2018春人教版数学八年级下册20.1.1《用样本平均数估计总体平均数》(第2课时)导学案

合集下载

人教版数学八年级下册20.1.1《平均数》说课稿4

人教版数学八年级下册20.1.1《平均数》说课稿4

人教版数学八年级下册20.1.1《平均数》说课稿4一. 教材分析《平均数》是人教版数学八年级下册第20章的第一节内容,本节主要介绍平均数的定义、性质及其在实际问题中的应用。

平均数是初中数学中的一个重要概念,它在统计学、概率论以及日常生活和工作中都有广泛的应用。

本节课的内容是学生进一步学习数学的基础,也是培养学生解决实际问题能力的重要环节。

二. 学情分析八年级的学生已经掌握了整数、分数和小数的运算,具备了一定的逻辑思维能力和抽象思维能力。

但是,对于平均数的理解还比较模糊,容易将其与算术平均数混淆。

此外,学生对于平均数在实际问题中的应用还不够了解,需要通过实例来加深理解。

三. 说教学目标1.知识与技能目标:理解平均数的定义,掌握平均数的性质,能够计算简单数据的平均数。

2.过程与方法目标:通过合作交流,培养学生的团队协作能力和语言表达能力。

3.情感态度与价值观目标:培养学生运用数学知识解决实际问题的能力,提高学生对数学的兴趣。

四. 说教学重难点1.重点:平均数的定义及其性质。

2.难点:平均数在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、实例教学法等。

2.教学手段:多媒体课件、实物模型、数学软件等。

六. 说教学过程1.导入:通过一个实际问题引入平均数的概念,激发学生的兴趣。

2.新课导入:介绍平均数的定义和性质,引导学生通过合作交流来理解平均数的概念。

3.实例分析:通过几个具体的例子,让学生学会计算平均数,并理解平均数在实际问题中的应用。

4.练习与拓展:设计一些练习题,让学生巩固所学知识,并能够灵活运用。

5.总结与反思:让学生回顾本节课所学内容,总结平均数的性质和应用,反思自己在学习过程中的优点和不足。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

主要包括以下几个部分:1.平均数的定义;2.平均数的性质;3.平均数在实际问题中的应用。

八. 说教学评价教学评价主要包括两个方面:一是对学生学习效果的评价,二是对教师教学过程的评价。

人教版数学八年级下册20.1.1用样本平均数估计总体平均数教案

人教版数学八年级下册20.1.1用样本平均数估计总体平均数教案

20.1.1平均数教案教学目标: 1.掌握加权平均数公式,理解“权”的含义.2.会用加权平均数解决常见实际问题.教学重点,难点:1.重点:会求加权平均数2.难点:对“权”的理解教学过程:问题1: 在一次数学考试中,有一对师徒的数学得分分别为90分和70分,这对师徒的平均分是多少? 解:他们的数学平均分为:27090+=80(分) 概念:一般地,对于n 个数x 1,x 2,…,x n ,我们把nx x x x n +⋯+++321叫做这n 个数的算术平均数,简称平均数.记为x . 问题2:有两个小组,第一组有2人,数学平均分为90,第二组有30人,数学平均分为70,你能解决下面问题吗?(1)不计算,猜一猜:如果把这两个小组合在一起,每人平均分是接近90还是70?为什么?(2)你能求出这个平均分到底是多少吗? 27090+=80(分)这种求法对吗?为什么? 分析:因为80是 90、70这两个数的平均数,而两个小组合在一起,应求32个数的平均数.即:个个、、、、3027070709090⋯,所以5.713023070290=+⨯+⨯(分) 实际上,一组数据里的各个数据的“重要程度”未必相同,反映一个数据重要程度的数,我们给它起名叫“权”.在算数学平均成绩的问题中,2是90的权,30是70的权.如:问题2中25.713023070290=+⨯+⨯(分) 71.25称为两个数90、70的加权平均数. 得出定义:加权平均数概念:n 个数x 1,x 2,…x n 的权分别是 ω1, ω 2,···, ω n ,则nn n x x x x ωωωωωωωω⋯+++⋯+++321332211叫做这n 个(x 1,x 2,…x n )数的加权平均数.思考:对比问题1和问题2,体会“权”的作用,并想一想,算术平均数和加权平均数有什么联系?权是反映数据重要程度的量.问题1中27090+=80(分)80是90、70的算术平均数,也可以看成权为1的加权平均数.当数据的权相等时,加权平均数和算术平均数相等.过渡:问题2中用整数来体现某个数据的重要程度,有时用百分数,有时用比值.例1.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:(1)如果公司认为面试和笔试成绩同样重要,从他们的成绩看,谁将被录取?分析:笔试和面试同等重要,就意味着笔试和面试成绩的权相等,因此只需比较两项成绩的算术平均数.解:(1)甲选手的最后得分为8829086=+(分) 乙选手的最后得分为5.8728392=+(分) 所以从成绩看应录取甲.(2)如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,面试和笔试的成绩按照6:4的比确定,计算两人各自的平均成绩,看看谁将被录取?分析:当面试和笔试的成绩按6:4比确定时,应计算两种成绩的加权平均数.解:(2)甲的平均分为6.8746490686=+⨯+⨯(分) 乙的平均分为4.8846483692=+⨯+⨯(分) 所以从成绩看应录取乙.练习1:一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50﹪,演讲能力占40 ﹪,演讲效果占10 ﹪的比例,计算选手的综合成绩(百分制). 两名选手的单项成绩如下表所示: 请决出两人的名次.解:选手A 的最后得分是90%10%40%50%1095%4095%5085=++⨯+⨯+⨯(分) 选手B 的最后得分是91%10%40%50%1095%4085%5095=++⨯+⨯+⨯(分) 由上可知选手B 获得第一名,选手A 获得第二名.例2. 为了了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:这天5路公共汽车平均每班的载客量是多少?分析:表格中载客量是六个数据组,而不是一个具体的数,各组的实际数据应该选谁呢? 组中值:每个小组的两个端点的数的平均数 数据: 11、 31、 51、 71、 91、 111频数即是组中值的权 权: 3、 5、 20、 22、 18、 15 求5路公共汽车平均每班的载客量,即是求组中值的加权平均数.73151822205315111189122712051531311≈+++++⨯+⨯+⨯+⨯+⨯+⨯=x (人) 答:这天5路公共汽车平均每班的载客量是73人.练习2:种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到右面的条形统计图.请求出这部分的黄瓜平均每株结多少根黄瓜.你能估计出这个新品种黄瓜平均每株结多少根黄瓜吗?分析:共有4种数据10,13,14,15;频数分别为10,15,20,17 解:13172015101715201415131010≈+++⨯+⨯+⨯+⨯(根) 因此这个新品种黄瓜平均每株结13根黄瓜.课堂小结:1.权就是数据的重要程度.2.算术平均数就是权相等时的加权平均数;3.求平均数时,如果数据分成小组,统计中常用组中值代表各组的实际数据.4.实际生活中经常用样本的加权平均数来估计总体的平均数.课堂检测:1.某次歌唱比赛中,选手小明的唱功、音乐常识、综合知识成绩分别为88分、81分、85分,若这三项按 4:3:2的比例计算比赛成绩,则唱功、音乐常识、综合知识成绩的权分别为_____、_____、和_____,小明的最后成绩是______.2.某班共有50名学生,平均身高168,其中30名男生的平均身高为170,则20名女生的平均身高为_____.3.为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树干的周长情况如下图所示,计算这批梧桐树干的平均周长(精确到0.1cm)。

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级下册20.1.1平均数(1) 教学设计一、内容和内容解析1.内容人教版八年级下册“20.1.1平均数”第一课时.2.内容解析统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.三、学准备:多媒体课件、导学案四、学过程。

人教版数学八年级下册-20.1.1平均数-教案(2)

人教版数学八年级下册-20.1.1平均数-教案(2)

20.1.1平均数——人教版版八年级上册第二十章第一节教学设计一、学生状况分析本节课是人教版版数学教材八年级下册第二十章《数据的代表》的第1节——“平均数”的第1课时.学生在小学阶段已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.进入初中阶段后,在七年级相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的教学任务是:让学生理解算术平均数、加权平均数的概念;会求一组数据的算术平均数和加权平均数;能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.根据以上分析,制定本节课的教学任务入下:1.知识与技能(1)认识权、会求加权平均数,并体会权的差异对结果的影响.(2)理解简单平均数和加权平均数的区别和联系,并能利用其解决一些实际问题.2. 过程与方法(1)通过小组活动,初步经历数据的处理过程,发展学生数据处理能力.(2)经历从特殊到到一般的数学探究方法,认识加权平均数的意义和价值,解决简单的实际问题.3. 情感态度与价值观(1)通过小组合作的活动,进一步增强与他人交流的意识与能力,培养学生的合作意识和能力.(2)通过权对结果的影响,使学生体会数学与人类社会的密切联系,通过解决身边的实际问题,体会到从不同角度考虑问题的必要性,认识事物要经历从一般到特殊的过程.了解数学的价值,增进对数学的理解和学好数学的信心.在探索过程中形成实事求是的态度和勇于探索的精神.4、教学重难点 教学重点:(1)加权平均数的概念,会求加权平均数. (2)简单平均数与加权平均数的区别和联系. 教学难点:体会权的差异对结果的影响,认识到权的重要性. 三、教学过程设计本节课由五个教学环节组成,它们是“温旧孕新——探新知权——新知升华—学以致用——小结平均数”.其具体内容与分析如下:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思教 学 内 容教师活动 学生活动 教学目的一、 温旧孕新问题1 2017年2月28日由《重庆晚报》打造的“重庆六一班”小记者培训课,在德普外国语学校开班,并授予德普为小记者培训基地. 经过激烈的比赛,学校现在要在甲、乙两名同学中选拔出一名“德普小记者”,他们的各项成绩(百分制)如下表:现在请计算两名候选者的平均成绩(百分制),如果你是评委,从他们的成绩看,应该选谁呢?展示视频图片以什么样的标准来比较他们的成绩?肯定分配中突出某项的方案具有合理性,并通过计算得出方案的可行性.在总分、平均分相等的情况下,具体该如何比较选拔?学生给出方案计算总分、平均分无法解决问题,让学生感受不同成绩在同一个问题上的重要程度不同,体会数据赋予“权”的必要性.形式变化,实质仍然反映了数据的不同重要程度.二、探新知权 1、加权平均数的概念 由小记者在四个测试中的重要程度不同,在老师的追问中,由学生自己探索出权的呈现形式,引入“权”的概念,导入课题. 权的定义: 权表示:数据的重要程度 数据的权反映数据的相对重要程度. 权形式:比例、百分比 根据不同的权重,所求的平均数就是加权平均数. 归纳: 一般地,若n 个数1x ,2x ,…,n x 的权分别提炼出权的定义:反映数据的重要程度.体会“权”的差异对“加权平均数”结果的影响.“简单平均数”可以看作是权相等的“加权平均数”.给学生一个反思自悟的过程.是 1w ,2w ,…,n w ,则 112212n nnx w x w x w x w w w ++=++叫做这n 个数的加权平均数(weighted average ) .书本171-172页“加权平均数”的相关内容.三、新知升华简单平均数与加权平均数统称为算术平均数. 当数据的权都相等时,所求的加权平均数就是简单平均数,简单平均数是加权平均数地特殊情况, 四、学以致用 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分. 其中一位选手的单项成绩(百分制)如下表:(1)按演讲内容占60%、演讲能力占30%、演讲效果占10%,计算选手的平均成绩;(2)演讲内容、演讲能力、演讲效果按 3:2: 1的比确定,计算选手的平均成绩.五、学以致用 小组编题1. 选择你感兴趣的生活中加权平均数的例子为背景;2. 可以采用不同形式给出相应考察项目的权;3. 小组合作探究,要分工明确,设计出科学合理的求加权平均数的题目;4. 小组活动时间共18分钟;5. 活动结束后 ,每个小组派两个代表上台展示成果.六、小结—平均数 我最大的收获是…我对同学和同伴的表现感到… 我从同学身上学到了…本节课在对你今后的生活中对待一些事情进行分析时,会有什么帮助?七、布置作业.必做题:教科书第113页练习第2题;归纳概括公式(权的百分数的形式与比的形式)从加权平均数的多种形式计算巩固所学知识,并为下面生活中的加权平均例子提供素材.归纳概括公式利用刚才总结的公式列出式子.学生举例巩固所学体会“权”的对结果的影响,进一步理解“权”.感受加权平均数在生活中应用的广泛,体会数学的价值.巩固演练、反馈矫正(备用)1.(★)如果一组数据5, x, 3, 4的平均数是5, 那么x=____;2.(★★)某小区月底统计用电情况:其中有4户用电45度,有5户用电42度, 有6户用电50度, 则平均每户用电_____度;3. (★★)某校规定学生的体育成绩由三部分组成:体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次为92分、80 分、84 分,则小颖这学期的体育成绩是多少分?4. (★★★)小亮买甲种练习本a本,每本m元;买乙种练习本b本,每本n元,两种练习本平均每本多少元?你得了________颗★。

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。

本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。

二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。

但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。

此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。

三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。

2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。

3.培养学生的运算能力和合作精神,提高学生的数学素养。

四. 教学重难点1.重点:加权平均数的计算方法。

2.难点:对实际问题中权重的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。

2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。

3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。

4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。

2.准备PPT课件,展示平均数和加权平均数的定义和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。

通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。

通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。

同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。

数学八年级下册第二十章20.1.1平均数第2课时用样本平均数估计总体平均数教学课件 新人教版

数学八年级下册第二十章20.1.1平均数第2课时用样本平均数估计总体平均数教学课件 新人教版

第二十章数据的分析20.1.1 平均数第2课时用样本平均数估计总体平均数学习目标:1.理解组中值的意义,能利用组中值计算一组数据的平均数.2.会用计算器求一组数据的平均数.3.理解用样本的平均数估计总体的平均数的意义.重点:能利用组中值计算一组数据的平均数,用样本的平均数估计总体的平均数.难点:能利用组中值计算一组数据的平均数.复习引入1.一组数据为10,8,9,12,13,10,8,则这组数据的平均数是_________.2. 某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?探究:1、为了了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:这天5路公共汽车平均每班的载客量是多少?载客量(人)1≤X<2121≤X<41频数(班次)组中值ꢀ11ꢀ3ꢀ31ꢀ5(结果取整数)41≤X<6161≤X<81ꢀ51ꢀ71ꢀ20ꢀ22ꢀ18ꢀ1581≤X<111ꢀ91111≤X<121ꢀ1111.数据分组后,一个小组的组中值是指:这个小组的两个端点的数的平均数.例如:2.根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权.解:这天5路公共汽车平均每班的载客量是使用计算器说明:1.不同品牌的计算器的操作步骤有所不同,操作时需要参阅计算器的使用说明书.2.通常需要先按动有关键,使计算器进入统计状态;然后输入数据x,x,…,x,以及它们的权f,f,…,f;12n2n最后按动求平均数的功能键(例如键),计算器便会求出平均数的值.练习为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长如下图所示,计算(可以用计算器)这些法国梧桐树干的平均周长.频数14121086406070809050周长/cm1.列表:频数(株数)树干周长组中值40≤X<50ꢀ458 50≤X<60ꢀ551260≤X<70ꢀ651470≤X<80ꢀ7510ꢀ856 80≤X<902.列式解:答:这批梧桐树干的平均周长是64cm.例:某灯泡厂为了测量一批灯泡的使用寿命,从中随机抽查了50只灯泡,它们的使用寿命如下表所示.这批灯泡的平均使用寿命是多少?用全面调查的方法考察这批灯泡的平均使用寿命合适吗?使用寿命x/h灯泡只数600≤x<1 00051 000≤x<1 400101 400≤x<1 800121 800≤x<2 200172 200≤x<2 6006抽出50只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.解:据上表得各小组的组中值,于是ꢀ即样本平均数为1 672.因此,可以估计这批灯泡的平均使用寿命大约是1 672 h.练习1.种菜能手李大叔种植了一批新品种的黄瓜,为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到右面的条形图,请估计这个新品种黄瓜平均每株结多少根黄瓜.株数20 2015101815105010131415黄瓜根数2. 某校申报“跳绳特色运动”学校一年后,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图,扇形图中m=ꢀꢀ;(2)若把每组中各个数据用这组数据的中间值代替,则这次调查的样本平均数是多少?(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校2100名学生中“1分钟跳绳”成绩为优秀的大约有多少人?组中值是指两个端点的数的平均数.把各组的频数看作相应组中值的权.用样本平均数估计总体平均数用计算器求平均数用样本平均数估计总体平均数。

人教版数学八年级下册20.1.1《平均数》说课稿1

人教版数学八年级下册20.1.1《平均数》说课稿1

人教版数学八年级下册20.1.1《平均数》说课稿1一. 教材分析《人教版数学八年级下册20.1.1》这一节的内容,是在学生已经掌握了整数、分数和小数的运算基础上,引入平均数的概念。

平均数是数学中的一个基本概念,它在生活中有着广泛的应用,如统计、测量、判别等方面。

本节课的内容,旨在让学生理解平均数的含义,掌握求平均数的方法,并能灵活运用平均数解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对运算有一定的了解,但是对平均数的理解可能仅停留在表面,不能深入理解其内涵。

因此,在教学过程中,需要引导学生从实际问题中抽象出平均数的概念,通过操作、思考、交流等活动,深入理解平均数的含义。

三. 说教学目标1.知识与技能目标:让学生理解平均数的含义,掌握求平均数的方法,能灵活运用平均数解决实际问题。

2.过程与方法目标:通过学生的自主探究、合作交流,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。

四. 说教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。

2.难点:对平均数的深刻理解,能灵活运用平均数解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等。

2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过生活中的实例,引出平均数的概念,激发学生的学习兴趣。

2.自主探究:让学生通过小组合作,探讨求平均数的方法,培养学生自主学习的能力。

3.课堂讲解:讲解平均数的含义和求法,引导学生深入理解平均数。

4.案例分析:分析实际问题,运用平均数解决实际问题,巩固所学知识。

5.课堂练习:设计有针对性的练习题,让学生巩固所学知识,提高解决问题的能力。

6.总结提升:对本节课的内容进行总结,强化学生对平均数的理解。

七. 说板书设计板书设计要简洁明了,突出重点。

可以设计如下板书:1.含义:……2.求法:……3.应用:……八. 说教学评价教学评价主要从学生的学习效果、解决问题的能力、合作交流等方面进行。

人教版数学八年级下册20.1.1用样本平均数估计总体平均数(教案)

人教版数学八年级下册20.1.1用样本平均数估计总体平均数(教案)
(2)在实际问题中,如何选择合适的样本进行估计;
-学生可能会在选择样本时感到困惑,教师需要引导学生理解样本的代表性和广泛性,并学会从不同角度评估样本的合理性。
(3)掌握估计总体平均数的计算方法;
-计算过程中可能涉及复杂的数学公式,学生需要掌握如何将样本数据代入公式进行计算。教师应详细解释计算步骤,并给出具体的计算例子。
具体内容包括:
-总体平均数的定义及性质;
-样本平均数的定义及计算方法;
-样本平均数与总体平均数的关系;
-利用样本平均数估计总体平均数的步骤;
-通过实例分析,让学生掌握用样本平均数估计总体平均数的方法。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的数据分析观念,使其能够从实际数据中提取有用信息,理解数据背后的意义,为解决问题提供支持。
-能够运用所学知识解决实际问题,提高数学应用意识。
三、教学难点与重点
1.教学重点
(1)理解总体平均数和样本平均数的概念及它们之间的关系;
-通过实例让学生明确总体平均数是描述一个总体特征的指标,而样本平均数是描述样本特征的指标,两者之间存在一定的联系。
(2)掌握用样本平均数估计总体平均数的方法;
-引导学生掌握如何从样本数据出发,运用数学方法对总体平均数进行估计,并强调估计的合理性和准确性。
(3)能够运用所学的估计方法解决实际问题;
-通过设置实际情境,让学生学会运用样本平均数估计总体平均数的方法解决问题,提高数学应用能力。
2.教学难点
(1)理解样本平均数与总体平均数之间的关系;
-对于八年级学生来说,理解样本平均数如何反映总体平均数可能存在困难。教师需通过具体实例和图形直观地展示这种关系,帮助学生理解。

新人教版新课标版八年级下20章20.1.1平均数(2)用样本的平均数平均数估计总体的平均数

新人教版新课标版八年级下20章20.1.1平均数(2)用样本的平均数平均数估计总体的平均数

20.45×184=3762.8(万人) ∴ 估计上海世博会参观的总人数约为3762.8万 人
11 5+18 6+25 6+32 3 平均数估计184天中平均每 20.45(万人) 天参观人数,体现了统计 5+6+6+3
点拨:此题用前20天的
的用样本估计总体的思想。


本节课你有什么收获?
47 该校教师平均每人捐款约________ 元 (精确到1元). 3.为了了解张大爷今年引进3000株新品种黄瓜 瓜的产量,抽查了部分黄瓜株上长出的黄瓜根 数,得到下面条形图,观察该图,可知共抽查 了 60 株黄瓜,并可估计出这个新品种黄瓜平 均每株结 13 根黄瓜.估计张大爷种植新 品种黄瓜结了3900 根黄瓜。
计算这10个西瓜的平均重量,并根据计算结果估计这亩地共 可收获西瓜约多少千克. 解:x=1/10(5.5×1+5.4×2+5.0×3+4.9×2+4.6×1+4.3×1) =1/105=5(kg). 用样本的平均估计总体的平均数,由此可得每个西瓜的质量约为5千克,则 亩产量:5×600=3000(kg). 答:估计这亩地的西瓜产量约为3000kg.
【学习目标】
1.能正确有效应用平均数知识解决问题,提高分析、解决问题的能力。 2.学习并体会用样本平均数估计总体平均数的思想方法.
【重点难点】
重点:能够正确、合理地运用样本平均数估计总体平均数解决问题。 难点:能够正确、合理地运用样本平均数估计总体平均数解决问题。
预习导学
一、自学指导
1.某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在 西瓜上市前该瓜农随机摘下10个成熟的西瓜,称重如下:

人教版八年级数学下册20.1.1《平均数》(第2课时)一等奖优秀教学设计

人教版八年级数学下册20.1.1《平均数》(第2课时)一等奖优秀教学设计

20.1.1 平均数(第2课时)教学设计
一、教材分析:
1、地位作用:这节课时学生在第一课时学习了平均数的基础上,对平均数的进一步深入拓展,通过本节课的学习,让学生平均数的运算由一般的加权平均数扩大到特殊的加权平均数的运算,为统计知识的学习奠定良好的基础。

2、教学目标:
(1)、熟练掌握平均数的计算方法;
(2)、运用加权平均数进行有关计算.
(3)、数学思考:通过实践,培养学生的计算、归纳能力.
3、教学重、难点
教学重点:①探究加权平均数的运算方法;②运用加权平均数的运算性质解决问题.
教学难点:探究加权平均数的运算方法.
突破难点的方法:通过加权平均数的运算,让学生归纳加权平均数的运算方法.
二、教学准备:多媒体课件、导学案
三、教学过程
k个数的加权平均数,其中。

人教版八年级数学20.1.1 第2课时 用样本平均数估计总体平均数

人教版八年级数学20.1.1 第2课时 用样本平均数估计总体平均数

第二十章数据的分析平均数.平均数的平.w1,w2,…,w n,则.a n,它的加权平均数 .4.权反映的是 .二、新知预习1.(1)数据分组后,组中值为;(2)一辆共公汽车上载有x人,并且1≤x<21,我们虽无法知道x的准确值是多少,但从统计的角度,我们可做出一个相对合理....,这个估计....的.估计值在一般情况下取比较好.2.自主归纳:(1)数据分组后,一个小组的组中值是指:这个小组的的数的平均数.(2)根据频数分布表求加权平均数时,统计中常用各组的代表各组的实际数据,把各组的看作相应组中值的权.(3)实际生活中经常用估计总体的平均数.三、自学自测1.某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表:(1)(2)四、我的探究点1问题1天5请阅读以上材料,回答下列问题:(1)这里的组中值指什么,它是怎样确定的?(2)第二组数据的频数5指什么呢?(3)如果每组数据在本组中分布较为均匀,则各组数据的平均值和组中值有什么关系?(4)这天5路公共汽车平均每班的载客量是多少?例1 为了绿化环境,柳荫街引进一批法国梧桐.三年后这些树的树干的周长情况如图所示.计算这批法国梧桐树干的平均周长(结果取整数).要点归纳:1.组中值:数据分组后,一个小组的组中值是指这个小组的两个端点的数的 .2.每一组的频数看作每一组数据的 .探究点2:用样本平均数估计总体平均数问题2:为了了解某校1800名学生的身高情况,随机抽取该校男生和女生进行抽样调查.利用所得数据绘制如下统计图表:(1)根据图表提供的信息,样本中男生的平均身高约是多少?(2)已知抽取的样本中,女生和男生的人数相同,样本中女生的平均身高约是多少?(3)若抽样的女生为m人,女生的平均身高会改变吗?若改变,请计算;若不变,请说明理由.(4)根据以上结果,你能估计该校女生的平均身高吗?教学备注3.探究点2新知讲授(见幻灯片13-20)针对训练1.某班学生期中测试数学成绩各分数段人数统计表如下,问班级平均分约是多少?2.种菜能手李大叔种植了一批新品种的黄瓜,为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到右面的条形图,请估计这个新品种黄瓜平均每株结多少根黄瓜. 分数段组中值人数40≤x<60260≤x<80880≤x<10010100≤x≤12020二、课堂小结1.下表是截至到2017年菲尔兹奖得主获奖时的 年龄,根据表格中的 信息计算获菲尔兹奖得主获奖时的 平均年龄为 (保留一位小数). 年龄 28≤X<30 30≤X <32 32≤X <34 34≤X <36 36≤X <3 38≤X <40 40≤X <42 频数4488121462.某班40名学生身高情况如下图,请计算该班学生平均身高.用样本平均数估计总体平均数 组中值数据分组后,一个小组的 组中值是指这个小组的两个端点的 数的 .平均数对于频数分布表、频数直方图等问题,计算平均数时,常用各组的 代表各组的 实际数据,把各组的 看作相应组中值的 权.总体平均数当要考察的 对象很多,或者对考察对象带有破坏性时,常用样本平均数估计总体平均数.当堂检测 教学备注配套PPT 讲授4.课堂小结5.当堂检测 (见幻灯片21-27)3.为了检查一批零件的质量,从中随机抽取10件,测得它们的长度(单位:mm)如下:22.36 22.35 22.33 22.35 22.37 22.34 22.38 22.36 22.32 22.35根据以上数据,估计这批零件的平均长度.拓展提升4.下图是某学校的一次健康知识测验的分数段统计图(满分100分,分数均为整数),点O是圆心,点D,O,E在同一条直线上,∠AOE=36°.(1)本次测验的平均分约是多少?(2)已知本次测验及格人数比不及格人数(低于60分为不及格)多240人,求参加本次测验的人数.温馨提示:配套课件及全册导学案WORD版见光盘或网站下载:(无须注册,直接下载)。

最新人教版八年级数学下册 20.1.1 第2课时 用样本平均数估计总体平均数 优质教案

最新人教版八年级数学下册 20.1.1 第2课时 用样本平均数估计总体平均数 优质教案

第2课时用样本平均数估计总体平均数1.掌握用样本平均数去估计总体平均数的统计方法;(重点)2.在实际情景中会用样本平均数去估计总体平均数、体会样本代表性的重要意义.(难点)一、情境导入生活中的“小笑话”:一天,爸爸叫儿子去买一盒火柴.临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了好一会儿,儿子才回到家.爸爸:“火柴能划燃吗?”儿子:“都能划燃.”爸爸:“你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.”爸爸:“啊!……”今天我就学习用样本平均数估计总体平均数.二、合作探究探究点:用样本平均数估计总体平均数【类型一】结合扇形统计图和统计表来估计总体情况济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:(1)扇形统计图中2.5米3对应扇形的圆心角为________度;(2)该小区300户居民5月份平均每户节约用水多少米3?解析:(1)首先计算出节水量2.5米3对应的户数所占百分比,再用360°×百分比即可;(2)根据加权平均数公式计算即可.解:(1)120(2)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).答:该小区300户居民5月份平均每户节约用水2.1米3.方法总结:本题主要考查了统计表,扇形统计图,平均数,关键是看懂统计图表,从统计图表中获取必要的信息,熟练掌握平均数的计算方法.【类型二】结合条形图来估计总体情况为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.解析:(1)条形统计图上户数之和即为调查的家庭户数;(2)根据加权平均数的定义计算即可;(3)利用样本估计总体的方法,用“400×所调查的20户家庭的平均用水量”即可.解:(1)1+1+3+6+4+2+2+1=20(户),答:小明一共调查了20户家庭;(2)(1×1+1×2+3×3+4×6+5×4+6×2+7×2+8×1)÷20=4.5(吨),答:所调查家庭5月份用水量的平均数为4.5吨;(3)400×4.5=1800(吨),答:估计这个小区5月份的用水量为1800吨.方法总结:读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【类型三】结合频数分布直方图来估计总体情况统计武汉园博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于21.5万的天数和所占的百分比;(3)利用以上信息,试估计武汉园博会(会期247天)的参观总人数.解析:(1)根据表格的数据求出14.5~21.5小组的组中值,最后即可补全频数分布表和频数分布直方图;(2)根据表格知道日参观人数不低于21.5万的天数有两个小组,共9天,除以总人数即可求出所占的百分比;(3)利用每一组的组中值和每一组的频数可以求出武汉园博会(会期247天)的参观总人数.解:(1)14.5~21.5小组的组中值是(14.5+21.5)÷2=18,3÷20=0.15.武汉园博会前20天日参观人数的频数分布表:(2)依题意得日参观人数不低于21.5万有6+3=9(天),所占百分比为9÷20=45%;(3)∵园博会前20天的平均每天参观人数约为11×5+18×6+25×6+32×320=40920=20.45(万人),∴武汉园博会(会期247天)的参观总人数约为20.45×247=5051.15(万人).答:武汉园博会(会期247天)的参观总人数约为5051.15万人.方法总结:本题考查运用样本估计总体的思想,解决问题的关键是读懂频数分布直方图和从统计图中获取有用信息.三、板书设计估计总体平均数当所要考察的对象很多或考察本身带有破坏性时,统计中常用样本平均数来估计总体的平均数.本节课以数学情景作为问题的依托,通过样本估计总体的问题变式,让学生将逐步掌握用样本平均数去估计总体平均数的统计方法,体会用样本估计总体的思想,感受样本代表性的意义,从而形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解.同时能够使所有的学生都能参与,在全体学生获得必要发展的前提下,不同的学生可以获得不同的体验.。

人教版数学八年级下册20.1.1《平均数》说课稿

人教版数学八年级下册20.1.1《平均数》说课稿

人教版数学八年级下册20.1.1《平均数》说课稿一. 教材分析《平均数》是人教版数学八年级下册第20章第1节的内容。

本节课主要介绍了平均数的定义、性质和求法,以及平均数在实际生活中的应用。

教材通过丰富的实例,引导学生认识平均数,探究平均数的性质,培养学生运用平均数解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了整数、分数和小数的知识,具备了一定的逻辑思维和运算能力。

但他们对平均数的理解可能仅停留在表面,对其性质和求法不够了解。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解平均数,提高他们运用平均数解决实际问题的能力。

三. 说教学目标1.知识与技能:理解平均数的定义,掌握平均数的性质和求法,能运用平均数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,探究平均数的性质,提高学生的逻辑思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,使他们认识到数学在生活中的重要作用。

四. 说教学重难点1.重点:平均数的定义、性质和求法。

2.难点:平均数的性质和求法,以及运用平均数解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何求解平均数,激发学生的学习兴趣。

2.探究平均数的定义:让学生观察、分析实例,引导学生发现平均数的性质,总结出平均数的定义。

3.讲解平均数的性质:通过实例和数学推理,讲解平均数的性质,让学生加深对平均数的理解。

4.学习平均数的求法:引导学生运用公式法和列举法求解平均数,巩固所学知识。

5.应用拓展:让学生运用平均数解决实际问题,提高他们运用数学知识解决问题的能力。

6.总结:对本节课的内容进行总结,强调平均数在实际生活中的重要作用。

七. 说板书设计板书设计如下:八. 说教学评价本节课的评价主要从学生的知识掌握、能力培养和情感态度三个方面进行。

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

人教版八年级数学下册_20.1.1平均数

人教版八年级数学下册_20.1.1平均数

A.3.5 元
B.6 元
C.6.5 元
人数就“权”.
10 1
D.7 元
感悟新知
解题秘方:根据“定义(2)的公式”进行计算.
_ 解:x =
5 2+6 3+7 2+101
=6.5(元).
8
知2-讲
感悟新知
知2-练
2-1. 为了解乡镇企业的水资源的利用情况,市水利管理部 门抽查了部分乡镇企业在一个月中的用水情况, 其中 用水15 吨的有3 家,用水20 吨的有5 家,用水30 吨的 有7 家, 那么平均每家企业一个月用水( A ) A.23.7 吨 B.21.6 吨 C.20 吨 D.5.416 吨
能性及付出的代价;
(2)抽取的样本要具有一般性和代表性,这样有利于推测全
貌、估计总体,作出决策,解决有关问题.
感悟新知
特别提醒 用样本估计总体的两种类型: 1. 用样本平均数估计总体平均数; 2. 用样本的总量估计总体的总量.
知3-讲
感悟新知
例 5 某校为了了解八年级学生某 次体育测试的成绩,现对该 年级学生这次体育测试成绩 进行抽样调查,结果统计如 下表及扇形统计图(如图20.13),其中扇形统计图中C 组 所在的扇形圆心角为36°.
解:由频数分布直方图可以看出: P=60,则Q=200-50-60-70=20.
知2-讲
感悟新知
知2-讲
(2)请把如图20.1-1 所示的频数分布直方图补充完整;
解:如图20.1-2 所示.
感悟新知
知2-讲
(3)这200 名女生的平均身高大约为__1_5_3_c_m__.
解:求出每组的组中值分别为140,150,160,170, 用每组的组中值近似地作为该组内女生的平均身高. 140 50+150 60+160 70+170 20 =153(cm),因此

八年级下册数学20.1.1 用样本平均数估计总体平均数

八年级下册数学20.1.1 用样本平均数估计总体平均数

例 某灯泡厂为了测量一批灯泡的使用寿命,从中随机抽查了50只灯泡,它们
的使用寿命如下表所示.这批灯泡的平均使用寿命是多少?
使用寿命 600≤x 1 000≤x 1 400≤x 1 800≤x 2 200≤x x/h <1 000 <1 400 <1 800 <2 200 <2 600
灯泡只数 5 抽出501只0灯泡的使12用寿命组1成7 一个样 6 本,可以利用样本的平均使用寿命来
x
=
1 n
(x 1f 1+x 2f 2+…+x kf k)
也叫做x1,x2,…,xk这k个的 加权平均数 .其中f1,f2,…,fk分别叫做
x1,x2,…,xk的权.
2.在求一组数据的平均数时,某个数据出现的次数看作 是这个数的__权____.
组中值与平均数
问题: 为了解5路公共汽车的运营情况,公交部门统计了某 天5路公共汽车每个运行班次的载客量,得到下表,这天5 路公共汽车平均每班的载客量是多少(结果取整数)?
6
360 660 910 750 510 50
3190 50
答:这批梧桐树干的平均周长是64cm.
用样本平均数估计总体平均数
我们知道,当要考察的对象很多或考察本身带有 破坏性时,统计学中常常使用样本数据的代表意义估 计总体的方法来获得对总体的认识.
例如,实际生活中经常用样本的平均数来估计总 体的平均数.
解:据上表得各估小计组这的批组灯中泡值的,平于均是使用寿命.
x = 800 5+1200 10+1600 12+2000 17+2400 6 50
=1672
即样本平均数为1 672.
因此,可以估计这批灯泡的平均使用寿命大约是1 672 h.

人教版数学八年级下册20.1.1平均数样本估计整体课件

人教版数学八年级下册20.1.1平均数样本估计整体课件
7 ( 3人 ) 接下来,同学们请来思考这样的问题: 从上表中,你能知道这…天5路公共汽车大约有多少 班次的载客量在平均载客量以上吗?占全天总班次的 百分比是多少?
由表格可知, 81≤x<101的18个班次 和
101≤x<121的15个班次共有33个班次超过平均载 客量,占全天总班次的百分比为33/83约等于40%。
常常用样本数据的代表意义来估计总体 例如: 实际生活中经常用样本平均数估计总体平均数。
要知道一锅汤的味道, 该怎么办呢?
想知道一批导弹的杀伤半径, 采用什么调查方法?为什么?
下表是校女子排球队队员的年龄分布:
年龄 13 14 15 16
频数 1
4
5
2
求校女子排球队队员的平均年龄。 分析题目中13岁出现了1次,1叫做13的权,14 岁出现了 4 次, 4 是14的权,15岁出现了 5 次, 5 是15的权,16岁出现了 2 次, 2 是16 的权。 平均年龄=队员年龄总数/队员总人数
由此可以估计这批灯泡的平均使用寿命大约是1676小时。

练习
种菜能手李大叔种植了一批新品种黄瓜。为了考察这种 黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄 瓜根数,得到下面的条形图。请估计这个新品种黄瓜。 平均每株结多少根黄瓜。
解:根据条形统计图,可知10的权是10,13的权是 15,14的权是20,15的权是18,所以 问:李大叔能不能用全面调查的方法去考察这个新品 种黄瓜的平均每株结的黄瓜根数呢?
解: 13×1+14×4+15×5+16×2
1+4+5+2
≈15(岁)
归纳
统计中也常把下面的这种算术平均数看成 加权平均数。
在求n个数的算术平均数时,如果x1出现f1次, x2出现f2次,…,xk出现fk次(这里 f1+f2+…+fk=n)那么这n个数的算术平均数

人教版数学八年级下册20.1《平均数用样本平均数估计总体平均数》教案

人教版数学八年级下册20.1《平均数用样本平均数估计总体平均数》教案
3.重点难点解析:在讲授过程中,我会特别强调平均数的计算方法和用样本平均数估计总体平均数的步骤。对于难点部分,我会通过实际数据和图表来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平均数相关的实际问题,如如何估计一个果园里所有苹果的平均重量。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量小组成员的身高并计算平均身高,以此演示平均数的计算和应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平均数的基本概念、计算方法以及用样本平均数估计总体平均数的重要性。同时,我们也通过实践活动和小组讨论加深了对平均数应用的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-能够运用平均数知识解决实际问题,体会数学与生活的联系。
举例解释:
-重点讲解平均数的定义,通过实际例子的演算,让学生深刻理解平均数的意义。
-强调样本平均数的计算步骤,并通过多个练习题巩固这一知识点。
-通过实际情境的引入,如班级学生的身高、体重数据,让学生应用平均数知识进行分析,强化其在实际问题中的应用。
(二)新课讲授(用时10分钟)。平均数是一组数据的总和除以数据的个数,它是描述数据集中趋势的重要指标。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过抽取部分学生的成绩来估计全班成绩的平均水平,以及这一做法如何帮助我们更好地理解班级的整体学习情况。
2.教学难点
-理解并区分总体、个体、样本、样本容量等统计学基本概念。

2018春人教版数学八年级下册20.1.1《用样本平均数估计总体平均数》(第2课时)练习课件

2018春人教版数学八年级下册20.1.1《用样本平均数估计总体平均数》(第2课时)练习课件
解:(1)补图略 (2)22.8 (3)1500
约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭 一个月的节水情况,如下表:
节水量/m3 0.2 0.25 0.3 0.4 0.5
家庭数/个 2
4
671
请你估计这400名同学的家庭一个月节约用水的总量大约是( A ) A.130 m3 B.135 m3 C.6.5 m3 D.260 m3
(1)该班有__4_0_名学生; (2)89.5~99.5这一组的频数是__8__; (3)估计该班这次考试的平均成绩是___8_7_._5__.
13.下表是八年级二班30名学生期中测试物理成绩表(已污损):
成绩/分 50 60 70 80 90 100
试物理成绩的平均分是76分,该班得80分和90分的各 有多少人?
计图的一部分.
组别 A B C D E
听写正确的个数x 0≤x<8 8≤x<16
16≤x<24 24≤x<32 32≤x<40
组中值 4 12 20 28 36
根据图表信息解决下列问题: (1)本次共随机抽查了__1_0_0___名学生,并补全条形统计图; (2)若把每组听写正确的个数用这组数据的组中值代替,则被抽查学 生听写正确的个数的平均数是多少? (3)该校共有3000名学生,如果听写正确的个数少于24个定为不合格 ,请你估计这所学校本次比赛听写不合格的学生人数.
4.为了解我校学生的身高情况,从七、八、九三个年级中任意选取100 名同学量得身高制成如下统计图,求这100名同学的平均身高.
解:(22×150+45×160+28×170+5×180)÷100=161.6(cm)
知识点2:用样本平均数估计总体平均数 5.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据的分析
20.1 数据的集中趋势
20.1.1 平均数
第2课时用样本平均数估计总体平均数
【学习目标】
能根据频数分布直方图计算平均数,掌握组中值等概念。

能正确有效应用平均数知识解决问题,提高分析、解决问题的能力。

学习并体会用样本平均数估计总体平均数的思想方法。

【重点难点】
重点:能根据频数分布直方图计算平均数。

难点:能根据不同特点的频数分布直方图采取相应的处理方法。

【导学指导】
我们知道,当所要考察的对象很多,或考察本身带有破坏性时,统计中常用通过样本估计总体的方法来获得对总体的认识。

例如,实际生活中经常用样本的平均数来估计总体的平均数。

学习教材相关内容,思考、讨论、合作交流后完成下列问题:
某灯泡厂要测量一批灯泡的使用寿命,使用全面调查的方法考察这批灯泡的平均使用寿命合适吗?由这100泡的使用寿命估计这批灯泡的平均使用寿命可以吗?这批灯泡的平均使用寿命是多少?
【课堂练习】
教材相关练习题。

小妹统计了她家10月份的长途电话费清单,并按通话时间画出直方图。

这张直方图与第1题中的直方图有何不同?
从这张图你能得到哪些信息?
小妹家10月份平均每个长途电话的通话时间是多少?
你认为能通过(3)的结论估计小妹家一年中平均每个长途电话的通话时间吗?
【要点归纳】
今天你有什么收获,与同伴交流一下。

【拓展训练】
某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个,在西瓜上市前西瓜数量/个
某班同学进行数学测验,将所得的成绩(得分取整数)进行整理后分成5组,并绘成频数分布直方图,请结合直方图提供的信息,回答下列问题:
该班共有多少名学生?(2)80.5-90.5这一分数段的频数、频率分别是多少?
这次考试的平均成绩是多少?
18
10。

相关文档
最新文档