实数知识点总结
实数知识点总结
实数知识点总结实数是数学中一个非常重要的概念,它涵盖了整数、有理数和无理数等各种数的集合。
在数学学习中,掌握实数的性质和运算规律是非常基础的一部分。
接下来,我将就实数的知识点进行总结。
一、实数的分类实数可以分为有理数和无理数两大类。
有理数是可以用两个整数的比表达的数,包括正整数、负整数、零和分数等。
无理数则是不能用有理数的比表示的数,如根号2、圆周率π等。
二、实数的性质1. 实数的排列顺序性:对于任意两个不相等的实数a和b,必然有a<b或b<a成立。
2. 实数的稠密性:对于任意两个实数a和b(a<b),必然存在另一个实数c,使得a<c<b。
3. 实数的加法性质:对于任意的实数a、b和c,满足结合律、交换律和去括号律。
4. 实数的乘法性质:对于任意的实数a、b和c,满足结合律、交换律和去括号律。
5. 实数的分配性:对于任意的实数a、b和c,满足乘法对加法的左和右分配律。
三、实数的运算规律1. 实数的加法运算:对于任意的实数a、b和c,有以下规律成立:- 结合律:(a+b)+c=a+(b+c)- 交换律:a+b=b+a- 零元素:存在一个实数0,使得a+0=a- 负元素:对于任意的实数a,存在一个实数-b,使得a+(-b)=02. 实数的乘法运算:对于任意的实数a、b和c,有以下规律成立:- 结合律:(a*b)*c=a*(b*c)- 交换律:a*b=b*a- 单位元素:存在一个实数1(不等于0),使得a*1=a- 倒数:对于任意的非零实数a,存在一个实数1/a,使得a*(1/a)=13. 实数的幂运算:对于任意的实数a和b,有以下规律成立:- a^0=1,其中a不等于0。
- 0^b=0,其中b不等于0。
- a^1=a- a^(-b)=1/(a^b),其中a不等于0。
四、实数的大小比较1. 对于正数a和正数b,若a<b,则-a>-b成立。
2. 对于正数a、b和正数x,若a<b,则ax<bx成立,若a>b,则ax>bx成立。
实数知识点总结(非常有用)
第一章 实数(非常有用)考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有3类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
==a a 2 ;注意a 的双重非负性:3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
人教实数知识点总结
人教实数知识点总结一、实数的定义实数是数学中最基本的数集,代表着所有的数字。
它包括了有理数和无理数两大类。
1. 有理数:有理数是可以表示为两个整数的比值的数,包括整数、分数和有限小数。
有理数可以用二分数或十进制小数形式表示。
2. 无理数:无理数是不能表示为两个整数的比值的数,例如π和e。
无理数不能用有限的小数或分数来表示,且其小数部分是无限不循环的。
实数的性质1. 加法性质:实数的加法满足交换律、结合律、零元素和加法逆元素。
2. 乘法性质:实数的乘法满足交换律、结合律、单位元素和乘法逆元素。
3. 分配律:实数的加法和乘法满足分配律。
4. 有序性:实数集上存在一个大小关系,成为大小关系,任意两个实数a和b,有且仅有下列三种情况:a小于b,a等于b,a大于b。
实数的运算1. 加法和减法:实数的加法和减法使用标准的运算法则,对两个实数进行相加或相减即可。
2. 乘法和除法:实数乘法和除法也使用标准的运算法则,对两个实数进行相乘或相除即可。
3. 指数和对数:实数的指数和对数运算可以用于快速计算大数的乘积或幂次。
4. 开平方和立方根:实数的开平方和立方根是指找出一个数的平方或者立方是给定的数。
5. 复合运算:实数的运算中可以进行复合运算,即将多个运算符合在一起进行计算。
实数的区间实数的区间是指一个包含实数的范围,可以用不等式表示。
常见的区间包括开区间、闭区间、半开区间等。
1. 开区间:开区间是指不包括端点的区间,用(a, b)表示,表示a到b之间的所有实数。
2. 闭区间:闭区间是指包括端点的区间,用[a, b]表示,表示a到b之间的所有实数。
3. 半开区间:半开区间是指只包括一个端点的区间,用[a, b)或者(a, b]表示。
实数的绝对值实数的绝对值是指实数到原点的距离,用|a|表示,表示a到0的距离。
对于正数,它的绝对值就是自身;对于负数,它的绝对值就是其相反数。
绝对值满足三角不等式,即|a + b| ≤ |a| + |b|。
关于实数知识点总结
关于实数知识点总结一、实数的定义实数是指包括所有正数、负数、零,以及所有有理数和无理数的数集。
在数轴上,实数用来表示长度、面积、体积、温度等物理量。
1. 有理数:在有理数集中,包括整数和分数的集合。
例如,2,-5,3/4等都是有理数。
2. 无理数:无理数是指不能表示为两个整数的比值的实数。
例如,根号2,π,e等都是无理数。
二、实数的表示实数可以用数轴来表示,数轴是一个平直的线段,上面标有零点和正负无穷大。
在数轴上,实数可以用点来表示,点的位置与实数的大小对应。
1. 正数:在数轴上,正数表示为右边的点,如1、2、3等。
2. 负数:在数轴上,负数表示为左边的点,如-1、-2、-3等。
3. 零:零表示为数轴上的原点。
实数还可以用分数、小数等形式表示,例如1/3、0.5、-2.7等都是实数的一种表示方式。
三、实数的运算1. 实数的加法:实数的加法满足交换律和结合律,即对任意实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c)。
加法的逆元是减法,任意实数a,存在一个实数-b,使得a+(-b)=0。
2. 实数的减法:实数的减法可以看作加法的逆运算,即a-b=a+(-b)。
3. 实数的乘法:实数的乘法也满足交换律和结合律,即对任意实数a、b、c,有a*b=b*a,(a*b)*c=a*(b*c)。
乘法的逆元是除法,任意非零实数a,存在一个实数1/a,使得a*(1/a)=1。
4. 实数的除法:实数的除法可以看作乘法的逆运算,即a/b=a*(1/b)。
四、实数的性质1. 实数的稠密性:在实数轴上,任意两个不相等的实数之间都存在其他实数,即任意实数a、b,若a<b,则存在实数c,使得a<c<b。
2. 实数的有序性:实数可以按大小进行比较,任意两个实数a、b,满足且仅满足下列三种关系之一:a=b,a<b,a>b。
3. 实数的完备性:实数满足柯西收敛准则,任意柯西数列都收敛于某一实数。
(完整版)第六章实数知识点总结
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“a”。
(2)a(a≥0)的平方根的符号表达为。
(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
高中实数知识点总结
高中实数知识点总结一、实数的概念实数是最基本的数,包括有理数和无理数。
有理数包括整数、分数和小数。
无理数是不能用有限位数或循环小数表示的数,如π和√2等。
二、实数的分类1. 正数:大于0的数。
2. 负数:小于0的数。
3. 零:与正数和负数不同的数。
三、实数的运算1. 加法:实数相加的结果仍是实数。
2. 减法:实数相减的结果仍是实数。
3. 乘法:实数相乘的结果仍是实数。
4. 除法:实数相除的结果有可能是有理数也有可能是无理数。
四、实数的绝对值1. 正数的绝对值是它本身。
2. 负数的绝对值是它的相反数。
3. 绝对值的性质:非负性、零的绝对值、绝对值的加法和乘法。
五、实数的比较1. 实数的大小关系:大小于、大于等于、小于等于、等于。
2. 利用实数的性质比较大小:绝对值比较、小数比较、倒数比较。
六、实数的近似数1. 由于实数是无限的,所以实数通常用近似数表示。
2. 近似方法:四舍五入、截取法。
七、实数的分数表示1. 有理数可以用分数形式表示。
2. 分数的性质:分数的加减、分数的乘除、倒数的分数表示、分数的约分和通分。
八、实数的小数表示1. 有理数也可以用小数形式表示。
2. 小数的表示方法:有限小数、循环小数。
九、实数集1. 自然数集:由1, 2, 3...组成。
2. 整数集:包括正整数和负整数以及0。
3. 有理数集:包括整数、分数和小数。
4. 实数集:包括有理数和无理数。
十、实数的乘方1. 正整数指数的乘方。
2. 负整数指数的乘方。
3. 零次幂和一次幂。
十一、实数的根1. 平方根和立方根的概念。
2. 有理数的根。
3. 无理数的根。
十二、实数的应用1. 实数在生活中的应用。
2. 实数在数学中的应用。
综上所述,实数是我们数学中最为基本的概念之一,它贯穿了整个数学学科的方方面面。
掌握实数的知识对我们理解和应用数学具有重要的意义。
希望同学们能够扎实掌握实数的相关知识,好好运用到数学学习和日常生活中。
实数知识点总结
实数知识点总结实数是指包括有理数和无理数的数的集合。
有理数是可以表示为两个整数的比的数,无理数是不能表示为两个整数的比的数。
实数具有以下性质和知识点:1. 实数的分类:- 有理数:可以表示为两个整数的比的数,如整数、分数等。
- 无理数:不能表示为两个整数的比的数,如根号2、圆周率π等。
2. 实数的运算:- 加法和减法:实数的加法和减法满足交换律、结合律和分配律。
- 乘法和除法:实数的乘法和除法满足交换律、结合律和分配律。
除数不能为0。
3. 实数的大小比较:- 实数的大小比较可以用小于号(<)、大于号(>)、小于等于号(≤)、大于等于号(≥)来表示。
- 实数的比较可以根据其对应的小数形式来进行。
4. 实数的绝对值:- 实数的绝对值表示实数到0的距离,用竖杠(|x|)来表示。
- 实数的绝对值满足非负性、正定性和三角不等式。
5. 实数的小数表示:- 实数可以通过小数的形式来表示。
- 小数可以分为有限小数和无限小数。
- 无限小数可以分为循环小数和非循环小数。
6. 实数的有理化:- 实数可以通过有理化的方法转化为有理数的形式。
- 有理化的方法有有理数的开方、通分等。
7. 实数的区间表示:- 实数可以用区间表示。
- 开区间表示为(a, b),表示实数大于a且小于b。
- 闭区间表示为[a, b],表示实数大于等于a且小于等于b。
8. 实数的数轴表示:- 实数可以用数轴表示。
- 数轴上的点与实数一一对应。
9. 实数的连续性:- 实数具有连续性。
- 对于任意两个实数a和b,存在一个实数c,使得a<c<b。
10. 实数的柯西收敛原理:- 实数具有柯西收敛原理。
- 一个实数列是收敛的当且仅当这个数列是柯西数列。
以上是关于实数的基本知识点的总结。
实数的概念与性质在数学的各个领域中都有广泛的应用,对于理解和应用数学知识都具有重要的作用。
(完整版)第六章实数知识点总结
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类r正有理制j「有理数齐零卜有限'卜数和王限1ft环小数宴埶斗L-员有理锁」厂正形里數-1J无理針 y 卜无隔羽厨环4魁L煲无理数」2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如.7,32等;(2)有特定意义的数,如圆周率n或化简后含有n的数,如n +8等;3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60。
等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如°「16是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即厂二,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果疋二农,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
如果二-;,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“.、可”。
(2)a(a>0)的平方根的符号表达为 'l,r: r ' ' o(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式a (石『=立(2。
) =\^ |=' 0—謹口=_並(注慧:遣说明三次根号内的员号可以移到根号外面讣4、开方规律小结(1)若a> 0,则a的平方根是、a, a的算术平方根' a;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;10的平方根和算术平方根都是0 ;23负数没有平方根。
实数知识点详细总结
第4章 实数知识结构:实数1.平方根(1)定义:如果x 2=a(a ≥0),那么x 叫做a 的平方根(1)一个正数有两个平方根,它们互为相反数(2)性质 (2)0的平方根是0(3)负数没有平方根 (3)开平方:求一个数的平方根的运算叫做开平方(4)算术平方根(1)定义:正数a 的正的平方根叫做a 的算术平方根(2)规定:0的算术平方根是0(3)性质:√a 具有双重非负性,即√a ≥0,a ≥0 (5)意义:(√a )2=a(a ≥0)a(a ≥0)√a 2=∣a ∣=-a(a <0)2.立方根(1)定义:如果x 3=a,那么x 叫做a 的立方根(2)性质(1)正数的立方根是正数 (2)0的立方根是0 (3)负数的立方根是负数(3)开立方:求一个数的立方根的运算叫做开立方(4)意义√a 33=a(√a 3)3=a3.实数(1)实数的分类1.按性质 (1)正实数 (2)0 (3)负实数2.按概念(1)有理数(2)无理数-----无限不循环小数(2)实数的性质实数范围内的相反数、倒数、绝对值意义与有理数范围内完全一样 实数与数轴上的点是一一对应关系有理数的大小比较方法在实数范围内仍然适用 与有理数的运算法则、运算律相同4.近似数定义:接近准确数而不等于准确数的数叫做近似数 精确度:常用四舍五入法对近似数进行精确4.1平方根一、平方根的概念及表示拓展延伸:(1)由平方根的意义可知,x=±√a,把x=±√a代入x2=a,得(±√a)2=a(a≥0).(2)当a≥0时,我们说式子√a有意义,当a<0时,式子√a无意义。
二、平方根的性质1.正数有两个平方根,它们互为相反数。
如果a>0,那么a的平方根为±√a2.0有一个平方根,就是0,即√0=03.负数没有平方根三、开平方注意:开平方是求一个非负数的平方根的运算,开平方与平方互为逆运算,只不过一个数的平方是一个数,而一个数(正数)的平方根是一对相反数。
第六章实数知识点总结
第六章实数知识点总结摘要:一、实数的定义与分类1.实数的定义2.实数的分类二、实数的性质与运算1.实数的性质2.实数的运算三、实数与数轴1.数轴的概念2.实数与数轴的关系四、实数的比较与大小1.实数的大小比较2.实数的大小关系五、实数的应用1.实数在数学中的应用2.实数在其他学科中的应用正文:实数是数学中的一个重要概念,它包括有理数和无理数。
实数的定义是指数轴上的点,可以表示为有序对(a,b),其中a 表示点的横坐标,b 表示点的纵坐标。
根据横坐标a 的值,实数可以分为负数、零和正数。
实数的性质包括:1.实数具有连续性,即任意两个实数之间总存在一个实数;2.实数具有完备性,即每个实数都可以用无限接近的有理数表示;3.实数具有可数性,即实数集中的每个元素都可以与自然数集建立一一对应关系。
实数的运算包括加法、减法、乘法、除法、乘方和开方。
这些运算遵循交换律、结合律和分配律等基本运算法则。
实数的运算不仅限于实数,还可以扩展到复数。
实数与数轴有密切的关系。
数轴是一个直线,规定了原点、正方向和单位长度。
实数可以表示为数轴上的点,根据横坐标a 的值,实数可以分为负数、零和正数。
数轴上的点与实数之间的对应关系是一一映射。
实数的大小比较和大小关系是数学中常见的问题。
实数的大小比较遵循“大于一切小于它的数,小于一切大于它的数”的原则。
实数的大小关系可以通过数轴来直观表示。
实数在数学中有广泛的应用,如微积分、实分析等。
实数在其他学科中也有应用,如物理、化学、生物等。
实数的概念、性质和运算等基础知识是解决实际问题的关键。
总之,实数是数学中的一个基本概念,它具有重要的理论意义和实际应用价值。
实数基础知识点总结
实数基础知识点总结一、实数的定义实数是包括有理数和无理数的数集。
有理数是可以表示为两个整数的比的数,例如1/2、2、-3等。
无理数是无法表示为有理数的数,例如π、√2等。
实数包括所有有理数和无理数,用符号R表示。
二、实数的分类1. 有理数有理数包括整数、正整数、负整数、分数等。
整数包括所有的正整数、负整数和0。
有理数可以用分数形式表示,并且有限位或者无限循环小数。
2. 无理数无理数是无法表示为有理数的数。
无理数通常用小数形式表示,且不会出现循环。
典型的无理数包括圆周率π、自然对数底e、开方2、开方3等。
三、实数的性质1. 传递性:对于任意的实数a、b、c,如果a小于b,b小于c,则有a小于c。
2. 对称性:对于任意的实数a、b,如果a等于b,则b等于a。
3. 传统性:对于任意的实数a、b,如果a小于b,则a加上一个正数得到的结果小于b加上这个正数得到的结果。
4. 密度性:在任意两个不相等的实数a、b之间,必然存在有理数和无理数。
四、实数的运算1. 加法运算:实数a与实数b的和等于a加b。
2. 减法运算:实数a与实数b的差等于a减b。
3. 乘法运算:实数a与实数b的积等于a乘b。
4. 除法运算:实数a与实数b的商等于a除b。
5. 幂运算:实数a的n次方等于a自乘n次。
五、实数的绝对值实数a的绝对值是a到原点的距离,记作|a|。
如果a大于0,则|a|等于a;如果a小于0,则|a|等于-a。
六、实数的有序性实数有序,任意两个实数a、b之间可以进行大小比较,即a小于b、a等于b或者a大于b。
七、实数的计算规律1. 加法交换律:对于任意的实数a、b,有a加b等于b加a。
2. 乘法交换律:对于任意的实数a、b,有a乘b等于b乘a。
3. 加法结合律:对于任意的实数a、b、c,有a加b加c等于a加(b加c)。
4. 乘法结合律:对于任意的实数a、b、c,有a乘b乘c等于a乘(b乘c)。
5. 分配律:对于任意的实数a、b、c,有a乘(b加c)等于a乘b加a乘c。
实数常识知识点归纳总结
实数常识知识点归纳总结一、有理数有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。
有理数的性质包括:1. 有理数的加减乘除运算规律;2. 有理数的乘方和开方运算规律;3. 有理数的大小比较和大小关系;4. 有理数的取整和绝对值等基本运算。
二、无理数无理数是不能由两个整数的比值来表示的数,它们是无限不循环的小数。
无理数的性质包括:1. 无理数与有理数的加减乘除运算规律;2. 无理数的乘方和开方运算规律;3. 无理数的大小比较和大小关系;4. 无理数的取整和绝对值等基本运算。
三、实数实数是有理数和无理数的总称,实数的性质包括:1. 实数与实数的加减乘除运算规律;2. 实数的乘方和开方运算规律;3. 实数的大小比较和大小关系;4. 实数的取整和绝对值等基本运算。
四、实数的表示实数可以用各种方式来表示,包括有限小数、循环小数、无限不循环小数和根式等形式。
在表示实数时,需要注意保留足够的有效数字和小数点后的位数。
五、实数的运算实数的加减乘除运算是数学中最基本的运算,要掌握实数的运算规律,包括正负数相加减、乘法法则、除法运算。
另外还有实数的乘方和开方运算,这也是实数的重要运算。
六、实数的大小比较实数的大小比较是数学中的一个重要概念,掌握了实数的大小比较,才能够更好地理解和运用实数。
实数的大小比较包括有理数和无理数的大小比较,以及实数的大小关系。
七、实数的应用实数在数学中有着广泛的应用,包括代数计算、几何运算、函数图像和方程求解等方面。
实数的应用可以帮助我们解决各种数学问题,提高数学运算能力和解题能力。
总结:实数是数学中的一个重要概念,掌握了实数的常识知识点,才能够更好地理解和运用数学知识。
实数的常识知识点包括有理数、无理数、实数的性质、表示、运算、大小比较和应用等方面,需要不断地进行学习和实践,才能够掌握实数的知识,提高数学运算能力。
(完整版)实数知识点总结
(完整版)实数知识点总结1. 实数的定义实数是包括有理数和无理数在内的数的集合。
实数集包含有理数集和无理数集。
2. 有理数的性质有理数是可以表示为两个整数的比值的数。
有理数的性质包括:- 有理数的四则运算性质:加法、减法、乘法和除法。
- 有理数的分数形式,即可以表示为两个整数的比值。
- 有理数可以表示为小数,且小数可以是有限的或无限循环的。
3. 无理数的性质无理数是不能表示为两个整数的比值的数。
无理数的性质包括:- 无理数不能表示为分数形式。
- 无理数的十进制表示是无限不循环的。
- 无理数可以用无限不循环的小数表示,但无法精确表示。
4. 实数的数轴表示实数可以在数轴上表示,数轴上的每个点都对应一个实数。
5. 实数的运算实数的运算包括加法、减法、乘法和除法。
实数的运算满足以下性质:- 交换律:a + b = b + a,a * b = b * a。
- 结合律:(a + b) + c = a + (b + c),(a * b) * c = a * (b * c)。
- 分配律:a * (b + c) = a * b + a * c。
6. 绝对值绝对值是一个数离0的距离,可以用来表示数的大小。
绝对值的性质包括:- 绝对值非负:|a| >= 0。
- 非零数的绝对值大于0:|a| > 0。
- 绝对值的加法:|a + b| <= |a| + |b|。
7. 实数的比较实数可以进行大小比较,实数的比较满足以下性质:- 反身性:a = a。
- 对称性:如果a > b,则b < a。
- 传递性:如果a > b,b > c,则a > c。
8. 实数的区间实数可以按照大小关系分为开区间、闭区间、半开半闭区间等。
区间的边界可以是实数也可以是无穷大。
9. 实数的近似值由于实数的无理数部分是无限不循环的,所以我们一般用近似值来表示实数。
10. 实数的应用实数在数学和科学中有广泛的应用,如在几何中表示线段长度、在物理中表示物体的质量等。
实数的知识点总结
实数的知识点总结实数的性质有很多,包括实数的大小比较、加法、减法、乘法、除法的性质以及实数的有序性、稠密性等。
下面来详细介绍一下实数的这些性质。
1. 实数的大小比较实数的大小比较是指在实数集合中,对实数的大小进行比较。
实数集合中的数可以用数轴上的点来表示,数轴上每个点都对应一个实数。
通过数轴,我们可以直观地比较实数的大小。
如果a和b是实数,那么它们之间有以下关系:(1)a=b,即a等于b;(2)a>b,即a大于b;(3)a<b,即a小于b;实数的大小比较是实数运算和实数不等式研究的基础,是十分重要的。
2. 实数的加法性质实数的加法性质包括交换律、结合律、零元素和加法逆元素等。
具体来说,对于任意实数a、b、c,有以下性质:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)零元素:存在一个实数0,对任意实数a,有a+0=a;(4)加法逆元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。
3. 实数的减法性质实数的减法性质是指实数的减法运算满足的性质。
对于任意实数a、b、c,有以下性质:(1)减法的定义:a-b=a+(-b);(2)减法的性质:a-b=c等价于a=c+b。
4. 实数的乘法性质实数的乘法性质包括交换律、结合律、分配律、单位元素和乘法逆元素等。
具体来说,对于任意实数a、b、c,有以下性质:(1)交换律:a×b=b×a;(2)结合律:(a×b)×c=a×(b×c);(3)分配律:a×(b+c)=a×b+a×c;(4)单位元素:存在一个实数1,对任意实数a,有a×1=a;(5)乘法逆元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。
5. 实数的除法性质实数的除法性质是指实数的除法运算满足的性质。
对于任意实数a、b、c,有以下性质:(1)除法的定义:a÷b=a×(1/b),其中b≠0;(2)除法的性质:a÷b=c等价于a=c×b。
实数知识点总结大全
一、实数的概念及性质1. 实数的定义:实数是指可以用在数轴上表示的数,包括有理数和无理数。
2. 实数的性质:实数具有以下性质:(1)实数集合是一个实数域,它包含了所有实数。
(2)实数是可比较的,即任意两个实数之间可以进行大小比较。
(3)实数是封闭的,对任意两个实数进行加减乘除得到的结果还是实数。
(4)实数满足传递性,即如果a>b,b>c,则a>c。
3. 实数的稠密性:实数的一个重要性质是稠密性,即在任意两个不相等的实数之间,都存在着无穷多个实数。
这意味着实数在数轴上是密密麻麻地分布着的,没有空隙。
4. 实数的有限性:实数作为一种数学对象,是有限的,也就是说,对于任意一个实数,它都可以用有限个操作从某个给定的实数得到。
5. 实数的无限性:实数也具有无限性,例如无理数的小数部分是无限不循环的,这使得实数具有无限性。
二、实数的运算1. 实数的加法:实数的加法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a+(b+c)=(a+b)+c,a+b=b+a,a(b+c)=ab+ac。
2. 实数的减法:实数的减法可以看作加上一个相反数,即a-b=a+(-b)。
3. 实数的乘法:实数的乘法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a(bc)=(ab)c,ab=ba,a(b+c)=ab+ac。
4. 实数的除法:实数的除法满足除法运算的性质,即分子与分母都不为零。
5. 实数的乘方:实数的乘方运算是幂运算的一种特殊形式,即对于实数a和自然数n,有a^n=a*a*...*a(共n个a)。
6. 实数的开方:实数的开方是乘方运算的逆运算,即给定一个实数a,求出另一个实数b,使得b^2=a。
7. 实数的绝对值:实数的绝对值是一个非负的实数,它表示了这个实数到原点的距离,通常用|a|表示。
8. 实数的倒数:对于一个非零实数a,它的倒数是1/a。
1. 实数的大小比较:实数之间可以进行大小比较,对于任意两个实数a和b,有以下比较关系:(1)a>b:表示a大于b。
实数全章知识点总结
实数全章知识点总结1. 实数的定义和性质实数是指所有的正数、负数、零以及所有有理数和无理数的总称,即实数包括有理数和无理数。
有理数是可以用分数表示的数,无理数是不能用分数表示的数,它们的和、差、积和商都是实数。
实数可以用有理数和无理数的集合表示为R={x | x是有理数或无理数}。
实数具有以下性质:(1)实数集合是有序的,即任意两个实数都可以比较大小;(2)实数集合是稠密的,即任意两个不相等的实数之间必定存在有理数和无理数;(3)实数集合是完备的,即实数集合中的任何一个有界非空集合都有上确界和下确界。
2. 实数的运算规则(1)加法与减法:实数的加法和减法满足交换律、结合律和分配律,即对任意的实数a、b和c,有a+b=b+a,a+(b+c)=(a+b)+c,a(b+c)=ab+ac;(2)乘法与除法:实数的乘法和除法满足交换律、结合律和分配律,即对任意的实数a、b和c,有ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac;(3)幂运算:实数的幂运算满足幂运算法则,即对任意的实数a、b和c,有a^0=1,a^1=a,a^m·a^n=a^(m+n),(a^m)^n=a^(mn),(ab)^n=a^n·b^n。
3. 实数的代数式代数式是由实数和各种运算符号组合而成的式子,包括有理数和无理数等。
实数的代数式可以进行加减乘除和幂运算,可以用代数式表示各种数学问题,如方程、不等式和函数等,是数学中非常重要的基本概念之一。
4. 实数的绝对值实数的绝对值是指实数到原点的距离,记作|a|,如果a≥0,则|a|=a,如果a<0,则|a|=-a。
实数的绝对值有以下性质:(1)非负性:对任意的实数a,有|a|≥0;(2)非负性:对任意的实数a,有|a|=0当且仅当a=0;(3)三角不等式:对任意的实数a和b,有|a+b|≤|a|+|b|。
5. 实数的大小关系实数的大小关系是研究实数大小顺序的一门数学理论。
实数的知识点全总结
实数的知识点全总结一、实数的定义实数是指包括有理数和无理数在内的所有实际存在的数。
有理数是可以表示为两个整数的比的数,而无理数是不能表示为两个整数的比的数。
例如,根号2就是一个无理数,它不能被表示为两个整数的比。
实数的定义是数学上一个很基础的定义,但是实数的性质和运算规则却有很多深刻的内容,需要深入研究和探讨。
二、实数的性质1. 实数的闭包性:任意两个实数相加、相减、相乘得到的仍然是一个实数,这就是实数的闭包性。
实数集合对于加法和乘法是封闭的,这也是实数集合与有理数集合的一个重要区别。
2. 实数的稠密性:实数集合是一个稠密集合,任意两个实数之间都存在有理数,也存在无理数。
这就意味着实数集合是一个非常密集的数学概念,包含了所有可能的数。
3. 实数的有序性:实数集合是一个有序集合,任意两个实数都可以进行比较大小。
这是实数集合与无理数集合的一个重要区别,也是实数集合在数学分析中应用广泛的一个性质。
4. 实数的无限性:实数集合是一个无限集合,它包括了所有可能的有理数和无理数。
实数集合的无限性是数学中一个非常重要的概念,它在分析、代数、几何等不同领域都有重要的应用。
5. 实数的稳定性:实数集合是一个稳定的数学概念,它对于加法、乘法、取绝对值等运算都是稳定的。
这也是实数集合与有理数集合的一个重要区别,有理数集合在进行除法运算时往往会出现不稳定的情况。
三、实数的运算规则1. 实数的加法:对于任意两个实数a和b,它们的和a+b也是一个实数。
加法满足交换律、结合律和分配律等运算规则。
2. 实数的减法:对于任意两个实数a和b,它们的差a-b也是一个实数。
减法是加法的逆运算,减法也满足交换律和结合律。
3. 实数的乘法:对于任意两个实数a和b,它们的积ab也是一个实数。
乘法满足交换律、结合律和分配律等运算规则。
4. 实数的除法:对于任意两个实数a和b,如果b不等于0,那么它们的商a/b也是一个实数。
实数的除法是乘法的逆运算,除法满足交换律和结合律。
实数的相关知识点总结
实数的相关知识点总结一、实数的分类根据数轴上的位置,实数可以分为正数、负数和零。
1. 正数:指大于零的实数,通常用正号(+)表示。
2. 负数:指小于零的实数,通常用负号(-)表示。
3. 零:指等于零的实数。
根据是否可以用分数表示,实数可以分为有理数和无理数。
1. 有理数:指可以表示为两个整数的比值的实数,包括整数和分数。
有理数的特点是其小数部分是有限的或者循环的。
2. 无理数:指不能表示为两个整数的比值的实数,其小数部分是无限不循环的。
常见的无理数有π、e和根号2等。
实数还可以分为代数数和超越数。
1. 代数数:指可以是方程的根的实数,即代数方程的解。
例如,整数、分数、无理数都是代数数。
2. 超越数:指不能是任何代数方程的解的实数,即不能用代数表达式表示的实数。
π和e都是超越数的例子。
二、实数的性质1. 实数的比较性质:对于任意两个不相等的实数a和b,要么a>b,要么a<b。
2. 实数的加法性质:对于任意三个实数a、b、c,有加法交换律a+b=b+a和加法结合律(a+b)+c=a+(b+c)。
3. 实数的乘法性质:对于任意三个实数a、b、c,有乘法交换律a×b=b×a和乘法结合律(a×b)×c=a×(b×c)。
4. 实数的分配律:对于任意三个实数a、b、c,有乘法对加法的分配律a×(b+c)=a×b+a×c。
5. 实数的零元素:存在一个实数0,使得对于任意实数a,有a+0=a。
6. 实数的负元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。
7. 实数的乘法单位元素:存在一个实数1,使得对于任意实数a,有a×1=a。
8. 实数的除法单位元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。
9. 实数的绝对值:对于任意实数a,有其绝对值|a|≥0,当a≠0时,|a|就是a的绝对值。
数学实数知识点总结归纳
数学实数知识点总结归纳一、实数的基本概念1.有理数有理数包括整数、分数和负数。
整数包括自然数和零,是没有小数部分的数;分数是一个整数除以另一个整数得到的数,可以用分数形式表示;负数是小于零的数,可以表示为“-”加上一个正数。
2.无理数无理数是不能表示为有理数的数,如根号2、圆周率π等。
这些数不能用有限小数表示,并且不能被表示为两个整数的比例。
3.实数的表示实数可以用小数表示,包括有限小数和无限循环小数。
有限小数是小数部分有限位数的实数,可以用有限位数的小数表示;无限循环小数是小数部分无限位数的实数,可以用循环小数形式表示。
二、实数的运算1.加法和减法实数的加法和减法规则和有理数的运算规则相同,即同号相加、异号相减。
加法和减法的结果仍然是实数。
2.乘法和除法实数的乘法和除法规则和有理数的运算规则相同,即同号相乘得正数,异号相乘得负数。
乘法和除法的结果仍然是实数。
3.乘方和开方实数的乘方和开方是实数的特殊运算,乘方是指一个数自身相乘若干次,开方是指一个数的平方根。
乘方和开方的结果仍然是实数。
三、实数的性质1.实数的代数性质实数包括有理数和无理数,它们满足代数运算的基本性质,如交换律、结合律、分配律等。
2.实数的比较性质实数可以进行大小比较,满足大小比较的基本性质,如传递性、反对称性、三角不等式等。
3.实数的稠密性质实数满足稠密性质,即在任意两个不相等的实数之间,都可以找到一个实数。
四、实数的应用1.实数在数学中的应用实数在数学中的应用非常广泛,涉及到各种数学问题和计算中,如代数、几何、概率、统计等。
2.实数在物理中的应用实数在物理中的应用也非常广泛,涉及到各种物理问题和计算中,如力学、热力学、光学、电磁学等。
3.实数在工程中的应用实数在工程中的应用也非常广泛,涉及到各种工程问题和计算中,如土木工程、机械工程、电子工程、通信工程等。
总之,实数是数学中的一个重要概念,包括有理数和无理数两个部分。
实数在数学、物理、工程等领域都有广泛的应用,掌握实数的相关知识对于提高数学水平和解决实际问题是非常重要的。
实数知识点总结
)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数第一章 实数考点一、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a考点二、实数的概念及分类 (3分)1.实数的分类(1)按实数的定义分类:(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数 2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点三、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 实数
考点一、实数的概念及分类 (3分)
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:
(1)开方开不尽的数,如32,7等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3
π+8等; (3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如s in60o 等(这类在初三会出现)
考点二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正
数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根
1、平方根
如果一个数的平方等于a,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根
正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)
0≥a ==a a 2 ;注意a 的双重非负性:
-a (a <0) a ≥0
3、立方根
如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
把一个数写做n
a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,
,0b a b a >⇔>-
,0b a b a =⇔=- b a b a <⇔<-0
(3)求商比较法:设a 、b 是两正实数,
;1;1;1b a b
a b a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大)
1、加法交换律 a b b a +=+
2、加法结合律 )()(c b a c b a ++=++
3、乘法交换律 ba ab =
4、乘法结合律 )()(bc a c ab =
5、乘法对加法的分配律 ac ab c b a +=+)(
6、实数混合运算时,对于运算顺序有什么规定?
实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,
乘方为三级运算。
同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
7、有理数除法运算法则就什么?
有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
8、什么叫有理数的乘方?幂?底数?指数?
相同因数相乘的积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。
记作: a n
9、有理数乘方运算的法则是什么?
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
10、加括号和去括号时各项的符号的变化规律是什么?
去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。