41 4 101 + 11 5所以5234515(1)10(1)10(1)5(1)(1).x x x x x x=+-+-+-+-+-2)3)略5.求()f x与()g x的最大公因式:1)43232()341,()1;f x x x x xg x x x x=+---=+--2)4332()41,()31;f x x xg x x x=-+=-+3)42432()101,()6 1.f x x xg x x x=-+=-+++1)解用辗转相除法()g x()f x2()q x12-141 1 -1 -1 1 1 -3 -4 -11 1 3212 1 1 -1 -112-32- -1 1()r x-2 -3 -13()q x834312- 34- 14- -2 -22()r x34-34--1 -1-1 -13()r x所以((),()) 1.f x g x x =+2)((),()) 1.f x g x = 3)2((),()) 1.f x g x x =--6.求(),()u x v x 使()()()()((),()):u x f x v x g x f x g x += 1)432432()242,()22f x x x x x g x x x x x =+---=+---; 2)43232()421659,()254f x x x x x g x x x x =--++=--+; 3)4322()441,()1f x x x x x g x x x =--++=--. 1)解 用辗转相除法()g x ()f x2()q x1 1 1 1 -1 -2 -2 1 2 -1 -4 -21 1 0 -2 0 1 1 -1 -2 -2 1 1 -2 -21()r x1 0 -2 03()q x1 01 0 -2 0 1 0 -22()r x1 0 -23()r x由以上计算得11()()()(),f x q x g x r x =+ 212()()()(),g x q x r x r x =+ 132()()(),r x q x r x =因此22((),())()2f x g x r x x ==-,且2((),())()f x g x r x =21()()()g x q x r x =-21()()[()()()]g x q x f x q x g x =-- 212()()[1()()]()q x f x q x q x g x =-++所以212()()1,()1()()2u x q x x v x q x q x x =-=--=+=+.2)((),())1f x g x x =-,21122(),()13333u x x v x x x =-+=--. 3)((),())1f x g x =,32()1,()32u x x v x x x x =--=+--.7.设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 略.8.证明:如果()(),()()d x f x d x g x 且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由于()(),()()d x f x d x g x ,所以()d x 为()f x 与()g x 的一个公因式.任取()f x 与()g x 的一个公因式()h x ,由已知()d x 为()f x 与()g x 的一个组合,所以()()h x d x .因此,()d x 是()f x 与()g x 的一个最大公因式.9.证明:(()(),()())((),())()f x h x g x h x f x g x h x =,(()h x 的首项系数为 1). 证明 因为存在多项式()u x 和()v x 使 ((),())()()()()f x g x u x f x v x g x =+,所以((),())()()()()()()()f x g x h x u x f x h x v x g x h x =+,这表明((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个组合,又因为 ((),())(),((),())()f x g x f x f x g x g x , 从而((),())()()(),((),())()()()f x g x h x f x h x f x g x h x g x h x ,故由第8题结论,((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式.注意到((),())()f x g x h x 的首项系数为1,于是(()(),()())((),())()f x h x g x h x f x g x h x =.10.如果(),()f x g x 不全为零,证明:()()(,)1((),())((),())f xg x f x g x f x g x =.证明 存在多项式()u x 和()v x 使((),())()()()()f x g x u x f x v x g x =+,因为(),()f x g x 不全为零,所以((),())0f x g x ≠,故由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以()()(,)1((),())((),())f xg x f x g x f x g x =.11.证明:如果(),()f x g x 不全为零,且()()()()((),())u x f x v x g x f x g x +=,那么((),())1u x v x =.证明 因为(),()f x g x 不全为零,故 ((),())0f x g x ≠,从而由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以((),())1u x v x =.12.证明:如果((),())1f x g x = ,((),())1f x h x =,那么((),()())1f x g x h x =. 证法一 用反证法.假设()((),()())1d x f x g x h x =≠,则(())0d x ∂>,从而()d x 有不可约因式()p x ,于是()(),()()()p x f x p x g x h x ,但因为((),())1f x g x =,所以()p x 不整除()g x ,所以()()p x h x ,这与((),())1f x h x =矛盾.因此((),()())1f x g x h x =.证法二 由题设知,存在多项式1122(),(),(),()u x v x u x v x ,使得11()()()()1u x f x v x g x +=,22()()()()1u x f x v x h x +=,两式相乘得12121212[()()()()()()()()()]()[()()]()()1u x u x f x v x u x g x u x v x h x f x v x v x g x h x +++=,所以((),()())1f x g x h x =.13.设11(),,(),(),,()m n f x f x g x g x 都是多项式,而且((),())1(1,2,,;1,2,,).i j f x g x i m j n ===求证:1212(()()(),()()()) 1.m n f x f x f x g x g x g x =证法一 反复应用第12题的结果 证法二 反证法14.证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +=. 证明 由于((),())1f x g x =,所以存在多项式()u x 和()v x 使 ()()()()1u x f x v x g x +=,由此可得()()()()()()()()1,u x f x v x f x v x f x v x g x -++= ()()()()()()()()1,u x f x u x g x u x g x v x g x +-+=即[][]()()()()()()1,u x v x f x v x f x g x -++=[][]()()()()()()1,v x u x g x u x f x g x -++= 于是((),()())1f x f x g x +=,((),()())1g x f x g x +=,应用第12题的结论可得(()(),()())1f x g x f x g x +=.注 也可以用反证法.15.求下列多项式的公共根:32432()221;()22 1.f x x x x g x x x x x =+++=++++提示 用辗转相除法求出2((),()) 1.f x g x x x =++于是得两多项式的公共根为1.2-± 16.判别下列多项式有无重因式: 1)5432()57248f x x x x x x =-+-+-; 2)42()443f x x x x =+--1)解 由于432'()5202144f x x x x x =-+-+,用辗转相除法可求得2((),'())(2)f x f x x =-,故()f x 有重因式,且2x -是它的一个 3 重因式.2)解 由于3'()484f x x x =+-,用辗转相除法可求得((),'())1f x f x =,故()f x 无重因式.17.求t 值使32()31f x x x tx =-+-有重根. 解2'()36f x x x t =-+.先用'()f x 除()f x 得余式 1263()33t t r x x --=+.当3t =时,1()0r x =.此时'()()f x f x ,所以21((),'())'()(1)3f x f x f x x ==-,所以1是()f x 的3重根.当3t ≠时,1()0r x ≠.再用1()r x 除'()f x 得余式215()4r x t =+.故当154t =-时,2()0r x =.此时,121((),'())()92f x f x r x x =-=+,所以12-是()f x 的2重根.当3t ≠且154t ≠-时,2()0r x ≠,则((),'())1f x f x =,此时()f x 无重根.综上,当3t =时,()f x 有3重根1;当154t =-时,()f x 有2重根12-.18.求多项式3x px q ++有重根的条件. 解 略.19.如果242(1)1x Ax Bx -++ ,求,A B .解法一 设42()1f x Ax Bx =++,则3'()42f x Ax Bx =+.因为242(1)1x Ax Bx -++,所以1是()f x 的重根,从而1也是'()f x 的根.于是(1)0f =且'(1)0f =,即10;420.A B A B ++=⎧⎨+=⎩解得1,2A B ==-.解法二 用2(1)x -除421Ax Bx ++得余式为(42)(31)A B x A B ++--+,因为242(1)1x Ax Bx -++,所以(42)(31)0A B x A B ++--+=,故420;310.A B A B +=⎧⎨--+=⎩ 解得1,2A B ==-.20.证明:212!!nx x x n ++++没有重根.证法一 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 因为()'()!nx f x f x n -=,所以((),'())((),)1!nx f x f x f x n ==.于是212!!nx x x n ++++没有重根. 证法二 设2()12!!n x x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 假设()f x 有重根α,则()0f α=且'()0f α=,从而0!nn α=,得0α=,但0α=不是()f x 的根,矛盾.所以212!!nx x x n ++++没有重根. 21.略. 22.证明:x 是()f x 的k 重根的充分必要条件是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.证明 (必要性)设0x 是()f x 的k 重根,从而0x 是'()f x 的1k -重根,是''()f x 的2k -重根,…,是(1)()k f x -的单根,不是()()k f x 的根,于是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.(充分性)设(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠,则0x 是(1)()k f x -的单根,是(2)()k f x -的2重根,…,是()f x 的k 重根.23.举例说明断语“如果α是'()f x 的m 重根,那么α是()f x 的m +1重根”是不对的.解 取1()()1m f x x α+=-+,则()'()1()m f x m x α=+-.α是'()f x 的m 重根,但α不是()f x 的m +1重根.注:也可以取具体的,如0,1m α==.24.证明:如果(1)()n x f x -,那么(1)()n n x f x -. 证明 略.25.证明:如果23312(1)()()x x f x xf x +++,那么12(1)(),(1)()x f x x f x --.证明2121()()x x x x ωω++=--,其中12ωω==.由于23312(1)()()x x f x xf x +++,故存在多项式()h x 使得33212()()(1)()f x xf x x x h x +=++,因此112122(1)(1)0;(1)(1)0.f f f f ωω+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而12(1)(),(1)()x f x x f x --.26.求多项式1n x -在复数范围内和实数范围内的因式分解. 解 多项式1n x -的n 个复根为 22cossin ,0,1,2,,1kk k i k n n nππω=+=-,所以1n x -在复数范围内的分解式为1211(1)()()()n n x x x x x ωωω--=----.在实数范围内,当n 为奇数时:222112211221(1)[()1][()1][()1]n n n n n x x x x x x x x ωωωωωω---+-=--++-++-++,当n 为偶数时:222112222221(1)(1)[()1][()1][()1]n n n n n x x x x x x x x x ωωωωωω---+-=-+-++-++-++.27.求下列多项式的有理根: 1)3261514x x x -+-; 2)424751x x x ---;3)5432614113x x x x x +----.1)解 多项式可能的有理根是1,2,7,14±±±±. (1)40f =-≠,(1)360f -=-≠.由于44444,,,,1(2)171(7)1141(14)-------------都不是整数,所以多项式可能的有理根只有2.用综合除法判别:2 1 -6 15 -14 + 2 -8 14 2 1 -4 7 0 + 2 -4 1 -2 3≠0 所以2是多项式的有理根(单根).注:一般要求指出有理根的重数.计算量较小的话,也可以直接计算,如本题可直接算得(2)0f =,说明2是()f x 的有理根,再由'(2)0f ≠知.2是单根.用综合除法一般比较简单.2)答12-(2重根).3)答 1-(4重根),3(单根). 28.下列多项式在有理数域上是否可约? 1)21x -;2)4328122x x x -++; 3)631x x ++;4)1p x px ++,p 为奇素数; 5)441x kx ++,k 为整数. 1)解21x -可能的有理根是1±,直接检验知,都不是它的根,故21x -不可约.2)解 用艾森斯坦判别法,取2p =. 3)解 令1x y =+,则原多项式变为6365432(1)(1)1615211893y y y y y y y y ++++=++++++,取3p =,则由艾森斯坦判别法知多项式65432615211893y y y y y y ++++++不可约,从而多项式631x x ++也不可约.4)提示:令1x y =-,取素数p . 5)提示:令1x y =+,取2p =.。

(完整word版)高等代数2学期06-07A[1].答案doc

(完整word版)高等代数2学期06-07A[1].答案doc

北 京 交 通 大 学2006-2007学年第二学期高等代数(II )期末考试(A 卷)答案一、填空题(每题3分,共30分)1、设W 1和W 2是R n ⨯n 的两个子空间,其中W 1是由全体n 阶实反对称矩阵构成,W 2是由全体n 阶实下三角矩阵构成, 则 W 1+W 2的维数等于2n .2. 设ε1 = (1,0,0), ε2 = (0,1,0), ε3 = (0,0,1), η1 = (0,0,2), η2 =(0,3,0), η3 = (4,0,0) 是线性空间P 3的两组基, 则从基η1, η2, η3到基ε1, ε2, ε3的过渡矩阵是 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡413121。

3、线性空间22⨯R 中,矩阵⎥⎦⎤⎢⎣⎡=5432A 在基⎥⎦⎤⎢⎣⎡=00011E ,⎥⎦⎤⎢⎣⎡=00112E ,⎥⎦⎤⎢⎣⎡=01113E ,⎥⎦⎤⎢⎣⎡=11114E 下的坐标为: ()T5111---.4、设P 3的线性变换T 为:T(x 1, x 2, x 3) = (x 1, x 2, x 1 + x 2),取P 3的一组基:ε1 = (1, 0, 0), ε2 = (0, 1, 0), ε3 = (0, 0, 1),则T 在该基下的矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111010001. .5、设欧氏空间R 3[x ]的内积为dx x g x f x g x f )()())(),((11⎰+-=则一组基1, x, x 2的度量矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡520320323202. 6、已知三阶矩阵A 满足03E A 2E A E A =-=-=-,则=A 6 .7、已知矩阵A 的初等因子组为λ2,(λ-1)2,则其Jordon 标准形矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1110100 8、欧氏空间V 中两个向量βα,满足βαβα-=+,则α与β的夹角是090.9、3维欧氏空间R 3 (取标准内积)中的向量(2, 3,-1), (1, 1, 0),(0, 1,-1)生成的子空间的正交补空间的维数是 1 .10、设321,,εεε是数域P 上的3维线性空间V 的一组基,f 是V 上的一个线性函数。

(完整word版)高等代数试卷及答案(二),推荐文档

(完整word版)高等代数试卷及答案(二),推荐文档

一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。

2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。

3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。

4.正交变换在标准正交基下的矩阵为_______________________________。

5.标准正交基下的度量矩阵为_________________________。

6.线性变换可对角化的充要条件为__________________________________。

7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。

8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。

9.叙述维数公式_________________________________________________________________________。

10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。

二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。

( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。

( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。

( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。

高等代数期末考试题库及答案解析

高等代数期末考试题库及答案解析

高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。

5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。

–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。

高等代数习题解答

高等代数习题解答

教材部分习题解答高等代数/高等学校小学教育专业教材 作者:唐忠明//戴桂生编 出版社:南京大学 ISBN :7305034797 习题1.11.证明两个数域之交是一个数域。

证:设A 、B 是两个数域,则0,1∈A ,0,1∈B 0,1A B ⇒∈。

又 ,,,,u v A B u v A u v B ∀∈⇒∈∈且,u v A u v B ⇒±∈±∈且 所以,u v A B ±∈,类似可得,(0)uv A B u v A B v ∈÷∈≠。

从而证得A B 是数域。

2.证明:F={,,}a bi a b Q +∈( i 是虚数单位)是一个数域。

证明:000,110,0,1i i A =+=+∈,,,u v A u a bi v c di ∀∈⇒=+=+设 ()(),u v a c b d i A ±=±+±∈()()uv ac bd i ad bc =-++,A ∈设0,a bi +≠则0,a bi -≠否则,0,a bi a b ===或矛盾! 所以2222()()()()v c di c di a bi ac db ad cb i u a bi a bi a bi a b a b++-+-===+++-++,A ∈由定义A 是数域。

习题1.2 (1) 213123110113213033312042r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ …100010001⎡⎤⎢⎥→⎢⎥⎢⎥⎣⎦ ()2123134142(1)3(1)5(1)12321232123221410323032323121077507755062010912010912r r r r r r r r r ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ 12323242232103212321232134032301310131013103230076010912010912002122r r r r r r r r r r -----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥−−−→↔−−−→⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦434310341034103010300131013101300130113()()0076007600700010*******00100010001r r r r ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦习题1.3()21313111242121338133813121031210010113411308113080303396r r r r r r -------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 32133801011340006r r --⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦, 因为第三行最右的元素非零,其他皆为零,故方程组无解。

高等代数习题及答案

高等代数习题及答案

亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档高等代数习题及答案,这篇文档是由我们精心收集整理的新文档。

相信您通过阅读这篇文档,一定会有所收获。

假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。

高等代数习题及答案篇一:高等代数试题及答案中国海洋大学2007-2008学年第2学期期末考试试卷共2页第2页五(10分)证明:设A为n级矩阵,g(x)是矩阵A的最小多项式,则多项式f(x)以A为根的充要条件是g(x)|f(x).六(10分)设V是数域P上的n维线性空间,A,B是V上的线性变换,且ABBA.证明:B的值域与核都是A的不变子空间.a七(10分)设2n阶矩阵Ababbab,ab,求A的最小多项式.a八(10分)设f是数域P上线性空间V上的线性变换,多项式px,qx互素,且满足pfqf0(零变换),Skerqf求证:VWS,Wkerpf中国海洋大学2007-2008学年第2学期期末考试学院(A卷)答案一.判断题1.×2.×3.×4.√5.√二.解:1A=1111111111111113,|EA|(4),所以特征值为0,4(3重).将特征值代入,求解线性方程组(EA)x0,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量:1=(12,12,112,2)',2=(-0,0)',3=(-0)',4=(-6662'.126111所以正交阵T2641而T'AT0206122三.证:(1)A,BM.验证AB,kAM即可.01 1(2)令D0En110,D为循环阵,E11Dk0EnkEk0,(Ek为k阶单位阵)则D,D2,,Dn1,DnE在P上线性无关..0且Aa1Ea2Dan1Dn2anDn1,令f(x)a1a2xanxn1,有Af(D).BM,必P上n1次多项式g(x),使Bg(D),反之亦真.ABf(D)g(D)g(D)f(D)BA(3)由上可知:E,D,D2,,Dn1是M的一组基,且dimMn.四.解:A的行列式因子为D3()(2)3,D2()D1()1.所以,不变因子为d3()(2)3,d2()d1()1,初等因子为(2)3,2因而A的Jordan标准形为J1221五.证:"":f(x)g(x)q(x)"":f(A)0,g(A)0f(A)g(A)q(A)0设f(x)g(x)q(x)r(x),r(x)0或(r(x))(g(x)).所以0=f(A)g(A)q(A)r(A),因而r(A)0.因为g(x)为最小多项式,所以r(x)0.g(x)|f(x).六.证:在B的核V0中任取一向量,则()A(BB(A)BA)AB(A)0所以A在B下的像是零,即AV0.即证明了V0是A的不变子空间.在B的值域BV中任取一向量B,则A(B)B(A)BV.因此,BV也是A的不变子空间.综上,B的值域与核都是A的不变子空间.七.解:EA(a)b22n篇二:高等代数习题及答案(1)高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、p(x)若是数域F上的不可约多项式,那么p(x)在F中必定没有根。

《高等代数》习题与参考答案

《高等代数》习题与参考答案

《高等代数》习题与参考答案数学系第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

(完整word版)免费-高等代数试卷二及答案

(完整word版)免费-高等代数试卷二及答案

高等代数试卷二一、 单项选择题(每小题2分,共10分)【 】1、设)(x f 为3次实系数多项式,则A.)(x f 至少有一个有理根B. )(x f 至少有一个实根C.)(x f 存在一对非实共轭复根D. )(x f 有三个实根.【 】2、设,A B 为任意两个n 级方阵,则如下等式成立的是 A. 222()2A B A AB B +=++ B. A B A B +=+ C. AB B A = D. A B A B -=-【 】3、设向量组12,αα线性无关,则向量组1212,a b c d αααα++线性无关的充分必要条件为A. ad bc ≠B. ad bc =C. ab cd ≠D. ab cd = 【 】4.一个(2)n ≥级方阵A 经过若干次初等变换之后变为B , 则一定有A. A B =B. 0Ax =与0Bx =同解C. 秩()A =秩()BD. **A B =【 】5、设矩阵A 和B 分别是23⨯和33⨯的矩阵,秩()2A =,秩()3B =,则秩()AB 是A. 1B. 2C. 3D. 4二、填空题(每小题2分,共20分)1.多项式)(x f 没有重因式的充要条件是 . 2 .若()()1f x g x +=,则((),())f x g x = .3. 设1230231002A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则*1()A -= .4. 行列式1230000a a a 的代数余子式之和:313233A A A ++为______________. 5.设3级方阵1211222,2A B ααββββ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中,i i αβ均为3维行向量。

若16,2A B ==,则A B -= .6. 若矩阵A 中有一个r 级子式不为0, 则 r(A)= .7.线性方程组 121232343414x x a x x a x x a x x a -=⎧⎪-=⎪⎨-=⎪⎪-=⎩, 有解的充要条件是 .8. 若向量组12,,r ααα可由12,,s βββ线性表示,且12,,r ααα线性无关,则r s.9.设A 为3级矩阵, 且12A =, 则 1*A A --= 10. 设001200373*******A ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭, 则1A -= .三、判断题(每小题2分,共10分)【 】1、若不可约多项式p(x)是()f x '的2重因式,则p(x)是)(x f 的3重因式.【 】2、设n 级方阵A 为可逆矩阵,则对任意的n 维向量β,线性方程组Ax β=都有解。

高等代数试题2(附答案)

高等代数试题2(附答案)

科目名称:《高等代数》姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌一、填空题(每小题5分,共25分)1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。

2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。

3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。

4、假设⎪⎪⎪⎭⎫ ⎝⎛-----=175131023A 的特征根是 ,特征向量分别为 。

5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为二、是非题(每小题2分,共20分)1、如果r a a a ,,,21Λ线性无关,那么其中每一个向量都不是其余向量的线性组合。

( )2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。

( )3、设21,W W 是向量空间V 的两个子空间,那么它们的并Y 21W W 也是V 的一个子空间。

( )4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。

( )5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。

其中),,,()(24232221x x x x =ξδ。

( )6、矩阵A 的特征向量的线性组合仍是A 的特征向量。

( )7、若矩阵A 与B 相似,那么A 与B 等价。

( )8、n 阶实对称矩阵A 有n 个线性无关的特征向量。

( )9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是)(2R M 的子空间。

( )10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。

《高等代数》课程习题 .doc

《高等代数》课程习题 .doc

感谢你的观看《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:感谢你的观看(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211ΛΛΛΛΛΛΛΛΛΛn n a a a a a a ---感谢你的观看(5)xaaa x a a a xΛΛΛΛΛΛΛ (6)abb a b a b a 000000000000ΛΛΛΛΛΛΛΛΛΛ 习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+ΛΛΛΛΛΛΛΛ212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。

高代第二版上册复习题知乎

高代第二版上册复习题知乎

高代第二版上册复习题知乎高等代数(第二版)上册复习题解答一、群论1. 群及其基本性质(1)群的定义及其基本性质群是指一个集合G,以及在G上定义的一种二元运算,满足以下四条性质:(i)封闭律。

对于任意的a、b∈G,a*b∈G。

(ii)结合律。

对于任意的a、b、c∈G,(a*b)*c=a*(b*c)。

(iii)存在单位元素。

存在一个元素e∈G,使得对于任意的a∈G,a*e=e*a=a。

(iv)存在逆元素。

对于任意的a∈G,存在一个元素b∈G,使得a*b=b*a=e。

(2)群的例子一些典型的群包括:- 整数加法群(Z,+)- 整数乘法群(Z*,×)- 实数加法群(R,+)- 实数乘法群(R*,×)- 复数乘法群(C*,×)- 置换群S(n)(3)子群与陪集子群指的是群G的一个非空子集H,且H本身也是一个群。

陪集指的是在群G中,对于一个子群H和任意的元素a∈G,通过左陪集和右陪集的方式定义的集合。

2. 环论(1)环与域环是指一个非空集合R,以及定义在R上的两种二元运算+和×,满足以下性质:(i)封闭律。

对于任意的a、b∈R,a+b和a×b都属于R。

(ii)结合律。

对于任意的a、b、c∈R,(a+b)+c=a+(b+c)且(a×b)×c=a×(b×c)。

(iii)存在单位元素。

对于加法运算,存在元素0∈R,使得对于任意的a∈R,a+0=0+a=a;对于乘法运算,存在元素1∈R,使得对于任意的a∈R,a×1=1×a=a。

(iv)分配律。

对于任意的a、b、c∈R,a×(b+c)=a×b+a×c。

域是指一个非空集合F,以及定义在F上的两种二元运算+和×,满足以下性质:(i)加法和乘法都是可交换的。

即对于任意的a、b∈F,a+b=b+a,a×b=b×a。

高等代数2学期07-08A[1].答案doc(2021年整理)

高等代数2学期07-08A[1].答案doc(2021年整理)

高等代数2学期07-08A[1].答案doc(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高等代数2学期07-08A[1].答案doc(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高等代数2学期07-08A[1].答案doc(word版可编辑修改)的全部内容。

北 京 交 通 大 学2007—2008学年第二学期高等代数(II )期末考试(A 卷)答案与评分标准一、填空题(每小题3分,共30分)1、设W 1和W 2是R n n 的两个子空间,其中W 1是由全体n 阶实反对称矩阵构成,W 2是由全体n 阶实上三角矩阵构成, 则 W 1+W 2的维数等于 n 2 ,W 1∩W 2的维数等于 0 .2、 全体正实数的集合R + 关于如下定义的加法与数乘: a b = ab , k a = a k , 构成实数域R 上的线性空间,该空间中的零 向量是 1 ,维数是 1 .3、线性空间22⨯R 中,矩阵⎥⎦⎤⎢⎣⎡=5432A 在基⎥⎦⎤⎢⎣⎡=00011E ,⎥⎦⎤⎢⎣⎡=00112E ,⎥⎦⎤⎢⎣⎡=01113E ,⎥⎦⎤⎢⎣⎡=11114E 下的坐标为 ()1115.T---4、若P 3的变换A :A (x 1, x 2, x 3) = (x 1, x 2, x 1 + a )是P 3的一个线性变换,则a = 0 .此时A 的核是{(0,0,)|}.x x P ∈5、已知方阵1111a b b a a ⎛⎫⎪ ⎪⎪⎝⎭有特征值0,0,3,则a,b 的值分别为 1,1 . 6、已知四阶方阵A 的全部初等因子为22,(1),λλ- 则其有理标准形为00001000.0101012⎛⎫ ⎪⎪⎪- ⎪⎝⎭7、已知三阶实对称方阵A 有特征值2,2,3,且111⎛⎫ ⎪⎪ ⎪⎝⎭是属于3的特征向量。

高等代数习题及答案

高等代数习题及答案

高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。

( )2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。

( )3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。

( )4、(){}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。

( )5、数域F 上的每一个线性空间都有基和维数。

( )6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。

( )7、零变换和单位变换都是数乘变换。

( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。

( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。

( )10、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==ni i i x 1αβ,那么∑==ni ix12β。

( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()()()()()n n nx g x f x g x f,,=;②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=⇔=; ③()()()()()()()x g x g x f x g x f ,,+=;④若()()()()()()()()1,1,=-+⇒=x g x f x g x f x g x f 。

2、设D 是一个n 阶行列式,那么( )①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北 京 交 通 大 学
2007-2008学年第二学期高等代数(II )期末考试(A 卷)
答案与评分标准
一、填空题(每小题3分,共30分)
1、设W 1和W 2是R n ⨯n 的两个子空间,其中W 1是由全体n 阶实反对称矩阵构成,W 2是由全体n 阶实上三角矩阵构成, 则 W 1+W 2的维数等于 n 2 ,W 1∩W 2的维数等于 0 .
2、 全体正实数的集合R + 关于如下定义的加法⊕与数乘•: a ⊕b = ab , k •a = a k , 构成实数域R 上的线性空间,该空间中的零 向量是 1 ,维数是 1 .
3、线性空间22⨯R 中,矩阵⎥⎦⎤⎢⎣⎡=5432A 在基⎥


⎢⎣⎡=00011E ,⎥⎦⎤⎢⎣⎡=00112E ,⎥⎦⎤⎢⎣⎡=01113E ,⎥⎦

⎢⎣⎡=11114E 下的坐标为 ()1
11
5.T
---
4、若P 3的变换A :A (x 1, x 2, x 3) = (x 1, x 2, x 1 + a )是P 3的一个线性变换,则a = 0 .此时A 的核是{(0,0,)|}.x x P ∈
5、已知方阵1111a b b a a ⎛⎫

⎪ ⎪⎝⎭
有特征值0,0,3,则a,b 的值分别为
1,1 .
6、已知四阶方阵A 的全部初等因子为22,(1),λλ- 则其有理标
准形为00001
000.01010
1
2⎛⎫ ⎪

⎪- ⎪⎝⎭
7、已知三阶实对称方阵A 有特征值2,2,3,且111⎛⎫ ⎪

⎪⎝⎭是属于3的特 征向量。

则A 的属于2的线性无关的特征向量是111,0.01⎛⎫⎛⎫ ⎪ ⎪
- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
8、欧氏空间3R 中一组基1110,1,1001⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
的度量矩阵是111122.123⎛⎫ ⎪ ⎪ ⎪⎝⎭
9、三维线性空间V 的两组基123123,,;,,αααβββ的对偶基分别 是123123,,;,,f f f g g g 。

若从基123,,ααα到基123,,βββ 的过渡矩阵
为100110111⎛⎫
⎪ ⎪ ⎪⎝⎭,则从对偶基123,,f f f 到对偶基123,,g g g 的过渡矩阵 是110011.001-⎛⎫ ⎪- ⎪ ⎪⎝⎭
10、设321,,εεε是数域P 上的3维线性空间V 的一组基,f 是
V 上的一个线性函数。


13(2)0,f εε-=13()1,f εε+=1)(21=+εεf ,则123(23)f εεε+-=
2 .
二、(15分)给定线性空间P 4中的两个向量如下:
α1 = ( 1, 1, 0, 0 ), α2 = ( 0, 1, 1, 1 ); 令W 1 = L (α1, α2 ),212341234{(,,,)|}.W x x x x x x x x =+=+
(1) 求 W 1 + W 2 的维数和一组基; (2) 求W 1⋂W 2 的维数和一组基。

解 212341234123{(,,,)|}(,,)W x x x x x x x x L βββ=+=+=
其中123111100
,,010001βββ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
…..4分
(1)1212123(,,,,).W W L ααβββ+= …..6分
12123,,,,ααβββ的一个极大线性无关组是1212,,,ααββ。

所以 W 1 + W 2 的维数是4,一组基是1212,,,ααββ。

…..9分 (2)设122(,,,).a b a a b b b W βαα=+=+∈ …..11分 则.a a b b b ++=+即b=2a 。

12(2)a βαα=+
这样W 1⋂W 212(2).L αα=+ …..14分 它的维数是1,一组基是122(1,3,2,2).αα+= …..15分
三、(14分)在线性空间P [x ] 3中定义线性变换A 为: A (a +bx +cx 2) = (a -c ) + bx + (c -a )x 2 , (1) 求A 在基1, x , x 2下的矩阵;
(2) 求出P [x ] 3的一组基,使A 在这组基下的矩阵为对角矩阵.
解 (1)A 在基1, x , x 2下的矩阵为101010.101A -⎛⎫ ⎪
= ⎪ ⎪-⎝⎭
……5分
(2)A 的特征多项式
1
1
1
0(1)(2).1
1
E A λλλλλλλ--=
-=--- …..8分 对应特征值0,解齐次线性方程组
1010100101X -⎛⎫ ⎪-= ⎪ ⎪-⎝⎭得基础解系10.1⎛⎫ ⎪ ⎪ ⎪⎝⎭
对应特征值1,解齐次线性方程组
0010000.100X ⎛⎫ ⎪= ⎪ ⎪⎝⎭得基础解系01.0⎛⎫ ⎪ ⎪ ⎪⎝⎭
对应特征值2,解齐次线性方程组
1010100101X ⎛⎫

= ⎪

⎝⎭
得基础解系10.1⎛⎫ ⎪ ⎪ ⎪-⎝⎭ …..12分 令
101010.101P ⎛⎫

= ⎪ ⎪-⎝⎭
则P 可逆。

于是1+x 2,x,1-x 2是基(因为 [1+x 2,x,1-x 2 ]=[1,x, x 2]P ),且A 在该基下矩阵为
01.2⎛⎫ ⎪
⎪ ⎪⎝⎭
…..14分
四、(12分)求矩阵100110111A ⎛⎫ ⎪
= ⎪ ⎪⎝⎭的不变因子和Jordan 标准形。

解 A 的特征矩阵1
00110111E A λλλλ-⎛⎫ ⎪
-=-- ⎪ ⎪---⎝⎭
的各阶行列式因子
是1,1, 3
(1).λ- …..4分
因而不变因子是1,1,3
(1).λ- …..7分 初等因子是 3
(1).λ- …..9分
Jordan 标准形为100110.011⎛⎫

⎪ ⎪⎝⎭
…..12分
五、(14分)设欧氏空间V 的一组基123,,ααα的度量矩阵为
221231112-⎛⎫
⎪-- ⎪ ⎪-⎝⎭。

令1223(,).W L αααα=++ (1)求W 的一组标准正交基; (2)求W ⊥的维数和一组标准正交基。

解 (1)令112,βαα=+
23122313111(,)
(,)
ααββααβααββ+=+-
=- …..4分
单位化得11121
1
,γβααβ=
=+
22312
1
),γβααβ=
=
-
为W 的一组标准正交基。

…..6分 (2)易知3.W α∉从而123,,γγα是V 的一组基。


33311322131(,)(,)()2
βααγγαγγαα=--=+ …..10分
31313131,γααααα=
+=++ …..12分
则13().W L αα⊥=+3γ为其标准正交基,维数为1。

…..14分
六、证明题(四题任选三题)(每小题5分,共15分)
1.设βα,是欧氏空间V 中的两个向量。

若关于V 中的任意一个向量γ,有(,)(,),γαγβ=证明.αβ=
2.在[]n P x 中,证明微分变换D 在任意一组基下矩阵都不可能
是对角形。

3.设V 是数域P 上的n 维线性空间,1V 是其真子空间。

证明存在V 的一组基,使得每个基向量都不在1V 中。

4.设η是欧氏空间V 中一非零向量。

定义V 上线性变换A :
A 2(,)
.(,)
ηαααηηη=-
证明存在V 的一组标准正交基,使得A 在该基下矩阵为对角阵diag{-1,1,…,1}。

证明 1.因为关于V 中的任意一个向量γ,有(,)(,),γαγβ=特别
(,)(,),αβααββ-=-从而(,)0,αβαβ--=因此.αβ=
2.若微分变换D 在一组基下矩阵是对角形D ,则D 的对角线元
素都是0,从而D=0,于是D 是零变换,矛盾。

3.若1V 是零空间,则结论显然成立。

若1V 不是零空间,取它的一组基12,,...,k ααα,并将其扩充为V 的基12,,...,,...,k n αααα。

那么121,,...,,,...,n n k n k n αααααααα++++也是V 的基,且其中每个向量都不在1V 中。

4.令11
,ηηη
=
并将其扩充为V 的标准正交基12,,...,n ηηη,则
A 在该基下矩阵即为所求。

相关文档
最新文档