2016年中考数学直升试卷(2)一

合集下载

(2021年整理)2016年成都中考数学试题及答案

(2021年整理)2016年成都中考数学试题及答案

2016年成都中考数学试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016年成都中考数学试题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016年成都中考数学试题及答案的全部内容。

成都市2016年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学注意事项:1. 全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.2。

在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。

3.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0。

5毫米黑色墨水签字笔书写,字体工整、笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1。

在—3,-1,1,3四个数中,比-2小的数是()(A) —3 (B)—1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()3。

成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为()(A) 18.1×105(B) 1.81×106 (C) 1.81×107 (D)181×1044. 计算()23x y-的结果是( )(A) 5x y - (B) 6x y (C ) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( ) (A ) 34° (B) 56°(C) 124° (D ) 146°6。

2016年河北省中考数学试卷及答案

2016年河北省中考数学试卷及答案

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前河北省2016初中毕业生升学文化课考试数学 ...................................................................... 1 河北省2016初中毕业生升学文化课考试数学答案解析 (6)河北省2016初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,1~10小题,每小题3分,11~16小题,每小题22分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:(1)--=( ) A .1±B .2-C .1-D .1 2.计算正确的是( ) A .0(5)2-=B .235x x x +=C .2325()ab a b =D .2122a a a -= 3.下列图形中,既是轴对称图形,又是中心对称图形的是()A BC D 4.下列运算结果为1x -的是( )A .11x-B .211x x x x -+C .111x x x +÷- D .2211x x x +++5.若0k ≠,0b <,则=y kx b +的图象可能是( )A BC D 6.关于□ABCD 的叙述,正确的是( )A .若AB BC ⊥,则□ABCD 是菱形 B .若AC BD ⊥,则□ABCD 是正方形 C .若AC BD =,则□ABCD 是矩形D .若AB AD =,则□ABCD 是正方形7.,错误的是() A B.面积为12CD . 8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )图1图2A .①B .②C .③D .④9.如图为44⨯的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( )A .ACD △的外心B .ABC △的外心 C .ACD △的内心D .ABC △的内心10.如图,已知钝角ABC △,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,将弧①于点D ; 步骤3:连接AD ,交BC 延长线于点H . 下列叙述正确的是( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)A .BH 垂直分分线段ADB .AC 平分BAD ∠ C .ABC S △=BC AH D .AB BD =11.点A ,B 在数轴上的位置如图所示,其对应的数分别a 是和b .对于以下结论: 甲:0b a -<;乙:0a b +>; 丙:||||a b <;丁:0b a>. 其中正确的是( ) A .甲乙B .丙丁C .甲丙D .乙丁 12.下在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A .11538x x=-B .11538x x =+C .1853x x =-D .1853x x=+ 13.如图,将□ABCD 沿对角线AC 折叠,使点B 落在点B '处.若1244∠=∠=,则B ∠为( )A .66B .104C .114D .12414.,,a b c 为常数,且222()a c a c -+>,则关于x 的方程20ax bx c ++=根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为015.如图,ABC △中,78A ∠=,4AB =,6AC =.将ABC △沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )ABCD16.如图,120AOB ∠=,OP 平分A O B ∠,且2OP =.若点M ,N 分别在OA ,OB 上,且PMN △为等边三角形,则满足上述条件的PMN △有 ( ) A .1个 B .2个 C .3个D .3个以上第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共10分.17,18小题,每小题3分;19小题共有4分.请把答案填写在题中的横线上) 17.8的立方根是 .18.若3mn m =+,则23510mn m nm +-+= . 19.如图,已知7AOB ∠=,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时90783A ∠=-=.当83A ∠<时,光线射到OB 边上的点1A 后,经OB 反射到线段AO 上的点2A ,易知12∠=∠.若12A A AO ⊥,则光线又会沿21A A A →→原路返回到点A ,此时A ∠=.……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角A ∠的最小值=.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)二、解答题(本大题共7小题,共68分.把解答应写出必要的文字说明、证明过程或演算步骤)20.(本小题满分9分)请你参考黑板中老师的讲解,用运算律简便计算: (1)999(15)⨯-;(2)413999118()99918555⨯+--⨯.21.(本小题满分9分)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AC DF =,BF EC =.(1)求证:ABC DEF △≌△;(2)指出图中所有平行的线段,并说明理由.22.(本小题满分9分)已知n 边形的内角和(2)180n θ=-⨯(1)甲同学说,θ能取360;而乙同学说,θ也能取630.甲、乙的说法对吗?若对,求出边数n ;若不对,说明理由;(2)若n 边形变为()n x +边形,发现内角和增加了360,用列方程的方法确定x .23.(本小题满分9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD 顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.图1图2如:若从图A 起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D ;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B ;……毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2016年安徽中考数学试卷

2016年安徽中考数学试卷

中考数学试卷一、单项选择题(共12分)1.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对2.下列实数中,无理数是()A.-3B.0C.D.3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=35.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。

A.B.C.D.6.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12二、填空题(共24分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。

8.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。

9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.10.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是___.(单位:分)三、解答题(共20分)11.求证:DE是⊙O的切线。

如图,同心圆O,大圆的面积被小圆所平分,若大圆的弦AB,CD分别切小圆于E、F点,当大圆半径为R时,且AB∥CD,求阴影部分面积。

16.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。

(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。

2015-2016学年九年级直升考试数学试题(含答案)

2015-2016学年九年级直升考试数学试题(含答案)

yxO 11第5题图A B C D B 'D 'C '2015年直升班考试数学模拟试题一、选择题(每小题6分,满分48分)题号 1 2 3 4 5 6 7 8 答案1、若a 、b 、c 为实数,且c b ak a b a c b c===+++,则下列四个点中,不可能在正比例函数y kx =的图象上的点是( )A (-5,5)B (3,3)C (-4,-2)D (0,0) 2、已知一次函数y=ax +b 的图象经过一、二、三象限,且与x 轴交于点 (-2,0),则不等式ax > b 的解集为 ( ) A. x >-2 B. x <-2 C. x >2 D. x <2 3、方程组126x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为 ( ) A. 1 B. 2 C. 3 D. 44、如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为 ( )A .313-B .33C .314-D .125、已知二次函数2y ax bx c =++的图象如图所示,则下列6个代数式:ab 、ac 、a b c ++、a b c -+、2a b +、2a b -中,其值为正的式子的个数是( )A .2个B .3个C .4个D .5个6、张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为 ( ) A . 500元 B . 600元 C . 700元 D . 800元7、如图,⊙O 与R t △ABC 的斜边AB 相切于点D ,与直角边AC 相交于点E ,且DE ∥BC .已知AE =22,AC =32,BC =6,则⊙O 的半径是( ) A 、3 B 、4 C 、4 3 D 、2 38、有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,,,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少? ( ) A. 500 B.520 C.780 D. 2000欲购买的 商品 原价(元) 优惠方式一件衣服 420 每付现金200元,返购物券200元,且付款时可以使用购物券 一双鞋 280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券第9题主视图左视图二、填空题(每小题6分,共30分) 9、一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的图形,至少需用______块小正方体.10、如图,△ABC 的中位线DE =5cm ,把△ABC 沿DE 折叠,使点A落在边BC 上的点F 处,若A 、F 两点间的距离是8cm ,则△ABC 的面积为 cm 3.11、若直线b y =(b 为实数)与函数342+-=x x y 的图象至少有三个公共点,则实数b 的取值范围是_________.12、设直线(1)10kx k y ++-=(k 为正整数)与坐标轴所构成的直角三角形的面积为k S ,则1232008S S S S +++⋅⋅⋅= .13、如图,点C 在以AB 为直径的半圆上,AB=8,∠CBA=30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F .下列结论:①CE=CF ;②线段EF 的最小值为2;③当AD=2时,EF 与半圆相切;④若点F 恰好落在上,则AD=2;⑤当点D 从点A 运动到点B 时,线段EF 扫过的面积是16.其中正确结论的序号是 .三、解答题(本大题共6小题,共72分) 14.(10分)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°; (2)化简:﹣÷.15.(12分)将两块大小不一的透明的等腰直角三角板ABC 和DCE 如图所示摆放,直角顶点C 重合,三角板DCE 的一个顶点D 在三角板ABC 的斜边BA 的延长线上,连结BE . (1)求证:BE=AD ; (2)求证:BE ⊥AD .第10题第13题16、(10分)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.17、(本题满分14分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?18、(本题满分12分)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是 ;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = ; (2)如果欲求232013333+++++的值,可令232013333S =+++++……………………………………………………①将①式两边同乘以3,得 …………………………② 由②减去①式,得S = .(3)用由特殊到一般的方法知:若数列123n a a a a ,,,,,从第二项开始每一项与前一项之比的常数为q ,则n a = (用含1a q n ,,的代数式表示),如果这个常数1q ≠,那么123n n S a a a a =++++= (用含1a q n ,,的代数式表示).(4)已知数列满足(3),且6424,a a -=3564a a =,求81238S a a a a =++++19、(本题满分14分)如图,已知∆ABC 中,AB=a ,点D 在AB 边上移动(点D 不与A 、B 重合),DE//BC ,交AC 于E ,连结CD .设S S S S ABC DEC ∆∆==,1. (1)当D 为AB 中点时,求S S 1:的值;(2)若AD x SSy ==,1,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在点D ,使得S S 114>成立?若存在,求出D 点位置;若不存在,请说明理由.2015年直升班考试数学模拟试题答案一、选择题:题号 1 2 3 4 5 6 7 8 答案BCAAABDB二、填空题9、5 10、40 11、0<b≤1 12、1004/2009 13、①③⑤ 三、 14、解答题解:(1)原式=1+4﹣1=4; (2)原式=﹣•=﹣=.15、证明:(1)∵△DCE 和△ACB 是等腰直角三角形,∴DC=CE ,AC=CB ,∠DCE=∠ACB=90°,∴∠DCE-∠7=∠ACB-∠7,∴∠5=∠6, 在△DAC 和△EBC 中, DC =CE ∠5=∠6AC =CB∴△DAC ≌△EBC (SAS ), ∴BE=AD ;(2)∵△DAC ≌△EBC , ∴∠1=∠2,∴∠DCE=90°,∴∠1+∠3=90°,∵∠3=∠4,∴∠2+∠4=90°, ∴∠EBD=180°-90°=90°,即BE ⊥AD . 16、解:(1)设袋子里2号球的个数为x 个. 根据题意得:=,解得:x=2,经检验:x=2是原分式方程的解,∴袋子里2号球的个数为2个. (2)列表得:3 (1,3) (2,3) (2,3) (3,3) (3,3) ﹣ 3 (1,3) (2,3) (2,3) (3,3) ﹣ (3,3) 3 (1,3) (2,3) (2,3) ﹣ (3,3) (3,3) 2 (1,2) (2,2) ﹣ (3,2) (3,2) (3,2) 2 (1,2) ﹣ (2,2) (3,2) (3,2) (3,2) 1 ﹣ (2,1) (2,1) (3,1) (3,1) (3,1) 1 2 2 3 3 3∵共有30种等可能的结果,点A (x ,y )在直线y=x 下方的有11个, ∴点A (x ,y )在直线y=x 下方的概率为11/30:. 17、 解:(1)当40≤x≤58时,设y 与x 的函数解析式为y=k 1x+b 1,由图象可得,解得.∴y=2x+140.当58<x≤71时,设y 与x 的函数解析式为y=k 2x+b 2,由图象得,解得,∴y=﹣x+82, 综上所述:y=;(2)设人数为a ,当x=48时,y=﹣2×48+140=44, ∴(48﹣40)×44=106+82a , 解得a=3;(3)设需要b 天,该店还清所有债务,则: b[(x ﹣40)•y ﹣82×2﹣106]≥68400, ∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x 2+220x ﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x 2+122x ﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.18、解:(1)2 218 2n(2)3S =3+32+33+34+…+321 S =)13(2121(3)a 1q n-11)1(1--q q a n(4)885S = 或者8255S =19、解:(1) DE BC D AB //,为的中点,21==∆∆∴AC AE AB AD ABC ADE ,∽.∴==S S AD AB ADE ∆()214S S AE EC ADE ∆11==, ∴411=S S . (2) ∵ AD =x ,y SS =1,∴ x xa AD DB AE EC S S ADE -===△1. 又∵ 222a x AB AD S S ADE ==△⎪⎭⎫ ⎝⎛,∴ S △ADE =22a x ·S ∴ S 1=⎪⎭⎫ ⎝⎛-x x a 22a xS ∴ 221a ax x S S +-=, 即y =-x a21+x a 1自变量x 的取值范围是:0<x <a .(3)不存在点D ,使得S S 114>成立. 理由:假设存在点D ,使得S S 114>成立,那么S S y 11414>>,即. ∴-21ax 2+a 1x >41,∴(a 1x -21)2<0 ∵(a 1x -21)2≥ ∴x 不存在,即不存在点D ,使得S S 114>成立.。

湖南省2016年中考数学直升试卷(2)(含解析)

湖南省2016年中考数学直升试卷(2)(含解析)

2016年湖南省中考直升数学试卷(2)一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数()A.4 B.﹣4 C.D.﹣2.下列运算正确的是()A.a2•a3=a6B.a6÷a5=a C.(﹣a2)4=a6D.a2+a3=a53.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于()A.B.C.D.4.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形5.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)+n,则m的取值范围在数轴上表示为()A.B.C.D.6.抛物线y=﹣(+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)7.如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°8.在反比例函数的图象的每一条曲线上,y都随的增大而减小,则的取值范围是()A.>1 B.>0 C.≥1 D.<19.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.510.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4C.3D.312.二次函数y=2+b的图象如图,对称轴为直线=1,若关于的一元二次方程2+b﹣t=0(t 为实数)在﹣1<<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8二、填空题:共6小题,每小题3分,共18分.13.点P(2,﹣3)关于轴的对称点坐标为.14.已知2﹣2﹣4=0,则2﹣2+1= .15.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.16.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= .17.如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为.18.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)三、解答题:19、20各6分,21、22各8分,23、24各9分,25、26各10分.19.计算:(﹣1)2015+|﹣2|+tan30°+.20.解分式方程:+=﹣1.21.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.(1)求证:EF=EC;(2)若AD=2AB,求∠FDC.23.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格(元/个)的变化如下表:(1)观察并分析表中的y与之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润(万元)与销售价格(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.25.阅读下列材料并解答:对非负实数“四舍五入”到个位的值记为<>,即:当n为非负整数时,如果n﹣,则<>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:<π>= (π为圆周率);(2)求满足<>=的所有非负实数的值;(3)设n为常数,且为正整数,函数y=2﹣+的自变量在n≤<n+1范围内取值时,函数值y为整数的个数记为a;满足<>=n的所有整数的个数记为b.求证:a=b=2n.26.如图,二次函数y=a(2﹣2m﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.2016年湖南师大附中学中考直升数学试卷(2)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数()A.4 B.﹣4 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣4的相反数4.故选:A.2.下列运算正确的是()A.a2•a3=a6B.a6÷a5=a C.(﹣a2)4=a6D.a2+a3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据同底数幂的除法,可判断B;根据积的乘方,可判断C;根据同底数幂的乘法,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、积的乘方等于乘方的积,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=.∴cosA=,故选:D.4.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形【考点】命题与定理.【分析】分别利用矩形、菱形、正方形及平行四边形的判定方法判定后即可确定正确的选项.【解答】解:A、对角线互相平分且相等的四边形是平行四边形,故A错;B、对角线互相平分的四边形是平行四边形,故B错;C、对角线互相平分且垂直的四边形是菱形,故C错;D、对角线互相垂直平分且相等的四边形是正方形,故D错误;故选B.5.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)+n,则m的取值范围在数轴上表示为()A.B.C.D.【考点】一次函数图象与系数的关系;在数轴上表示不等式的解集.【分析】根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.【解答】解:∵直线y=(m﹣2)+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选:C.6.抛物线y=﹣(+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点式的坐标特点求顶点坐标.【解答】解:∵抛物线y=﹣(+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.7.如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°【考点】平行线的性质.【分析】先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.【解答】解:∵∠CDE=140°,∴∠ADC=180°﹣140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.8.在反比例函数的图象的每一条曲线上,y都随的增大而减小,则的取值范围是()A.>1 B.>0 C.≥1 D.<1【考点】反比例函数的性质.【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随的增大而减小,可得﹣1>0,解可得的取值范围.【解答】解:根据题意,在反比例函数图象的每一支曲线上,y都随的增大而减小,即可得﹣1>0,解得>1.故选:A.9.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.5【考点】菱形的性质.【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【解答】解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.10.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【考点】切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4C.3D.3【考点】旋转的性质.【分析】利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.12.二次函数y=2+b的图象如图,对称轴为直线=1,若关于的一元二次方程2+b﹣t=0(t 为实数)在﹣1<<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8【考点】二次函数与不等式(组).【分析】根据对称轴求出b的值,从而得到=﹣1、4时的函数值,再根据一元二次方程2+b ﹣t=0(t为实数)在﹣1<<4的范围内有解相当于y=2+b与y=t在的范围内有交点解答.【解答】解:对称轴为直线=﹣=1,解得b=﹣2,所以,二次函数解析式为y=2﹣2,y=(﹣1)2﹣1,=﹣1时,y=1+2=3,=4时,y=16﹣2×4=8,∵2+b﹣t=0相当于y=2+b与直线y=t的交点的横坐标,∴当﹣1≤t<8时,在﹣1<<4的范围内有解.故选:C.二、填空题:共6小题,每小题3分,共18分.13.点P(2,﹣3)关于轴的对称点坐标为(2,3).【考点】关于轴、y轴对称的点的坐标.【分析】根据关于轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(2,﹣3)关于轴的对称点坐标为(2,3),故答案为:(2,3).14.已知2﹣2﹣4=0,则2﹣2+1= ﹣3 .【考点】代数式求值.【分析】原式前两项提取﹣1变形后,将已知等式变形代入计算即可求出值.【解答】解:∵2﹣2﹣4=0,即2﹣2=4,∴原式=﹣(2﹣2)+1=﹣4+1=﹣3.故答案为:﹣3.15.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是88 分.【考点】加权平均数.【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.16.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= 4.【考点】垂径定理;圆周角定理.【分析】先根据圆周角定理求出∠C的度数,再由CD⊥AB可知∠CEB=90°,CD=2CE,由直角三角形的性质求出BC的长,根据勾股定理求出CE的长,进而可得出结论.【解答】解:∵∠BAD=30°,BE=2,∴∠C=∠BAD=30°.∵CD⊥AB,∴∠CEB=90°,CD=2CE,∴BC=2BE=4,∴CE===2,∴CD=2CE=4.故答案为:4.17.如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为16 .【考点】相似三角形的判定与性质.【分析】根据题意可判定△AEF∽△ABC,利用面积比等于相似比平方可得出△ABC的面积,继而根据S四边形EBCF=S△ABC﹣S△AEF,即可得出答案.【解答】解:∵,∴EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∴S△ABC=18,则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16.故答案为:16.18.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【考点】圆锥的计算;由三视图判断几何体.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.三、解答题:19、20各6分,21、22各8分,23、24各9分,25、26各10分.19.计算:(﹣1)2015+|﹣2|+tan30°+.【考点】实数的运算;特殊角的三角函数值.【分析】原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,最后一项分母有理化,计算即可得到结果.【解答】解:原式=﹣1+2﹣++=1.20.解分式方程:+=﹣1.【考点】解分式方程.【分析】解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣(+2)2+16=4﹣2,去括号得:﹣2﹣4﹣4+16=4﹣2,解得:=2,经检验=2是增根,分式方程无解.21.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)先列表展示所有可能的结果数为16,再找出两次摸取纸牌上数字之和为5的结果数,然后根据概率的概念计算即可;(2)从表中找出两次摸出纸牌上数字之和为奇数的结果数和两次摸出纸牌上数字之和为偶数的结果数,分别计算这两个事件的概率,然后判断游戏的公平性.【解答】解:根据题意,列表如下:种,它们出现的可能性相等.(1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)==;(2)这个游戏公平,理由如下:∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)==,两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)==,∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.(1)求证:EF=EC;(2)若AD=2AB,求∠FDC.【考点】矩形的性质;全等三角形的判定与性质;角平分线的性质.【分析】(1)由矩形的性质得出∠B=∠ADC=90°,AD=BC,AD∥BC,得出∠AEB=∠DAF,由AAS证明△ABE≌△DFA,得出BE=AF,即可得出结论;(2)先证出∠AEB=30°,再由角的互余关系即可求出∠FDC的度数.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠ADC=90°,AD=BC,AD∥BC,∴∠AEB=∠DAF,∵DF⊥AE,∴∠AFD=90°,在△ABE和△DFA中,,∴△ABE≌△DFA(AAS),∴BE=AF,∵AE=AD,∴AE=BC,∴AE﹣AF=BC﹣BE,即EF=EC;(2)解:∵AD=2AB,∴AE=2AB,∴∠AEB=30°,∴∠DAF=30°,∴∠ADF=60°,∴∠FDC=90°﹣60°=30°.23.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格(元/个)的变化如下表:(1)观察并分析表中的y与之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润(万元)与销售价格(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【考点】二次函数的应用.【分析】(1)根据数据得出y与是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据=(﹣20)y﹣40得出与的函数关系式,求出即可;(3)首先求出40=﹣(﹣50)2+50时的值,进而得出(元/个)的取值范围.【解答】解:(1)根据表格中数据可得出:y与是一次函数关系,设解析式为:y=a+b,则,解得:,故函数解析式为:y=﹣+8;(2)根据题意得出:=(﹣20)y﹣40=(﹣20)(﹣+8)﹣40=﹣2+10﹣200,=﹣(2﹣100)﹣200=﹣[(﹣50)2﹣2500]﹣200=﹣(﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(﹣50)2+50=40,解得:1=40,2=60.如上图,通过观察函数y=﹣(﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤≤60.而y与的函数关系式为:y=﹣+8,y随的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.24.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.【考点】切线的判定与性质;相似三角形的判定与性质;解直角三角形.【分析】(1)连接OC,先证明△OCE≌△OBE,得出EB⊥OB,从而可证得结论.(2)过点D作DH⊥AB,根据sin∠ABC=,可求出OD=6,OH=4,HB=5,然后由△ADH∽△AFB,利用相似三角形的性质得出比例式即可解出BF的长.【解答】证明:(1)连接OC,∵OD⊥BC,∴∠COE=∠BOE,在△OCE和△OBE中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,∵OB是⊙O半径,∴BE与⊙O相切.(2)过点D作DH⊥AB,连接AD并延长交BE于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90°,∴△ODH∽△OBD,∴==又∵sin∠ABC=,OB=9,∴OD=6,易得∠ABC=∠ODH,∴sin∠ODH=,即=,∴OH=4,∴DH==2,又∵△ADH∽△AFB,∴=,=,∴FB=.25.阅读下列材料并解答:对非负实数“四舍五入”到个位的值记为<>,即:当n为非负整数时,如果n﹣,则<>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:<π>= 3 (π为圆周率);(2)求满足<>=的所有非负实数的值;(3)设n为常数,且为正整数,函数y=2﹣+的自变量在n≤<n+1范围内取值时,函数值y为整数的个数记为a;满足<>=n的所有整数的个数记为b.求证:a=b=2n.【考点】二次函数综合题.【分析】(1)π的十分位为1,应该舍去,所以精确到个位是3;(2)为整数,设这个整数为,易得这个整数应在应在﹣和+之间,包括﹣,不包括+,求得整数的值即可求得的非负实数的值;(3)易得二次函数的对称轴,那么可求得二次函数的函数值在相应的自变量的范围内取值,进而求得相应的a的个数;利用所给关系式易得的正整数个数为2n,由此得证.【解答】(1)解:因为π≈3.14,所以四舍五入后的个位数为3.故答案是:3;(2)解:∵≥0,为整数,设=,为整数,则=,∴<>=,∴﹣≤≤+,≥0,∵O≤≤2,∴=0,1,2,∴=0,,.(3)证明:∵函数y=2﹣+=(﹣)2,n为整数,当n≤<n+1时,y随的增大而增大,∴(n﹣)2≤y<(n+1﹣)2,即(n﹣)2≤y<(n+)2,①∴n2﹣n+≤y<n2+n+,∵y为整数,∴y=n2﹣n+1,n2﹣n+2,n2﹣n+3,…,n2﹣n+2n,共2n个y,∴a=2n,②∵>0,<>=n,则n﹣≤<n+,∴(n﹣)2≤<(n+)2,③比较①,②,③得:a=b=2n.26.如图,二次函数y=a(2﹣2m﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由C在二次函数y=a(2﹣2m﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.(2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D 作轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.(3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且(2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G在轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.【解答】(1)解:将C(0,﹣3)代入二次函数y=a(2﹣2m﹣3m2),则﹣3=a(0﹣0﹣3m2),解得a=.(2)方法一:证明:如图1,过点D、E分别作轴的垂线,垂足为M、N.由a(2﹣2m﹣3m2)=0,解得1=﹣m,2=3m,则A(﹣m,0),B(3m,0).∵CD∥AB,∴D点的纵坐标为﹣3,又∵D点在抛物线上,∴将D点纵坐标代入抛物线方程得D点的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(,),∴=,∴=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.方法二:过点D、E分别作轴的垂线,垂足为M、N,∵a(2﹣2m﹣3m2)=0,∴1=﹣m,2=3m,则A(﹣m,0),B(3m,0),∵CD∥AB,∴D点的纵坐标为﹣3,∴D(2m,﹣3),∵AB平分∠DAE,∴AD+AE=0,∵A(﹣m,0),D(2m,﹣3),∴AD==﹣,∴AE=,∴⇒2﹣3m﹣4m2=0,∴1=﹣m(舍),2=4m,∴E(4m,5),∵∠DAM=∠EAN=90°∴△ADM∽△AEN,∴,∵DM=3,EN=5,∴.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH⊥轴于点H.连接FC并延长,与轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴,∵OC=3,HF=4,OH=m,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.。

福建省福州市2016届中考数学试卷(解析版)

福建省福州市2016届中考数学试卷(解析版)

2016年福建省福州市中考数学试卷一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项) .下列实数中的无理数是(). . . .﹣.如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . ..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角.下列算式中,结果等于 的是(). . . . .不等式组的解集是(). >﹣ . > .﹣ < < . <.下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . ..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , ).如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , ).下表是某校合唱团成员的年龄分布年龄 岁频数 ﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差.已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . ..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ..若二次根式在实数范围内有意义,则 的取值范围是..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填 < < ).若 , ,则 的值是..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) ..化简: ﹣ ﹣..一个平分角的仪器如图所示,其中 , .求证: ..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?.福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了万人;( )与上一年相比,福州市常住人口数增加最多的年份是;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.年福建省福州市中考数学试卷参考答案与试题解析一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是(). . . .﹣【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是 ,选出答案即可.【解答】解: 无理数就是无限不循环小数,且 为有限小数,为有限小数,﹣ 为正数,都属于有理数,为无限不循环小数,为无理数.故选: .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题..如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为 , ,故选: .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线 , 被直线 所截, 与 是内错角.故选 .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线..下列算式中,结果等于 的是(). . . .【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】 : ,据此判断即可.:根据合并同类项的方法,可得 .:根据同底数幂的乘法法则,可得 .:根据同底数幂的乘法法则,可得 .【解答】解: ,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果等于 .故选: .【点评】( )此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确: 底数必须相同; 按照运算性质,只有相乘时才是底数不变,指数相加.( )此题还考查了合并同类项的方法,要熟练掌握..不等式组的解集是(). >﹣ . > .﹣ < < . <【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式 ,得>﹣ ,解不等式 ,得> ,由 可得, > ,故原不等式组的解集是 > .故选 .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法..下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 ( ) 、不可能发生事件的概率 ( ) 对 、 、 进行判定;根据频率与概率的区别对 进行判定.【解答】解: 、不可能事件发生的概率为 ,所以 选项正确;、随机事件发生的概率在 与 之间,所以 选项错误;、概率很小的事件不是不可能发生,而是发生的机会较小,所以 选项错误;、投掷一枚质地均匀的硬币 次,正面朝上的次数可能为 次,所以 选项错误.故选 .【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件 发生的频率 会稳定在某个常数 附近,那么这个常数 就叫做事件 的概率,记为 ( ) ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 ( ) ;不可能发生事件的概率 ( ) .. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段 上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点 的左右两侧,从四个答案观察发现,只有 选项的线段 符合,其余答案的线段都在原点 的同一侧,所以可以得出答案为 .故选:【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段 上的点与原点的距离..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点 和点 关于原点对称,由平行四边形的性质得出 和 关于原点对称,即可得出点 的坐标.【解答】解: ( , ), (﹣ ,﹣ ),点 和点 关于原点对称,四边形 是平行四边形,和 关于原点对称,( ,﹣ ),点 的坐标是(﹣ , ).故选: .【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出 和 关于原点对称是解决问题的关键..如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , )【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过 作 ,交 于点 ,在直角三角形 中,利用锐角三角函数定义表示出 与 ,即可确定出 的坐标.【解答】解:过 作 ,交 于点 ,在 中, , ,, ,即 , ,则 的坐标为( , ),故选 .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键..下表是某校合唱团成员的年龄分布年龄 岁频数 ﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为 ,即可得知总人数,结合前两组的频数知出现次数最多的数据及第 、 个数据的平均数,可得答案.【解答】解:由表可知,年龄为 岁与年龄为 岁的频数和为 ﹣ ,则总人数为: ,故该组数据的众数为 岁,中位数为: 岁,即对于不同的 ,关于年龄的统计量不会发生改变的是众数和中位数,故选: .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键..已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . .【考点】坐标确定位置;函数的图象.【分析】由点 (﹣ , ), ( , ), ( , )在同一个函数图象上,可得 与 关于 轴对称,当 > 时, 随 的增大而增大,继而求得答案.【解答】解: 点 (﹣ , ), ( , ),与 关于 轴对称,故 , 错误;( , ), ( , ),当 > 时, 随 的增大而增大,故 正确, 错误.故选 .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .【考点】根的判别式.【分析】根据方程有实数根可得 ,且 ,对每个选项逐一判断即可.【解答】解: 一元二次方程有实数根,(﹣ ) ﹣ ﹣ ,且 ,,且 ;、若 > ,当 、 时, > ,此选项错误;、 不符合一元二次方程的定义,此选项错误;、若 > ,当 、 时, > ,此选项错误;、若 ,则 ,此选项正确;故选: .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式 的关系:( ) > 方程有两个不相等的实数根;( ) 方程有两个相等的实数根;( ) < 方程没有实数根.二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ( )( ﹣ ).【考点】因式分解 运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解: ﹣ ( )( ﹣ ).故答案为:( )( ﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..若二次根式在实数范围内有意义,则 的取值范围是 ﹣ .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出 的取值范围.【解答】解:若二次根式在实数范围内有意义,则: ,解得 ﹣ .故答案为: ﹣ .【点评】主要考查了二次根式的意义和性质:概念:式子( )叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数 图象上,再让在反比例函数 图象上点的个数除以点的总数即为在反比例函数 图象上的概率,依此即可求解.【解答】解: ﹣ ﹣ ,,,(﹣ ) (﹣) ,个点的坐标在反比例函数 图象上,在反比例函数 图象上的概率是 .故答案为:.【点评】考查了概率公式,用到的知识点为:概率 所求情况数与总情况数之比..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填 < < )【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,上下.故答案为 .【点评】本题考查了弧长公式:圆周长公式: ( )弧长公式: (弧长为 ,圆心角度数为 ,圆的半径为 );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一..若 , ,则 的值是 .【考点】代数式求值.【分析】可将该多项式分解为 ( ),又因为 ( ) ﹣ ,然后将 与 的值代入即可.【解答】解:( )( ) ﹣( ﹣ ).故答案为: .【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知 与 的值,则 ( ) ﹣ ,再将 与 的值代入即可..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接 、 ,先证明 ,根据 ,求出 、 即可解决问题.【解答】解:如图,连接 , ,设菱形的边长为 ,由题意得 ,, ,,.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解: ﹣ ﹣ (﹣ )﹣.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键..化简: ﹣ ﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式 ﹣ ﹣( )﹣ ﹣ ﹣﹣ .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键..一个平分角的仪器如图所示,其中 , .求证: .【考点】全等三角形的性质.【分析】在 和 中,由三组对边分别相等可通过全等三角形的判定定理( )证得 ,再由全等三角形的性质即可得出结论.【解答】证明:在 和 中,有,( ),.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出 .本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了 张,乙种票买了 张.然后根据购票总张数为 张,总费用为 元列方程求解即可.【解答】解:设甲种票买了 张,乙种票买了 张.根据题意得:.解得:.答:甲种票买了 张,乙种票买了 张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键..福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了 万人;( )与上一年相比,福州市常住人口数增加最多的年份是 ;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】( )将 年人数减去 年人数即可;( )计算出每年与上一年相比,增加的百分率即可得知;( )可从每年人口增加的数量加以预测.【解答】解:( )福州市常住人口数, 年比 年增加了 ﹣ (万人);( )由图可知 年增加: ,年增加: ,年增加: ,年增加: ,故与上一年相比,福州市常住人口数增加最多的年份是 年;( )预测 年福州市常住人口数大约为 万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是 万人,由此可以预测 年福州市常住人口数大约为 万人.故答案为:( ) ;( ) .【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】( )根据圆心距、弦、弧之间的关系定理解答即可;( )根据弧长公式计算.【解答】( )证明: 四边形 是正方形,,,为中点,,,即 ,;( )解: 的半径为 ,的周长为 ,的长 .【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数.【考点】相似三角形的判定.【分析】( )先求得 、 的长,然后再计算出 与 的值,从而可得到 与 的关系;( )由( )可得到 ,然后依据对应边成比例且夹角相等的两三角形相似证明 ,依据相似三角形的性质可知 , ,然后结合等腰三角形的性质和三角形的内角和定理可求得 的度数.【解答】解:( ) , ,, ﹣ ., ..( ) , ,,即.又 ,., .., .设 ,则 , , .,.解得: ..【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得 是解题的关键..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值.【考点】矩形的性质;角平分线的性质.【分析】( )由折叠性质得 ,证出 ,由三角函数得出 即可;( )延长 交 延长线于点 ,由矩形的性质得出 ,由折叠性质得出 , , ,得出 ,证出 ,设 ,则 ,证出 ,在 中,由勾股定理得出方程,解方程求出 , ,即可求出 的面积;( )过点 作 于点 ,证明 ,得出对应边成比例 ,得出当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,由折叠性质得: ,由 证明 ,得出 ,由勾股定理求出 ,得出 ,即可得出结果.【解答】解:( )由折叠性质得: ,,平分 , ,,四边形 是矩形,,,;( )延长 交 延长线于点 ,如图 所示:四边形 是矩形,,,由折叠性质得: ,, , ,,,设 ,则 ,,,在 中,由勾股定理得: ,( ) ,解得: ,, ,, ,;( )过点 作 于点 ,如图 所示:四边形 是矩形,,,,,,, ,当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,如图 所示:由折叠性质得: ,,,在 和 中,,( ),,由勾股定理得: ,,的最大值 ﹣ ﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.【考点】二次函数综合题.【分析】( )用顶点式解决这个问题,设抛物线为 ( ﹣ ) ,原点代入即可.( )设抛物线为 ,则 ﹣, ﹣ 代入抛物线解析式,求出 (用 、 表示),又抛物线 也经过 ( , ),求出 ,列出方程即可解决.( )根据条件列出关于 的不等式即可解决问题.【解答】解:( ) 顶点为 ( , ),设抛物线为 ( ﹣ ) ,抛物线经过原点,( ﹣ ) ,﹣ ,抛物线解析式为 ﹣ .( ) 抛物线经过原点,设抛物线为 ,﹣,﹣ ,﹣ ,顶点 ( , ),﹣ ,抛物线 也经过 ( , ),,﹣ ,﹣ ,( ) 点 在抛物线 ﹣ 上,﹣ ,又 ﹣ ,,﹣ < ,﹣ < ,当 > 时,即 >﹣ 时,,解得 > ,当 < 时,即 <﹣ 时,解得 ﹣,综上所述, 的取值范围 > 或 ﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年辽宁省沈阳市中考数学试卷

2016年辽宁省沈阳市中考数学试卷

辽宁省沈阳市2016年初中学生学业水平(升学)考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共20分)一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数是无理数的是( )A .0B .1-C .2D .372.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( )ABCD3.在沈阳市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为( )A .70.5410⨯B .55410⨯C .65.410⨯D .75.410⨯4.如图,在平面直角坐标系中,点P 是反比例函数(0)ky x x=>图象上的一点,分别过点P 作PA x ⊥轴于点kA ,PB y ⊥轴于点B .若四边形OAPB 的面积为3,则的值为( ) A .3B .3-C .32D .32-5.“射击运动员射击一次,命中靶心”这个事件是 ( )A .确定事件B .必然事件C .不可能事件D .不确定事件 6.下列计算正确的是( )A .4482x x x +=B .326x x x =C .2363()x y x y =D .22()()x y y x x y --=-7.已知一组数据:3,4,6,7,8,8,下列说法正确的是( )A .众数是2B .众数是8C .中位数是6D .中位数是7 8.一元二次方程2412x x -=的根是( )A .12x =,26x =-B .12x =-,26x =C .12x =-,26x =-D .12x =,26x =9.如图,在Rt ABC △中,=90C ∠,=30B ∠,=8AB ,则BC 的长是( )A .433B .4C .83D .4310.在平面直角坐标系中,二次函数223y x x =+-的图象如图所示,点11(,)A x y ,22(,)B x y 是该二次函数图象上的两点,其中1230x x -≤<≤,则下列结论正确的是 ( ) A .12y y <B .12y y >C .y 的最小值是3-D .y 的最小值是4-第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 11.分解因式:2242x x -+= .12.若一个多边形的内角和是540,则这个多边形是 边形. 13.化简:1(1)(1)1m m -+=+ . 14.三个连续整数中,n 是最大的一个,这三个数的和为 .(用含n 的代数式表示)15.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲、乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离(km)y 与甲车行驶时间(h)t 之间的函数关系如图所示,当甲车出发h 时,两车相距350km .16.如图,在Rt ABC △中,90A ∠=,AB AC =,20BC =,DE 是ABC △的中位线.点M是边BC 上一点,3BM =,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若OMN △是直角三角形,则DO 的长是 .三、解答题(本大题共9小题,共82分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算:021(π4)|3tan60|()272--+--+.18.(本小题满分8分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A ,B ,C 依次表示这三个诵读材料).将A ,B ,C 这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛. (1)小明诵读《论语》的概率是 ;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.(本小题满分8分)如图,ABC ABD△≌△,点E在边AB上,CE BD∥,连接DE.求证:(1)CEB CBE∠=∠;(2)四边形BCED是菱形.20.(本小题满分8分)沈阳市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目中的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表学生最喜欢的活动项目的人数条形统计图项目学生数(名)百分比丢沙包2010%打篮球60p%跳大绳n40%踢毽球4020%根据图表中提供的信息,解答下列问题:(1)m=,n=,p=;(2)请根据以上信息直接在图中补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.21.(本小题满分8分)如图,在ABC△中,以AB为直径的O分别于BC,AC相交于点D,E,BD CD=,过点D作O的切线交边AC于点F.(1)求证:DF AC⊥;(2)若O的半径为5,30∠=,求BD的长.(结果保留π)CDF22.(本小题满分10分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套, A,B两种型号健身器材的购买单价分别为每套310元,410元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?23.(本小题满分10分)如图,在平面直角坐标系中,AOB△的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC 的长为 ; (2)求证:CBD COE △≌△;(3)将正方形OBDE 沿x 轴正方向平移得到正方形1111O B D E ,其中点O ,B ,D ,E 的对应点分别为点1O ,1B ,1D ,E ,连接CD ,CE ,设点1E 的坐标为(,0)a ,其中2a ≠,11CD E △的面积为S .①当12a <<时,请直接写出S 与a 之间的函数表达式; ②在平移过程中,当14S =时,请直接写出a 的值.24.(本小题满分12分)在ABC △中,6AB =,5AC BC ==,将ABC △绕点A 按顺时针方向旋转,得到ADE △,旋转角为(0180)αα<<,点B 的对应点为点D ,点C 的对应点为点E ,连接BD ,BE .(1)如图,当60α=时,延长BE 交AD 于点F . ①求证:ABD △是等边三角形; ②求证:BF AD ⊥,AF DF =; ③请直接写出BE 的长;(2)在旋转过程中,过点D 作DG 垂直于直线AB ,垂足为点G ,连接CE ,当DAG ACB ∠=∠,且线段DG 与线段AE 无公共点时,请直接写出BE CE +的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.25.(本小题满分12分)如图,在平面直角坐标系中,矩形OCDE 的顶点C 和E 分别在y 轴的正半轴和x 轴的正半轴上,8OC =,17OE =.抛物线23320y x x m =-+与y 轴相交于点A ,抛物线的对称轴与x 轴相交于点B ,与CD 交于点K .(1)将矩形OCDE 沿AB 折叠,点O 恰好落在边CD 上的点F 处.①点B 的坐标为( , ),BK 的长是 ,CK 的长是 ; ②求点F 的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE 沿着经过点E 的直线折叠,点O 恰好落在边CD 上的点G 处,连接OG .折痕与OG 相交于点H ,点M 是线段EH 上的一个动点(不与点H 重合),连接MG ,MO ,过点G 作GP OM ⊥于点P ,交EH 于点N ,连接ON .点M 从点E 开始沿线段EH 向点H 运动,至与点N 重合时停止.MOG △和NOG △的面积分别表示为1S 和2S ,在点M 的运动过程中,12S S (即1S 与2S 的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.。

2016年湖南师大附中学中考直升数学试卷(2)

2016年湖南师大附中学中考直升数学试卷(2)

2016年湖南师大附中学中考直升数学试卷(2)一、选择题(共12小题,每小题3分,满分36分)1. −4的相反数是()A.4B.−4C.14D.−14【答案】A【考点】相反数【解析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:∵−4+4=0,∴−4的相反数是4.故选A.2. 下列运算正确的是()A.a2⋅a3=a6B.a6÷a5=aC.(−a2)4=a6D.a2+a3=a5【答案】B【考点】合并同类项同底数幂的乘法幂的乘方与积的乘方同底数幂的除法【解析】根据同底数幂的乘法,可判断A;根据同底数幂的除法,可判断B;根据积的乘方,可判断C;根据同底数幂的乘法,可判断D.【解答】A、同底数幂的乘法底数不变指数相加,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、积的乘方等于乘方的积,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;3. 如图所示,在Rt△ABC中,∠C=90∘,BC=3,AC=4,那么cos A的值等于( )A.3 4B.43C.35D.45【考点】锐角三角函数的定义勾股定理【解析】首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠C=90∘,BC=3,AC=4,∴AB=√AC2+BC2=√42+32=5,∴cos A=ACAB =45.故选D.4. 下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形【答案】B【考点】命题与定理【解析】分别利用矩形、菱形、正方形及平行四边形的判定方法判定后即可确定正确的选项.【解答】A、对角线互相平分且相等的四边形是平行四边形,故A错;B、对角线互相平分的四边形是平行四边形,故B正确;C、对角线互相平分且垂直的四边形是菱形,故C错;D、对角线互相垂直平分且相等的四边形是正方形,故D错误;5. 如图,直线l经过第二、三、四象限,l的解析式是y=(m−2)x+n,则m的取值范围在数轴上表示为()A. B.C. D.【考点】一次函数图象与系数的关系在数轴上表示不等式的解集【解析】根据一次函数图象与系数的关系得到m−2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.【解答】∵直线y=(m−2)x+n经过第二、三、四象限,∴m−2<0且n<0,∴m<2且n<0.6. 抛物线y=−(x+2)2−3的顶点坐标是()A.(2, −3)B.(−2, 3)C.(2, 3)D.(−2, −3)【答案】D【考点】二次函数的性质【解析】已知抛物线解析式为顶点式,根据顶点式的坐标特点求顶点坐标.【解答】∵抛物线y=−(x+2)2−3为抛物线解析式的顶点式,∴抛物线顶点坐标是(−2, −3).7. 如图,AB // CD,∠CDE=140∘,则∠A的度数为()A.140∘B.60∘C.50∘D.40∘【答案】D【考点】平行线的性质【解析】先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.【解答】∵∠CDE=140∘,∴∠ADC=180∘−140∘=40∘,∵AB // CD,∴∠A=∠ADC=40∘.8. 在反比例函数y=k−1x的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<1【答案】A【考点】反比例函数的性质【解析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k−1>0,解可得k的取值范围.【解答】根据题意,在反比例函数y=k−1x图象的每一支曲线上,y都随x的增大而减小,即可得k−1>0,解得k>1.9. 如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4B.125C.245D.5【答案】C【考点】菱形的性质【解析】连接BD,根据菱形的性质可得AC⊥BD,AO=12AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC⋅AE=12AC⋅BD可得答案.【解答】连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=12AC,BD=2BO,∴∠AOB=90∘,∵AC=6,∴AO=3,∴B0=√25−9=4,∴DB=8,∴菱形ABCD的面积是12×AC⋅DB=12×6×8=24,∴BC⋅AE=24,AE=245,10. 如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40∘.则∠ABD的度数是()A.30∘B.25∘C.20∘D.15∘【答案】B【考点】三角形内角和定理切线的性质等腰三角形的性质三角形的外角性质【解析】根据切线的性质求出∠OAC,结合∠C=40∘求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】∵AC是⊙O的切线,∴∠OAC=90∘,∵∠C=40∘,∴∠AOC=50∘,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25∘,11. 如图,在Rt△ABC中,∠ACB=90∘,∠B=60∘,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4√3C.3√3D.3【答案】A【考点】旋转的性质【解析】利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.【解答】∵在Rt△ABC中,∠ACB=90∘,∠B=60∘,BC=2,∴∠CAB=30∘,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30∘,∴∠ACB′=∠B′AC=30∘,∴AB′=B′C=2,∴AA′=2+4=6.12. 二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的方程x2+bx−t=0(t为实数)在−1<x<4的范围内有解,则t的取值范围是()A.t≥−1B.−1≤t<3C.3<t<8D.−1≤t<8【答案】D【考点】二次函数综合题【解析】根据对称轴求出b的值,从而得到−1<x<4时的函数值的取值范围,再根据一元二次方程x2+bx−t=0(t为实数)在−1<x<4的范围内有解相当于y=x2+bx与y=t 在x的范围内有交点解答.【解答】=1,解:对称轴为直线x=−b2×1解得b=−2,所以二次函数解析式为y=x2−2x,y=(x−1)2−1,x=1时,y=−1,x=4时,y=16−2×4=8,∵x2+bx−t=0相当于y=x2+bx与直线y=t的交点的横坐标,∴当−1≤t<8时,在−1<x<4的范围内有解.故选D.二、填空题:共6小题,每小题3分,共18分.点A(2, −3)关于x轴对称的点的坐标是________.【答案】(2, 3)【考点】关于x轴、y轴对称的点的坐标【解析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】点P(2, −3)关于x轴的对称点坐标为(2, 3),已知x2−2x−4=0,则2x−x2+1=________.【答案】−3【考点】列代数式求值【解析】原式前两项提取−1变形后,将已知等式变形代入计算即可求出值.【解答】∵x2−2x−4=0,即x2−2x=4,∴原式=−(x2−2x)+1=−4+1=−3.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是________分.【答案】88【考点】加权平均数【解析】此题考查了加权平均数.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.如图,在⊙O中,CD⊥AB于E,若∠BAD=30∘,且BE=2,则CD=________.【答案】4√3【考点】垂径定理圆周角定理【解析】先根据圆周角定理求出∠C的度数,再由CD⊥AB可知∠CEB=90∘,CD=2CE,由直角三角形的性质求出BC的长,根据勾股定理求出CE的长,进而可得出结论.【解答】∵∠BAD=30∘,BE=2,∴∠C=∠BAD=30∘.∵CD⊥AB,∴∠CEB=90∘,CD=2CE,∴BC=2BE=4,∴CE=√BC2−BE2=√42−22=2√3,∴CD=2CE=4√3.如图,△ABC中,E、F分别是AB、AC上的两点,且AEEB =AFFC=12,若△AEF的面积为2,则四边形EBCF的面积为________.【答案】16【考点】相似三角形的性质与判定【解析】根据题意可判定△AEF∽△ABC,利用面积比等于相似比平方可得出△ABC的面积,继而根据S四边形EBCF=S△ABC−S△AEF,即可得出答案.∵AEEB =AFFC=12,∴EF // BC,∴△AEF∽△ABC,∴S△AEFS△ABC =(AEAB)2=(13)2=19,∴S△ABC=18,则S四边形EBCF=S△ABC−S△AEF=18−2=16.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为________.(结果保留π)【答案】24π【考点】圆锥的全面积由三视图判断几何体圆锥的计算【解析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.三、解答题:19、20各6分,21、22各8分,23、24各9分,25、26各10分.计算:(−1)2015+|√3−2|+tan30∘+√3.【答案】原式=−1+2−√3+√33+2√33=1.【考点】特殊角的三角函数值【解析】原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,最后一项分母有理化,计算即可得到结果.【解答】原式=−1+2−√3+√33+2√33=1.解分式方程:2+x2−x +16x2−4=−1.【答案】去分母得:−(x+2)2+16=4−x2,去括号得:−x2−4x−4+16=4−x2,解得:x=2,经检验x=2是增根,分式方程无解.【考点】解分式方程【解析】解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】去分母得:−(x+2)2+16=4−x2,去括号得:−x2−4x−4+16=4−x2,解得:x=2,经检验x=2是增根,分式方程无解.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.【答案】两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)=416=14;这个游戏公平,理由如下:∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)=816=12,两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)=816=12,∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.【考点】列表法与树状图法游戏公平性【解析】(1)先列表展示所有可能的结果数为16,再找出两次摸取纸牌上数字之和为5的结果数,然后根据概率的概念计算即可;(2)从表中找出两次摸出纸牌上数字之和为奇数的结果数和两次摸出纸牌上数字之和为偶数的结果数,分别计算这两个事件的概率,然后判断游戏的公平性.【解答】两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)=416=14;这个游戏公平,理由如下:∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)=816=12,两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)=816=12,∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.(1)求证:EF=EC;(2)若AD=2AB,求∠FDC.【答案】证明:∵四边形ABCD是矩形,∴∠B=∠ADC=90∘,AD=BC,AD // BC,∴∠AEB=∠DAF,∵DF⊥AE,∴∠AFD=90∘,在△ABE和△DFA中,{∠AEB=∠DAF∠B=∠AFDAE=AD,∴△ABE≅△DFA(AAS),∴BE=AF,∵AE=AD,∴AE=BC,∴AE−AF=BC−BE,即EF=EC;∵AD=2AB,∴AE=2AB,∴∠AEB=30∘,∴∠DAF=30∘,∴∠ADF=60∘,∴∠FDC=90∘−60∘=30∘.【考点】全等三角形的性质与判定角平分线的性质矩形的性质【解析】(1)由矩形的性质得出∠B=∠ADC=90∘,AD=BC,AD // BC,得出∠AEB=∠DAF,由AAS证明△ABE≅△DFA,得出BE=AF,即可得出结论;(2)先证出∠AEB=30∘,再由角的互余关系即可求出∠FDC的度数.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠ADC=90∘,AD=BC,AD // BC,∴∠AEB=∠DAF,∵DF⊥AE,∴∠AFD=90∘,在△ABE和△DFA中,{∠AEB=∠DAF∠B=∠AFDAE=AD,∴△ABE≅△DFA(AAS),∴BE=AF,∵AE=AD,∴AE=BC,∴AE−AF=BC−BE,即EF=EC;∵AD=2AB,∴AE=2AB,∴∠AEB=30∘,∴∠DAF=30∘,∴∠ADF=60∘,∴∠FDC=90∘−60∘=30∘.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出y(万个)与x(元/个)的函数关系式.(2)求该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数关系式,销售价格定为多少元时净得利润最大?最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【答案】解:(1)根据表格中数据可得出:y 与x 是一次函数关系,设解析式为:y =ax +b ,则{30a +b =540a +b =4, 解得:{a =−110b =8, 故函数解析式为:y =−110x +8;(2)根据题意得出:z =(x −20)y −40=(x −20)(−110x +8)−40 =−110x 2+10x −200, =−110(x 2−100x)−200 =−110[(x −50)2−2500]−200 =−110(x −50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即−110(x −50)2+50=40,解得:x 1=40,x 2=60.如上图,通过观察函数y =−110(x −50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x ≤60.而y 与x 的函数关系式为:y =−110x +8,y 随x 的增大而减少,【考点】待定系数法求一次函数解析式二次函数的应用【解析】(1)根据数据得出y 与x 是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据z =(x −20)y −40得出z 与x 的函数关系式,求出即可;(3)首先求出40=−110(x −50)2+50时x 的值,进而得出x (元/个)的取值范围.【解答】解:(1)根据表格中数据可得出:y 与x 是一次函数关系,设解析式为:y =ax +b ,则{30a +b =540a +b =4, 解得:{a =−110b =8, 故函数解析式为:y =−110x +8; (2)根据题意得出:z =(x −20)y −40=(x −20)(−110x +8)−40 =−110x 2+10x −200,=−110(x 2−100x)−200 =−110[(x −50)2−2500]−200 =−110(x −50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即−110(x −50)2+50=40,解得:x 1=40,x 2=60.如上图,通过观察函数y =−110(x −50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x ≤60.而y 与x 的函数关系式为:y =−110x +8,y 随x 的增大而减少,已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=23,求BF的长.【答案】连接OC,∵OD⊥BC,∴∠COE=∠BOE,在△OCE和△OBE中,∵{OC=OB∠COE=∠BOEOE=OE,∴△OCE≅△OBE,∴∠OBE=∠OCE=90∘,即OB⊥BE,∵OB是⊙O半径,∴BE与⊙O相切.过点D作DH⊥AB,连接AD并延长交BE于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90∘,∴△ODH∽△OBD,∴ OD OB =OH OD =DH BD又∵ sin ∠ABC =23,OB =9,∴ OD =6,易得∠ABC =∠ODH ,∴ sin ∠ODH =23,即OH OD =23,∴ OH =4,∴ DH =√OD 2−OH 2=2√5,又∵ △ADH ∽△AFB ,∴ AH AB =DH FB ,1318=2√5FB, ∴ FB =36√513. 【考点】切线的判定与性质相似三角形的性质与判定解直角三角形【解析】(1)连接OC ,先证明△OCE ≅△OBE ,得出EB ⊥OB ,从而可证得结论.(2)过点D 作DH ⊥AB ,根据sin ∠ABC =23,可求出OD =6,OH =4,HB =5,然后由△ADH ∽△AFB ,利用相似三角形的性质得出比例式即可解出BF 的长.【解答】连接OC ,∵ OD ⊥BC ,∴ ∠COE =∠BOE ,在△OCE 和△OBE 中,∵ {OC =OB ∠COE =∠BOE OE =OE,∴ △OCE ≅△OBE ,∴ ∠OBE =∠OCE =90∘,即OB ⊥BE ,∵ OB 是⊙O 半径,∴ BE 与⊙O 相切.过点D 作DH ⊥AB ,连接AD 并延长交BE 于点F ,∵ ∠DOH =∠BOD ,∠DHO =∠BDO =90∘,∴ △ODH ∽△OBD ,∴ OD OB =OH OD =DH BD 又∵ sin ∠ABC =23,OB =9,∴ OD =6,易得∠ABC =∠ODH ,∴ sin ∠ODH =23,即OH OD =23,∴ OH =4,∴ DH =√OD 2−OH 2=2√5,又∵ △ADH ∽△AFB ,∴ AH AB =DH FB ,1318=2√5FB, ∴ FB =36√513.阅读下列材料并解答:对非负实数x “四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如果n −12≤x <n +12,则<x >=n . 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:<π>=________(π为圆周率);(2)求满足<x >=43x 的所有非负实数x 的值;(3)设n 为常数,且为正整数,函数y =x 2−x +14的自变量x 在n ≤x <n +1范围内取值时,函数值y 为整数的个数记为a ;满足<√k >=n 的所有整数k 的个数记为b .求证:a =b =2n .【答案】3∵ k >0,<√k >=n ,则n −12≤√k <n +12, ∴ (n −12)2≤k <(n +12)2,比较(1),(2),(3)得:a =b =2n【考点】二次函数综合题【解析】(1)π的十分位为1,应该舍去,所以精确到个位是3;(2)43x 为整数,设这个整数为k ,易得这个整数应在应在k −12和k +12之间,包括k −12,不包括k +12,求得整数k 的值即可求得x 的非负实数的值;(3)易得二次函数的对称轴,那么可求得二次函数的函数值在相应的自变量的范围内取值,进而求得相应的a 的个数;利用所给关系式易得√k 的正整数个数为2n ,由此得证.【解答】(1)因为π≈3.14,所以四舍五入后的个位数为3.如图,二次函数y =a(x 2−2mx −3m 2)(其中a ,m 是常数,且a >0,m >0)的图象与x 轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴交于C(0, −3),点D 在二次函数的图象上,CD // AB ,连接AD ,过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2)求证:AD AE 为定值;(3)设该二次函数图象的顶点为F ,探索:在x 轴的负半轴上是否存在点G ,连接GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】将C(0, −3)代入二次函数y =a(x 2−2mx −3m 2),则−3=a(0−0−3m 2),解得 a =1m 2.方法一:证明:如图1,过点D 、E 分别作x 轴的垂线,垂足为M 、N .由a(x 2−2mx −3m 2)=0,解得 x 1=−m ,x 2=3m ,则 A(−m, 0),B(3m, 0).∵ CD // AB ,∴ D 点的纵坐标为−3,又∵ D 点在抛物线上,∴ 将D 点纵坐标代入抛物线方程得D 点的坐标为(2m, −3).∵ AB 平分∠DAE ,∴ ∠DAM =∠EAN ,∵ ∠DMA =∠ENA =90∘,∴ △ADM ∽△AEN .∴ AD AE =AM AN =DM EN . 设E 坐标为(x, 1m 2(x 2−2mx −3m 2)),∴ 31m 2(x 2−2mx−3m 2)=3m x−(−m),∴ x =4m ,∴ E(4m, 5),∵ AM =AO +OM =m +2m =3m ,AN =AO +ON =m +4m =5m ,∴ ADAE =AMAN =35,即为定值. 方法二:过点D 、E 分别作x 轴的垂线,垂足为M 、N ,∵ a(x 2−2mx −3m 2)=0,∴ x 1=−m ,x 2=3m ,则A(−m, 0),B(3m, 0),∵ CD // AB ,∴ D 点的纵坐标为−3,∴ D(2m, −3),∵ AB 平分∠DAE ,∴ K AD +K AE =0,∵ A(−m, 0),D(2m, −3),∴ K AD =0+3−m−2m =−1m ,∴ K AE =1m ,∴{y=1mx+1y=1m2x2−2mx−3⇒x2−3mx−4m2=0,∴x1=−m(舍),x2=4m,∴E(4m, 5),∵∠DAM=∠EAN=90∘∴△ADM∽△AEN,∴ADAE =DMEN,∵DM=3,EN=5,∴ADAE =35.如图2,记二次函数图象顶点为F,则F的坐标为(m, −4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=OCOG ,tan∠FGH=HFHG,∴OCOG =HFHG,∴OCOG =HFOH+OG,∵OC=3,HF=4,OH=m,∴OG=3m.∵GF=√GH2+HF2=√16m2+16=4√m2+1,AD=√AM2+MD2=√9m2+9=3√m2+1,∴GFAD =43.∵ADAE =35,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为−3m.【考点】二次函数综合题【解析】(1)由C在二次函数y=a(x2−2mx−3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.(2)求证AD AE 为定值,一般就是计算出AD 、AE 的值,然后相比.而求其长,过E 、D 作x 轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.(3)要使线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形,且(2)中AD AE =35,则可考虑若GF 使得AD:GF:AE =3:4:5即可.由AD 、AE 、F 点都易固定,且G 在x 轴的负半轴上,则易得G 点大致位置,可连接CF 并延长,证明上述比例AD:GF:AE =3:4:5即可.【解答】将C(0, −3)代入二次函数y =a(x 2−2mx −3m 2),则−3=a(0−0−3m 2),解得 a =1m 2.方法一:证明:如图1,过点D 、E 分别作x 轴的垂线,垂足为M 、N .由a(x 2−2mx −3m 2)=0,解得 x 1=−m ,x 2=3m ,则 A(−m, 0),B(3m, 0).∵ CD // AB ,∴ D 点的纵坐标为−3,又∵ D 点在抛物线上,∴ 将D 点纵坐标代入抛物线方程得D 点的坐标为(2m, −3).∵ AB 平分∠DAE ,∴ ∠DAM =∠EAN ,∵ ∠DMA =∠ENA =90∘,∴ △ADM ∽△AEN .∴ AD AE =AM AN =DMEN. 设E 坐标为(x, 1m 2(x 2−2mx −3m 2)),∴ 31m 2(x 2−2mx−3m 2)=3mx−(−m), ∴ x =4m ,∴ E(4m, 5),∵ AM =AO +OM =m +2m =3m ,AN =AO +ON =m +4m =5m ,∴ADAE =AMAN=35,即为定值.方法二:过点D、E分别作x轴的垂线,垂足为M、N,∵a(x2−2mx−3m2)=0,∴x1=−m,x2=3m,则A(−m, 0),B(3m, 0),∵CD // AB,∴D点的纵坐标为−3,∴D(2m, −3),∵AB平分∠DAE,∴K AD+K AE=0,∵A(−m, 0),D(2m, −3),∴K AD=0+3−m−2m =−1m,∴K AE=1m,∴{y=1mx+1y=1m2x2−2mx−3⇒x2−3mx−4m2=0,∴x1=−m(舍),x2=4m,∴E(4m, 5),∵∠DAM=∠EAN=90∘∴△ADM∽△AEN,∴ADAE =DMEN,∵DM=3,EN=5,∴ADAE =35.如图2,记二次函数图象顶点为F,则F的坐标为(m, −4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=OCOG ,tan∠FGH=HFHG,∴OCOG =HFHG,∴OCOG =HFOH+OG,∵OC=3,HF=4,OH=m,∴OG=3m.∵GF=√GH2+HF2=√16m2+16=4√m2+1,AD=√AM2+MD2=√9m2+9=3√m2+1,∴GFAD =43.∵ADAE =35,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为−3m.。

2016年贵州省遵义市中考数学试卷及答案

2016年贵州省遵义市中考数学试卷及答案

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前贵州省遵义2016年初中毕业生学业(升学)统一考试数学 .................................................... 1 贵州省遵义市2016年初中毕业生学业(升学)统一考试参考答案与试题解析 .. (5)贵州省遵义2016年初中毕业生学业(升学)统一考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在1-,2-,0,1这4个数中最小的一个是( ) A .1-B .0C .2-D .12.如图是由5个完全相同的正方体组成的立体图形,它的主视图是()ABCD3.2015年遵义市全年房地产投资约为317亿元,这个数据用科学记数法表示为( ) A .831710⨯B .103.1710⨯C .113.1710⨯D .123.1710⨯4.如图,在平行线a ,b 之间放置一块直角三角板,三角板的顶点A ,B 分别在直线a ,b 上,则1+2∠∠的值为( )A .90B .85C .80D .605.下列运算正确的是( )A .623a a a ÷=B .235(a )a =C .236a a a =D .22232a a a -=6.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是( )A .60,50B .50,60C .50,50D .60,607.已知反比例函数(0)ky k x =>的图象经过点(1,)A a ,(3,)B b ,则a 与b 的关系正确的是( )A .a b =B .a b =-C .a b <D .a b >8.如图,在□ABCD 中,对角线AC 与BD 交与点O .若增加一个条件,使□ABCD 成为菱形,下列给出的条件不正确的是( )A .AB AD = B .AC BD ⊥ C .AC BD =D .BAC DAC ∠=∠9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A .39B .36C .35D .34毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)10.如图,半圆的圆心为O ,直径AB 的长为12.C 为半圆上一点,30CAB =∠,AC 的长( )A .12πB .6πC .5πD .4π11.如图,正方形ABCD 的边长为3,E ,F 分别是AB ,CD 上的点,且=60CFE ∠.将四边形BCFE 沿EF 翻折,得到B C FE '',C '恰好落在AD 边上,B C ''交AB 于点G ,则GE 的长是( )A.4 B.5 C.4-D.5-12.如图,矩形ABCD 中,4AB =,3BC =,连接AC ,P 和Q 分别是ABC △和ADC △的内切圆,则PQ 的长是( )A .5BCD .第Ⅱ卷(非选择题 共114分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 13.的结果是 .14.如图,在ABC △中,AB AC =,110ABC ∠=,AB 的垂直平分线DE 交AC 于点D ,连接BD ,则ABD ∠= 度.15.已知1x ,2x 是一元二次方程2210x x --=的两根,则1211x x += . 16.字母a ,b ,c ,d 各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,下表是三种组合与连接的对应表.由此可推断图形的连17.如图,AC BC ⊥,AC BC =,D 是BC 上一点,连接AD ,与ACB ∠的平分线交与点E ,连接BE .若67ACE S =△,314BDE S =△,则AC = .18.如图1,四边形ABCD 中,AB CD ∥,90ADC ∠=,P 从A 点出发,以每秒1个单位长度的速度,按A B C D →→→的顺序在边上匀速运动.设P 点的运动时间为t 秒,PAD △的面积为S ,S 关于t 的函数图形如图2所示,当P 运动到BC 中点时,PAD△的面积为 .图1图2三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:01(π2016)|122sin 45--+-+-.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)20.(本小题满分8分)先化简22442()224a a a a a a +-----,再从1,2,3中选取一个适当的数代入求值.21.(本小题满分8分)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB 的长为3m ,静止时,踏板到地面距离BD 的长为0.6m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为m h ,成人的“安全高度”为2m .(计算结果精确到0.1m ) (1)当摆绳OA 与OB 成45夹角时,恰为儿童的安全高度,则h = m ;(2)某成人在玩秋千是,摆绳OC 与OB 的最大夹角为55.问此人是否安全?(参考数 1.41≈,sin550.82≈,cos550.57≈,tan55 1.43≈)22.(本小题满分10分)2016年5月9日—11日,贵州省第十一届旅游产业发展大会在遵义市茅台镇举行.大会推出五条遵义精品旅游线路:A .红色经典,B .醉美丹霞,C .生态茶海,D .民族风情,E .避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.请解决下列问题.(1)本次参与投票的总人数是 人;(2)请补全条形统计图;(3)扇形统计图中,路线D 部分的圆心角是 度;(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?23.(本小题满分10分)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动.甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是 .24.(本小题满分10分)校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题----------------------。

2016年天津市中考数学试卷含答案

2016年天津市中考数学试卷含答案

()
A.1 或 5
B. 1或 5
C.1 或 3
D.1 或 3
第Ⅱ卷(非选择题 共 84 分)
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案填写在题中的横线上)
13.计算 (2a)3 的结果等于
.
14.计算 ( 5 3)( 5 3) 的结果等于
.
15.不透明袋子中装有 6 个球,其中有 1 个红球、2 个绿球和 3 个黑球,这些球除颜色外无
P 的大小; (2)如图②, D 为 AC 上一点,且 OD 经过 AC 的中点 E ,连接 DC 并延长,与 AB 的延 长线相交于点 P ,若 CAB 10 ,求 P 的大小.
毕业学校_____________姓名________________ 考生号________________ ________________ _____________
()
D. x 2 x ()
9. 实 数 a , b 在 数 轴 上 的 对 应 点 的 位 置 如 图 所 示 . 把
a , b ,0 按 照 从 小 到 大 的 顺 序 排 列 , 正 确 的 是
a0
b
()
A. a<0< b C. b<0< a
B. 0< a< b D. 0< b< a
其他差别.从袋子中随机取出 1 个球,则它是绿球的概率

.
16.若一次函数 y 2x b ( b 为常数)的图象经过第二、三、
四象限,则 b 的值可以是
(写出一个即可).
17. 如 图 , 在 正 方 形 ABCD 中 , 点 E , N , P , G 分 别 在 边 AB , BC , CD , DA 上,点 M , F , Q 都在对角线 BD 上,且

2016年山西省中考数学试题及答案

2016年山西省中考数学试题及答案

2016年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61的相反数是( )A .16B .-6C .6D .−162.(2016·山西)不等式组{x +5>0|的解集是( ) A .x >5 B .x <3 C .-5<x <3 D .x <5 3.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高 4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( ) A .5.5×106 B .5.5×107 C .55×106 D .0.55×108 6.(2016·山西)下列运算正确的是 ( ) A .(−32)2=−94 B .(3a 2)3=9a 6 C .5−3÷5−5=125D .√8−√50=−3√27.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( ) A .5000x−600=8000xB .5000x =8000x+600C .5000x+600=8000x D .5000x=8000x−6008.(2016·山西)将抛物线y =x 2−4x −4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .y =(x +1)2−13B .y =(x −5)2−3C .y =(x −5)2−13D .y =(x +1)2−39.(2016·山西)如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE 的长为( )A .π3B .π2 C .π D .2π 10.(2016·山西)宽与长的比是√5−12(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作GH ⊥AD ,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( ) A .矩形ABFE B .矩形EFCD C .矩形EFGH D .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.(2016·山西)已知点(m -1,y 1),(m -3,y 2)是反比例函数y =m x(m <0)图象上的两点,则y 1 y 2(填“>”或“=”或“<”) 13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:(−3)2−(15)−1−√8×√2+(−2)0(2)先化简,在求值:2x 2−2x x 2−1−xx+1,其中x =-2.17.(2016·山西)(本题7分)解方程:2(x −32)=x 2−918.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的 学生中随机抽取一人进 行访谈,那么正好抽到对“机电维修”最 感兴趣的学生的概率是19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理 阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点, ∠ABD=45°,AE⊥BD与点E,则△BDC的长是.20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)22.(2016·山西)(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到ΔABC和ΔACD.操作发现(1)将图1中的ΔACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,得到如图2所示的ΔAC′D,分别延长BC和DC′交于点E,则四边形ACE {C′的状是;……………(2分)(2)创新小组将图1中的ΔACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的ΔAC′D,连接DB,C′C,得到四边形BC {C′D,发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将ΔAC′D沿着射线DB方向平移acm,得到ΔA′C′′D′,连接BD′,CC′′,使四边形BC {C′′D′恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图1中的ΔACD在同一平面内进行一次平移,得到ΔA′C′D′,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线y=ax2+bx−8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使ΔFOE≌ΔFCE,若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,ΔOPQ是等腰三角形.2016年山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(2016·山西)−16的相反数是(A)A.16B.-6 C.6 D.−16考点:相反数解析:利用相反数和为0计算解答:因为a+(-a)=0∴−16的相反数是162.(2016·山西)不等式组{x +5>0|的解集是( C ) A .x >5 B .x <3 C .-5<x <3 D .x <5 考点: 解一元一次不等式组分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 解答: 解{x +5>0①| 由①得x >-5 由②得x <3所以不等式组的解集是-5<x <33.(2016·山西)以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高 考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选 择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.解答:A .调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B .调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C .调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查;D .调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A )考点:三视图分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形 故选A .5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B ) A .5.5×106 B .5.5×107 C .55×106 D .0.55×108 考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将55 000 000用科学记数法表示为:5.5×107.6.(2016·山西)下列运算正确的是 ( D )A .(−32)2=−94 B .(3a 2)3=9a 6 C .5−3÷5−5=125 D .√8−√50=−3√2 考点:实数的运算,幂的乘方,同底数幂的除法, 分析:根据实数的运算可判断A . 根据幂的乘方可判断B .根据同底数幂的除法可判断C . 根据实数的运算可判断D 解答:A .(−32)2=94,故A 错误 B .(3a 2)3=27a 6,故B 错误C .5−3÷5−5=153÷155=153×55=52=25,故C 错误.D .√8−√50=2√2−5√2=−3√2,故选D . 7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B ) A .5000x−600=8000xB .5000x =8000x+600 C .5000x+600=8000xD .5000x=8000x−600考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:5000x,根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为8000x+600再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程 解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以5000x=8000x+600故选B .8.(2016·山西)将抛物线y =x 2−4x −4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .y =(x +1)2−13B .y =(x −5)2−3C .y =(x −5)2−13D .y =(x +1)2−3考点:抛物线的平移分析:先将一般式化为顶点式,根据左加右减,上加下减来平移解答:将抛物线化为顶点式为:y =(x −2)2−8,左平移3个单位,再向上平移5个单位 得到抛物线的表达式为y =(x +1)2−3 故选D .9.(2016·山西)如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE 的长为( C )A .π3B .π2 C .π D .2π考点:切线的性质,求弧长 分析:如图连接OF ,OE由切线可知∠4=90°,故由平行可知∠3=90°由OF =OA ,且∠C =60°,所以∠1=∠C =60°所以△OFA 为等 边三角形∴∠2=60°,从而可以得出FE 所对的圆心角然后根据弧长公式即可求出 解答:∠EOF =180°−∠2−∠3=180°−60°−90°=30° r =12÷2=6 ∴FE =nπr 180=30⋅π⋅6180=π故选C10.(2016·山西)宽与长的比是√5−12(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作GH ⊥AD ,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( D ) A .矩形ABFE B .矩形EFCD C .矩形EFGH D .矩形DCGH考点:黄金分割的识别分析:由作图方法可知DF =√5CF ,所以CG =(√5−1)CF ,且GH =CD =2CF 从而得出黄金矩形解答:CG =(√5−1)CF ,GH =2CF∴CGGH =(√5−1)CF2CF=√5−12∴矩形DCGH是黄金矩形选D.二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南门为坐标原点,从而求出太原火车站的点(正好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标(3,0)12.(2016·山西)已知点(m-1,y1),(m-3,y2)是反比例函数y=mx(m<0)图象上的两点,则y1 > y2(填“>”或“=”或“<”)考点:反比函数的增减性分析:由反比函数m<0,则图象在第二四象限分别都是y随着x的增大而增大∵m<0,∴m-1<0,m-3<0,且m-1>m-3,从而比较y的大小解答:在反比函数y=mx中,m<0,m-1<0,m-3<0,在第四象限y随着x的增大而增大且m-1>m-3,所以y1 > y213.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有(4n+1)个涂有阴影的小正方形(用含有n的代数式表示).考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n-1)=4n+1个解答:(4n+1)14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为49考点:树状图或列表求概率分析:列表如图:解答:由表可知指针指向的数都是奇数的概率为 4915.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 3−√5(或2√5−2√5+1) 考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出∠1=∠2,由角平分得出∠2=∠3 从而得出∠1=∠3,所以HE =HA .再利用△DGH ∽△DCA 即可求出HE , 从而求出HG解答:如图(1)由勾股定理可得 DA =√AC 2+CD =√22+42=2√5由 AE 是∠DAB 的平分线可知∠1=∠2由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴∠2=∠3 ∴∠1=∠3 故EH =HA 设EH =HA =x则GH =x -2,DH =2√5−x∵HE ∥AC ∴△DGH ∽△DCA ∴DH DA=HG AC即2√5−x 2√5=x−22解得x =5−√5 故HG =EH -EG =5−√5-2=3−√5三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:(−3)2−(15)−1−√8×√2+(−2)0考点:实数的运算,负指数幂,零次幂1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:原=9-5-4+1 ……………………………(4分)=1.……………………………(5分)(2)先化简,在求值:2x 2−2xx2−1−xx+1,其中x=-2.考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算解答:原式=2x(x−1)(x−1)(x+1)−xx+1……………………………(2分)=2xx+1−xx+1……………………………(3分)=xx+1……………………………(4分)当x=-2时,原式=xx+1=−2−2+1=2……………………(5分)17.(2016·山西)(本题7分)解方程:2(x−3)2=x2−9考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x-3,利用公式法求解方法二:将方程化为一般式,利用公式法求解解答:解法一:原方程可化为2(x−3)2=(x+3)(x−3)……………………………(1分)2(x−3)2−(x+3)(x−3)=0.……………………………(2分)(x−3)[2(x−3)−(x+3)]=0.……………………………(3分)(x−3)(x−9)=0.……………………………(4分)∴x-3=0或x-9=0.……………………………(5分)∴x1=3,x2=9.……………………………(7分)解法二:原方程可化为x2−12x+27=0……………………………(3分)这里a=1,b=-12,c=27.∵b2−4ac=(−12)2−4×1×27=36>0∴x=12±√362×1=12±62.……………………………(5分)因此原方程的根为x1=3,x2=9.……………………………(7分)18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以30%(3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或13)10019.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点,∠ABD=45°,AE⊥BD与点E,则△BDC的长是2+2√2.考点:圆的证明分析:(1)已截取CG=AB∴只需证明BD=DG且MD⊥BC,所以需证明MB=MG故证明△MBA≌△MGC即可(2)AB=2,利用三角函数可得BE=√2由阿基米德折弦定理可得BE=DE+DC则△BDC周长=BC+CD+BD=BC+DC+DE+BE=BC+(DC+DE)+BE=BC+BE+BE=BC+2BE然后代入计算可得答案解答:(1)证明:又∵∠A=∠C,…………………(1分)∴△MBA≌△MGC.…………………(2分)∴MB=MG.…………………(3分)又∵MD⊥BC,∵BD=GD.…………………(4分)∴CD=CG+GD=AB+BD.…………………(5分)(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点,∠ABD=45°,AE⊥BD与点E,则△BDC的长是2+2√2.20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.考点:一次函数的应用分析:(1)根据数量关系列出函数表达式即可(2)先求出方案A应付款y与购买量x的函数关系为y=5.8x方案B应付款y与购买量x的函数关系为y=5x+2000然后分段求出哪种方案付款少即可(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.解答:(1)方案A:函数表达式为y=5.8x.………………………(1分)方案B:函数表达式为y=5x+2000………………………(2分)(2)由题意,得5.8x<5x+2000.………………………(3分)解不等式,得x<2500 ………………………(4分)∴当购买量x的取值范围为2000≤x<2500时,选用方案A比方案B付款少.………………………(5分)(3)他应选择方案B.………………………(7分)21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)考点:三角函数的应用分析:过点A作AG⊥CD,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF解答:过点A作AG⊥CD,垂足为G.…………(1分)则∠CAG=30°,在RtΔACG中,CG=AC⋅sin30°=50×12=25.…………(2分)由题意,得GD=50−30=20.…………(3分)∴CD=CG+GD=25+20=45(cm).…(4分)连接FD并延长与BA的延长线交于点H.…(5分)由题意,得∠H=30°.在RtΔCDH中,CH=CDsin30°=2CD=90.……………………(6分)∴EH=EC+CH=AB−BE−AC+CH=300−50−50+90=290.………(7分)在RtΔEFH中,EF=EH⋅tan30°=290×√33=290√33(cm).……………(9分)答:支撑角钢CD的长为45cm,EF的长为290√33cm.……………………(10分)22.(2016·山西)(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到ΔABC和ΔACD.操作发现(1)将图1中的ΔACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,得到如图2所示的ΔAC′D,分别延长BC和DC′交于点E,则四边形ACE {C′的状是菱形;……………(2分)(2)创新小组将图1中的ΔACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的ΔAC′D,连接DB,C′C,得到四边形BC {C′D,发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将ΔAC ′D 沿着射线DB 方向平移acm ,得到ΔA ′C ′′D ′,连接BD ′,CC ′′,使四边形BC {C ′′D ′恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ΔACD 在同一平面内进行一次平移,得到ΔA ′C ′D ′,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明 (2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ′′在边C ′C 上和点C ′′在边C ′C 的延长线上时. (4)开放型题目,答对即可 解答:(1)菱形(2)证明:作AE ⊥CC ′于点E .…………………………………………(3分)由旋转得AC ′=AC ,∴ ∠CAE=∠ {C ′AE =12α=∠BAC .∵四边形ABCD 是菱形,∴ BA =BC ,∠∠BCA=∠BAC ,∠∠CAE=∠BCA ,∴AE//BC ,同理AE//DC ′,∴BC//DC ′,又∵BC =DC ′,∴ 四边形BC {C ′D 是平行四边形,…………………(4分)又∵AE//BC ,∠CEA =90°,∴ ∠BC {C ′=180−∠CEA =90°,∴四边形BC {C ′D 是矩形…………………………………………(5分) (3)过点B 作BF ⊥AC ,垂足为F ,∵BA =BC , ∴CF =AF =12AC =12×10=5.在Rt ΔBCF 中,BF =√BC 2−CF 2=√132−52=12, 在ΔACE 和ΔCBF 中,∵∠CAE=∠BCF , ∠CEA=∠BFC =90°. ∴ΔACE ∽ΔCBF ,∴CB BF=AC BC ,即CE 12=1013,解得CE =12013,∵AC =AC ′,AE ⊥CC ′,∴CC ′=2CE =2×12013=24013.…………………(7分)当四边形BC {C ′′D ′恰好为正方形时,分两种情况: ①点C ′′在边C ′C 上.a =C ′C −13=24013−13=7113.…………………(8分)②点C ′′在边C ′C 的延长线上,a =C ′C +13=24013+13=40913.……………(9分)综上所述,a 的值为7113或40913.(4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ΔACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到ΔA ′C ′D ,连接A ′B,DC .………………………(11分) 结论:四边形是平行四边形……(12分) 23.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线y =ax 2+bx −8与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2)试探究抛物线上是否存在点F ,使ΔFOE ≌ΔFCE ,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,ΔOPQ 是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构 成分析:(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式 点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标 点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令 其横坐标为x =3,即可求出点E 的坐标(2)利用全等对应边相等,可知FO =FC ,所以点F 肯定在OC 的垂直平分线上,所 以点F 的纵坐标为-4,带入抛物线表达式,即可求出横坐标(3)根据点P 在y 轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1)∵抛物线y =ax 2+bx −8经过点A (-2,0),D (6,-8), ∴{4a −2b −8=0 36a +6b −8=−8解得{a =12b =−3…………………………………(1分) ∴抛物线的函数表达式为y =12x 2−3x −8……………………………(2分)∵y =12x 2−3x −8=12(x −3)2−252,∴抛物线的对称轴为直线x =3.又∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分) 设直线l 的函数表达式为y =kx .∵点D (6,-8)在直线l 上,∴6k =-8,解得k =−43. ∴直线l 的函数表达式为y =−43x ………………………………………………………(5分)∵点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为−43×3=−4,即点E 的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F ,使ΔFOE ≌ΔFCE .点F 的坐标为(3−√17,−4)或(3+√17,−4).……………………………………(8分)(3)解法一:分两种情况:①当OP =OQ 时,ΔOPQ 是等腰三角形.∵点E 的坐标为(3,-4),∴OE =。

2016年江苏省各市中考数学试卷汇总(13套)

2016年江苏省各市中考数学试卷汇总(13套)

文件清单:2016年中考真题精品解析数学(江苏宿迁卷)精编word版(原卷版)2016年江苏省苏州市中考数学试卷(解析版)江苏省南京市2016年中考数学试题(解析版)江苏省南通市2016年中考数学试题(word版,含解析)江苏省常州市2016年中考数学试题(图片版,含答案)江苏省徐州市2016年中考数学试题(word版,含解析)江苏省扬州市2016年中考数学试题(word版,含答案)江苏省无锡市2016年中考数学试题(word版,含解析)江苏省泰州市2016年中考数学试题(word版,含解析)江苏省连云港市2016年中考数学试卷(word版含解析)江苏省镇江市2016年中考数学试题(扫描版,含答案)淮安中考数学2016(含答案)2016年中考真题精品解析数学(江苏宿迁卷)精编word版一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.22.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.下列计算正确的是()A.B.C.D.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.67.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.18.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,二、填空题(共8小题)9.因式分解:= .10.计算:= .11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB 于点D,则BD的长为.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共10小题)17.计算:.18.解不等式组:.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.2【答案】D.【解析】试题分析:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.考点:绝对值.2.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【答案】A.考点:简单几何体的三视图.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C.【解析】试题分析:384000=3.84×105.故选C.考点:科学记数法—表示较大的数.4.下列计算正确的是()A.B.C.D.【答案】D.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°【答案】B.【解析】试题分析:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选B.考点:平行线的性质.6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.6【答案】A.【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.1【答案】B.考点:翻折变换(折叠问题).8.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,【答案】C.【解析】试题分析:∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.学科网考点:抛物线与x轴的交点.二、填空题(共8小题)9.因式分解:= .【答案】2(a+2)(a﹣2).【解析】试题分析:= =2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.10.计算:= .【答案】x.【解析】试题分析:===x.故答案为:x.考点:分式的加减法.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.【答案】1:2.考点:相似三角形的性质.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.【答案】:k<1.【解析】试题分析:∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.考点:根的判别式.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).【答案】0.95.【解析】试题分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.考点:利用频率估计概率.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.【答案】.考点:垂径定理.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【答案】.考点:反比例函数系数k的几何意义.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.【解析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为:4.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.三、解答题(共10小题)17.计算:.【答案】.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18.解不等式组:.【答案】1<x<2.【解析】试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.试题解析:,由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x <2.考点:解一元一次不等式组;方程与不等式.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)200.【解析】试题分析:(1)根据学校从三个年级随机抽取200名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;绩不合格的有200人.考点:扇形统计图;用样本估计总体;统计与概率.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【答案】(1)2;(2).【解析】试题分析:(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:第二球H1H2B1B2第一球H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率==.考点:列表法与树状图法;随机事件.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【答案】没有触礁的危险.【解析】试题分析:作PC⊥AB于C,如图,∠P AC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△P AC中利用正切的定义列方程,求出x的值,即得到AC的值,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.试题解析:没有触礁的危险.理由如下:考点:解直角三角形的应用-方向角问题;应用题.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【答案】(1)证明见解析;(2)22.5°.【解析】试题分析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.考点:切线的判定;圆周角定理;三角形的外接圆与外心.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【答案】(1)y=;(2)30<m≤75.【解析】试题分析:(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.考点:二次函数的应用;分段函数;最值问题;二次函数的最值.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)证明见解析;(2)①135°;②.【解析】试题分析:(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.学科网∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==,∴当α从90°变化到180°时,点M运动的路径长为.考点:几何变换综合题.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【答案】(1);(2);(3)25.【解析】试题分析:(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由=可知OP最大时,最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.最大,∴OP的最大值=OC+PO=,∴最大值==.学科网(3)M与N所围成封闭图形如图所示:由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.考点:二次函数综合题;最值问题;压轴题;几何变换综合题.2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1= .12.当x= 时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D ,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BD E沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC =∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得C D=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC 即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△A DC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以A C为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2。

湖南省长沙市2016年中考直升数学试题含答案

湖南省长沙市2016年中考直升数学试题含答案
2016 年湖南省长沙市中考直升数学试卷
一、选择题 1.﹣5 的倒数是( A.5 B. ) D. 中,属于无理数的是( )
C.﹣5
2.下列四个数﹣2,0,0.5, A.﹣2 B.0 C.0.5 D. )
3.下列等式成立的是( A.a •a =a
2 5 10
B.
C.(﹣a ) =a )
3
6
18
D.
4.如图所示的几何体的俯视图是(
﹣2
|+(3.14﹣π) . ,并写出它的所有整数解.
0
21.某校举办初中生演讲比赛,每班派两名学生参赛,现某班有 A、B、C 三名学生竞选,他们的笔试成绩 和口试成绩(单位:分)分别用两种方式进行了统计,如表和图(1): A 笔试 口试 85 m B 95 80 C 90 85
(1)m=
,并将图(1)补充完整;
②在点 A(﹣2,﹣1),B(﹣1,2)中有一个点是函数
(2)若点 P 在函数 y=﹣x+3(﹣2≤x≤k,k>﹣2)的图象上,其限变点 Q 的纵坐标 b′的取值范围是﹣5 ≤b′≤2,求 k 的取值范围 ;
2 2
(3)若点 P 在关于 x 的二次函数 y=x ﹣2tx+t +t 的图象上,其限变点 Q 的纵坐标 b′的取值范围是 b′≥m 或 b′<n,其中 m>n.令 s=m﹣n,求 s 关于 t 的函数解析式及 s 的取值范围 .
25.在平面直角坐标系 xOy 中,对于点 P(a,b)和点 Q(a,b′),给出如下定义: 若 b′= ,则称点 Q 为点 P 的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,
5)的限变点的坐标是(﹣2,﹣5). (1)①点 的限变点的坐标是 ; 图象上某一个点的限变点,这个点是 ;

湖南省长沙市2016年中考数学直升试卷(含解析)

湖南省长沙市2016年中考数学直升试卷(含解析)

2016年湖南省长沙市中考直升数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列数是无理数的是()A.πB.C.D.02.下列运算正确的是()A.23=6 B.(y)3=3y C.3+2=5 D.(﹣1)2=2﹣13.一个直角三角形的两直角边长分别为,y,其面积为2,则y与之间的关系用图象表示大致为()A.B.C.D.4.为了支援地震灾区学生,学校开展捐书活动,以下是某学习小组5名学生捐书的册数:3,9,3,7,8,则这组数据的中位数是()A.3 B.7 C.8 D.95.若一个正多边形的每个内角都为135°,则这个正多边形的边数是()A.9 B.8 C.7 D.66.如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(﹣4,2)C.(﹣1,5)D.(﹣1,﹣1)7.下列说法错误的是()A.平行四边形的对角相等B.正方形的对称轴有四条C.矩形既是中心对称图形又是轴对称图形D.菱形的对角线相等且互相平分8.如图是小明用八块小正方体搭的积木,该几何体的俯视图是()A.B.C.D.9.同一时刻,身高1.72m的小明在阳光下影长为0.86米;小宝在阳光下的影长为0.64m,则小宝的身高为()A.1.28m B.1.13m C.0.64m D.0.32m10.不等式组的解集在数轴上表示为()A.B.C.D.11.如图,关于抛物线y=(﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2)B.对称轴是直线=lC.开口方向向上D.当>1时,y随的增大而减小12.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sinα=()A.B.C.D.二、填空题:本题共6个小题,每小题3分,共18分.13.﹣2的相反数等于.14.分解因式:a﹣ab2= .15.第十届全国中学生运动会于2009年8月16日在长沙开幕,举行开幕式的贺龙体育场共有48000个座位,这个数用科学记数法表示为个.16.一斜坡的坡度为1:2,一辆汽车的最大爬坡坡角为30°,则该汽车爬上该坡(填可以或不可以).17.如图,在⊙O中,,∠A=40°,则∠B= 度.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.三、解答题:本题共8小题,共66分.19.计算:2﹣1+•tan30°﹣(π﹣2014)0.20.已知=﹣,求(1﹣)÷的值.21.我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)22.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.23.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原多掘进0.2米,乙组平均每天能比原多掘进0.3米.按此施工进度,能够比原少用多少天完成任务?24.已知:在Rt△ABD中,∠ABD=90°,以直角边AB为直径作圆O交AD于C,取线段BD的中点E,连接CE交AB的延长线于P.(1)求证:CP是⊙O的切线;(2)点M是弧的中点,CM交AB于点N,若AB=4,求MN•MC的值.25.已知关于的二次函数y=2﹣2m+m2+m的图象与直线y=+1.(1)若=1,求证:无论m为何值,二次函数图象与直线总有两个不同交点.(2)在(1)条件下,若两图象交于两点A、B,试证明AB的长为定值,并求出这个定值.(3)当m=0,设两图象交于两点A(1,y1),B(2,y2),原点为O,无论为何值时,猜想△AOB的形状,并证明你的猜想.26.如图1,直线y=﹣b与抛物线y=﹣2交于A(﹣4,﹣4)和B两点,与y轴交于点C.(1)求b的值及B点的坐标;(2)若以AB为直径的圆与直线=m有公共点,求m的取值范围;(3)如图2,把抛物线向右平移2个单位,再向上平移n个单位(n>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值的情况?若存在,请求出这个最小值和此时n的值,若不存在,请说明理由.2016年湖南省长沙市南雅中学中考直升数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列数是无理数的是()A.πB.C.D.0【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.2.下列运算正确的是()A.23=6 B.(y)3=3y C.3+2=5 D.(﹣1)2=2﹣1【考点】幂的乘方与积的乘方;合并同类项;完全平方公式.【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【解答】解:A、23=5≠6,故本选项错误;B、(y)3=3y3≠3y,故本选项错误;C、3+2=5,本选项正确;D、(﹣1)2=2﹣2+1≠2﹣1,本选项错误.故选C.3.一个直角三角形的两直角边长分别为,y,其面积为2,则y与之间的关系用图象表示大致为()A.B.C.D.【考点】反比例函数的应用.【分析】根据题意有:y=4;故y与之间的函数图象为反比例函数,且根据y实际意义、y 应大于0,其图象在第一象限.【解答】解:∵y=4∴y=(>0,y>0)故选:C.4.为了支援地震灾区学生,学校开展捐书活动,以下是某学习小组5名学生捐书的册数:3,9,3,7,8,则这组数据的中位数是()A.3 B.7 C.8 D.9【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有5个,故中位数是按从小到大排列后第3个数作为中位数,故这组数据的中位数是7.故选B.5.若一个正多边形的每个内角都为135°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】首先根据三角形的内角算出外角度数,再根据正多边形的外角和为360°,算出边数即可.【解答】解:∵一个正多边形的每个内角都为135°,∴此多边形的每一个外角是:180°﹣135°=45°,∴这个正多边形的边数是:360°÷45°=8,故答案为:B.6.如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(﹣4,2)C.(﹣1,5)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据平移的性质,点P(﹣1,2)向右平移3个单位长度,其横坐标加3,纵坐标不变,可得出坐标.【解答】解:根据平移的性质,∵点P(﹣1,2)向右平移3个单位长度,∴横坐标为﹣1+3=2,纵坐标不变,平移后的坐标为(2,2).故选A.7.下列说法错误的是()A.平行四边形的对角相等B.正方形的对称轴有四条C.矩形既是中心对称图形又是轴对称图形D.菱形的对角线相等且互相平分【考点】中心对称图形;平行四边形的性质;菱形的性质;矩形的性质;正方形的性质;轴对称图形.【分析】给人家平行四边形的性质,正方形的对称性,矩形的对称性以及菱形的性质对各选项分析判断即可得解.【解答】解:A、平行四边形的对角相等,正确,故本选项错误;B、正方形的对称轴有四条,正确,故本选项错误;C、矩形既是中心对称图形又是轴对称图形,正确,故本选项错误;D、菱形的对角线相等且互相平分,错误,菱形的对角线不一定相等,故本选项正确.故选D.8.如图是小明用八块小正方体搭的积木,该几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到从上往下2行的个数依次为3,2.故选D.9.同一时刻,身高1.72m的小明在阳光下影长为0.86米;小宝在阳光下的影长为0.64m,则小宝的身高为()A.1.28m B.1.13m C.0.64m D.0.32m【考点】平行投影.【分析】设小宝的身高为m,利用在同一时刻,物体的高度与在阳光下的影长成正比得到:0.64=1.72:0.86,然后利用比例性质求出即可.【解答】解:设小宝的身高为m,根据题意得:0.64=1.72:0.86,解得=1.28,即小宝的身高为1.28m.故选A.10.不等式组的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得>﹣2,解不等式②,得>6,所以不等式的解集是>6.故选A.11.如图,关于抛物线y=(﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2)B.对称轴是直线=lC.开口方向向上D.当>1时,y随的增大而减小【考点】二次函数的性质.【分析】根据抛物线的解析式得出顶点坐标是(1,﹣2),对称轴是直线=1,根据a=1>0,得出开口向上,当>1时,y随的增大而增大,根据结论即可判断选项.【解答】解:∵抛物线y=(﹣1)2﹣2,A、因为顶点坐标是(1,﹣2),故说法正确;B、因为对称轴是直线=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当>1时,y随的增大而增大,故说法错误.故选D.12.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sinα=()A.B.C.D.【考点】解直角三角形;正方形的性质.【分析】过D作EF⊥l1,交l1于E,交l4于F,易证△ADE≌△DCF,可得∠α=∠CDF,DE=CF.在Rt△DCF中,利用勾股定理可求CD,从而得出sin∠CDF,即可求sinα.【解答】解:过D作EF⊥l1,交l1于E,交l4于F,∵EF⊥l1,l1∥l2∥l3∥l4,∴EF和l2,l3,l4的夹角都是90°,即EF与l2,l3,l4都垂直,∴DE=1,DF=2.∵四边形ABCD是正方形,∴∠ADC=90°,AD=CD,∴∠ADE+∠CDF=90°,又∵∠α+∠ADE=90°,∴∠α=∠CDF,∵AD=CD,∠AED=∠DFC=90°,∴△ADE≌△DCF,∴DE=CF=1,∴在Rt△CDF中,CD==,∴sinα=sin∠CDF===.故选:B.二、填空题:本题共6个小题,每小题3分,共18分.13.﹣2的相反数等于 2 .【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣2的相反数是2,故答案为:2.14.分解因式:a﹣ab2= a(1+b)(1﹣b).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:原式=a(1﹣b2)=a(1+b)(1﹣b).故答案为:a(1+b)(1﹣b).15.第十届全国中学生运动会于2009年8月16日在长沙开幕,举行开幕式的贺龙体育场共有48000个座位,这个数用科学记数法表示为 4.8×104个.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将48 000用科学记数法表示为4.8×104个.16.一斜坡的坡度为1:2,一辆汽车的最大爬坡坡角为30°,则该汽车可以爬上该坡(填可以或不可以).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据正切的定义进行计算,比较斜坡的坡度与最大爬坡坡度的大小即可.【解答】解:设斜坡的坡角为α,tanα=,tan30°=,∵<,∴该汽车可以爬上该坡,故答案为:可以.17.如图,在⊙O中,,∠A=40°,则∠B= 70 度.【考点】圆心角、弧、弦的关系;等腰三角形的性质.【分析】先利用“在同圆中等弧所对的弦也相等”得到AB=AC即△ABC是等腰三角形,则∠B可得.【解答】解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=÷2=70°.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【考点】三角形内角和定理.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.三、解答题:本题共8小题,共66分.19.计算:2﹣1+•tan30°﹣(π﹣2014)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算即可得到结果.【解答】解:原式=+×﹣1=.20.已知=﹣,求(1﹣)÷的值.【考点】分式的化简求值.【分析】先将分式化简,然后代入的值即可求出答案.【解答】解:原式=[1﹣]÷=×=,当=﹣,∴原式==﹣.21.我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)【考点】列表法与树状图法;全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.【解答】解:(1)王老师采取的调查方式是抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.故答案为:抽样调查.22.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)在证明△BEC≌△DEC时,根据题意知,运用SAS公理就行;(2)根据全等三角形的性质知对应角相等,即∠BEC=∠DEC=∠BED,又由对顶角相等、三角形的一个内角的补角是另外两个内角的和求得∠EFD=∠BEC+∠CAD.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.∴在△BEC与△DEC中,∴△BEC≌△DEC(SAS).(2)解:∵△BEC≌△DEC,∴∠BEC=∠DEC=∠BED.∵∠BED=120°,∴∠BEC=60°=∠AEF.∴∠EFD=60°+45°=105°.23.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原多掘进0.2米,乙组平均每天能比原多掘进0.3米.按此施工进度,能够比原少用多少天完成任务?【考点】二元一次方程组的应用.【分析】(1)设甲、乙班组平均每天掘进米,y米,根据已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米两个关系列方程组求解.(2)由(1)和在剩余的工程中,甲组平均每天能比原多掘进0.2米,乙组平均每天能比原多掘进0.3米分别求出按原进度和现在进度的天数,即求出少用天数.【解答】解:(1)设甲、乙班组平均每天掘进米,y米,得,解得.∴甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(2)设按原的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=÷(4.8+4.2)=190(天)b=÷(4.8+0.2+4.2+0.3)=180(天)∴a﹣b=10(天)∴少用10天完成任务.24.已知:在Rt△ABD中,∠ABD=90°,以直角边AB为直径作圆O交AD于C,取线段BD的中点E,连接CE交AB的延长线于P.(1)求证:CP是⊙O的切线;(2)点M是弧的中点,CM交AB于点N,若AB=4,求MN•MC的值.【考点】切线的判定;圆心角、弧、弦的关系.【分析】(1)连接OC、BC,即可得∠ACB=∠BCD=90°,由E是BD中点知CE=BD=BE,即∠ECB=∠EBC,再根据∠OBC=∠OCB,可得∠OBC+∠EBC=∠OCB+∠ECB,即∠PCO=∠ABD=90°,从而得证;(2)连接MA、MB,可得∠ACM=∠BCM=∠MAN,由∠AMC=∠AMN可判定△AMC∽△NMA,得出=即AM2=MN•CM,再根据再等腰直角三角形ABM中AB=4可得AM 的长,即可得答案.【解答】解:(1)连接OC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BCD=90°,∴△BCD是直角三角形,∵E是BD中点,∴CE=BD=BE,∴∠ECB=∠EBC,又∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠EBC=∠OCB+∠ECB,即∠PCO=∠ABD=90°,又∵OC是⊙O的半径,∴CP是⊙O的切线;(2)连接MA、MB,∵点C是弧AB的中点,∴∠ACM=∠BCM,∵∠MAN=∠BCM,∴∠MAN=∠ACM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴=,即AM2=MN•CM,∵∠ACM=∠BCM,∴AM=BM,∵AB=4,∴AM=2,∴MN•MC=(2)2=8.25.已知关于的二次函数y=2﹣2m+m2+m的图象与直线y=+1.(1)若=1,求证:无论m为何值,二次函数图象与直线总有两个不同交点.(2)在(1)条件下,若两图象交于两点A、B,试证明AB的长为定值,并求出这个定值.(3)当m=0,设两图象交于两点A(1,y1),B(2,y2),原点为O,无论为何值时,猜想△AOB的形状,并证明你的猜想.【考点】二次函数综合题.【分析】(1)令=1,联立y=2﹣2m+m2+m和y=+1可得2﹣(2m+1)+m2+m﹣1=0,求出方程的根的判别式,进而结论可证明;(2)当=1,m为任何值时,联立,得2﹣(2m+1)+m2+m﹣1=0,根据一元二次方程根与系数的关系得到1+2=2m+1,1•2=m2+m﹣1,同(1)的方法,可求出AB=;(3)当m=0,为任意常数时,分三种情况讨论:①当=0时,由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当=1时,联立,得2﹣﹣1=0,根据一元二次方程根与系数的关系得到1+2=1,•2=﹣1,同(1)求出AB=,则AB2=10,运用两点间的距离公式及完全平方公式求出1OA2+OB2=10,由勾股定理的逆定理判定△AOB为直角三角形;③当为任意实数时,联立,得2﹣﹣1=0,根据一元二次方程根与系数的关系得到1+2=,1•2=﹣1,根据两点间距离公式及完全平方公式求出AB2=4+52+4,OA2+OB2═4+52+4,由勾股定理的逆定理判定△AOB为直角三角形.【解答】解:(1)∵关于的二次函数y=2﹣2m+m2+m的图象与直线y=+1,其中=1,∴2﹣2m+m2+m=+1,即2﹣(2m+1)+m2+m﹣1=0,∴△=(2m+1)2﹣4(m2+m﹣1),即△=5>0,∴方程2﹣(2m+1)+m2+m﹣1=0,有两不相等的实数根,∴无论m为何值,二次函数图象与直线总有两个不同的交点;(2)由,得2﹣(2m+1)+m2+m﹣1=0,∴1+2=2m+1,1•2=m2+m﹣1,∴AB=AC=|﹣1|==;(3)当m=0,为任意常数时,△AOB为直角三角形,理由如下:①当=0时,则函数的图象为直线y=1,由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当=1时,则一次函数为直线y=+1,由,得2﹣﹣1=0,∴1+2=1,1•2=﹣1,﹣1|==;∴AB=AC=|∴AB2=10,∵OA2+OB2=12+y12+22+y22=12+22+y12+y22=12+22+(1+1)2+(2+1)2=12+22+(12+21+1)+(22+22+1)=2(12+22)+2(1+2)+2=2(1+2)+2×1+2=10,∴AB2=OA2+OB2,∴△AOB是直角三角形;③当为任意实数,△AOB仍为直角三角形.由,得2﹣﹣1=0,∴1+2=,1•2=﹣1,∴AB2=(1﹣2)2+(y1﹣y2)2=(1﹣2)2+(1﹣2)2=(1+2)(1﹣2)2=(1+2)[(1+2)2﹣41•2]=(1+2)(4+2)=4+52+4,∵OA2+OB2=12+y12+22+y22=12+22+y12+y22=12+22+(1+1)2+(2+1)2=12+22+(212+21+1)+(222+22+1)=(1+2)(12+22)+2(1+2)+2=(1+2)(2+2)+2•+2=4+52+4,∴AB2=OA2+OB2,∴△AOB为直角三角.26.如图1,直线y=﹣b与抛物线y=﹣2交于A(﹣4,﹣4)和B两点,与y轴交于点C.(1)求b的值及B点的坐标;(2)若以AB为直径的圆与直线=m有公共点,求m的取值范围;(3)如图2,把抛物线向右平移2个单位,再向上平移n个单位(n>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值的情况?若存在,请求出这个最小值和此时n的值,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先将点A坐标代入直线解析式中,求出b,然后联立直线和抛物线解析式即可求出点B坐标;(2)由点A,B求得圆的圆心设为点O,由AB的长度求得圆半径而得到圆方程,代入=m 求判别式≥0即可.(3)由抛物线平移后为:y=﹣(﹣2)2+n,其对称轴是=2.由于过P、Q的圆的圆心必在对称轴上,要使圆的面积最小,则圆的半径要最小,即点C到圆心的距离要最短,过C作CE垂直抛物线的对称轴,垂足为E,则符合条件的圆是以E为圆心,EC长为半径的圆,求得圆的面积和n的值.【解答】解:(1)将A(﹣4,﹣4)代入y=﹣b中,得,﹣4=×(﹣4)﹣b,∴b=1,∴直线AB解析式为:y=﹣1∴由题意:,解得:2+3﹣4=0,即=﹣4或=1.代入求得y=﹣4或﹣,或,即点B(1,﹣),(2)由(1)知,A(﹣4,﹣4),B(1,﹣),∴AB==;A,B中点即圆的圆心点O为(﹣,﹣),∴半径=AB=,∵以AB为直径的圆与=m②有公共点,∴﹣﹣≤m≤﹣+,即﹣≤m≤;(3)设抛物线平移后为:y=﹣(﹣2)2+n.存在.理由如下:抛物线平移后为:y=﹣(﹣2)2+n,其对称轴是=2.由于过P、Q的圆的圆心必在对称轴上,要使圆的面积最小,则圆的半径要最小,即点C到圆心的距离要最短,过C作CE垂直抛物线的对称轴,垂足为E,则符合条件的圆是以E为圆心,EC长为半径的圆,其面积为4π,n的值.。

湖南省长沙市中考数学直升试卷(含解析)

湖南省长沙市中考数学直升试卷(含解析)

2016年湖南省长沙市中考直升数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列数是无理数的是()A.πB.C.D.02.下列运算正确的是()A.x2x3=x6B.(xy)3=x3y C.3x+2x=5x D.(x﹣1)2=x2﹣13.一个直角三角形的两直角边长分别为x,y,其面积为2,则y与x之间的关系用图象表示大致为()A.B.C.D.4.为了支援地震灾区学生,学校开展捐书活动,以下是某学习小组5名学生捐书的册数:3,9,3,7,8,则这组数据的中位数是()A.3 B.7 C.8 D.95.若一个正多边形的每个内角都为135°,则这个正多边形的边数是()A.9 B.8 C.7 D.66.如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(﹣4,2)C.(﹣1,5)D.(﹣1,﹣1)7.下列说法错误的是()A.平行四边形的对角相等B.正方形的对称轴有四条C.矩形既是中心对称图形又是轴对称图形D.菱形的对角线相等且互相平分8.如图是小明用八块小正方体搭的积木,该几何体的俯视图是()A.B.C. D.9.同一时刻,身高1.72m的小明在阳光下影长为0.86米;小宝在阳光下的影长为0.64m,则小宝的身高为()A.1.28m B.1.13m C.0.64m D.0.32m10.不等式组的解集在数轴上表示为()A.B.C.D.11.如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2) B.对称轴是直线x=lC.开口方向向上 D.当x>1时,y随x的增大而减小12.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sinα=()A.B.C.D.二、填空题:本题共6个小题,每小题3分,共18分.13.﹣2的相反数等于.14.分解因式:a﹣ab2= .15.第十届全国中学生运动会于2009年8月16日在长沙开幕,举行开幕式的贺龙体育场共有48000个座位,这个数用科学记数法表示为个.16.一斜坡的坡度为1:2,一辆汽车的最大爬坡坡角为30°,则该汽车爬上该坡(填可以或不可以).17.如图,在⊙O中,,∠A=40°,则∠B= 度.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.三、解答题:本题共8小题,共66分.19.计算:2﹣1+•tan30°﹣(π﹣2014)0.20.已知x=﹣,求(1﹣)÷的值.21.我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)22.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.23.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?24.已知:在Rt△ABD中,∠ABD=90°,以直角边AB为直径作圆O交AD于C,取线段BD 的中点E,连接CE交AB的延长线于P.(1)求证:CP是⊙O的切线;(2)点M是弧的中点,CM交AB于点N,若AB=4,求MN•MC的值.25.已知关于x的二次函数y=x2﹣2mx+m2+m的图象与直线y=kx+1.(1)若k=1,求证:无论m为何值,二次函数图象与直线总有两个不同交点.(2)在(1)条件下,若两图象交于两点A、B,试证明AB的长为定值,并求出这个定值.(3)当m=0,设两图象交于两点A(x1,y1),B(x2,y2),原点为O,无论k为何值时,猜想△AOB的形状,并证明你的猜想.26.如图1,直线y=x﹣b与抛物线y=﹣x2交于A(﹣4,﹣4)和B两点,与y轴交于点C.(1)求b的值及B点的坐标;(2)若以AB为直径的圆与直线x=m有公共点,求m的取值范围;(3)如图2,把抛物线向右平移2个单位,再向上平移n个单位(n>0),抛物线与x轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值的情况?若存在,请求出这个最小值和此时n的值,若不存在,请说明理由.2016年湖南省长沙市南雅中学中考直升数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列数是无理数的是()A.πB.C.D.0【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.2.下列运算正确的是()A.x2x3=x6B.(xy)3=x3y C.3x+2x=5x D.(x﹣1)2=x2﹣1【考点】幂的乘方与积的乘方;合并同类项;完全平方公式.【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【解答】解:A、x2x3=x5≠x6,故本选项错误;B、(xy)3=x3y3≠x3y,故本选项错误;C、3x+2x=5x,本选项正确;D、(x﹣1)2=x2﹣2x+1≠x2﹣1,本选项错误.故选C.3.一个直角三角形的两直角边长分别为x,y,其面积为2,则y与x之间的关系用图象表示大致为()A.B.C.D.【考点】反比例函数的应用.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4∴y=(x>0,y>0)故选:C.4.为了支援地震灾区学生,学校开展捐书活动,以下是某学习小组5名学生捐书的册数:3,9,3,7,8,则这组数据的中位数是()A.3 B.7 C.8 D.9【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有5个,故中位数是按从小到大排列后第3个数作为中位数,故这组数据的中位数是7.故选B.5.若一个正多边形的每个内角都为135°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】首先根据三角形的内角算出外角度数,再根据正多边形的外角和为360°,算出边数即可.【解答】解:∵一个正多边形的每个内角都为135°,∴此多边形的每一个外角是:180°﹣135°=45°,∴这个正多边形的边数是:360°÷45°=8,故答案为:B.6.如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(﹣4,2)C.(﹣1,5)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据平移的性质,点P(﹣1,2)向右平移3个单位长度,其横坐标加3,纵坐标不变,可得出坐标.【解答】解:根据平移的性质,∵点P(﹣1,2)向右平移3个单位长度,∴横坐标为﹣1+3=2,纵坐标不变,平移后的坐标为(2,2).故选A.7.下列说法错误的是()A.平行四边形的对角相等B.正方形的对称轴有四条C.矩形既是中心对称图形又是轴对称图形D.菱形的对角线相等且互相平分【考点】中心对称图形;平行四边形的性质;菱形的性质;矩形的性质;正方形的性质;轴对称图形.【分析】给人家平行四边形的性质,正方形的对称性,矩形的对称性以及菱形的性质对各选项分析判断即可得解.【解答】解:A、平行四边形的对角相等,正确,故本选项错误;B、正方形的对称轴有四条,正确,故本选项错误;C、矩形既是中心对称图形又是轴对称图形,正确,故本选项错误;D、菱形的对角线相等且互相平分,错误,菱形的对角线不一定相等,故本选项正确.故选D.8.如图是小明用八块小正方体搭的积木,该几何体的俯视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到从上往下2行的个数依次为3,2.故选D.9.同一时刻,身高1.72m的小明在阳光下影长为0.86米;小宝在阳光下的影长为0.64m,则小宝的身高为()A.1.28m B.1.13m C.0.64m D.0.32m【考点】平行投影.【分析】设小宝的身高为xm,利用在同一时刻,物体的高度与在阳光下的影长成正比得到x:0.64=1.72:0.86,然后利用比例性质求出x即可.【解答】解:设小宝的身高为xm,根据题意得x:0.64=1.72:0.86,解得x=1.28,即小宝的身高为1.28m.故选A.10.不等式组的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x>﹣2,解不等式②,得x>6,所以不等式的解集是x>6.故选A.11.如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2) B.对称轴是直线x=lC.开口方向向上 D.当x>1时,y随x的增大而减小【考点】二次函数的性质.【分析】根据抛物线的解析式得出顶点坐标是(1,﹣2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x>1时,y随x的增大而增大,根据结论即可判断选项.【解答】解:∵抛物线y=(x﹣1)2﹣2,A、因为顶点坐标是(1,﹣2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.故选D.12.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sinα=()A.B.C.D.【考点】解直角三角形;正方形的性质.【分析】过D作EF⊥l1,交l1于E,交l4于F,易证△ADE≌△DCF,可得∠α=∠CDF,DE=CF.在Rt△DCF中,利用勾股定理可求CD,从而得出sin∠CDF,即可求sinα.【解答】解:过D作EF⊥l1,交l1于E,交l4于F,∵EF⊥l1,l1∥l2∥l3∥l4,∴EF和l2,l3,l4的夹角都是90°,即EF与l2,l3,l4都垂直,∴DE=1,DF=2.∵四边形ABCD是正方形,∴∠ADC=90°,AD=CD,∴∠ADE+∠CDF=90°,又∵∠α+∠ADE=90°,∴∠α=∠CDF,∵AD=CD,∠AED=∠DFC=90°,∴△ADE≌△DCF,∴DE=CF=1,∴在Rt△CDF中,CD==,∴sinα=sin∠CDF===.故选:B.二、填空题:本题共6个小题,每小题3分,共18分.13.﹣2的相反数等于 2 .【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣2的相反数是2,故答案为:2.14.分解因式:a﹣ab2= a(1+b)(1﹣b).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:原式=a(1﹣b2)=a(1+b)(1﹣b).故答案为:a(1+b)(1﹣b).15.第十届全国中学生运动会于2009年8月16日在长沙开幕,举行开幕式的贺龙体育场共有48000个座位,这个数用科学记数法表示为 4.8×104个.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将48 000用科学记数法表示为4.8×104个.16.一斜坡的坡度为1:2,一辆汽车的最大爬坡坡角为30°,则该汽车可以爬上该坡(填可以或不可以).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据正切的定义进行计算,比较斜坡的坡度与最大爬坡坡度的大小即可.【解答】解:设斜坡的坡角为α,tanα=,tan30°=,∵<,∴该汽车可以爬上该坡,故答案为:可以.17.如图,在⊙O中,,∠A=40°,则∠B= 70 度.【考点】圆心角、弧、弦的关系;等腰三角形的性质.【分析】先利用“在同圆中等弧所对的弦也相等”得到AB=AC即△ABC是等腰三角形,则∠B可得.【解答】解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=÷2=70°.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【考点】三角形内角和定理.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.三、解答题:本题共8小题,共66分.19.计算:2﹣1+•tan30°﹣(π﹣2014)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算即可得到结果.【解答】解:原式=+×﹣1=.20.已知x=﹣,求(1﹣)÷的值.【考点】分式的化简求值.【分析】先将分式化简,然后代入x的值即可求出答案.【解答】解:原式=[1﹣]÷=×=,当x=﹣,∴原式==﹣.21.我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)【考点】列表法与树状图法;全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.【解答】解:(1)王老师采取的调查方式是抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.故答案为:抽样调查.22.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)在证明△BEC≌△DEC时,根据题意知,运用SAS公理就行;(2)根据全等三角形的性质知对应角相等,即∠BEC=∠DEC=∠BED,又由对顶角相等、三角形的一个内角的补角是另外两个内角的和求得∠EFD=∠BEC+∠CAD.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.∴在△BEC与△DEC中,∴△BEC≌△DEC(SAS).(2)解:∵△BEC≌△DEC,∴∠BEC=∠DEC=∠BED.∵∠BED=120°,∴∠BEC=60°=∠AEF.∴∠EFD=60°+45°=105°.23.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?【考点】二元一次方程组的应用.【分析】(1)设甲、乙班组平均每天掘进x米,y米,根据已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米两个关系列方程组求解.(2)由(1)和在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米分别求出按原来进度和现在进度的天数,即求出少用天数.【解答】解:(1)设甲、乙班组平均每天掘进x米,y米,得,解得.∴甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=÷(4.8+4.2)=190(天)b=÷(4.8+0.2+4.2+0.3)=180(天)∴a﹣b=10(天)∴少用10天完成任务.24.已知:在Rt△ABD中,∠ABD=90°,以直角边AB为直径作圆O交AD于C,取线段BD 的中点E,连接CE交AB的延长线于P.(1)求证:CP是⊙O的切线;(2)点M是弧的中点,CM交AB于点N,若AB=4,求MN•MC的值.【考点】切线的判定;圆心角、弧、弦的关系.【分析】(1)连接OC、BC,即可得∠ACB=∠BCD=90°,由E是BD中点知CE=BD=BE,即∠ECB=∠EBC,再根据∠OBC=∠OCB,可得∠OBC+∠EBC=∠OCB+∠ECB,即∠PCO=∠ABD=90°,从而得证;(2)连接MA、MB,可得∠ACM=∠BCM=∠MAN,由∠AMC=∠AMN可判定△AMC∽△NMA,得出=即AM2=MN•CM,再根据再等腰直角三角形ABM中AB=4可得AM的长,即可得答案.【解答】解:(1)连接OC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BCD=90°,∴△BCD是直角三角形,∵E是BD中点,∴CE=BD=BE,∴∠ECB=∠EBC,又∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠EBC=∠OCB+∠ECB,即∠PCO=∠ABD=90°,又∵OC是⊙O的半径,∴CP是⊙O的切线;(2)连接MA、MB,∵点C是弧AB的中点,∴∠ACM=∠BCM,∵∠MAN=∠BCM,∴∠MAN=∠ACM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴=,即AM2=MN•CM,∵∠ACM=∠BCM,∴AM=BM,∵AB=4,∴AM=2,∴MN•MC=(2)2=8.25.已知关于x的二次函数y=x2﹣2mx+m2+m的图象与直线y=kx+1.(1)若k=1,求证:无论m为何值,二次函数图象与直线总有两个不同交点.(2)在(1)条件下,若两图象交于两点A、B,试证明AB的长为定值,并求出这个定值.(3)当m=0,设两图象交于两点A(x1,y1),B(x2,y2),原点为O,无论k为何值时,猜想△AOB的形状,并证明你的猜想.【考点】二次函数综合题.【分析】(1)令k=1,联立y=x2﹣2mx+m2+m和y=x+1可得x2﹣(2m+1)x+m2+m﹣1=0,求出方程的根的判别式,进而结论可证明;(2)当k=1,m为任何值时,联立,得x2﹣(2m+1)x+m2+m﹣1=0,根据一元二次方程根与系数的关系得到x1+x2=2m+1,x1•x2=m2+m﹣1,同(1)的方法,可求出AB=;(3)当m=0,k为任意常数时,分三种情况讨论:①当k=0时,由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当k=1时,联立,得x2﹣x﹣1=0,根据一元二次方程根与系数的关系得到x1+x2=1,x1•x2=﹣1,同(1)求出AB=,则AB2=10,运用两点间的距离公式及完全平方公式求出OA2+OB2=10,由勾股定理的逆定理判定△AOB为直角三角形;③当k为任意实数时,联立,得x2﹣kx﹣1=0,根据一元二次方程根与系数的关系得到x1+x2=k,x1•x2=﹣1,根据两点间距离公式及完全平方公式求出AB2=k4+5k2+4,OA2+OB2═k4+5k2+4,由勾股定理的逆定理判定△AOB为直角三角形.【解答】解:(1)∵关于x的二次函数y=x2﹣2mx+m2+m的图象与直线y=kx+1,其中k=1,∴x2﹣2mx+m2+m=x+1,即x2﹣(2m+1)x+m2+m﹣1=0,∴△=(2m+1)2﹣4(m2+m﹣1),即△=5>0,∴方程x2﹣(2m+1)x+m2+m﹣1=0,有两不相等的实数根,∴无论m为何值,二次函数图象与直线总有两个不同的交点;(2)由,得x2﹣(2m+1)x+m2+m﹣1=0,∴x1+x2=2m+1,x1•x2=m2+m﹣1,∴AB=AC=|x2﹣x1|==;(3)当m=0,k为任意常数时,△AOB为直角三角形,理由如下:①当k=0时,则函数的图象为直线y=1,由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当k=1时,则一次函数为直线y=x+1,由,得x2﹣x﹣1=0,∴x1+x2=1,x1•x2=﹣1,∴AB=AC=|x2﹣x1|==;∴AB2=10,∵OA2+OB2=x12+y12+x22+y22=x12+x22+y12+y22=x12+x22+(x1+1)2+(x2+1)2=x12+x22+(x12+2x1+1)+(x22+2x2+1)=2(x12+x22)+2(x1+x2)+2=2(1+2)+2×1+2=10,∴AB2=OA2+OB2,∴△AOB是直角三角形;③当k为任意实数,△AOB仍为直角三角形.由,得x2﹣kx﹣1=0,∴x1+x2=k,x1•x2=﹣1,∴AB2=(x1﹣x2)2+(y1﹣y2)2=(x1﹣x2)2+(kx1﹣kx2)2=(1+k2)(x1﹣x2)2=(1+k2)[(x1+x2)2﹣4x1•x2]=(1+k2)(4+k2)=k4+5k2+4,∵OA2+OB2=x12+y12+x22+y22=x12+x22+y12+y22=x12+x22+(kx1+1)2+(kx2+1)2=x12+x22+(k2x12+2kx1+1)+(k2x22+2kx2+1)=(1+k2)(x12+x22)+2k(x1+x2)+2=(1+k2)(k2+2)+2k•k+2=k4+5k2+4,∴AB2=OA2+OB2,∴△AOB为直角三角.26.如图1,直线y=x﹣b与抛物线y=﹣x2交于A(﹣4,﹣4)和B两点,与y轴交于点C.(1)求b的值及B点的坐标;(2)若以AB为直径的圆与直线x=m有公共点,求m的取值范围;(3)如图2,把抛物线向右平移2个单位,再向上平移n个单位(n>0),抛物线与x轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值的情况?若存在,请求出这个最小值和此时n的值,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先将点A坐标代入直线解析式中,求出b,然后联立直线和抛物线解析式即可求出点B坐标;(2)由点A,B求得圆的圆心设为点O,由AB的长度求得圆半径而得到圆方程,代入x=m 求判别式≥0即可.(3)由抛物线平移后为:y=﹣(x﹣2)2+n,其对称轴是x=2.由于过P、Q的圆的圆心必在对称轴上,要使圆的面积最小,则圆的半径要最小,即点C到圆心的距离要最短,过C 作CE垂直抛物线的对称轴,垂足为E,则符合条件的圆是以E为圆心,EC长为半径的圆,求得圆的面积和n的值.【解答】解:(1)将A(﹣4,﹣4)代入y=x﹣b中,得,﹣4=×(﹣4)﹣b,∴b=1,∴直线AB解析式为:y=x﹣1∴由题意:,解得:x2+3x﹣4=0,即x=﹣4或x=1.代入求得y=﹣4或﹣,或,即点B(1,﹣),(2)由(1)知,A(﹣4,﹣4),B(1,﹣),∴AB==;A,B中点即圆的圆心点O为(﹣,﹣),∴半径=AB=,∵以AB为直径的圆与x=m②有公共点,∴﹣﹣≤m≤﹣+,即﹣≤m≤;(3)设抛物线平移后为:y=﹣(x﹣2)2+n.存在.理由如下:抛物线平移后为:y=﹣(x﹣2)2+n,其对称轴是x=2.由于过P、Q的圆的圆心必在对称轴上,要使圆的面积最小,则圆的半径要最小,即点C到圆心的距离要最短,过C作CE垂直抛物线的对称轴,垂足为E,则符合条件的圆是以E为圆心,EC长为半径的圆,其面积为4π,n的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖南省中考直升数学试卷(2)一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数()A.4 B.﹣4 C.D.﹣2.下列运算正确的是()A.a2•a3=a6B.a6÷a5=a C.(﹣a2)4=a6D.a2+a3=a53.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于()A.B.C.D.4.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形5.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.6.抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)7.如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60° C.50° D.40°8.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<19.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.510.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30° B.25° C.20° D.15°11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.312.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8二、填空题:共6小题,每小题3分,共18分.13.点P(2,﹣3)关于x轴的对称点坐标为.14.已知x2﹣2x﹣4=0,则2x﹣x2+1= .15.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.16.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= .17.如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为.18.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)三、解答题:19、20各6分,21、22各8分,23、24各9分,25、26各10分.19.计算:(﹣1)2018+|﹣2|+tan30°+.20.解分式方程: +=﹣1.21.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.(1)求证:EF=EC;(2)若AD=2AB,求∠FDC.23.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.25.阅读下列材料并解答:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:<π>= (π为圆周率);(2)求满足<x>=x的所有非负实数x的值;(3)设n为常数,且为正整数,函数y=x2﹣x+的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a;满足<>=n的所有整数k的个数记为b.求证:a=b=2n.26.如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x 轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.2018年湖南师大附中学中考直升数学试卷(2)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数()A.4 B.﹣4 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣4的相反数4.故选:A.2.下列运算正确的是()A.a2•a3=a6B.a6÷a5=a C.(﹣a2)4=a6D.a2+a3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据同底数幂的除法,可判断B;根据积的乘方,可判断C;根据同底数幂的乘法,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、积的乘方等于乘方的积,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=.∴cosA=,故选:D.4.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形【考点】命题与定理.【分析】分别利用矩形、菱形、正方形及平行四边形的判定方法判定后即可确定正确的选项.【解答】解:A、对角线互相平分且相等的四边形是平行四边形,故A错;B、对角线互相平分的四边形是平行四边形,故B错;C、对角线互相平分且垂直的四边形是菱形,故C错;D、对角线互相垂直平分且相等的四边形是正方形,故D错误;故选B.5.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.【考点】一次函数图象与系数的关系;在数轴上表示不等式的解集.【分析】根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.【解答】解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选:C.6.抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点式的坐标特点求顶点坐标.【解答】解:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.7.如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60° C.50° D.40°【考点】平行线的性质.【分析】先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.【解答】解:∵∠CDE=140°,∴∠ADC=180°﹣140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.8.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1【考点】反比例函数的性质.【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【解答】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选:A.9.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.5【考点】菱形的性质.【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【解答】解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.10.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30° B.25° C.20° D.15°【考点】切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.3【考点】旋转的性质.【分析】利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B 是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.12.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8【考点】二次函数与不等式(组).【分析】根据对称轴求出b的值,从而得到x=﹣1、4时的函数值,再根据一元二次方程x2+bx ﹣t=0(t为实数)在﹣1<x<4的范围内有解相当于y=x2+bx与y=t在x的范围内有交点解答.【解答】解:对称轴为直线x=﹣=1,解得b=﹣2,所以,二次函数解析式为y=x2﹣2x,y=(x﹣1)2﹣1,x=﹣1时,y=1+2=3,x=4时,y=16﹣2×4=8,∵x2+bx﹣t=0相当于y=x2+bx与直线y=t的交点的横坐标,∴当﹣1≤t<8时,在﹣1<x<4的范围内有解.故选:C.二、填空题:共6小题,每小题3分,共18分.13.点P(2,﹣3)关于x轴的对称点坐标为(2,3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为(2,3),故答案为:(2,3).14.已知x2﹣2x﹣4=0,则2x﹣x2+1= ﹣3 .【考点】代数式求值.【分析】原式前两项提取﹣1变形后,将已知等式变形代入计算即可求出值.【解答】解:∵x2﹣2x﹣4=0,即x2﹣2x=4,∴原式=﹣(x2﹣2x)+1=﹣4+1=﹣3.故答案为:﹣3.15.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是88 分.【考点】加权平均数.【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.16.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= 4.【考点】垂径定理;圆周角定理.【分析】先根据圆周角定理求出∠C的度数,再由CD⊥AB可知∠CEB=90°,CD=2CE,由直角三角形的性质求出BC的长,根据勾股定理求出CE的长,进而可得出结论.【解答】解:∵∠BAD=30°,BE=2,∴∠C=∠BAD=30°.∵CD⊥AB,∴∠CEB=90°,CD=2CE,∴BC=2BE=4,∴CE===2,∴CD=2CE=4.故答案为:4.17.如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为16 .【考点】相似三角形的判定与性质.【分析】根据题意可判定△AEF∽△ABC,利用面积比等于相似比平方可得出△ABC的面积,继而根据S四边形EBCF=S△ABC﹣S△AEF,即可得出答案.【解答】解:∵,∴EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∴S△ABC=18,则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16.故答案为:16.18.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【考点】圆锥的计算;由三视图判断几何体.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.三、解答题:19、20各6分,21、22各8分,23、24各9分,25、26各10分.19.计算:(﹣1)2018+|﹣2|+tan30°+.【考点】实数的运算;特殊角的三角函数值.【分析】原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,最后一项分母有理化,计算即可得到结果.【解答】解:原式=﹣1+2﹣++=1.20.解分式方程: +=﹣1.【考点】解分式方程.【分析】解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣(x+2)2+16=4﹣x2,去括号得:﹣x2﹣4x﹣4+16=4﹣x2,解得:x=2,经检验x=2是增根,分式方程无解.21.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)先列表展示所有可能的结果数为16,再找出两次摸取纸牌上数字之和为5的结果数,然后根据概率的概念计算即可;(2)从表中找出两次摸出纸牌上数字之和为奇数的结果数和两次摸出纸牌上数字之和为偶数的结果数,分别计算这两个事件的概率,然后判断游戏的公平性.【解答】解:根据题意,列表如下:由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有16种,它们出现的可能性相等.(1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)==;(2)这个游戏公平,理由如下:∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)==,两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)==,∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.22.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.(1)求证:EF=EC;(2)若AD=2AB,求∠FDC.【考点】矩形的性质;全等三角形的判定与性质;角平分线的性质.【分析】(1)由矩形的性质得出∠B=∠ADC=90°,AD=BC,AD∥BC,得出∠AEB=∠DAF,由AAS证明△ABE≌△DFA,得出BE=AF,即可得出结论;(2)先证出∠AEB=30°,再由角的互余关系即可求出∠FDC的度数.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠ADC=90°,AD=BC,AD∥BC,∴∠AEB=∠DAF,∵DF⊥AE,∴∠AFD=90°,在△ABE和△DFA中,,∴△ABE≌△DFA(AAS),∴BE=AF,∵AE=AD,∴AE=BC,∴AE﹣AF=BC﹣BE,即EF=EC;(2)解:∵AD=2AB,∴AE=2AB,∴∠AEB=30°,∴∠DAF=30°,∴∠ADF=60°,∴∠FDC=90°﹣60°=30°.23.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【考点】二次函数的应用.【分析】(1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据z=(x﹣20)y﹣40得出z与x的函数关系式,求出即可;(3)首先求出40=﹣(x﹣50)2+50时x的值,进而得出x(元/个)的取值范围.【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣ [(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.24.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.【考点】切线的判定与性质;相似三角形的判定与性质;解直角三角形.【分析】(1)连接OC,先证明△OCE≌△OBE,得出EB⊥OB,从而可证得结论.(2)过点D作DH⊥AB,根据sin∠ABC=,可求出OD=6,OH=4,HB=5,然后由△ADH∽△AFB,利用相似三角形的性质得出比例式即可解出BF的长.【解答】证明:(1)连接OC,∵OD⊥BC,∴∠COE=∠BOE,在△OCE和△OBE中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,∵OB是⊙O半径,∴BE与⊙O相切.(2)过点D作DH⊥AB,连接AD并延长交BE于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90°,∴△ODH∽△OBD,∴==又∵sin∠ABC=,OB=9,∴OD=6,易得∠ABC=∠ODH,∴sin∠ODH=,即=,∴OH=4,∴DH==2,又∵△ADH∽△AFB,∴=, =,∴FB=.25.阅读下列材料并解答:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:<π>= 3 (π为圆周率);(2)求满足<x>=x的所有非负实数x的值;(3)设n为常数,且为正整数,函数y=x2﹣x+的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a;满足<>=n的所有整数k的个数记为b.求证:a=b=2n.【考点】二次函数综合题.【分析】(1)π的十分位为1,应该舍去,所以精确到个位是3;(2)x为整数,设这个整数为k,易得这个整数应在应在k﹣和k+之间,包括k﹣,不包括k+,求得整数k的值即可求得x的非负实数的值;(3)易得二次函数的对称轴,那么可求得二次函数的函数值在相应的自变量的范围内取值,进而求得相应的a的个数;利用所给关系式易得的正整数个数为2n,由此得证.【解答】(1)解:因为π≈3.14,所以四舍五入后的个位数为3.故答案是:3;(2)解:∵x ≥0, x 为整数,设x=k ,k 为整数,则x=k ,∴<k >=k ,∴k ﹣≤k ≤k+,k ≥0,∵O ≤k ≤2,∴k=0,1,2,∴x=0,,.(3)证明:∵函数y=x2﹣x+=(x ﹣)2,n 为整数,当n ≤x <n+1时,y 随x 的增大而增大,∴(n ﹣)2≤y <(n+1﹣)2,即(n ﹣)2≤y <(n+)2,①∴n 2﹣n+≤y <n 2+n+,∵y 为整数,∴y=n 2﹣n+1,n 2﹣n+2,n 2﹣n+3,…,n 2﹣n+2n ,共2n 个y ,∴a=2n ,②∵k >0,<>=n ,则n ﹣≤<n+, ∴(n ﹣)2≤k <(n+)2,③比较①,②,③得:a=b=2n .26.如图,二次函数y=a (x 2﹣2mx ﹣3m 2)(其中a ,m 是常数,且a >0,m >0)的图象与x 轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴交于C (0,﹣3),点D 在二次函数的图象上,CD ∥AB ,连接AD ,过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2)求证:为定值; (3)设该二次函数图象的顶点为F ,探索:在x 轴的负半轴上是否存在点G ,连接GF ,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由C在二次函数y=a(x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.(2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x 轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.(3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且(2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.【解答】(1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2),解得 a=.(2)方法一:证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a(x2﹣2mx﹣3m2)=0,解得 x1=﹣m,x2=3m,则 A(﹣m,0),B(3m,0).∵CD∥AB,∴D点的纵坐标为﹣3,又∵D点在抛物线上,∴将D点纵坐标代入抛物线方程得D点的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(x,),∴=,∴x=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.方法二:过点D、E分别作x轴的垂线,垂足为M、N,∵a(x2﹣2mx﹣3m2)=0,∴x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0),∵CD∥AB,∴D点的纵坐标为﹣3,∴D(2m,﹣3),∵AB平分∠DAE,∴K AD+K AE=0,∵A(﹣m,0),D(2m,﹣3),∴K AD==﹣,∴K AE=,∴⇒x2﹣3mx﹣4m2=0,∴x1=﹣m(舍),x2=4m,∴E(4m,5),∵∠DAM=∠EAN=90°∴△ADM∽△AEN,∴,∵DM=3,EN=5,∴.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴,∵OC=3,HF=4,OH=m,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.。

相关文档
最新文档