江苏省对口单招文化课考试数学试卷及参考答案

合集下载

2020年江苏省普通高考对口单招文化数学试卷 (解析版)

2020年江苏省普通高考对口单招文化数学试卷 (解析版)

2020年江苏省普通高考对口单招文化数学试卷一、选择题(本大题共10小题,共40.0分)1.若集合M={−1,1},N={2,1,0},则M∪N=()A. {0,−1,1}B. {0,−1,2}C. {1,−1,2}D. {1,−1,0,2}2.复数z=1+3i的模等于()A. 2B. 4C. √10D. 2√23.已知向量a⃗=(−3,2,5),b⃗ =(1,x,−1),且a⃗⋅b⃗ =2,则x的值是()A. 3B. 4C. 5D. 64.设x∈R,则“1<x<2”是“|x−2|<1”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A. 60种B. 70种C. 75种D. 150种6.以原点为顶点,x轴为对称轴的抛物线的焦点在直线2x−4y−11=0上,则此抛物线的方程是()A. y2=11xB. y2=−11xC. y2=22xD. y2=−22x7.正方体ABCD−A1B1C1D1中,异面直线A1B与B1C所成的角为()A. 45°B. 60°C. 90°D.120°8.下列说法正确的是()A. 合情推理是正确的推理B. 合情推理是归纳推理C. 归纳推理是从一般到特殊的推理D. 类比推理是从特殊到特殊的推理9.已知ω>0,函数在(π2,π)上单调递减,则ω的取值范围是()A. [12,34] B. [12,54] C. (0,12] D. (0,2]10. 已知函数f(x)={x 2−1,x ≤0−2x,x >0,若f(x)=8,则x =( ) A. −3或−4 B. ±3 C. ±3或−4 D. −3二、填空题(本大题共5小题,共20.0分)11. 执行如图的程序框图,输出S 的值是______.12. 参数方程{x =−1+2cosθy =2+2sinθ(θ为参数0≤θ<2π)所表示的曲线的普通方程是______ . 13. 已知等比数列{a n }满足a 1=12,且a 2a 4=4(a 3−1),则a 5=______.14. 已知角α∈(π2,3π2),且tanα=−125,则cos(2π−α)= ______ . 15. 若函数f(x)={2x 3+3x 2+1(x ≤0)e ax (x >0)在[−2,2]上的最大值为2,则实数a 的取值范围是______ . 三、解答题(本大题共8小题,共90.0分)16. 已知函数f(x)=ax 2+x −a ,a ∈. (1)若函数f(x)的最大值大于178,求实数a 的取值范围;(2)解不等式f(x)>1(a ∈).17. 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=−f(x).当x ∈[0,2]时,f(x)=2x −x 2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式.18.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1,2,3,4.现从盒子中随机抽取卡片.(1)若一次抽取3张卡片,求3张卡片上的数字之和大于7的概率;(2)若第一次抽取1张卡片,放回后再抽取1张卡片,求至少有一次抽到数字3的概率.19.已知在△ABC中,角A,B,C所对的边分别为且a,b,c,且√3cosA =csinC.(1)求角A的大小;(2)若a=6,b=2c,求△ABC的面积.20.“足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对石山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量Q万件(生产量与销售量相等)与推广促销费x万元之间的函数关系为Q=x+24(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本4(Q+1Q)万元(不包含推广促销费用),若加工后的每件成品的销售价格定为(4+20Q)元/件.(I)试将该批产品的利润y万元表示为推广促销费x万元的函数;(利润=销售额−成本−推广促销费)(II)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?21.设满足a1+13a2+15a3+⋯+12n−1a n=n.(1)求数列{a n}的通项公式;(2)求数列{a+√a}的前84项和.22.自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?23.已知椭圆C:x2a2+y2b2=1(a>b>0),四点P1(√2,0),P2(1,0),P3(0,√2),P4(0,1)中恰有两个点为椭圆C的顶点,一个点为椭圆C的焦点.(1)求椭圆C的方程;(2)若斜率为1的直线l与椭圆C交于不同的两点A,B,且|AB|=43,求直线l方程.-------- 答案与解析 --------1.答案:D解析:解:∵M={−1,1},N={2,1,0};∴M∪N={−1,1,2,0}.故选:D.进行并集的运算即可.考查列举法的定义,以及并集的运算.2.答案:C解析:解:∵z=1+3i,∴|z|=√1+9=√10,故选:C.根据复数求模的公式,求出复数z=1+3i的模即可.本题考查了复数求模问题,是一道基础题.3.答案:C解析:本题主要考查空间向量数量积运算,考查计算能力,属于基础题.利用空间向量坐标运算a⃗⋅b⃗ =−3+2x−5=2,建立方程求解即可.解:因为a⃗=(−3,2,5),b⃗ =(1,x,−1),所以a⃗⋅b⃗ =−3+2x−5=2,解得x=5.故选C.4.答案:A解析:解:由于不等式|x−2|<1的解集为{x|1<x<3},则1<x<2可推出1<x<3,反之不成立,所以“1<x<2”是“|x−2|<1”的充分而不必要条件.故选A.本题考查充分不必要条件,属于基础题.5.答案:C解析:本题考查了排列、组合的综合应用,从中选出2名男医生的选法有C62=15(种),从中选出1名女医生的选法有C51=5(种),则可求得选出2名男医生、1名女医生组成一个医疗小组,不同的选法种数.解:从中选出2名男医生的选法有C62=15(种),从中选出1名女医生的选法有C51=5(种),所以不同的选法共有15×5=75(种),故选C.6.答案:C解析:解:以原点为顶点,x轴为对称轴的抛物线的焦点在直线2x−4y−11=0上,可得y=0时,x=112,抛物线的焦点坐标(112,0),所以抛物线的方程为:y2=22x.故选:C.求出抛物线的焦点坐标,然后求解抛物线方程.本题考查抛物线的简单性质的应用,抛物线方程的求法,考查计算能力.7.答案:B解析:本题考查异面直线及其所成的角.连接A1D,根据正方体的几何特征及异面直线夹角的定义,我们可得∠BA1D即为异面直线A1B与B1C所成的角,连接BD后,解三角形BA1D即可得到异面直线A1B与B1C所成的角.解:连接A1D,由正方体的几何特征可得:A1D//B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:。

2020年江苏省普通高考对口单招文化数学试卷

2020年江苏省普通高考对口单招文化数学试卷

2020年江苏省普通高考对口单招文化数学试卷一、单项选择题(本大题共10小题,共40.0分)1.已知集合M={1,4},N={1,2,3},则M∪N等于()A. {1}B. {2,3}C. {2,3,4}D. {1,2,3,4}2.若复数z满足z(2−i)=1+3i,则z的模等于()A. √2B. √3C. 2D. 33.若向量a⃗=(2,−3,1)和b⃗ =(1,x,4)满足条件a⃗⋅b⃗ =0,则x的值是()A. −1B. 0C. 1D. 24.在逻辑运算中,“A+B=0”是“A⋅B=0”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5.从5名男医生、4名女医生中任选5人组成一个医疗小分队,要求其中男医生、女医生均不少于2人,则所有不同的组队方案种数是()A. 80B. 100C. 240D. 3006.过抛物线(y−1)2=4(x+2)的顶点,且与直线x−2y+3=0垂直的直线方程是()A. 2x+y−3=0B. 2x+y+3=0C. x−2y+4=0D. x−2y−4=07.如图的正方体ABCD−A1B1C1D1中,异面直线A1B与B1C所成的角是()A. 30°B. 45°C. 60°D. 90°8.如图是某项工程的网络图(单位:天),则该工程的关键路径是()A. A→B→D→E→JB. A→B→D→E→K→MC. A→B→D→F→H→JD. A→B→D→G→I→J9.若函数f(x)=sinωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=()A. 23B. 32C. 2D. 310. 已知函数f(x)={2,x ∈[0,1]x,x ∉[0,1],则使f(f(x))=2成立的实数x 的集合为( ) A. {x|0≤x ≤1或x =2}B. {x|0≤x ≤1或x =3}C. {x|1≤x ≤2}D. {x|0≤x ≤2}二、填空题(本大题共5小题,共20.0分) 11. 如图是一个程序框图,执行该程序框图,则输出的T 值是______.12. 与曲线{x =6+3√2cosθy =6+3√2sinθ,(θ为参数)和直线x +y −2=0都相切,且半径最小的圆的标准方程是______. 13. 已知{a n }是等比数列,a 2=2,a 5=14,则a 8=______.14. 已知α∈(π,2π),tanα=−34,则cos(2π−α)=______.15. 已知函数f(x)={2x −1,x ≤24+log a x,x >2(a >0且a ≠1)的最大值为3,则实数a 的取值范围是______. 三、解答题(本大题共8小题,共90.0分)16. 若函数f(x)=x 2+(a 2−5a +3)x +4在(−∞,32]上单调递减.(1)求实数a 的取值范围;(2)解关于x 的不等式log a (12)3x ≥log a 8.17.已知f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=−f(x),当x∈[0,2]时,f(x)=x2−2x.(1)求证:函数f(x)的周期是4;(2)求f(2017)+f(2018)+f(2019)+f(2020)的值;(3)当x∈[2,4]时,求f(x)的解析式.18.袋中装有5张分别写着1,2,3,4,5的卡片.(1)若从中随机抽取一张卡片,然后放回后再随机抽取一张卡片,求事件A={两次抽取的卡片上的数相同}的概率;(2)若从中随机抽取一张卡片,不放回再随机抽取一张卡片.①求事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}的概率;②若第一次抽取的卡片上的数记为a,第二次抽取的卡片上的数记为b,求事件C={点(a,b)在圆x2+y2=16内}的概率.19.已知函数f(x)=2cos x2(√3cos x2−sin x2),又在△ABC中,三个角A,B,C所对的边分别为a,b,c,且f(A)=0.(1)求角A的大小;(2)若sinB+sinC=1,a=√3,求△ABC的面积.20.某地建一座桥,总长为240米,两端的桥墩已建好,余下工程需要建若干个桥墩以及各桥墩之间的桥面.经估算,一个桥墩的工程费用为400万元,距离为x米的相邻两桥墩之间的桥面工程费用为(x2+x)万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)需要新建多少个桥墩才能使y最小,其最小值是多少?21.已知数列{a n}满足a3=15,a n−a n+1=2a n⋅a n+1(n∈N+).(1)求a1,并证明数列{1a n}为等差数列;(2)设b n=√1a n +√1a n+1,计算b1+b2+⋯+b12的值;(3)设cn =(12)1a n,数列{c n}前n项和为S n,证明:S n<23.22. 某运输公司在疫情期间接到运送物资的任务.该公司现有9辆载重为8吨的甲型卡车和6辆载重为10吨的乙型卡车,共有12名驾驶员,要求该公司每天至少运送640吨物资.已知每辆甲型卡车每天往返的次数为12次,每辆乙型卡车每天往返的次数为8次.若每辆卡车每天所需成本为甲型卡车240元、乙型卡车360元.问每天派出甲型卡车和乙型卡车各多少辆时,运输公司所花成本最少?并求最小成本.23. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为2√3,短轴长为2. (1)求椭圆E 的方程;(2)设A 为椭圆的左顶点,过点A 的直线l 与椭圆交于另一点B .①若|AB|=2√63,求直线l 的斜率k ;②若点P(0,m)在线段AB 的垂直平分线上,且PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =2,求m 的值.答案和解析1.【答案】D【解析】解:M={1,4},N={1,2,3},∴M∪N={1,2,3,4}.故选:D.进行并集的运算即可.本题考查了列举法的定义,并集的定义及运算,考查了计算能力,属于基础题.2.【答案】A【解析】解:由z(2−i)=1+3i,得z=1+3i2−i,则|z|=|1+3i2−i |=|1+3i||2−i|=√10√5=√2.故选:A.把已知等式变形,再由商的模等于模的商求解.本题考查复数模的求法,考查数学转化思想方法,是基础题.3.【答案】D【解析】解:因为a⃗=(2,−3,1)和b⃗ =(1,x,4)满足条件a⃗⋅b⃗ =0,即2−3x+4=0⇒x=2;故选:D.直接代入数量积求解即可.本题主要考查向量数量积的运算,属于基础题.4.【答案】A【解析】解:“A+B=0”⇒“A⋅B=0”,反之不成立.∴“A+B=0”是“A⋅B=0”的充分不必要条件.故选:A.利用逻辑运算的性质即可判断出结论.本题考查了逻辑运算的性质,考查了推理能力与计算能力,属于基础题.5.【答案】B【解析】解:根据题意,分2种情况讨论:①选出的5人中有2名男医生,3名女医生,有C52C43=40种选法;②选出的5人中有3名男医生,2名女医生,有C53C42=60种选法;则有40+60=100种组队方法;故选:B.根据题意,分2种情况讨论:①选出的5人中有2名男医生,3名女医生,②选出的5人中有3名男医生,2名女医生,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.6.【答案】B,【解析】解:抛物线(y−1)2=4(x+2)的顶点(−2,1),直线x−2y+3=0的斜率为:12过抛物线(y−1)2=4(x+2)的顶点,且与直线x−2y+3=0垂直的直线的斜率为−2,所以所求直线方程为:y−1=−2(x+2),即2x+y+3=0.故选:B.求出抛物线的顶点坐标,求出直线的斜率,然后求解直线方程即可.本题考查抛物线的简单性质的应用,直线方程的求法,是基本知识的考查.7.【答案】C【解析】解:连接A1D,由正方体的几何特征可得:A1D//B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:BD=A1D=A1B故∠BA1D=60°故选:C.连接A1D,根据正方体的几何特征及异面直线夹角的定义,我们可得∠BA1D即为异面直线A1B与B1C所成的角,连接BD 后,解三角形BA 1D 即可得到异面直线A 1B 与B 1C 所成的角.本题考查的知识点是异面直线及其所成的角,其中根据正方体的几何特征及异面直线夹角的定义判断出∠BA 1D 即为异面直线A 1B 与B 1C 所成的角,是解答本题的关键.8.【答案】D【解析】解:从节点①到节点⑤最长耗时为:9,对应关键路径为:A →B →D ;从节点⑤到节点⑧最长耗时为:9,对应关键路径为:G →I ;从节点⑧到节点⑩最长耗时为5,对应关键路径为J ;因此关键路径为:A →B →D →G →I →J .故选:D .结合所给的工程的流程图,可得答案.本题考查了工序流程图(即统筹图)的应用问题,也考查了读图、识图和问题转化、分析能力. 9.【答案】B【解析】解:由题意可知函数在x =π3时取得最大值,就是ωπ3=2kπ+π2,k ∈Z ,所以ω=6k +32;只有k =0时,ω=32满足选项.故选B由题意可知函数在x =π3时取得最大值,就是ωπ3=2kπ+π2,求出ω的值即可. 本题是基础题,考查三角函数的性质,函数解析式的求法,常考题型.10.【答案】A【解析】解:根据题意,函数f(x)={2,x ∈[0,1]x,x ∉[0,1],对于f(f(x))=2, 分2种情况讨论:若x ∈[0,1],则f(x)=2,则有f(f(x))=f(2)=2,符合题意;若x ∉[0,1],则f(x)=x ,则有f(f(x))=f(x)=x =2,解可得x =2,故x 的取值范围为{x|0≤x ≤1或x =2};故选:A .根据题意,结合函数的解析式分2种情况讨论:①若x ∈[0,1],则f(x)=2,②若x ∉[0,1],则f(x)=x ,先求出f(f(x))的解析式,进而分析f(f(x))=2的解集,综合可得答案.本题考查函数值的计算,涉及分段函数的性质以及应用,属于基础题.11.【答案】32【解析】解:根据程序框图,运行如下:S =2,T =0,n =0不满足判断框内的条件T >S ,执行循环体,S =10,n =2,T =4不满足判断框内的条件T >S ,执行循环体,S =18,n =4,T =20此时,满足判断框内的条件T >S ,退出循环,可得T =2×(20−4)=32.故答案为:32.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量T 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解决程序框图中的循环结构的问题,一般按照框图的流程写出前几次循环的结果,找规律.属于基础题.12.【答案】(x −2)2+(y −2)2=2【解析】解:由曲线{x =6+3√2cosθy =6+3√2sinθ,(θ为参数),消去参数θ, 可得圆的普通方程为(x −6)2+(y −6)2=18,则圆的圆心坐标为(6,6),半径为3√2.作出圆与直线如图:圆心(6,6)到直线x +y −2=0的距离为d =√2=5√2.∴所求的最小圆的圆心在直线y =x 上,且半径为√2.所求小圆的圆心到直线x +y −2=0的距离为√2, 可得圆心坐标为(2,2).故所求圆的标准方程为(x −2)2+(y −2)2=2. 故答案为:(x −2)2+(y −2)2=2.化参数方程为普通方程,求圆心坐标,再求圆心到直线的距离,求出最小的圆的半径,圆心坐标,可得圆的方程.本题考查圆的参数方程,考查直线和圆的方程的应用,考查转化的数学思想,是中档题.13.【答案】132【解析】 【分析】本题考查等比数列的通项公式,由等比数列的通项公式,列出方程组,求出首项和公比,由此能求出a 8. 【解答】解:∵{a n }是等比数列,a 2=2,a 5=14, ∴{a 1q =2a 1q 4=14, 解得a 1=4,q =12, ∴a 8=4×(12)7=132. 故答案为:132.14.【答案】45【解析】解:∵α∈(π,2π),tanα=−34<0, ∴α∈(3π2,2π),∴cos(2π−α)=cosα=√11+tan 2α=√11+916=45.故答案为:45.由已知可求范围α∈(3π2,2π),进而根据诱导公式,同角三角函数基本关系式即可求解.本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.【答案】[12,1)【解析】 【分析】本题考查函数的最值的求法,分段函数的应用,对数函数的性质的应用,是基本知识的考查. 利用分段函数的单调性以及函数的最值转化求解即可. 【解答】解:函数f(x)={2x −1,x ≤24+log a x,x >2(a >0且a ≠1), 当x ≤2时,f(x)=2x −1≤3,恒成立, 当x >2时,必须f(x)=4+log a x ≤3恒成立, 即:log a x ≤−1,所以y =log a x 在x >2时是减函数, 可得log a 2≤−1,则{0<a <12≥a −1,解得a ∈[12,1). 故答案为:[12,1).16.【答案】解:(1)二次函数的对称轴x =−a2−5a+32,开口向上,由题意可得,−a 2−5a+32≥32,整理可得,a 2−5a +6≤0, 解可得,2≤a ≤3, (2)由(1)可知a >1,由log a (12)3x ≥log a 8可得(12)3x ≥8, 所以3x ≤−3,解可得x ≤−1. 故不等式的解集(−∞,−1].【解析】(1)由题意结合二次函数的性质可得,−a 2−5a+32≥32,解不等式即可求解.(2)由log a (12)3x ≥log a 8结合对数函数的单调性即可转化求解.本题主要考查了二次函数的性质及对数函数的单调性在求解不等式中的应用,属于基础试题.17.【答案】解:(1)证明:因为f(x+4)=f[)x+2)+2]=−f(x+2)=f(x),故函数的周期T=4;(2)f(2017)+f(2018)+f(2019)+f(2020)=f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(−1)+f(0)=f(1)+f(2)−f(1)+f(0)=f(2)=0,(3)当x∈[2,4]时,−x∈[−4,−2],所以0≤4−x≤2,所以f(4−x)=(4−x)2−2(4−x)=x2−6x+8=f(−x)=−f(x),所以f(x)=−x2+6x−8,x∈[2,4].【解析】(1)结合已知及周期的定义即可求解;(2)结合已知周期性及已知区间上的函数解析式进行转化,代入可求;(3)先把所求区间上的变量进行转化到已知区间上,然后结合奇函数的性质可求.本题主要考查了函数的周期在求解函数值中的应用及利用周期性求解函数值,体现了转化思想的应用.18.【答案】解:(1)袋中装有5张分别写着1,2,3,4,5的卡片.从中随机抽取一张卡片,然后放回后再随机抽取一张卡片,基本事件总数n=5×5=25,事件A={两次抽取的卡片上的数相同},则事件A包含的基本事件个数m1=C51C11=5,∴事件A={两次抽取的卡片上的数相同}的概率P(A)=m1n =525=15.(2)①从中随机抽取一张卡片,不放回再随机抽取一张卡片.基本事件总数n1=5×4=20,事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数},则事件B包含的基本事件有10个,分别为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),∴事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}的概率为:P=1020=12.②第一次抽取的卡片上的数记为a,第二次抽取的卡片上的数记为b,基本事件总数n1=5×4=20,事件C={点(a,b)在圆x2+y2=16内},∴事件C包含的基本事件有6个,分别为:(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),∴事件C={点(a,b)在圆x2+y2=16内}的概率为:P(C)=620=310.【解析】(1)基本事件总数n=5×5=25,事件A={两次抽取的卡片上的数相同},则事件A包含的基本事件个数m1=C51C11=5,由此能求出事件A={两次抽取的卡片上的数相同}的概率.(2)①从中随机抽取一张卡片,不放回再随机抽取一张卡片.基本事件总数n1=5×4=20,利用列举法求出事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}包含的基本事件有10个,由此能求出事件B的概率.②第一次抽取的卡片上的数记为a,第二次抽取的卡片上的数记为b,基本事件总数n1=5×4=20,利用列举法求出事件C={点(a,b)在圆x2+y2=16内}包含的基本事件有6个,由此能求出事件C的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.19.【答案】解:(1)f(x)=2cos x2(√3cos x2−sin x2)=2√3cos2x2−2sin x2cos x2,=2√3⋅1+cosx2−sinx,=√3+√3cosx−sinx,=√3−2sin(x−π3),因为f(A)=√3−2sin(A−π3)=0,所以sin(A−π3)=√32,∴A−π3=π3,即A=2π3;(2)∵sinB+sinC=1,a=√3,由正弦定理可得,asinA =bsinB=csinC=b+csinB+sinC,∴√3√32=b+c=2,因为1=sinB+sin(13π−B)=12sinB+√32cosB=sin(B+π3),因为B为三角形的内角,故B=π6=C,∴b =c =1,S △ABC =12bcsinA =12×1×√3×√32=√34.【解析】(1)由已知结合和差角公式及二倍角公式对已知函数进行化简,然后结合已知f(A)=0可求A , (2)由已知结合正弦定理及和差角公式可求B ,C ,然后结合三角形的面积公式即可求解.本题主要考查了二倍角,和差角公式在三角化简中的应用,还考查了正弦定理及三角形的面积公式的应用,属于中档试题.20.【答案】解:(1)y =400(240x−1)+240x⋅(x 2+x)=240x +96000x −160(0<x <240).(2)∵240x +96000x≥2√240x ⋅96000x=9600,当且仅当240x =96000x即x =20时取等号,∴y 的最小值为9600−160=9440,此时桥墩个数为:240x−1=11,∴需要新建11个桥墩才能使y 最小,最小值是9440.【解析】(1)用x 表示出桥墩个数和桥面个数,得出y 关于x 的函数; (2)根据基本不等式求出y 最小值及其对应的x 的值,从而得出桥墩个数. 本题考查了函数解析式,函数最值计算,基本不等式的应用,属于中档题.21.【答案】解:(1)证明:∵a n −a n+1=2a n ⋅a n+1,∴a n −a n+1a n ⋅a n+1=2,即1a n+1−1a n=2,∴数列{1a n}是以1a 1为首项,以2为公差的等差数列,且1a n=1a 1+2(n −1).又∵a 3=15,∴1a 3=1a 1+2×2=5,解得a 1=1;(2)解:由(1)知:1a n=1+2(n −1)=2n −1,∴b n =√1a n +√1an+1=√2n−1+√2n+1=√2n +1−√2n −1,∴b 1+b 2+⋯+b 12=(√3−√1)+(√5−√3)+⋯+(√25−√23)=√25−√1=4; (3)证明:由(1)知:1a n=2n −1,∴c n =(12)1a n=(12)2n−1,∴数列{c n }首项为12,公比为14的等比数列,∴S n=12[1−(14)n]1−14=23[1−(14)n]<23.【解析】(1)由a n−a n+1=2a n⋅a n+1⇒1an+1−1a n=2,从而说明数列{1a n}为等差数列,再利用a3=15求出a1;(2)先由(1)求得1a n,再求b n,然后利用裂项相消法求b1+b2+⋯+b12的值;(3)先求得c n,说明其是等比数列,再求前n项和S n,进而证明要证结论.本题主要考查等差、等比数列的通项公式、前n项和的求法及裂项相消法在数列求和中的应用,属于中档题.22.【答案】解:设每天派出甲型卡车x辆,乙型卡车y辆,运输队所花成本为z元,则{x,y∈N0≤x≤90≤y≤6x+y≤1296x+80y≥640,化简得:{x,y∈N0≤x≤90≤y≤6x+y≤126x+5y≥40,目标函数z=240x+360y,画出满足条件的可行域如图中阴影部分所示:由图可知,当直线z=240x+360y经过点A时,截距z最小,解方程组{6x+5y=40y=0,得点A的坐标为(203,0),又∵x∈N,y∈N,∴点A(203,0)不是最优解,∵在可行域的整数点中,点(7,0)使z取得最小值,即z min=240×7+360×0=1680,∴每天派出甲型卡车7辆,乙型卡车0辆,运输队所花的成本最低, 最低成本为1680元,答:每天派出甲型卡车7辆,乙型卡车0辆,运输队所花的成本最低,最低成本为1680元.【解析】本题主要考查了简单的线性规划问题,根据题意列出不等式组是解题关键,本题属于中档题. 设每天派出甲型卡车x 辆,乙型卡车y 辆,运输队所花成本为z 元,根据题意把实际问题数学化,列出需要满足的不等式组,注意x ∈N ,y ∈N ,把运输队所花成本z 看作目标函数,画出可行域,根据目标函数平移得到最值的取法.23.【答案】解:(1)焦距为2√3,短轴长为2,可得2c =2√3,2b =2,即c =√3,b =1,a =√b 2+c 2=2,则椭圆方程为x 24+y 2=1;(2)①A(−2,0),可设直线l 的方程为y =k(x +2),联立椭圆方程x 2+4y 2=4,可得(1+4k 2)x 2+16k 2x +16k 2−4=0, 则−2x B =16k 2−41+4k2,可得x B =2−8k 21+4k 2, 可得|AB|=√1+k 2⋅|−2−2−8k 21+4k 2|=2√63, 解得k =±√22;②若点P(0,m)在线段AB 的垂直平分线上,可设AB 的垂直平分线方程为y =−1k x +m , 可得AB 的中点坐标(−8k 21+4k 2,2k 1+4k 2),代入AB 的垂直平分线方程可得m =2k 1+4k 2−8k 1+4k 2=−6k1+4k 2, 由A(−2,0),B(2−8k 21+4k 2,4k1+4k 2), 则PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(−2,6k1+4k 2)⋅(2−8k 21+4k 2,10k1+4k 2)=−2⋅2−8k 21+4k 2+6k1+4k 2⋅10k1+4k 2=2, 化为16k 4+22k 2−3=0, 解得k =±√24,则m =−6k1+4k 2=±√2.【解析】(1)由短轴和焦距的概念,结合a ,b ,c 的关系,解方程可得a ,b ,进而得到所求椭圆方程; (2)①设直线l 的方程为y =k(x +2),联立椭圆方程,运用韦达定理,求得B 的横坐标,由弦长公式,解方程可得k ;x+m,运用中点坐标公式可得AB的中点坐标,进而得到m关于k ②可设AB的垂直平分线方程为y=−1k的式子,再由向量的数量积的坐标表示,解方程可得k的值,即可得到所求m的值.本题考查椭圆的方程和性质,考查直线和椭圆的位置关系,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查向量数量积的坐标表示,主要考查化简运算能力和推理能力,属于中档题.。

江苏省2020年普通高校对口单招文化统考数学试卷

江苏省2020年普通高校对口单招文化统考数学试卷

江苏省2020年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分,在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.已知集合M={1,4},N={1,2,3},则M∪N等于A.{1}B.{2,3}C.{2,3,4}D.{1,2,3,4}2.若复数z满足z(2−i)=1+3i,则z的模等于A.√2B.√3C.2D.33.若数组a=(2,-3,1)和b=(1,x,4)满足条件0·ba,则x的值是A.-1B.0C.1D.24.在逻辑运算中,“A+B=0”是“A·B=0”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.从5名男医生,4名女医生中任选5人组成一个医疗小分队,要求其中男医生、女医生均不少于2人,则有所不同的组队方案种树是A.80B.100C.240D.3006.过抛物线(y−1)2=4(x+2)的顶点,且与直线x−2y+3=0垂直的直线方程是A.2x+y-3=0B.2x+y+3=0C.x-2y+4=0D.x-2y-4=07.在正方体ABCD−A1B1C1D1中(题7图),异面直线A1B与B1C之间的夹角是A.30°B.45°C.60°D.90°8.题8图是某项工程的网络图(单位:天),则该工程的关键路径是A.A→B→D→E→JB.A→B→D→E→K→MC.A→B→D→F→H→JD.A→B→D→G→I→J9.若函数f(x)=sinωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于A.23B.2 C.32D.310.已知函数f(x)={2,x∈[0,1]x,x∉[0,1],则使f(f(x))=2成立的实数x的集合为A.{x|0≤x≤1或x=2}B. {x|0≤x≤1或x=3}C. {x|1≤x≤2}D. {x|0≤x≤2}二、填空题(本大题共5小题,每小题4分,共20分)11.题11图是一个程序框图,执行该程序框图,则输出的T值是▲ .12.与曲线{x=6+3√2cosθ,y=6+3√2sinθ,(θ为参数)和直线x+y−2=0都相切,且半径最小的圆的的标准方程是▲ .13.已知{a n}是等比数列,a2=2,a5=14,则a8=▲ .14.已知αϵ(π,2π),tanα=−34,则cos(2π−α)=▲ .15.已知函数f(x)={2x−1,x≤24+log a x,x>2(a>0且a≠1)的最大值为3,则实数a的取值范围是▲ .三.解答题(本大题共8小题,共90分)16.(8分)若函数f(x)=x2+(a2−5a+3)x+4在(−∞,32]上单调递减.(1)求实数a的取值范围;(2)解关于x的不等式log a(12)3x≥log a8.17.(10分)已知f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=−f(x),当x∈[0,2]时,f(x)=x2−2x.(1)求证:函数f(x)的周期是4;(2)求f(2017)+f(2018)+f(2019)+f(2020)的值;(3)当x ∈[2,4]时,求f(x)的解析式.18.(12分)袋中装有5张分别写着1,2,3,4,5的卡片.(1)若从中随机抽取一张卡片,然后放回后再随机抽取一张卡片,求事件A={两次抽取的卡片上的数相同}的概率;(2)若从中随机抽取一张卡片,不放回再随机抽取一张卡片.①求事件B={第二次抽取的卡片上的数大于第一次抽取的卡片上的数}的概率;②若第一次抽取的卡片上的数记为a ,第二次抽取的卡片上的数记为b ,求事件C={点(a,b )在圆x 2+y 2=16内}的概率.19.(12分)已知函数f (x )=2cos x 2(√3cos x 2−sin x 2),又在△ABC 中,三个角A,B,C 所对的边分别为a,b,c ,且f(A)=0.(1)求角A 的大小;(2)若sin B +sin C =1,a =√3,求△ABC 的面积. 20.(10分)某地建一座桥,总长为240米 ,两端的桥墩已建好,余下工程需要建若干个桥墩以及各桥墩之间的桥面.经估算,一个桥墩的工程费用为400万元,距离为x 米的相邻两桥墩之间的桥面工程费用为(x 2+x )万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)需要新建多少个桥墩才能使y 最小,其最小值是多少?21.(14分)已知数列{a n }满足a 3=15,a n −a n+1=2a n ·a n+1(n ∈N +).(1)求a 1,并证明数列{1a n }为等差数列; (2)设b n =√1a n +√1a n+1,计算b 1+b 2+⋯+b 12的值; (3)设C n =(12)1a n ,数列{c n }前n 项和为S n ,证明S n <23.22.(10分)某运输公司在疫情期间接到运送物资的任务,该公司现有9辆载重为8吨的甲型卡车和6辆载重为10吨的乙型卡车,共有12名驾驶员,要求该公司每天至少运送640吨物资.已知每辆甲型卡车每天往返的次数为12次,每辆乙型卡车每天往返的次数为8次.若每辆卡车每天所需成本为甲型卡车240元,乙型卡车360元.问每天派出甲型卡车和乙型卡车各多少辆时,运输公司所花成本最少?并求最小成本.23.(14分)已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的焦距为2√3,短袖长为2.(1)求椭圆E 的方程;(2)设A 为椭圆的左顶点,过点A 的直线l 与椭圆交于另一点B.①若|AB |=2√63,求直线l 的斜率k ; ②若点P(0,m)在线段AB 的垂直平分线上,且PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,求m 的值.。

江苏省2024年普通高校对口单招文化统考数学试卷

江苏省2024年普通高校对口单招文化统考数学试卷

江苏省2024年一般高校单独招生统一考试试卷数 学一、选择题(本大题共12小题,每小题4分,共48分,每小题列出的四个选项中,只有一项是符合要求的。

)1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T = ( )A. },4|{N n n x x ∈=B. },2|{N n n x x ∈=C. },|{N n n x x ∈=D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 ( )A .充要条件 B. 必要而非充分条件C .充分而非必要条件 D. 既非充分也非必要条件3、已知2tan -=α,且0sin >α,则αcos 为( ) A.55- B. 55± C. 55 D. 552 4、若函数a x y +=2及bx y -=4互为反函数,则b a ,的值分别为 ( )A .2,4- B. 2,2- C.21,8-- D. 8,21--5、若数列}{n a 的通项为)1(1+=n n a n ,则其前10项的和10S 等于 ( ) A.109 B.1011 C. 910 D. 1110 6、已知向量)1,1(=a 及)3,2(-=b ,若b a k 2-及a 垂直,则实数k 等于( )A.1-B. 1C.5D.07、已知x a x f =)(,)1,0(log )(≠>=a a x x g a ,若0)21()21(>⋅g f ,则)(x f y =及)(x g y =在同一坐标系内的图象可能是( )A B C D8、过点)4,2(-,且在两坐标轴上的截距之和为0的直线有( )A. 1条B. 2条C. 3条D. 4条9、三个数6.0log ,2,6.026.02的大小关系是 ( )A. 6.0log 26.026.02<<B. 6.02226.06.0log <<C. 26.026.026.0log <<D. 6.02226.0log 6.0<<10、假如事务A 及B 互斥,那么( )A. A 及B 是对立事务B. B A 是必定事务C. B A 是必定事务D. B A 与互不相容11、椭圆159)1(22=+-y x 的左焦点坐标为( )A.)0,3(-B.)0,0(C. )0,2(-D. )0,1(-12、已知函数)(x f 在),(+∞-∞上是偶函数,且)(x f 在)0,(-∞上是减函数,那么)43(-f 及)1(2+-a a f 的大小关系是 ( ) A. >-)43(f )1(2+-a a f B. ≥-)43(f )1(2+-a a f C. <-)43(f )1(2+-a a f D. ≤-)43(f )1(2+-a a f 二、填空题(本大题共6题,每小题4分,共24分,把答案填在题中的横线上。

2022年至2022年江苏省普通高校单独招生文化统考数学试题及答案

2022年至2022年江苏省普通高校单独招生文化统考数学试题及答案

2022年至2022年江苏省普通高校单独招生文化统考数学试题及答案江苏省2022年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分。

在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.设集合M={1,3},N={a+2,5},若M∩N={3},则a的值为A.-1B.1C.3D.52.若实系数一元二次方程某m某n0的一个根为1i,则另一个根的三角形式为A.co24iin4B.2(co33iin)44C.2(co4iin)D.2[co()iin()] 4442aa20223.在等差数列{an}中,若a3,a2022是方程某2某20220的两根,则313A.的值为1B.1C.3D.934.已知命题p:(1101)2=(13)10和命题q:A·1=1(A为逻辑变量),则下列命题中为真命题的是A.pB.p∧qC.p∨qD.p∧q5.用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是A.18B.24C.36D.486.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=26,则对角线BD1与底面ABCD所成的角是A.B.C.D.64327.题7图是某项工程的网络图。

若最短总工期是13天,则图中某的最大值为A.1B.2C.3D.48.若过点P(-1,3)和点Q(1,7)的直线l1与直线l2:m某(3m7)y50平行,则m的值为A.2B.4C.6D.89.设向量a=(co2,A.23),b=(4,6),若in(),则25ab的值为553B.3C.4D.5510.若函数f(某)某2b某c满足f(1某)f(1某),且f(0)5,则f(b某)与f(c某)的大小关系是A.f(b某)≤f(c某)B.f(b某)≥f(c某)C.f(b某)<f(c某)D.f(b某)>f(c某)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-1,2,4),b=(3,m,-2),若a·b=1,则实数m=12.若in23),则tan=,(,3213.题13图是一个程序框图,执行该程序框图,则输出的m值是某13co某2y214.若双曲线221(a>0,b>0)的一条渐近线把圆(为参数)分y23inab成面积相等的两部分,则该双曲线的离心率是某2某,15.设函数f(某),若关于某的方程f(某)1存在三个不相等的实2某4某a9,某2根,则函数a的取值范围是三、解答题(本大题共8小题,共90分)16.(8分)设实数a满足不等式a32。

2023年江苏省南通市普通高校对口单招数学自考真题(含答案)

2023年江苏省南通市普通高校对口单招数学自考真题(含答案)

2023年江苏省南通市普通高校对口单招数学自考真题(含答案)一、单选题(10题)1.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.482.A.B.{-1}C.{0}D.{1}3.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be4.A.B.(2,-1)C.D.5.设l表示一条直线,α,β,γ表示三个不同的平面,下列命题正确的是()A.若l//α,α//β,则l//βB.若l//α,l//β,则α//βC.若α//β,β//γ,则α//γD.若α//β,β//γ,则α//γ6.在△ABC,A=60°,B=75°,a=10,则c=()A.B.C.D.7.下列函数为偶函数的是A.B.C.8.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=09.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.610.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7二、填空题(10题)11.12.在△ABC中,AB=,A=75°,B=45°,则AC=__________.13.若函数_____.14.10lg2 = 。

15.16.不等式(x-4)(x + 5)>0的解集是。

17.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.18.19.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为。

20.三、计算题(5题)21.己知{a n}为等差数列,其前n项和为S n,若a3=6, S3= 12,求公差d.22.(1) 求函数f(x)的定义域;(2) 判断函数f(x)的奇偶性,并说明理由。

江苏省对口单招语数英三科附答案

江苏省对口单招语数英三科附答案

(3)
,术业有专攻,如是而已。(韩愈《师说》)
(4)奈何取之尽锱铢,
?(杜牧《阿房宫赋》)
(5)曾记否,
,浪遏飞舟?(毛泽东《沁园春·长沙》)
三、文言文阅读(15 分)
阅读下面的文言文,完成 8~10 题。 君讳弗,眉之青神人,乡贡①进士方之女。生十有六年而归于轼。有子迈。君之.未嫁,事父母,
既嫁,事吾先君、先夫人,皆以.谨肃闻。其始,未尝自言其知书也。见轼读书,则终日不去,亦不
④梧桐更兼细雨,到黄昏、点点滴滴。
⑤同时天涯沦落人,相逢何必曾相识。
(1)从所属的文学体裁看,①③⑤属于
,②④属于

(2)从所使用的抒情方式看,①④是
,②③是
,⑤是

二、名句名篇默写(5 分)
7.补写出下列名句名篇的空缺部分。
(1)君子博学而日三省乎己,
。(《荀子·。(李白《蜀道难》)
C.摇曳.(yè)
诧.异(chà) 熠.熠闪光(yì)
D.佳肴.(xiáo) 熨.烫(yùn) 曲水流觞.(shāng)
2.下列词语中,没有错别字的一项是(3 分)
()
A.闲瑕 胸襟 历尽苍桑
B.沉湎 聘请 载舟覆舟
C.缺撼 应酬 礼上往来
D.跋涉 寒暄 完壁归赵
3.下列各句中,加点的成语使用不.恰.当.的一句是(3 分)
江苏省高职院校单独招生文化联合测试
语文试卷
(面向中职生)
(考试时间 90 分钟,满分 100 分)
注意事项:
考生在答题前请认真阅读本注意事项及各题答题要求。
1.本试卷包含选择题(第 1 题~第 5 题,第 8~10 题,共 8 题 24 分)和非选择题(第 6 题~第

江苏省2024年普通高校对口单招文化统考数学试卷及答案

江苏省2024年普通高校对口单招文化统考数学试卷及答案

江苏省2024年普通高校对口单招文化统考数学试卷及答案标题:江苏省2024年普通高校对口单招文化统考数学试卷及答案一、试卷概述江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考核。

试卷结构与往年相似,分为选择题、填空题和解答题三个部分,难度设置合理,覆盖了数学的基本知识点。

二、试题解析选择题部分注重基础知识的考察,如集合、数列、几何等,同时也有对应用能力的考察,如概率、统计等。

其中,第1题考察集合的交并补运算,第2题考察数列的通项公式,第3题考察三角函数的图像和性质,第4题考察立体几何中的空间关系。

这些题目既注重基础知识,又突出了实际应用。

填空题部分同样注重基础知识的考察,如函数、向量、不等式等,同时也强调了应用能力的考察,如解析几何、导数等。

其中,第5题考察函数的单调性,第6题考察向量的基本运算,第7题考察不等式的解法,第8题考察解析几何中的直线方程。

这些题目不仅要求考生有良好的基础知识,还需要有较好的应用能力。

解答题部分则更加注重对应用能力的考察,如概率、统计、函数等。

其中,第9题考察概率的简单计算和统计中的抽样方法,第10题考察函数的综合应用,第11题考察立体几何中的空间关系,第12题考察解析几何中的曲线方程。

这些题目不仅要求考生有良好的基础知识,还需要有较好的综合应用能力。

三、答案解析选择题部分答案如下:1. C 2. D 3. A 4. B 5. B 6. A 7. C 8. D 填空题部分答案如下:5. y=x+1 6. (2,3) 7. [2,4] 8. y=3x-5解答题部分答案如下:9. (1)A=30, B=100, C=120, D=60 (2)抽样方法为简单随机抽样。

10. f(x)=x^3-2x^2+3x-6,f'(x)=3x^2-4x+3, f'(x)=4x^3-8x^2+12x-18, f(3)=0, f(4)=8 11. (1)AB//CD (2)∠ABC=∠BCD 12. (1)r=2sinθ(2)略四、总结评价江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考察。

江苏数学单招试题答案解析

江苏数学单招试题答案解析

江苏数学单招试题答案解析一、选择题(每题5分,共30分)1. 已知函数f(x)=2x^2+3x+1,求f(-1)的值。

解析:将-1代入函数f(x)中,得到f(-1)=2*(-1)^2+3*(-1)+1=2-3+1=0。

答案:02. 求圆x^2+y^2=1上任意一点P(x,y)到原点O(0,0)的距离。

解析:根据圆的方程,任意一点P(x,y)满足x^2+y^2=1,即P到原点O 的距离的平方为1。

答案:13. 若a, b, c是三角形ABC的三边长,且满足a^2+b^2=c^2,求证三角形ABC是直角三角形。

解析:根据勾股定理,若三角形的三边长满足a^2+b^2=c^2,则该三角形为直角三角形。

答案:证明成立4. 已知等差数列{an}的首项a1=2,公差d=3,求第10项a10。

解析:等差数列的通项公式为an=a1+(n-1)d,代入n=10得到a10=2+(10-1)*3=2+27=29。

答案:295. 求函数y=|x|在x=0处的导数。

解析:函数y=|x|在x>0时为y=x,在x<0时为y=-x,所以在x=0处导数为0。

答案:06. 已知集合A={1,2,3},B={2,3,4},求A∪B。

解析:集合A和B的并集包含所有在A或B中的元素,即A∪B={1,2,3,4}。

答案:{1,2,3,4}二、填空题(每题3分,共15分)1. 已知等比数列{bn}的首项b1=4,公比q=2,求第5项b5。

答案:642. 若直线y=2x+3与x轴的交点坐标为(m,0),请求m的值。

答案:-3/23. 函数f(x)=x^3-3x^2+2在x=1处的极值是____。

答案:极大值4. 已知正六边形的边长为a,求其外接圆的半径。

答案:a5. 若sinθ=3/5,且θ为锐角,求cosθ的值。

答案:4/5三、解答题(每题25分,共50分)1. 证明:若a, b, c是三角形ABC的三边长,且满足a^3+b^3=c^3,则三角形ABC不是直角三角形。

江苏数学对口单招试题答案

江苏数学对口单招试题答案

江苏数学对口单招试题答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. πC. √2D. 0.5答案:C2. 函数f(x) = 2x^2 - 3x + 1的顶点坐标是?A. (-1, -2)B. (3/4, -1/8)C. (1, 0)D. (0, 1)答案:B3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}答案:C4. 一个等差数列的首项为a1,公差为d,第n项an的通项公式是?A. an = a1 + (n-1)dB. an = a1 - (n-1)dC. an = a1 + ndD. an = a1 - nd答案:A5. 已知等比数列的首项为a,公比为q,求第n项bn的通项公式。

A. bn = a * q^(n-1)B. bn = a * q^nC. bn = a * q^n - 1D. bn = a * (q^n - 1)答案:A6. 直线y = 2x + 3与x轴的交点坐标是?A. (-3/2, 0)B. (0, 3)C. (1, 0)D. (3, 0)答案:A7. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。

A. 5B. 6C. 7D. 8答案:A8. 圆的半径为r,圆心角为α,扇形的弧长公式是?A. l = rαB. l = r * sin(α)C. l = r * αD. l = r * cos(α)答案:C9. 一个函数的导数为f'(x) = 3x^2 + 2x - 1,求原函数f(x)。

A. x^3 + x^2 - x + CB. x^3 + x^2 + x + CC. x^3 + x^2 - x + CD. x^3 - x^2 + x + C答案:A10. 已知函数f(x) = x^2 - 4x + 3,求f(x)的极小值。

江苏省对口单招职教高考数学考试含答案

江苏省对口单招职教高考数学考试含答案

江苏省中等职业学校学业水平考试《数学》试卷(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.每个小题列出的四个选项中,只有一项符合要求.)1. 方程182x⎛⎫= ⎪⎝⎭的解是( )A .31B .31- C .3 D .3-2.设全集R U =,集合{}2>=x x P ,则=P C U ( )A .{}2≤x xB .{}2<x xC .{}2≠x x D .{}2,1 3.下列关于奇函数图象的对称性,正确的叙述是( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点中心对称D .关于直线x y =对称 4.下列关于零向量的说法中,错误..的是( ) A .零向量的长度为0 B .零向量没有方向C .零向量的方向是任意的D .零向量与任一向量都平行 5.样本数据-1,2,0,-2, 1的方差为( ) A .1 B .2 C .3 D .5 6.在长方体ABCD-A 1B 1C 1D 1中,下列表述正确的是( ) A .A 1A ⊥平面BB 1C 1C B .A 1A ⊥平面DC C 1D 1 C .A 1A //平面ABCD D .A 1A //平面BB 1C 1C7.直线220x y -+=和310x y ++=的交点坐标为( ) A .(0,2) B .(1,4) C .(-2,-2) D .(-1,0)8.某公司在甲、乙、丙、丁四个地区的销售点分别有150个、120个、180个、250个.公司为了调查产品销售情况,需从这700个销售点中抽取一个容量为100的样本,比较适宜的抽样方法是( )A .简单随机抽样法B .分层抽样法C .系统抽样法D .抽签法9.设p :2a =,q :1a >-;则( )A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件 10.过点(-1,3)且与直线210x y -+=垂直的直线方程是( ) A .270x y -+= B .210x y --=A B C DB 1C 1D 1 A 1 第6题图C .210x y +-=D .210x y ++= 11.已知(3,4),(2,3)a b =-=,则2||3a a b -⋅等于( )A .28B .8-C .8D .28- 12.302302302.log ,,..===c b a 则c b a ,,的大小关系是( )A .a b c <<B .c b a <<C .c a b <<D .a c b << 二、填空题(本大题共2小题,每小题4分,共8分) 13.函数()2f x x =的单调增区间是 .14.如图,在正方体1111ABCD A B C D -中,对角线1BD 与底面ABCD 所成角的正切值为 .三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(满分8分)解不等式215x +<.16.(满分10分)已知 4cos 5α=-,α是第三象限的角,试求sin α和tan α的值. 17.(满分10分)某林场计划第一年植树造林200公顷,以后每年比前一年多造林3%.问: (1)该林场第五年计划造林多少公顷?(只需列式) (2)该林场五年内计划造林多少公顷?(精确到0.01)第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)1.[选做题]在1-1和1-2两题中选答一题.第14题图1—1.与A B ⋅相等的是 ( )A .AB B .ABC .A B +D .A B +1—2.某职业学校机电4班共36名学生,经统计,全班学生身高(单位:cm )情况如下表:160以下 [160,170) [170,180) 180及以上 1人12人20人3人若根据上表绘制饼图,则代表身高在[170,180]内人数的扇形的圆心角等于( ) A .20︒B .100︒C .200︒D .270︒2.[选做题]在2-1和2-2两题中选答一题.2—1.下列关于算法的说法,正确的有( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果. A .1个 B .2个 C .3个 D .4个 2—2.某项工程的网络图如图所示(单位:天),则完成该工程的最短总工期为( )A .10.5B .12C .13D .16.5 3.[选做题]在3-1和3-2两题中选答一题.3—1.函数3sin(2)6y x π=-的最小正周期为( )A .2πB .πC .2πD .3π 3—2.复数2(34i -)的实部和虚部分别是( )A .3,4-B .6,8-C .3,4i -D .6,8i - 二、填空题(本大题共1小题,共4分.)4—1.将参数方程是参数)(t 42⎩⎨⎧==ty tx 化为普通方程是 .4—2.表示图中阴影部分平面区域的不等式是 .第4—2题江苏省中等职业学校学业水平考试《数学》试卷 参考答案及评分标准(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)1 2 3 4 5 6 7 8 9 10 11 12 DACBBDDBACAC二、填空题(本大题共2小题,每小题4分,共8分)13.[)∞+,0或(0)+∞,;14.22. 三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:原不等式等价于5215x -<+< ………………3分 624x ∴-<< ………………5分 32x ∴-<< ………………7分 ∴原不等式的解集为{}32x x -<<. ………………8分 16.解:因为α是第三象限的角,所以sin 0α<,………………2分又因为22sin cos 1αα+=,所以 224sin 1cos 1()5αα=--=--………………5分 35=-………………7分 3sin 35tan 4cos 45ααα-===-. ………………10分17.解:(1)该林场第五年计划造林 4200(13%)+ 公顷. ……4分 (2)该林场五年内计划造林200+200(13%)++2200(13%)++3200(13%)++4200(13%)+ ……2分5200[1(13%)]1(13%)-+=-+ ……5分1061.83≈(公顷) ……6分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.二、填空题(本大题共1小题,共4分.)4—1.24x y =; 4—2.632≥+y x .。

(word版)江苏省普通高校对口单招文化统考数学试题(Word版,含答案),文档

(word版)江苏省普通高校对口单招文化统考数学试题(Word版,含答案),文档

江苏省2021年普通高校对口单招文化统考数学试卷一、单项选择题〔本大题共10小题,每题4分,共40分。

在以下每题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑〕1.设集合M={1,3},N={a+2,5},假设M∩N={3},那么a的值为2.假设实系数一元二次方程x2mxn0的一个根为1i,那么另一个根的三角形式为A.cos isinB.33) 2(cos isin4444C.2(cosisin) D.2[cos()isin()] 44443.在等差数列{an}中,假设a3,a2021是方程x22x20210的两根,那么3a1?3a2021的值为A.13命题p:(1101)2=(13)10和命题q:A·1=1〔A为逻辑变量〕,那么以下命题中为真命题的是A.?p∧q∨q D.?p∧q用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是6.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=26,那么对角线BD1与底面ABCD所成的角是A. B. C. D.26437.题7图是某项工程的网络图。

假设最短总工期是13天,那么图中x的最大值为8.假设过点P〔-1,3〕和点Q〔1,7〕的直线l1与直线l2:mx(3m7)y50平行,那么m的值为9.设向量a=(cos2,2),b=〔4,6〕,假设sin()3,那么25a b的值为355A.510.假设函数f(x)x2bx c满足f(1x)f(1x),且f(0)5,那么f(b x)与f(c x)的大小关系是A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)<f(c x)D.f(b x)>f(c x)二、填空题〔本大题共5小题,每题4分,共20分〕11.设数组a=(-1,2,4),b=(3,m,-2),假设a·b=1,那么实数m=。

12.假设sin2,(,3),那么tan=。

3213.题13图是一个程序框图,执行该程序框图,那么输出的m值是。

2021年江苏省普通高考数学对口单招文化统考试卷(学生版+解析版)

2021年江苏省普通高考数学对口单招文化统考试卷(学生版+解析版)

2021年江苏省普通高考数学对口单招文化统考试卷一、单项选择题(本大题共10小题,每小题4分,共40分。

在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑) 1.(4分)已知集合{1M =,3},{1N a =-,3},若{1M N =,2,3},则a 的值是()A .2-B .1-C .0D .12.(4分)若数组(2a =-,1,3)和(1b =,12-,)x 满足2a b =-,则实数x 等于( )A .3-B .2-C .32-D .12-3.(4分)复数z 满足(1)3i z i +=-,则复数z 的虚部是( ) A .2iB .2i -C .2D .2-4.(4分)逻辑表达式A B +等于( ) A .A B +B .A B ⋅C .A B ⋅D .A B ⋅5.(4分)已知(12)n x -的展开式中2x 的系数为40,则n 等于( ) A .5B .6C .7D .86.(4分)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( ) A .2B .3C .2D .57.(4分)若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是( ) A .2:1B .2:1C .1:2D .1:28.(4分)如图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A .14条B .12条C .9条D .7条9.(4分)若函数()4sin()(0)3f x x πωω=->的最小正周期为π,则它的一条对称轴是()A .12x π=-B .0x =C .6x π=D .23x π=10.(4分)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足(2)(4)0f a f b +-=则121a b++的最小值是( ) A .23B .43C .2D .4二、填空题(本大题共5小题,每小题4分,共20分)11.(4分)如图是一个程序框图,执行该程序框图,则输出的n 值是 .12.(4分)已知等比数列{}n a 的公比为q ,且116a ,24a ,3a 成等差数列,则q 的值是 .13.(4分)已知5cos()213πθ+=,且(,)22ππθ∈-,则tan(9)θπ-的值是 .14.(4分)以抛物线214y x =的焦点为圆心,且与直线3(1x t y t ⎧=⎪⎨⎪=-⎩为参数)相切的圆的标准方程是 .15.(4分)已知函数2212,64()(2),40x x f x x x +-<-⎧=⎨+-⎩,若其图象上存在互异的三个点1(x ,1)y ,2(x ,2)y ,3(x ,3)y ,使得312123y y y k x x x ===,则实数k 的取值范围是 . 三、解答题(本大题共8小题,共90分)16.已知函数23()log (2)f x x ax a =-+的定义域是R . (1)求实数a 的取值范围; (2)解关于x 的不等式241421xx a a -->. 17.已知函数()f x 是定义在(-∞,0)(0⋃,)+∞上的偶函数,当0x <时,()log ()2(0a f x x x a =-+>,且1)a ≠.又直线:250()l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图象上.(1)求实数a 的值;(2)求(4)f f -+(8)的值; (3)求函数()f x 的解析式.18.已知关于x 的二次函数2()4f x ax bx a =-+.(1)若{1a ∈-,1,2,3},{0b ∈,1,2},求事件{()A f x =在[1,)+∞上是增函数}的概率;(2)若[1a ∈,2],[0b ∈,2],求事件{B =方程()0f x =没有实数根)的概率. 19.已知向量2(23sin ,cos )a x x =-,(cos ,6)b x =,设函数()f x a b =⋅. (1)求函数()f x 的最大值;(2)在锐角ABC ∆中,三个角A ,B ,C 所对的边分别为a ,b ,c ,若()0,f B b =,3sin 2sin 0A C -=,求ABC ∆的面积.20.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.21.已知数列{}n a 满足12a =且1321(*)n n a a n n N +=+-∈. (1)求证:数列{}n a n +为等比数列; (2)求数列{}n a 的通项公式; (3)求数列{}n a 的前n 项和n S .22.某广告公司接到幸福社区制作疫情防控宣传标牌的任务,要制作文字标牌4个,绘画标牌5个,该公司现有两种规格的原料,甲种规格原料每张23m ,可做文字标牌1个和绘画标牌2个;乙种规格原料每张22m ,可做文字标牌2个和绘画标牌1个.问两种规格的原料各用多少张时,才能使总的用料面积最小?并求最小用料面积.23.已知椭圆2222:1(0)x y C a b a b+=>>(1)证明:a =;(2)若点9(,10M 在椭圆C 内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程; ②求椭圆C 的标准方程.2021年江苏省普通高考数学对口单招文化统考试卷参考答案与试题解析一、单项选择题(本大题共10小题,每小题4分,共40分。

2022-2023学年江苏省宿迁市普通高校对口单招数学自考真题(含答案)

2022-2023学年江苏省宿迁市普通高校对口单招数学自考真题(含答案)

2022-2023学年江苏省宿迁市普通高校对口单招数学自考真题(含答案)班级:________ 姓名:________ 考号:________一、单选题(10题)1.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2D.|a|=|b|2.计算sin75°cos15°-cos75°sin15°的值等于()A.0B.1/2C.D.3.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.124.A.x=yB.x=-yC.D.5.已知互为反函数,则k和b的值分别是()A.2,B.2,C.-2,D.-2,6.已知等差数列中{a n}中,a3=4,a11=16,则a7=( )A.18B.8C.10D.127.A.1B.-1C.2D.-28.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定9.若集合A={0,1,2,3,4},A={1,2,4},则A∪B=()A.|0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}10.A.10B.5C.2D.12二、填空题(10题)11.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.12.在△ABC中,AB=,A=75°,B=45°,则AC=__________.13.14.15.16.17.若,则_____.18.在等比数列{a n}中,a5 =4,a7 =6,则a9 = 。

19.20.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.三、计算题(5题)21.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1) 求三种书各自都必须排在一起的排法有多少种?(2) 求英语书不挨着排的概率P。

22.己知直线l与直线y=2x + 5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.23.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2 .24.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾” 和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1) 试估计“可回收垃圾”投放正确的概率;(2) 试估计生活垃圾投放错误的概率。

2022年江苏省苏州市普通高校对口单招数学自考真题(含答案)

2022年江苏省苏州市普通高校对口单招数学自考真题(含答案)

2022年江苏省苏州市普通高校对口单招数学自考真题(含答案)一、单选题(20题)1.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.72.A.1B.2C.3D.43.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台4.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2B.2C.D.5.已知,则点P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.A.3/5B.-3/5C.4/5D.-4/57.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.B.C.D.8.函数和在同一直角坐标系内的图像可以是()A.B.C.D.9.A.2B.1C.1/210.下列函数中,是增函数,又是奇函数的是(〕A.y=B.y=1/xC.y=x2D.y=x1/311.A.7B.8C.6D.512.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.B.C.D.13.A.2B.3C.4D.514.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/5015.已知椭圆x2/25+y2/m2=1(m>0)的左焦点为F1(-4,0)则m=()A.2B.3C.4D.916.直线以互相平行的一个充分条件为()A.以都平行于同一个平面B.与同一平面所成角相等C.平行于所在平面D.都垂直于同一平面17.设a,b为正实数,则“a>b>1”是“㏒2a>㏒2b>0的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条18.A.B.C.D.19.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)20.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线B.若|a|=|b|,则a=bC.若a,b为两个单位向量,则a·a=b·bD.若a⊥b,则a·b=0二、填空题(20题)21.若ABC的内角A满足sin2A=则sinA+cosA=_____.22.已知等差数列{a n}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.23.已知函数,若f(x)=2,则x=_____.24.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.25.26.若事件A与事件互为对立事件,则_____.27.28.29.设A=(-2,3),b=(-4,2),则|a-b|= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
江苏省2015年普通高校对口单招文化统考
数学试卷
一、单项选择题(本大题共10小题,每小题4分,共40分.)
1.已知集合{1,1,2}M =-,2{1,3}N a a =++若{2}M N ⋂=,则实数a=…………() A 、0B 、1C 、2D 、3
2.设复数z 满足1iz i =-,则z 的模等于………………………………………………() A
3A 4
A 5A 6.m n +的A 7 A 8.函数⎪⎩⎪
⎨>⎪⎭
⎫ ⎝⎛1212x x ,的值域是………………………………………………………()
A 、1(,2-∞
B 、1(,)2+∞
C 、⎢⎣⎡⎪⎭

210,D 、(,0)-∞
9.已知过点P (2,2)的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则a 的值是……………………………………………………………………………………()
A 、12-
B 、2-
C 、1
2
D 、2
10.已知函数()lg f x x =
,若0a b <<且()()f a f b =,则2a b +的最小值是………() A 、C 、、
题14图
15.在平面直角坐标系中,已知ABC ∆的两个顶点为A (-4,0)和C (4,0),第三个顶点B 在椭圆
22
1259x y +=上,则
sin sin sin B A C =+。

三、解答题(本大题共8小题,共90分)
16.(8分)设函数()f x 是定义在实数集R 上的奇函数,且当0x ≥时
12()3(1)x f x x m +=+-+,(1)求实数m 的范围;(2)求230x x m -+<不等式的解集。

17.已知函数()log (0,1)a f x k x a a =+>≠的图像过点(8,2)A 和点(1,1)B -。

(1)求常数k a 和的值;
(2)求111
(3)(5)(7)()()()357
f f f f f f +++++的值。

18.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足222()AB AC a b c =-+;(1)求角A 的大小;(2)若角43,43ABC
a S
==,求b 和c 的值。

19.盒中共装有9张各写一个字母的卡片,其中4张卡片上的字母是x ,3张卡片上的字母是y ,2张卡片上的字母是z ,现从中任取3张卡片,求下列事件的概率。

(1)A ={3张卡片上的字母完
全相同};(2)B ={3张卡片上的字母互不相同};(3)C ={3张卡片上的字母不完全相同}。

20.已知数列{}n a 的前n 项和为n S ,11a =,且满足121()n n a S n N ++-=∈。

(1)求数列{}n a 的通项公式;(2)设31log n n b a +=,求数列{}n b 的前n 项和n T ;(3)设1
2n n
c T =
,求数列{}n c 的前100项和100R 。

21.(10分)某职校毕业生小李一次性支出72万元购厂创业,同年另需投入经费12万元,以后每年比上一年多投入4万元,假设每年的销售收入都是50万元,用()f n 表示前n 年的总利润。

(注:
()f n =前n 年的总收入-前n 年的总支出-购厂支出)。

(1)问:小李最短需要多长时间才能收回成本;(2)若干年后,为转型升级,进行二次创业。

现有如下两种处理方案:方案一,年平均利润最大时,以48万元出售该厂;方案二,纯利润总和最大时,以15万元出售该厂。

问,哪个方案更好? 22.(12分)某学校租用车辆接送188名师生参观爱国主义教育基地,若租车公司现有6辆中巴和8辆大巴可用。

每辆中巴可载客18人,大巴40人。

已知租用一辆中巴的费用为110元,大巴250元,问学校应租用中巴、大巴各多少辆,才能使费用最少?最少费用是多少元?
23.(14分)在平面直角坐标系中,已知椭圆E :22221x y a b
+=(0)a b >>
的离心率e =,过右焦
点()0,c F ,且垂直于x 轴的直线被椭圆E
截得弦长为
3
,设直线(0)y t t =>与椭圆E 交于不同的两点A 、B ,以线段AB 为直径作圆M 。

(1)求椭圆E 的标准方程;(2)若圆M 与x 轴相切,求圆M 的方程;(3
)过点P 作圆M 的弦,求最短弦的长。

11.1 12.13.36 14.22
15.45
16171819433984C 4323
97
C 8420.答(1)13n n a -=,(2)(1)
2
n n n T +=
,(3)100101
21.解(1)2(1)
()50[124]72240722
n n f n n n n n -=-+
⨯-=-+- ()0218f n n >⇒<<,所以,小李最短需要2年时间才能收回成本。

(2)方案一:年平均利润2()2407236
402(4022616f n n n n n n n
-+-==-+≤-⨯⨯= 当且仅当36
n n
=
即6n =时,年平均利润最大为16万元,此时总利润为16648144⨯+=万元; 方案二:22()240722(10)128f n n n n =-+-=--+
当10n =时,纯利润总和最大128万元,此时总利润为12815143+=万元; 因为144>143,所以方案一更好。

22
则min 当x =23(2(3圆M 弦长=。

相关文档
最新文档