第5章_相交线与平行线学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线
课题:5.1.1 相交线
【学习目标】了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.
【学习重点】邻补角、对顶角的概念,对顶角性质与应用.
【学习难点】理解对顶角相等的性质.
【学习过程】
一、学前准备
回忆七年级上册学过的直线、射线、线段、角,并编写两道与它们相关的题目.
二、探索思考
探索一:完成课本P2页的探究,填在课本上.
你能归纳出“邻补角”的定义吗?.“对顶角”的定义呢?.练习一:
1.如图1所示,直线AB和CD相交于点O,OE是一条射线.
(1)写出∠AOC的邻补角:____ _ ___ __;
(2)写出∠COE的邻补角: __;
(3)写出∠BOC的邻补角:____ _ ___ __;
(4)写出∠BOD的对顶角:____ _.
图1
2.如图所示,∠1与∠2是对顶角的是()
请归纳“对顶角的性质”:.
练习二:
1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______
2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______ 3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.
三、当堂反馈
1.若两个角互为邻补角,则它们的角平分线所夹的角为 度. 2.如图所示,直线a ,b ,c 两两相交,∠1=60°,∠2=
23
∠4,•求∠3、∠5的度数.
3.如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?
4.探索规律:
(1)两条直线交于一点,有 对对顶角; (2)三条直线交于一点,有 对对顶角; (3)四条直线交于一点,有 对对顶角; (4)n 条直线交于一点,有 对对顶角. 四、学习反思
本节课你有哪些收获?
b a 4321第1题
F E
O D C B A 第2题 F E O
D C B
A
第3题
课题:5.1.2 垂线
【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质; 2会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.
【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解. 【学习过程】 一、学前准备
在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与CD 相交于点O ”. 我们如果把直线CD 绕点O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD 的大小都将发生变化.
当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图
用几何语言表示:
方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____
方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______ 二、探索思考
探索一:请你认真画一画,看看有什么收获.
⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条; ⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;
(图1) (图2) (图3a ) (图3b )
经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.
练习一:
1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°, 求∠BOC 度数
2.如图所示,直线AB ⊥CD 于点O ,直线EF 经过点O , 若∠1=26°,求∠2的度数.
O
D C
B
A
l
A
l B l
B
3.如图所示,直线AB,CD相交于点O,P是CD上一点.
(1)过点P画AB的垂线PE,垂足为E.
(2)过点P画CD的垂线,与AB相交于F点.
(3)比较线段PE,PF,PO三者的大小关系
探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成:.还有,直线外一点到这条直线的垂线段的叫做点到直线的距离.注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.
练习二:
1.在下列语句中,正确的是().
A.在同一平面内,一条直线只有一条垂线
B.在同一平面内,过直线上一点的直线只有一条
C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条
D.在同一平面内,垂线段就是点到直线的距离
2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,
则点B到AC的距离是________,点A到BC的距离是_______,
点C到AB•的距离是_______,•AC>CD•的依据是_________.
三、当堂反馈
1.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与
∠FOB的大小关系是()
A.∠EOD比∠FOB大 B.∠EOD比∠FOB小
C.∠EOD与∠FOB相等 D.∠EOD与∠FOB大小关系不确定
2.如图,一辆汽车在直线形的公路AB上由A向B行驶,C,D是分别位于公路AB两侧的加油站.设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中的公路上分别画出点M,N的位置并说明理由.
3.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB.
(1)求∠AOC的度数;(2)判断AB与OC的位置关系.
四、学习反思
本节课你有哪些收获?