《世界2》烈焰金刚100%猎杀揭秘

合集下载

发电系统考试L2

发电系统考试L2

ABC
启动用蓄电池电力 不足,处理方法: 更换电力充足的蓄 电池,加装市电充 电器。
启动连接线接错 或者电气接触不 良。处理方法: 检查启动线路是 否正确或牢靠。 或者联系专业维 修公司。
多选
润滑系统主要由()机油散热器、()、 缸盖、油道等组成。 配气系统的主要作用是定时打开和关闭各 汽缸的(),以使燃烧室内进气充足、排 气干净,且达到密封良好的目的。 柴油发电机组在低于额定功率50%的情况 下长期运行会出现( )情况
D
柴油机
发电机
单选
以下对高压油泵叙述错误的是(
)。
D
高压油泵是喷射系 它提高了柴油的 统中最重要的部件 压力
单选 单选 单选 单选
常用柴油发电机的绝缘等级是()。 柴油发电机允许最高温度是()。 功率因素是由( )的性质决定的 已知一台发电机组的额定参数为500kVA 和400kW,则额定无功功率等于
50HZ
100HZ
单选
发电机所带的负荷在使用中保持三相平 衡,最大偏差不得超过( )。
B
0.2
0.25
单选
三相交流发电机感应电动势相位角相差 ()
B
90°
120°
单选
单选 单选
当发电机三相绕组接有三相对称负载时, 在三相对称电动势的作用下,三相电枢绕 组中便流动着三相对称电流。三相对称电 流经三相对称绕组也会产生旋转磁场,其 转速为n0=()。 发电机在额定运行情况下,定子线圈温度 最高不超过() ℃ 在额定负荷下连续运行时,发电机三相电 流之差不超过 ( )%
ABCD
手动机组
自动机组
多选
自启动机组在基本型机组基础上增加自动 控制系统。它具有自动化的功能。当市电 突然停电时,机组能()自动保护告警等 功能。

iso 2409-1992-e)百格测试-中文版)

iso 2409-1992-e)百格测试-中文版)

iso 2409-1992-e)百格测试-中文版).docOil and Varnish - Cross-Cut TestnISO (nal n for n) is an alliance of nal n ns (ISO member ns) from around the world。

The XXX in a subject area for which a technical committee has been established has the right to be XXX。

both governmental and ernmental。

XXX in this work。

ISO works closely with the nal XXX.XXX 75% of XXX.nal Standard ISO 2409 was prepared by the Technical XXX。

mittee SC9 on Paints and Varnishes。

according to general test methods for XXX second XXX (ISO 2409:1972)。

and has been XXX。

The main technical changes in the second n are: in the re。

the cutting XXX and the type of substrate。

and the n of adhesive type on hard substrate is added。

Appendix A is a major component of this nal standard.1Oil and Varnish - Cross-Cut Test1 Scope1.1 This nal standard is one of a series of standards for sampling and testing of paints。

台达变频器使用说明书

台达变频器使用说明书

RA5 RC5
5kohm 2
AVI
RA6
模擬指令
RC6Βιβλιοθήκη 6←1RS-485 串列通信
1 4~20mA
0~10V/5V(47kohm)
4~20mA 模擬信號共同端
ACi1 (250ohm) ACi2 (250ohm)
ACM
RA7 RC7 RA8 RC8
Relay B.D.
*1~4均為選購品
3-1
VFD-F 系列
外型尺寸
VFD055F43A VFD075F43A
150.0 [5.91] 135.0 [5.32]
R2.75[R0.11]
191.7 [7.55]
244.3 [9.63] 272.1 [10.72]
28.0[ 1.10](2X)
34.0[ 1.34](2X)
UNIT : mm(inch)
2-2
8.3 [0.33]
高壓十分危險,請勿觸摸內部電路及零組件。 3. 絕對不可以自行改裝交流電機驅動器內部的零件或線路。 4. 絕不可將交流電機驅動器輸出端子 U/T1、V/T2、W/T3 連接至 AC 電源。
5. 交流電機驅動器端子 務必正確的接地。460V 系列特種接地。
警告!
1. 請勿對驅動器內部的零組件進行耐壓測試,因驅動器所使用的半導體易受高壓擊穿而損壞。 2. 驅動器的電路板有 cmos IC 極易受靜電的破壞,故在未做好防靜電措施前請勿用手觸摸電路
384.0 [15.12] 403.8 [15.90]
28.0[ 1.10] 13.0 [0.51]
42.0[ 1.65](2X)
10.0 [0.39]
2-4
VFD370F43A VFD450F43A VFD550F43A

电力工程第二章例题

电力工程第二章例题

第二章 电力系统各元的参数及等值网络一、电力系统各元件的参数和等值电路2-1 一条110kV 、80km 的单回输电线路,导线型号为LGJ —150,水平排列,其线间距离为4m ,求此输电线路在40℃时的参数,并画出等值电路。

2-1 解:对LGJ —150型号导线经查表得:直径d =17mm Ω=5.31ρmm 2/km于是半径: r =17/2=8.5mm 04.5424433=⨯⨯⨯==ca bc ab m D D D D m=5040mm 单位长度的电阻:/21.01505.3120Ω===Sr ρkm /225.0)]2040(0036.01[21.0)]20(1[2040Ω=-+⨯=-+=t r r αkm单位长度的电抗:/416.00157.05.85040lg 1445.00157.0lg 1445.01Ω=+=+=r D x m km单位长度的电纳:/1073.2105.85040lg 58.710lg 58.76661S r D b m---⨯=⨯=⨯=km集中参数:SL b B L x X L r R 461111018.2801073.23.3380416.01880225.0--⨯=⨯⨯==Ω=⨯==Ω=⨯==S B41009.12-⨯= 2-2 某220kV 输电线路选用LGJ —300型导线,直径为24.2mm,水平排列,线间距离为6m ,试求线路单位长度的电阻、电抗和电纳,并校验是否发生电晕。

2-2 解:查表:LG J —300型号导线 d =24.2mm Ω=5.31ρmm 2/km于是 r =24.2/2=12.1mm 560.762663=⨯⨯⨯=m D m=7560mm单位长度的电阻:/105.03005.311Ω===S r ρkm单位长度的电抗:/42.00157.01.127560lg 1445.01Ω=+=x km单位长度的电纳:/107.2101.127560lg58.7661S b --⨯=⨯=km临界电晕相电压:rDr m m U m cr lg ..3.4921δ=取m 1=1 m 2=0.8 1=δ 时, 42.13321.156.7lg 21.118.013.49=⨯⨯⨯⨯⨯=cr U kV 工作相电压:02.1273/220==U kV习题解图2-118+j33.3Ω10-4S比较知 U <U cr ,不会发生电晕。

动环-动环监控系统-通用-L2

动环-动环监控系统-通用-L2

动环-动环监控系统-通用-L2已切屏次数:1 本卷共150题,总分100分已答:0 未答:150 我要交卷单选(共50分)待检查1、在《中国移动动力环境集中监控系统规范(C接口技术规范分册)》中,C接口为不同层级的()系统之间的数据通讯接口。

A.FSUB.SCC.SSD.SO待检查2、当一个电压信号需要输入IDU-IO通用接口时,需要将IDU-IO的跳线端子()。

A.无需短接,直接接入到端子上即可,内部自动识别B.短接跳线的1、2端子C.无法提供电压输入D.短接跳线的2、3端子待检查3、FSU主动上报动环设备()的配置数据。

A.实时数据B.历史告警C.告警信息D.发生变化待检查统、子网络发生故障时,不影响其他子系统、子网络的运行()。

A.错B.对待检查5、IDU温度测点的设备通道号与配置通道号分别是()。

A.12、11B.15、14C.14、13D.13、12待检查6、测试告警()功能,满足条件的告警在限定的时间内,超出设定的频次才会呈现到告警界面,否则不呈现。

A.工程预约B.告警上报C.主次告警D.翻转待检查7、堡垒主机在IAM系统中起到什么作用?A.图形堡垒,字符日志B.字符堡垒,字符审计C.访问控制,审计日志D.访问控制,字符审计待检查以按告警类型设置告警的延时时长,当设置的延时的告警,告警()产生,但()呈现。

A.延时,实时B.实时,延时C.实时,实时D.延时,延时待检查9、用于华为x86服务器验收、开局以及维护场景的工具是下列哪一项()?A.eSightB.FusionServer Tools uMateC.ManageOneD.FusionServer Tools Toolkit待检查10、不属于OceanStor Toolkit工具的巡检功能的是下面哪一项()?A.提供检查标准及修复建议B.支持升级前的业务状态检查C.支持邮件发送巡检报告D.支持定时巡检待检查11、以下哪个组件是Oracle 11gR2版本GI中新增的重要组件:A.cssB.crsC.ohas待检查12、环形接地体和内部环行导体应连接到钢筋或金属立面等其它屏蔽构件上,宜每隔()米连接一次。

霍尼韦尔 S10010 S20010 A使用说明书

霍尼韦尔 S10010 S20010 A使用说明书

® U.S. Registered TrademarkEN0B-0463GE51 R0418Copyright © 2018 Honeywell Inc. • All rights reservedS10010 / S20010SPRING RETURN DIRECT-COUPLED DAMPER ACTUATORS10/20 Nm (88/177 lb-in) FOR MODULATING AND FLOATING CONTROLPRODUCT DATAGENERALThese direct-coupled damper actuators provide modulating / floating control for: ∙ air dampers, ∙ VAV units, ∙ air handlers, ∙ ventilation flaps, ∙ louvers, and∙ reliable control for air damper applications with up to1.5 m 2 / 16 sq.ft (10 Nm / 88 lb-in) or 4.6 m 2 / 50 sq.ft. (20 Nm / 177 lb-in) (seal-less dampers; air friction-dependent).FEATURES∙ Self-centering shaft adapter ∙ Removable access cover∙ Mechanical end limits (non-adjustable)∙Rotation direction selectable by choice of mounting orientation∙ Mountable in any orientation (IP54 only whenmounted on a horizontal shaft with access cover below the shaft)∙ Mechanical position indicatorSPECIFICATIONSSupply voltage S10010 / S20010 24 VAC ±20% / 24 VDC, 50/60 Hz Nominal voltage S10010 / S20010 24 VAC / 24 VDC, 50/60 Hz All values stated hereinafter apply to operation under nominal voltage conditions. Power consumption Holding Driving S10010 5 VA / 5 W 14 VA S20010 5 VA / 5 W 16 VA Ambient limitsAmbient operating limits -40...+60 ︒C Ambient storage limits -40...+70 ︒C Relative humidity 5...95%, non-condensing SafetyProtection standard IP54 Overvoltage category III Lifetime Full strokes 60000 Repositions 1.5 million Full stroke spring return 60000 MountingRound damper shaft 10...27 mm Square damper shaft 13...19 mm Shaft length 25 mm End switch (when included) Rating 5 A (resistive) / 3 A (induct.) Triggering points 7︒ / 85︒ Torque rating S10010 10 Nm (88 lb-in) S20010 20 Nm (177 lb-in) Runtime 90 sec (50 Hz) Spring return timing 20 sec (50 Hz) Rotation stroke 95︒ ± 3︒ Dimensions see Fig. 8 on page 6 Weight 3.2 kg Noise rating Driving 40 dB(A) Holding 20 dB(A) (no audible noise) Spring return 50 dB(A)SmartAct S10010, S20010 – PRODUCT DATAEN0B-0463GE51 R0418 2MODELSorder numbersupply voltage end switchespower consumption torque S1001024 VAC / 24 VDC-- 14 VA (driving) / 5 VA (holding) 10 Nm (88 lb-in) S10010-SW2 2 S20010-- 16 VA (driving) / 5 VA (holding)20 Nm (177 lb-in)S20010-SW2 2Product Identification SystemFig. 1. Product Identification SystemOPERATION / FUNCTIONSContents of Package1 Self-centering shaft adapter2 Retainer clip3 Rotational angle scales (0...90° / 90...0°)4 Mechanical end limits (non-adjustable)5 Hex wrench for manual adjustment6 Rotation direction switch7 Access coverRotary MovementThe actuators are designed to open a damper by driving the damper shaft in either a clockwise or counterclockwise direction.NOTE: Actuators are shipped in the fully-closed (springreturn) position.Position IndicationAn arrow molded into the hub points to tick marks on the label to indicate the hub rotary position.CCW to close (failsafe position)CW to open90°0°45°CW to close (failsafe position)CCW to open90°0°45°Fig. 2. Mounting orientationSmartAct S10010, S20010 – PRODUCT DATA3 EN0B-0463GE51 R0418Manual Adjustment IMPORTANTTo prevent equipment damage, before manual adjustment, you must remove power.The actuator can be operated with no power present. Use this feature during installation or to move and lock the damper or valve shaft position when there is no power.Operating the Manual PositioningTo operate the manual positioning with no power, proceed as follows:1. If the power is ON, turn it OFF.2. Insert the supplied hex wrench (key) as shown in Fig.3. 3. Rotate the key in the direction indicated on the cover.4. Once the desired position has been reached, hold the keyto prevent the spring return from moving the actuator. 5. With the key held in place, use a screwdriver to turn thegear train lock pin in the indicated direction until the detent is reached.NOTE: At the detent, the pin resists further rotation.6. Remove the key without rotating it further.Releasing the Manual PositioningTo release the manual positioning with no power present, proceed as follows:1. Insert the supplied key.2. Turn the key ¼ of a turn in the direction indicated on thecover.3. Remove the key without engaging the gear train lock pin.4. The spring will return the actuator to the failsafe position.NOTE: Once power is restored, the actuator will return tonormal automated control.Fig. 3. Manual positioningInternal End SwitchesNOTE: Only those actuators for which "-SW2" has beenspecified when ordering (e.g.: "S10010-SW2") feature internal end switches.The internal end switches are set to switch from "common" to "normally open" at angles of 7° (±3°) and 85° (±3°), respectively, from the totally counterclockwise position.Fig. 4. Internal end switch triggering pointsMechanical Stroke Limit ReductionFor applications requiring a span of less than 95°, a simple adjustment can be made. When the rotational mounting of the shaft coupling is changed, the actuator drives less than the full 95° stroke.The stroke is adjustable in 5° increments. Once adjusted, the actuator drives until the shaft coupling reaches themechanical stop (part of the housing). The stop causes the motor to discontinue driving, and the shaft coupling drives no farther. When the actuator returns, it stops at the fail-safe position.To set the fail-safe position, proceed as follows:1. Remove the retainer clip from the shaft coupling and set itaside for later use.2. Remove the shaft coupling from the actuator.3. Rotate the coupling to the desired fail-safe position,aligning it based on the stroke labeling. See Fig. 5.EXAMPLE: Setting the shaft coupling to an approx. fail-safeposition of 35° (as indicated on the housing) limits the stroke to 60° (see Fig. 5).4. Install the shaft coupling at this position.5. Replace the retainer clip on the shaft coupling using thegroove of the coupling.6. If necessary, replace the holder and position indicator onthe shaft coupling.SmartAct S10010, S20010 – PRODUCT DATAEN0B-0463GE51 R0418 4Fig. 5. Stroke reductionINSTALLATIONThese actuators are designed for single-point mounting.IMPORTANTTo prevent equipment damage, before manual operation, you must remove power.Mounting InstructionsAll information and steps are included in the Installation Instructions supplied with the actuator.Mounting PositionThe actuators can be mounted in any position (IP54 only when mounted on a horizontal shaft with access cover below the shaft). Choose a mounting position permitting easyaccess to the actuator's cables and controls. When stationing outdoors, equip with suitable cover to protect against UV and rain.Mounting Bracket and ScrewsIf the actuator is to be mounted directly on a damper shaft, use the mounting bracket included in the delivery package.Self-Centering Shaft AdapterThe self-centering shaft adapter can be used for shafts having various diameters and shapes (round: 10...27 mm; square: 13...19 mm).In the case of short shafts, the shaft adapter may be reversed and mounted on the duct side.StrokeThe stroke amounts to 95° ( 3°) and is mechanically limited by end limits (non-adjustable).WiringConnecting to the Power SupplyIn order to comply with protection class II, the power source of 24 V actuators must be reliably separated from the network power supply circuits as per DIN VDE 0106, part 101.Access CoverTo facilitate wiring the actuator to the controller, the access cover can be detached from the actuator.IMPORTANTRemove power before detaching the access cover. Once the access cover has been removed, please take care to avoid damaging any of the parts now accessible.Fig. 6. Access cover (S10010-SW2)Fig. 7. S10010-SW2 with access cover removedSmartAct S10010, S20010 – PRODUCT DATA5 EN0B-0463GE51 R0418Wiring DiagramsS10010 / S20010S10010-SW2 / S20010-SW2NOTE: Internal end switches S1 and S4 must be connected to the same power source.SmartAct S10010, S20010 – PRODUCT DATAManufactured for and on behalf of the Environmental & Energy Solutions Division of Honeywell Technologies Sàrl, Rolle, Z.A. La Pièce 16, Switzerland by its Authorized Representative:Home and Building Technologies Honeywell GmbH Böblinger Strasse 1771101 Schönaich, Germany Phone +49 (0) 7031 637 01 Fax +49 (0) 7031 637 740 EN0B-0463GE51 R0418Subject to change without noticeDIMENSIONS40M I N . 64247MIN. 76MIN. 76757ANTI-ROTATION BRACKET230 mm2 mm20 mm13 mm7 mm10 mmSHAFT ADAPTERALTERNATE POSITION1005050MIN. 15MIN. 155SHAFT ADAPTER SUITABLE FOR SHAFTS WITH LENGTH OF 25 ... 80 mmWHEN THE SHAFT ADAPTER IS INSTALLED IN ALTERNATE POSITION, THE POSITION INDICATOR IS NOT VISIBLE.170 (190)20...25 NmFig. 8. Dimensions (in mm)。

2023年高考数学真题题源解密(新高考全国卷)专题11 直线与圆(解析版)

2023年高考数学真题题源解密(新高考全国卷)专题11  直线与圆(解析版)

专题11直线与圆目录一览2023真题展现考向一直线与圆相切考向二直线与圆相交真题考查解读近年真题对比考向一直线与圆相切考向二直线与圆的位置关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与圆相切1.(2023•新高考Ⅰ•第6题)过点(0,﹣2)与圆x 2+y 2﹣4x ﹣1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B解:圆x 2+y 2﹣4x ﹣1=0可化为(x ﹣2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,﹣2),切线为PA 、PB ,则PC =22+22=22,△PAC中,sin �2=5cos �2==3所以sin α=2sin �2cos �2=2×5×3=154.故选:B .考向二直线与圆相交2.(2023•新高考Ⅱ•第15题)已知直线x ﹣my +1=0与⊙C :(x ﹣1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】2(或﹣2或12或−12)解:由圆C :(x ﹣1)2+y 2=4,可得圆心坐标为C (1,0),半径为r =2,因为△ABC 的面积为85,可得S △ABC =12×2×2×sin ∠ACB =85,解得sin ∠ACB =45,设12∠ACB =θ所以∴2sin θcos θ=45,可得2푠푖푛휃 푠휃푠푖푛2휃+ 푠2휃=45,∴2푡푎푛휃푡푎푛2휃+1=45,∴tan θ=12或tan θ=2,∴cos θ=cos θ=∴圆心眼到直线x ﹣my +1=0的距离d===解得m =±12或m =±2.故答案为:2(或﹣2或12或−12).【命题意图】考查直线的倾斜角与斜率、直线方程、两直线平行与垂直、距离公式、圆的方程、直线与圆的位置关系、圆与圆的位置关系.【考查要点】常考查直线与圆的位置关系、动点与圆、圆与圆的关系。

日立变频器L200中文操作手册.pdf

日立变频器L200中文操作手册.pdf

!"#
!"#$%
!"#$%! Nhomakorabea!1
!2
!3
!"#
!1
!1 2
!1
!1 2
!"#
A
!
b
!
C
!"
H
!"#
2
!" # !$%&'&() ! AVR
!"#$
!"#$%&'()*+,$-&'.
3
!"#$%&'() *+,-./01"201"34#5601&'( 50Hz )
!"#$%&'()
!"#$%&'(
!"#$%&'()*+,"#$-./
4
!" JEM1030
!
5
! 50/60Hz
!
!"#$% !&'()*+,-./012
0.95
0.95
1.4
1.4
1.9
1.9
0.7
0.85
-
1.8
-
1.8
1.8
037LFU 3.7(5)
5.5 6.6 15.9
055LFU 5.5(7.5)
7.5 9.9 24
075LFU 7.5(10)
11 13.3 32
3- 200~240V 10% 50/60Hz 5%
-
-
-
1.9
3.5
3.5

2SK系列场管参数

2SK系列场管参数

型号电压电流功率2SK1000N沟22V50mA250mW低频放场效应管2SK1001N沟22V50mA200mW低频放场效应管2SK1006N沟450V5A40W2SK1007N沟450V5A60W2SK1008N沟500V 4.5A60W2SK1009N沟450V7A80W2SK1010N沟500V6A80W2SK1011N沟450V10A100W2SK1012拆2SK1012N沟500V10A100W2SK1013N沟450V13A125W2SK1014N沟500V12A125W2SK1015N沟450V18A125W2SK1016N沟500V15A125W2SK1017N沟450V20A150W2SK1017拆N沟450V20A150W2SK1019N沟450V35A300W2SK1019拆N沟450V35A300W2SK1020N沟500V30A300W2SK1021N沟800V3A60W2SK1022N沟900V 2.5A60W2SK1023N沟800V4A60W2SK1024N沟900V 3.5A60W2SK1025N沟50V20A45W2SK1026N沟250V20A150W2SK1027N沟300V20A150W2SK1028N沟400V5A50W场效应开关管2SK1029N沟500V10A200W2SK1030AN沟900V3A50W2SK1030N沟800V3A50W2SK1031N沟50V10mA100mW低频放场效应管2SK1032AN沟900V8A120W2SK1032N沟800V8A120W2SK1033N沟60V15A45W2SK1034N沟100V15A45W2SK1035N沟150V12A45W2SK1036N沟250V10A50W2SK1037N沟250V50W场效应开关管2SK1038N沟400V5A50W2SK1039N沟400V8A50W2SK103-K2N沟20V0.02-0.040.08W场效应音频/高频放大管2SK103-L1N沟20V0.35-0.070.08W场效应音频/高频放大管2SK103-L2N沟20V0.06-0.120.08W场效应音频/高频放大管2SK103-M1N沟20V0.1-0.2mA0.08W场效应音频/高频放大管2SK103-M2N沟20V0.15-0.3m0.08W场效应音频/高频放大管2SK103-N1N沟20V0.27-0.540.08W场效应音频/高频放大管2SK103-N2N沟20V0.5-1mA0.08W场效应音频/高频放大管2SK103N沟20V10mA80mW通用型场效应管2SK1040N沟400V10A100W2SK1041N沟400V15A120W2SK1042N沟400V20A130W2SK1043N沟4V10mA200mW2SK1044N沟800V5A150W2SK1045N沟900V5A150W2SK1046N沟4V10mA200mW2SK1047N沟250V20A150W2SK1048N沟300V20A150W2SK1049N沟450V15A150W2SK104-EN沟30V0.5-1.5mA0.25W场效应音频/高频放大管2SK104-FN沟30V1-3mA0.25W场效应音频/高频放大管2SK104-HN沟30V2-6mA0.25W场效应音频/高频放大管2SK104-JN沟30V4-12mA0.25W场效应音频/高频放大管2SK104N沟30V10mA250mW低频放大场效应管2SK1050N沟500V15A150W2SK1051N沟50V40A120W2SK1052N沟450V0.5A30W2SK1053N沟450V1A40W2SK1056N沟120V7A100W2SK1057N沟140V7A100W2SK1058N沟160V7A100W2SK1059N沟60V5A20W场效应高频放大管2SK1059-ZN沟60V5A20W2SK105N沟50V10mA250mW低频放大场效应管2SK1060N沟100V5A20W2SK1060-ZN沟100V5A20W2SK1061N沟60V200mA300mW2SK1062N沟60V200mA300mW14/75ns2SK1063N沟450V15A125W2SK1064N沟500V15A125W2SK1065N沟20V10mA150mW2SK1066N沟15V10mA150mW场效应高频功率放大管2SK1067N沟16V30mA150mW2SK1068N沟40V10mA100mW通用型场效应管2SK1069N沟40V10mA150mW低频放大场效应管2SK106-AN沟50V0.5-1.5mA0.3W场效应音频(低频)管2SK106-BN沟50V1-3mA0.3W场效应音频(低频)管2SK106-CN沟50V2-6mA0.3W场效应音频(低频)管2SK106-DN沟50V4-12mA0.3W场效应音频(低频)管2SK106N沟10mA300mW低频放大场效应管2SK1070N沟22V50mA150mW低频放大场效应管2SK107-2N沟27V 2.7-5.5mA0.25W2SK1073N沟800V3A45W2SK107-3N沟27V 4.5-7.7mA0.25W2SK107-4N沟27V 6.3-9.9mA0.25W2SK107-5N沟27V8.1-12.1m0.25W2SK1078N沟60V0.8A500mW2SK1079N沟100V0.6A500mW2SK107N沟27V10mA250mW直接耦合放大/直流/甚高频场效应2SK1081N沟800V7A125W2SK1081拆N沟800V7A125W2SK1082拆N沟900V6A2SK1082N沟900V6A125W2SK1083N沟60V8A20W2SK1084N沟100V5A20W2SK1085N沟150V3A20W2SK1086N沟60V20A35W2SK1087N沟100V12A35W2SK1088N沟150V9A35W2SK1089N沟60V35A80W2SK108N沟50V10mA300mW2SK1090N沟100V20A80W2SK1091N沟150V15A80W2SK1092N沟4V150mA0.15W2SK1093N沟60V10A20W2SK1094N沟60V15A25W2SK1095N沟60V25A30W2SK1096N沟60V13A30W2SK1097N沟100V8A30W2SK1098N沟150V6A30W电机控制场效应管2SK109AN沟50V1-12mA0.3W2SK109N沟50V10mA150mW2SK1100N沟3V60mA200mW2SK1101N沟450V10A50W2SK1102N沟500V10A50W2SK1103N沟50V10mA200mW2SK1104N沟50V10mA300mW2SK1105N沟800V3A80W2SK1108N沟20V0.04-0.6m0.1W场效应前置/输入级管2SK1109N沟20V10mA80mW通用型场效应管2SK110N沟30V10mA900mW2SK1112N沟60V5A20W2SK1113N沟120V3A20W2SK1114N沟60V12A40W2SK1115N沟60V20A60W2SK1116N沟100V25A100W2SK1117拆N沟600V6A2SK1117N沟600V6A100W2SK1118拆N沟600V6A2SK1118N沟600V6A45W2SK111N沟30V10mA200mW 2SK1120N沟1000V8A150W 2SK1121N沟50V25A45W 2SK1122N沟100V40A100W 2SK1123N沟60V40A100W 2SK1124N沟60V45A125W 2SK112N沟50V10mA250mW 2SK112-ON沟50V3-9mA0.25W 2SK112-RN沟50V 1.2-3.6mA0.25W 2SK1132N沟50V0.02A0.25W 2SK1133N沟50V0.02A0.2W 2SK1134N沟50V45A80W 2SK1135N沟250V15A100W 2SK1136N沟50V10A30W 2SK1137N沟50V16A40W 2SK1138N沟150V7A30W 2SK1139N沟150V13A40W 2SK113N沟50V10mA250mW 2SK113-ON沟50V25-75mA0.25W 2SK113-RN沟50V5-30mA0.25W 2SK113-YN沟50V50-150mA0.25W 2SK1142N沟800V2A35W 2SK1143N沟900V2A35W 2SK1149N沟100V20A75W 2SK1150N沟60V40A75W 2SK1151LN沟450V 1.5A20W 2SK1151N沟450V 1.5A10W 2SK1151SN沟450V 1.5A20W 2SK1152LN沟500V 1.5A20W 2SK1152N沟500V 1.5A10W 2SK1152SN沟500V 1.5A20W 2SK1153N沟450V3A30W 2SK1154N沟500V3A30W 2SK1155N沟450V3A50W 2SK1156N沟500V3A50W 2SK1157N沟450V7A60W 2SK1158N沟500V7A60W 2SK1159N沟450V8A60W 2SK1160N沟500V8A60W 2SK1161N沟450V10A100W 2SK1162N沟500V10A100W 2SK1163N沟450V11A100W 2SK1164N沟500V11A100W 2SK1165N沟450V12A100W 2SK1166N沟500V12A100W 2SK1167N沟450V15A100W2SK1169N沟450V20A147/290ns2SK117拆N沟50V10mA2SK1170N沟500V20A120W2SK1171N沟800V4A80W2SK1172N沟900V 3.5A80W2SK1173N沟50V500mA200mW通用型场效应管2SK1177N沟500V 2.5A30W金属氧化物场效应功率放大管2SK1178N沟500V4A35W金属氧化物场效应功率放大管2SK1179N沟500V8.5A85W金属氧化物场效应功率放大管2SK117-BLN沟50V6-14mA0.3W2SK117-GRN沟50V 2.6-6.5mA0.3W2SK117N沟50V10mA300mW2SK117-ON沟50V0.6-1.4mA0.3W2SK117-YN沟50V 1.2-3mA0.3W2SK1180N沟500V10A85W金属氧化物场效应功率放大管2SK1181N沟500V13A85W金属氧化物场效应功率放大管2SK1183N沟200V3A25W金属氧化物场效应功率放大管2SK1184N沟200V5A30W金属氧化物场效应功率放大管2SK1185N沟100V5A25W金属氧化物场效应功率放大管2SK1186N沟100V9A30W金属氧化物场效应功率放大管2SK1187N沟100V12A35W金属氧化物场效应功率放大管2SK1188N沟60V10A25W金属氧化物场效应功率放大管2SK1189N沟60V15A30W金属氧化物场效应功率放大管2SK118N沟50V10mA100mW2SK118-ON沟50V0.6-1.4mA Nf=0.5dB场效应音频(低频)管2SK118-RN沟50V0.3-0.75m Nf=0.5dB场效应音频(低频)管2SK1190N沟60V22A35W金属氧化物场效应功率放大管2SK1191N沟60V30A40W金属氧化物场效应功率放大管2SK1192N沟60V40A90W金属氧化物场效应功率放大管2SK1194N沟230V0.5A6W2SK1195N沟230V15A10W2SK1196N沟5V20-70mA0.2W2SK1197N沟70V0.3A通用型场效应管2SK1198拆N沟700V2A2SK1198N沟700V2A35W2SK1199N沟900V2A70/125ns2SK119N沟30V10mA250mW直接耦合放大/直流场效应管2SK11N沟20V10mA100mW直接耦合放大/直流场效应管2SK11-ON沟20V0.3-6.5mA0.1W场效应直流/音频/斩波、2SK11-RN沟20V0.3-6.5mA0.1W场效应直流/音频/斩波、2SK11-YN沟20V0.3-6.5mA0.1W场效应直流/音频/斩波、2SK1200N沟900V3A80W2SK1201N沟900V4A80W2SK120-1N沟15V1-3mA0.2W2SK1202N沟900V5A100W2SK120-2N沟15V2-5mA0.2W2SK1204N沟900V8A100W2SK1205N沟1000V5A100W2SK1206N沟500V12A60W2SK120N沟15V10mA200mW2SK1211N沟800V 2.5A40W2SK121-1N沟30V0.9-3.3mA0.3W2SK1212N沟900V5A80W2SK121-2N沟30V 2.7-5.5mA0.3W2SK1213N沟600V6A125W2SK121-3N沟30V 4.5-9.9mA0.3W2SK1214N沟80V20A45W2SK121-4N沟30V 4.5-9.9mA0.3W2SK1215N沟20V30mA0.1W2SK121-5N沟30V8.1-14.3m0.3W2SK1216N沟10V50mA0.2W2SK121-6N沟30V8.1-14.3m0.3W2SK1217N沟900V8A100W2SK121N沟30V5mA300mW2SK1221N沟250V10A80W2SK1222N沟450V15A125W2SK1223N沟60V5A130W2SK1224N沟800V4A50W2SK1225N沟450V12A60W2SK1227N沟150V10mA100mW通用型场效应管2SK1228N沟50V50mA150mW2SK1229N沟4V60mA0.16W2SK122N沟15V30mA250mW2SK1230N沟120V10A25W2SK1231N沟450V5A30W2SK1232N沟500V5A30W2SK1233N沟6V20-90mA0.3W2SK1234N沟5V20-80mA0.27W2SK1235N沟6V20-90mA0.3W2SK1236N沟6V20-90mA0.3W2SK1237N沟5V20-80mA0.27W2SK1238N沟5V20-60mA0.27W2SK1239N沟5V20-60mA0.27W2SK123N沟20V 2.2mA200mW通用型场效应管2SK1240N沟4V10-60mA0.18W2SK1241N沟4V10-60mA0.18W2SK1242N沟4V10-60mA0.18W2SK1243N沟4V10-60mA0.18W2SK1244N沟500V3A40W2SK1245N沟500V3A25W2SK1246N沟500V5A50W2SK1247N沟500V5A30W2SK1249N沟500V15A100W2SK124N沟80V100mA0.5W2SK1250N沟500V20A100W2SK1251N沟60V5A30W2SK1252N沟120V3A10W2SK1253N沟30V30A35W2SK1254LN沟120V3A20W2SK1254N沟120V3A20W2SK1254SN沟120V3A20W2SK1255N沟60V5A30W2SK1256N沟60V10A40W2SK1257N沟60V40A45W2SK1258N沟60V50A100W2SK1259N沟60V100A150W2SK125N沟35V10mA300mW2SK1260N沟100V5A30W2SK1261N沟100V8A40W2SK1262N沟100V30A45W2SK1263N沟100V40A100W2SK1264N沟150V3A30W2SK1265N沟100V6A40W2SK1266N沟100V20A45W2SK1267N沟100V25A100W2SK1268N沟450V15A60W2SK1269N沟500V15A60W2SK1270N沟60V2A10W2SK1271N沟1400V3A150W2SK1272N沟60V0.5A0.75W2SK1273N沟60V0.5A2W2SK1274N沟60V0.5A1W2SK1275N沟900V2A30W2SK1276N沟250V20A100W2SK1277N沟250V30A150W2SK1278N沟500V10A100W2SK1279N沟500V15A125W2SK127AN沟80V0.5-12mA0.25W场效应音频(低频)管2SK127N沟50V20mA250mW低频放大场效应管2SK1280N沟500V18A150W2SK1281N沟700V2A120W2SK1282N沟60V2A20W2SK1283N沟60V2A20W2SK1284N沟100V2A20W2SK1285N沟100V2A20W2SK1286N沟60V8A35W2SK1287N沟60V8A60W2SK1288N沟100V8A35W2SK128N沟30V10mA250mW2SK1290N沟60V15A35W2SK1291N沟60V15A60W2SK1292N沟100V15A35W2SK1293N沟100V15A60W2SK1294N沟60V20A35W2SK1295N沟60V20A35W2SK1296N沟60V30A75W2SK1297N沟60V40A100W2SK1298N沟60V40A50W2SK1299LN沟100V3A20W2SK1299N沟100V3A20W2SK1299SN沟100V3A20W2SK12-GRN沟20V 2.5-5mA0.1W2SK12NN沟20V0.45-5mA0.1W2SK12N沟20V10mA100mW2SK12-ON沟20V0.8-1.6mA0.1W2SK12-PN沟20V5mA0.1W2SK12-RN沟20V0.45-0.9m0.1W2SK12-YN沟20V 1.4--2.8m0.1W2SK1300N沟100V10A40W2SK1301N沟100V15A50W2SK1302N沟100V20A50W2SK1303N沟100V30A100W2SK1304N沟100V40A100W2SK1305N沟100V10A25W2SK1306N沟100V15A30W2SK1307N沟100V20A35W2SK1308AN沟450V5A40W2SK1308N沟400V5A40W2SK130AN沟30mA250mW场效应低噪声放大管2SK130N沟30V10mA250mW低频放大场效应管2SK1311N沟60V2A 3.5W2SK1313LN沟450V5A50W2SK1313N沟450V5A50W2SK1313SN沟450V5A50W2SK1314LN沟500V5A50W2SK1314N沟500V5A50W2SK1314SN沟500V5A50W2SK1315LN沟450V8A60W2SK1315N沟450V8A60W2SK1315SN沟450V8A60W2SK1316LN沟500V8A60W2SK1316N沟500V8A60W2SK1316SN沟500V8A60W2SK1317N沟1500V 2.5A100W2SK1319N沟250V8A75W2SK1319SN沟250V8A75W2SK131N沟30V10mA250mW2SK1320N沟300V8A75W2SK1320SN沟300V8A75W2SK1321N沟450V5A75W2SK1321SN沟450V5A75W2SK1322N沟500V5A75W2SK1322SN沟500V5A75W2SK1323N沟800V2A75W2SK1323SN沟800V2A75W2SK1324N沟900V2A75W2SK1324SN沟900V2A75W2SK1325N沟6V40-120mA0.2W2SK1326N沟10V20mA通用型场效应管2SK1327LN沟600V1A20W2SK1327N沟600V1A20W2SK1327SN沟600V1A20W2SK1328N沟450V12A60W2SK1329N沟500V12A60W2SK132N沟100V7A100W低频放大场效应管2SK1330AN沟900V8A100W2SK1330N沟800V8A100W2SK1331N沟500V15A100W2SK1332N沟30V20mA150mW低频放大场效应管2SK1333N沟500V15A200W2SK1334N沟200V1A1W2SK1335LN沟200V3A20W2SK1335N沟200V3A20W2SK1335SN沟200V3A20W2SK1336N沟60V0.3A0.4W2SK1337N沟100V0.3A0.4W2SK1338N沟800V2A50W2SK1339N沟900V3A80W2SK133N沟120V7A100W低频放大场效应管2SK1340N沟900V5A100W2SK1341N沟900V7A100W2SK1342N沟900V8A100W2SK1344N沟60V12A30W2SK1345N沟60V20A40W2SK1346拆N沟60V25A2SK1346N沟60V25A40W2SK1347N沟100V20A75W2SK1348N沟100V20A40W2SK1349N沟100V20A45W2SK134HN沟140V7A100WMOS场效应音频/功率放大管2SK134N沟140V7A100W低频放大场效应管2SK1350N沟200V15A45W2SK1351N沟500V5A40W2SK1352N沟500V7A45W2SK1356N沟900V3A40W2SK1357N沟900V5A125W2SK1358N沟900V9A150W2SK1358拆N沟900V9A150W2SK1359N沟1000V5A125W2SK135N沟7A100W低频放大场效应管2SK1362N沟900V5A80W金属氧化物场效应开关管2SK1363N沟900V8A90W金属氧化物场效应开关管2SK1365N沟1000V7A90W金属氧化物场效应开关管2SK1366N沟400V2A30W金属氧化物场效应功率放大管2SK1367N沟400V3A30W金属氧化物场效应功率放大管2SK1368N沟400V5A30W金属氧化物场效应功率放大管2SK1369N沟400V10A85W金属氧化物场效应功率放大管2SK136N沟30V10mA250mW2SK1370N沟400V15A85W金属氧化物场效应功率放大管2SK1371N沟450V20A125W2SK1372N沟500V20A125W2SK1373N沟550V12A100W2SK1374N沟50V50mA0.15W2SK1375N沟20V0.14-0.5mA场效应前置/输入级管2SK1377N沟400V 5.5A40W2SK1378N沟400V10A125W2SK1379N沟60V50A150W2SK137AN沟15V40mA0.1W场效应音频(低频)管2SK137N沟15V50mA100mW低频放大场效应管2SK1380N沟60V60A200W2SK1381N沟100V60A150W2SK1382N沟100V60A200W2SK1383N沟200V3A8W2SK1384N沟800V5A80W2SK1385N沟800V9A100W2SK1386N沟450V7A100W2SK1387N沟60V35A40W2SK1388N沟30V35A60W2SK1389N沟60V50A125W2SK138N沟100mA300mW高频振荡场效应管2SK1390N沟60V50A80W2SK1391N沟250V6A40W2SK1392N沟250V6A25W2SK1393N沟250V10A50W2SK1394N沟250V10A30W2SK1395N沟250V20A100W2SK1396N沟250V30A120W2SK1398N沟50V0.1A0.25W2SK1399N沟50V0.1A0.2W2SK139N沟15V150W无线电视甚高频场效应管2SK13-GRN沟12V 2.5-5mA0.1W2SK13N沟12V10mA100mW2SK13-ON沟12V0.8-1.6mA0.1W2SK13-RN沟12V0.45-5mA0.1W2SK13-YN沟12V 1.4-2.8mA0.1W2SK1400AN沟350V7A50W2SK1400N沟300V7A50W2SK1401AN沟350V15A100W2SK1401N沟300V15A100W2SK1402AN沟650V4A50W2SK1402N沟600V4A50W2SK1403AN沟650V8A100W2SK1403N沟600V8A100W2SK1404N沟600V5A35W2SK1405N沟600V15A60W2SK1406N沟500V20A100W2SK1407N沟4V12-60mA0.2W2SK1408N沟450V16A200W2SK1409N沟450V20A250W2SK140N沟5V100mA300mW2SK1410拆N沟500V16A2SK1411N沟500V20A250W2SK1412N沟1500V0.1A20W2SK1413N沟1500V2A60W2SK1414N沟1500V6A200W2SK14153.5V12-60mA0.16W12GHz场效应微波/高频放大管2SK1416N沟60V15A40W2SK1417N沟60V25A60W2SK1418N沟60V40A70W2SK1419N沟60V15A25W2SK141AN沟30V0.5-12mA0.25W2SK141N沟30V10mA250mW直接耦合放大/直流场效应管2SK1420N沟60V25A30W2SK1421N沟60V40A40W2SK1422N沟60V50A100W2SK1423N沟60V80A150W2SK1424N沟60V40A60W2SK1425N沟60V60A80W2SK1426N沟60V100A200W2SK1427N沟100V10A40W2SK1428N沟100V20A60W2SK1429N沟100V30A70W2SK1430N沟100V10A25W2SK1432N沟100V25A40W2SK1433N沟100V30A100W2SK1434N沟100V60A150W2SK1435N沟100V30A60W2SK1436N沟100V50A80W2SK1437N沟100V70A200W2SK1438N沟450V0.3A20W2SK1439N沟450V3A50W2SK1440N沟450V5A60W2SK1441N沟450V8A70W2SK1442N沟450V12A70W2SK1443N沟450V1A20W2SK1444N沟450V3A25W2SK1445LSN沟450V5A30W金属氧化物场效应功率放大管2SK1445N沟450V5A30W2SK1446N沟450V7A35W2SK1447N沟450V9A40W2SK1448N沟450V8A100W2SK1449N沟450V12A120W2SK1450N沟450V20A150W2SK1451N沟450V8A50W2SK1452N沟450V10A60W2SK1453N沟450V16A70W2SK1454N沟450V30A250W2SK1455N沟900V0.2A30W2SK1456N沟900V3A60W2SK1457N沟900V5A70W2SK1458N沟900V0.2A20W2SK1459N沟900V 2.5A30W2SK1460LSN沟900V 3.5A40W金属氧化物超高压场效应管2SK1460N沟900V 3.5A40W2SK1461N沟900V5A120W2SK1462N沟900V8A150W2SK1463N沟900V 4.5A60W2SK1464N沟900V8A80W2SK1465N沟900V8A200W2SK1466拆2SK1466N沟900V16A250W2SK1467N沟30V2A 3.5W2SK1468N沟30V4A20W2SK1469N沟30V8A30W2SK146-BLN沟40V8-16mA 1.2W2SK146-GRN沟40V5-10mA 1.2W2SK146N沟40V10mA600mW2SK146-VN沟40V14-30mA1.2W2SK1470N沟60V2A 3.5W2SK1472N沟60V8A30W2SK1473N沟100V2A 3.5W2SK1474N沟100V4A20W2SK1475N沟100V8A30W2SK1476N沟450V12A150W2SK1477N沟500V12A150W2SK1478N沟250V8A40W2SK1479N沟25V5mA0.1W通用型场效应管2SK147-BLN沟40V8-16mA0.6W2SK147-GRN沟40V5-10mA0.6W2SK147N沟40V10mA600mW2SK147-VN沟40V14-30mA0.6W2SK1480N沟20V30mA0.2W2SK1482N沟30V0.5A0.75W2SK1483N沟30V0.5A2W2SK1484N沟100V0.5A0.75W2SK1485N沟100V0.5A2W2SK1486N沟300V32A200W2SK1487N沟450V10A125W2SK1488N沟500V10A125W2SK1489N沟1000V12A200W2SK148N沟25V10mA100mW2SK1491N沟250V13A120W2SK1492拆N沟250V18A2SK1492N沟250V18A140W2SK1493N沟450V2A50W2SK1493-ZN沟450V3A50W2SK1494N沟500V2A50W2SK1494-ZN沟500V3A50W2SK1495N沟450V4A50W2SK1495-ZN沟450V7A70W2SK1496N沟450V4A50W2SK1496-ZN沟500V7A70W2SK1497N沟450V10A130W2SK1498N沟500V10A130W2SK1499N沟450V13A160W2SK149N沟20V10mA350mW2SK1500拆2SK1500N沟500V13A160W2SK1501N沟900V2A70W2SK1501-ZN沟900V4A70W2SK1502N沟900V4A120W2SK1503N沟500V10A80W2SK1504-LSN沟500V10A80W场效应开关管2SK1505N沟30V35A40W2SK1506N沟120V50A150W电机控制场效应管2SK1507拆2SK1507N沟600V9A50W场效应开关管2SK1508N沟60V35A60W电机控制场效应管2SK1509N沟100V20A60W电机控制场效应管2SK150-BLN沟50V6-14mA0.4W2SK150-GRN沟50V 2.6-6.5mA0.4W2SK150N沟50V10mA200mW2SK150-YN沟50V1-3mA0.4W2SK1510-LSN沟900V 3.5A60W场效应开关管2SK15122SK1513N沟500V8A150W2SK1514N沟60V40A125W2SK1515N沟450V10A100W2SK1516N沟500V10A100W2SK1517N沟450V20A120W2SK1518N沟500V20A165/345ns2SK1519N沟450V30A200W2SK151N沟40V10mA800mW2SK1520N沟500V30A200W2SK1521N沟450V50A250W2SK1522N沟500V50A250W2SK1526N沟450V40A250W2SK1527N沟500V40A250W2SK1528LN沟900V4A60W2SK1528N沟900V4A60W2SK1528SN沟900V4A60W2SK1529N沟500V4A120W通用型场效应管2SK152N沟15V5mA300mW2SK1530N沟200V12A150W通用型场效应管2SK1531N沟500V15A150W2SK1532N沟50V10mA0.1W通用型场效应管2SK1534N沟900V3A50W2SK1535N沟900V3A30W通用型场效应管2SK1536N沟900V3A70W2SK1537N沟900V5A100W2SK1538N沟900V7A130W2SK1539N沟900V10A150W2SK1539拆N沟900V10A150W通用型场效应管2SK1540LN沟450V7A60W2SK1540N沟450V7A60W2SK1540SN沟450V7A60W2SK1541LN沟500V7A60W2SK1541N沟500V7A60W2SK1541SN沟500V7A60W2SK1542N沟60V45A125W2SK1544N沟500V25A200W2SK1547N沟800V4A40W场效应开关管2SK1548N沟900V 3.5A40W场效应开关管2SK1549N沟250V20A80W场效应开关管2SK154N沟20V10mA350mW2SK1552-LSN沟800V4A60W场效应开关管2SK1555N沟50V16A75W2SK1555SN沟50V16A75W2SK1556N沟100V8A30W2SK1557N沟100V8A45W2SK1558N沟100V15A40W2SK1559N沟100V16A75W2SK1559SN沟100V16A75W2SK155N沟20V30mA400mW低频放大场效应管2SK1560N沟150V7A45W2SK1561N沟150V16A75W2SK1561SN沟150V16A75W2SK1562N沟400V12A150W2SK1562SN沟400V12A150W2SK1563N沟500V12A150W2SK1563SN沟500V12A150W2SK1564N沟800V3A150W2SK1564SN沟800V3A150W2SK1565N沟900V3A150W2SK1566N沟450V7A35W2SK1567N沟500V7A35W2SK1568N沟250V8A40W2SK1569N沟300V8A40W2SK156JN沟20V0.06mA0.1W场效应电容话筒专用管2SK156KN沟20V0.15mA0.1W场效应电容话筒专用管2SK156LN沟20V0.25mA0.1W场效应电容话筒专用管2SK156MN沟20V0.4mA0.1W场效应电容话筒专用管2SK156N沟20V10mA100mW通用型场效应管2SK1570N沟450V12A90/140ns2SK1571N沟500V12A90/140ns2SK1572N沟600V3A25W2SK1573N沟600V15A125W2SK1574N沟500V8A125W2SK1575N沟180V16A通用型场效应管2SK1576N沟30V3~16mA0.15W场效应低噪声放大管2SK1577N沟30A~80mA超高频场效应管2SK1578N沟20V1mA0.1W低频放大场效应管2SK1579N沟12V2A1W2SK157N沟50V10mA150mW低频放大场效应管2SK1580N沟16V0.01A0.15W2SK1581N沟16V0.01A0.2W2SK1582N沟30V0.01A0.2W2SK1583N沟16V0.3A2W2SK1584N沟30V0.3A2W2SK1585N沟16V0.5A2W2SK1586N沟30V0.5A2W2SK1587N沟16V1A2W2SK1588N沟16V1A2W2SK1589N沟100V0.01A0.2W2SK158N沟55V10mA70mW低频放大场效应管2SK1590N沟60V0.01A0.2W2SK1591N沟100V0.01A0.2W2SK1592N沟60V0.5A0.2W2SK1593N沟100V0.5A0.2W2SK1594N沟30V10A30W2SK1595N沟30V15A35W2SK1596N沟30V20A35W2SK15-GRN沟20V 2.5-5mA0.1W2SK15MN沟30V0.8-2.8mA0.1W场效应直流/音频管2SK15N沟20V10mA100mW2SK15-ON沟20V0.8-1.6mA0.1W2SK15-PN沟20V0.45-5mA0.1W2SK15-RN沟20V0.45-0.9m0.1W2SK15-YN沟20V 1.4-2.8mA0.1W2SK1600N沟800V3A75W2SK1601N沟900V3A75W2SK1602N沟800V 2.8A40W2SK1603N沟900V 2.5A40W2SK1605N沟450V5A50W2SK1606N沟450V8A50W2SK1607N沟450V13A120W2SK1608N沟500V5A50W2SK1609N沟500V8A50W2SK160AN沟50V0.5-12mA0.15W场效应音频/前置/输入2SK160K4N沟30V 1.5mA0.15W场效应音频/前置/输入级管2SK160K5N沟30V3mA0.15W场效应音频/前置/输入级管2SK160K6N沟30V6mA0.15W场效应音频/前置/输入级管2SK160K7N沟30V12mA0.15W场效应音频/前置/输入级管2SK160N沟30V10mA150mW甚高频放大场效应管2SK1610N沟500V13A120W2SK1611-12SK1611N沟800V3A50W2SK1612N沟900V3A50W2SK1613N沟900V5A120W2SK1614N沟900V8A120W2SK1615N沟 3.5V60mA0.16W2SK1616N沟 3.5V70mA0.18W2SK1617N沟 3.5V60mA0.16W2SK1618LN沟600V3A30W2SK1618N沟600V3A30W2SK1618SN沟600V3A30W2SK161-GRN沟18V5-10mA0.2W2SK161N沟18V10mA200mW2SK161-ON沟18V1-3mA0.2W2SK161-YN沟18V 2.5-6mA0.2W2SK1620LN沟150V10A50W2SK1620N沟150V10A50W2SK1620SN沟150V10A50W2SK1621LN沟250V7A50W2SK1621N沟250V7A50W2SK1621SN沟250V7A50W2SK1622LN沟60V25A50W2SK1622N沟60V25A50W2SK1622SN沟60V25A50W2SK1623LN沟100V20A50W2SK1623N沟100V20A50W2SK1623SN沟100V20A50W2SK1624LN沟600V20A50W2SK1624N沟600V4A50W2SK1624SN沟600V20A50W2SK1625LN沟600V7A75W2SK1625N沟600V7A75W2SK1625SN沟600V7A75W2SK1626N沟450V5A35W2SK1627N沟500V5A35W2SK1628N沟450V30A200W2SK1629N沟500V30A200W2SK162N沟40V10mA400mW2SK1630N沟700V3A75W2SK1630SN沟700V3A75W2SK1631N沟700V3A35W2SK1632N沟700V5A150W2SK1632SN沟700V5A150W2SK1633N沟700V5A45W2SK1634N沟700V5A150W2SK1635N沟60V50A130W2SK1636LN沟250V15A75W2SK1636N沟250V15A75W2SK1636SN沟250V15A75W2SK1637N沟600V4A35W2SK1638N沟900V3A60W2SK1639N沟900V4A75W2SK163N沟50V10mA400mW低频放大场效应管2SK1640N沟60V20A通用型场效应管2SK1641N沟250V20A150W2SK1642N沟400V9A40W2SK1643N沟900V5A125W2SK1647LN沟900V2A50W2SK1647N沟900V2A50W2SK1647SN沟900V2A50W2SK1648LN沟60V15A40W2SK1648N沟60V15A40W2SK1648SN沟60V15A40W2SK1649N沟900V6A150W2SK1650N沟900V4A125W2SK1651N沟500V8A80W金属氧化物场效应开关管2SK1653N沟60V45A45W2SK1654N沟250V16A150W金属氧化物场效应功率放大管2SK1654-SN沟250V16A150W金属氧化物场效应功率放大管2SK1655N沟300V16AMOS场效应普通用途管2SK1655-SN沟300V16A150W金属氧化物场效应功率放大管2SK1656N沟30V0.1A0.25W2SK1657N沟30V0.1A0.2W2SK1659-LSN沟900V3A80W场效应开关管2SK165N沟15V5mA300mW通用型场效应管2SK1663-LSN沟800V3A80W场效应开关管2SK1664N沟700V1A35W2SK1665N沟60V45A125W2SK1666N沟60V45A60W2SK1667N沟250V7A通用型场效应管2SK1668N沟250V4A通用型场效应管2SK1669N沟250V30A125W2SK1670N沟250V7A70W2SK1671N沟250V7A125W2SK1673N沟250V24A200W2SK1674N沟300V24A200W2SK1675N沟250V30A250W2SK1676N沟300V30A250W2SK1677N沟450V16A200W2SK1678N沟500V16A200W2SK1679N沟450V20A250W2SK1680N沟500V20A250W2SK1682N沟30V20mA0.15W通用型场效应管2SK1687N沟 3.5V12-60mA0.2W2SK1688N沟 3.5V12-60mA0.2W2SK1689N沟5V20-70mA0.2W2SK168N沟30V10mA200mW2SK1690N沟450V3A50W金属氧化物场效应功率放大管2SK1691N沟450V5A60W金属氧化物场效应功率放大管2SK1692N沟900V7A150W2SK1697N沟60V0.5A通用型场效应管2SK1698N沟60V0.3A通用型场效应管2SK1699N沟450V5A75W2SK169N沟15V50mA400mW低频放大场效应管2SK16-AN沟20V0.5-7mA0.1W2SK16-BN沟20V0.5-7mA0.1W2SK16-CN沟20V0.5-7mA0.1W2SK16HN沟20V0.5-7mA0.1W2SK16N沟20V10mA100mW2SK1700N沟450V5A35W金属氧化物场效应功率放大管2SK1702N沟450V8AMOS场效应普通用途管2SK1703N沟500V5A75W2SK1703SN沟500V5A75W2SK1704N沟500V5A35W2SK1705N沟500V8AMOS场效应普通用途管2SK1706N沟500V8AMOS场效应普通用途管2SK1707N沟700V4A75W金属氧化物场效应功率放大管2SK1707-SN沟700V4A75W金属氧化物场效应功率放大管2SK1708N沟600V4A35W金属氧化物场效应功率放大管2SK1709N沟600V6AMOS场效应普通用途管2SK170-BLN沟40V6-12mA0.4W2SK170-GRN沟40V 2.6-6.5mA0.4W2SK170N沟40V10mA400mW2SK170-VN沟40V10-20mA0.4W2SK170-YN沟40V1-3mA0.4W2SK1710N沟600V6A增强型金属氧化物场效应晶体管2SK1711N沟60V10A25W金属氧化物场效应功率放大管2SK1712N沟60V15A30W金属氧化物场效应功率放大管2SK1713N沟60V22A35W金属氧化物场效应功率放大管2SK1714N沟60V30A40W金属氧化物场效应功率放大管2SK1715N沟60V40A90W金属氧化物场效应功率放大管2SK1716N沟60V2A20W2SK1717N沟60V2A500mW2SK1718N沟60V6A25W2SK1719N沟60V5A20W2SK171N沟20V10mA200mW2SK1720N沟60V45A100W2SK1721N沟500V3A40W2SK1722N沟500V5A60W2SK1723N沟600V12A150W2SK1724N沟30V1A 3.5W2SK1725N沟30V1A1W2SK1726N沟60V1A 3.5W2SK1727N沟60V0.8A1W2SK1728N沟100V1A 3.5W2SK1729N沟100V0.5A1W2SK1730N沟30V 1.8A1W2SK1731N沟30V3A 1.5W2SK1732N沟30V 4.5A 1.5W2SK1734N沟60V 2.5A 1.5W2SK1735N沟60V4A 1.5W2SK1736N沟100V1A1W2SK1737N沟100V 1.8A 1.5W2SK1738N沟100V3A 1.5W2SK173N沟210V10A95WMOS场效应音频/功率放大管2SK1740N沟75mA250mW高频场效应管2SK1742N沟60V10A通用型场效应管2SK1743N沟60V15A通用型场效应管2SK1744N沟60V25A通用型场效应管2SK1745N沟500V18A150W2SK1746N沟600V2A40W2SK1748N沟60V4A20W2SK1748-ZN沟60V8A1W2SK1749N沟60V25A150W场效应开关管2SK1750N沟450V 2.5A50W2SK1750-ZN沟450V5A50W2SK1751N沟500V 2.5A50W2SK1751-ZN沟500V5A50W2SK1752N沟450V5A100W2SK1753N沟500V5A100W2SK1754N沟50V10A45W2SK1756N沟450V8A120W2SK1757N沟500V8A120W2SK1758N沟600V1A30W2SK175N沟180V8A125W场效应开关管2SK1760N沟900V3A100W2SK1761N沟250V12A通用型场效应管2SK1762N沟250V12A通用型场效应管2SK1763N沟30V 2.5A通用型场效应管2SK1764N沟60V2A通用型场效应管2SK1766N沟250V10A40W不间断电源用金属氧化物场效应管2SK1767N沟600V 3.5A40W2SK1768N沟60V12A 1.3W2SK1769N沟600V2A15W2SK176HN沟200V8A125W2SK176N沟200V8A125WMOS场效应音频/开关/功率放大管2SK1770N沟1000V5A通用型场效应管2SK1771N沟12.5V30mA150mW高频放大场效应管2SK1772N沟30V1A通用型场效应管2SK1773N沟1000V4A通用型场效应管2SK1774N沟800V8A通用型场效应管2SK1775N沟900V8A通用型场效应管2SK1776N沟60V10A场效应开关管2SK1777N沟60V15A场效应开关管2SK1778N沟100V10A场效应开关管2SK1784N沟450V6A100W2SK1785N沟500V6A100W2SK1792N沟60V45A100W2SK1793N沟900V2A75W2SK1793-ZN沟900V3A75W2SK1794拆2SK1794N沟900V3A100W2SK1795N沟900V4A140W2SK1796N沟900V5A150W2SK179N沟2SK17-GRN沟20V 2.6-6.5mA0.1W2SK17N沟20V10mA100mW2SK17-ON沟20V0.6-1.4mA0.1W2SK17-RN沟20V0.3-0.75m0.1W2SK17-YN沟20V 1.2-3mA0.1W2SK1803N沟900V8A100W2SK1804N沟100V5A20W2SK1805N沟500V7A125W2SK1807N沟900V4A通用型场效应管2SK1808N沟250V12A通用型场效应管2SK1809N沟600V5A通用型场效应管2SK180N沟600V8A300W2SK1814N沟60V20A45W电机控制场效应管2SK1815N沟60V35A50W电机控制场效应管2SK1817N沟100V20A40W电机控制场效应管2SK1818N沟250V20A50W电机控制场效应管2SK1819N沟450V5A35W电机控制场效应管2SK181N沟800V5A300W2SK1820-LSN沟500V6A80W场效应开关管2SK1821N沟600V2A30W场效应开关管2SK1822N沟60V20A35W电机控制场效应管2SK1823N沟60V50A50W电机控制场效应管2SK1824N沟30V0.01A0.2W金属氧化物场效应开关管2SK1825N沟50V50mA金属氧化物场效应开关管2SK1826N沟50V20mA0.2W高速场效应管2SK1827N沟50V50mA0.1W高速场效应管2SK1828N沟20V20mA200mW高速场效应管2SK1829N沟20V50mA0.1W高速场效应管2SK182EN沟500V18A1000W2SK182N沟600V18A1000W2SK1831N沟450V10A通用型场效应管2SK1832N沟500V10A通用型场效应管2SK1833N沟500V 2.5A40W2SK1834N沟800V2A40W2SK1835N沟1500V4A通用型场效应管2SK1836N沟450V50A通用型场效应管2SK1837N沟500V50A通用型场效应管2SK1839N沟30V100mA150mW金属氧化物低频放大场效应管2SK183EN沟800V10A500W2SK183HEN沟800V10A500W2SK183HN沟1200V10A1000W2SK183N沟800V10A1000W2SK183VEN沟800V10A500W2SK183VN沟1500V10A1000W2SK1840N沟30V100mA200mW金属氧化物低频放大场效应管2SK1841N沟30V100mA200mW金属氧化物低频放大场效应管2SK1842N沟40V1mA通用型场效应管2SK1844N沟70mA12GHz通用型场效应管2SK1845N沟70mA12GHz通用型场效应管2SK1846N沟800V3A40W2SK1847N沟30V0.5A0.25W金属氧化物高压高速开关场效应管2SK1848N沟60V0.4A0.25W金属氧化物高压高速开关场效应管2SK1849N沟100V0.25A0.25W金属氧化物高压高速开关场效应管2SK184-BLN沟50V6-14mA0.2W2SK184-GRN沟50V 2.6-6.5mA0.2W2SK184N沟50V10mA200mW2SK184-ON沟50V0.6-1.4mA0.2W2SK184-YN沟50V 1.2-3mA0.2W2SK1850N沟60V5A 1.8W场效应开关管2SK1851N沟60V7.5A 1.8W场效应开关管2SK1852N沟100V5A 1.8W场效应开关管2SK1853N沟100V7.5A 1.8W场效应开关管2SK1854N沟400V6A40W金属氧化物场效应开关管2SK1855N沟500V12A125W通用型场效应管2SK1858N沟800V3A60W通用型场效应管2SK1859N沟900V6A通用型场效应管2SK185N沟30V5mA320mW高频放大场效应管2SK1862N沟450V3A通用型场效应管2SK1863N沟500V3A通用型场效应管2SK1864N沟500V8A100W金属氧化物场效应开关管2SK1865N沟500V12A100W金属氧化物场效应开关管2SK1867N沟900V2A15W2SK1868N沟60V2A15W2SK1869N沟350V7A场效应开关管2SK186-CN沟40V 1.6-12mA0.3W场效应音频(低频)管2SK186-DN沟40V 1.6-12mA0.3W场效应音频(低频)管2SK186-EN沟40V 1.6-12mA0.3W场效应音频(低频)管2SK186N沟40V10mA300mW低频放大场效应管2SK1871N沟60V15A40W金属氧化物场效应功率放大管2SK1875N沟20V10mA0.1W高频放大场效应管2SK1878N沟100V10A场效应开关管2SK187-CN沟40V 2.5-20mA0.3W场效应音频(低频)管2SK187-DN沟40V 2.5-20mA0.3W场效应音频(低频)管2SK187-EN沟40V 2.5-20mA0.3W场效应音频(低频)管2SK187-FN沟40V 2.5-20mA0.3W场效应音频(低频)管2SK187N沟10mA300mW低频放大场效应管2SK1880N沟600V 1.5A通用型场效应管2SK1881-LSN沟60V20A45W电机控制场效应管2SK1882N沟60V12A40W通用型场效应管2SK1883N沟30V18A50W金属氧化物驱动场效应管2SK1884N沟30V22A60W金属氧化物驱动场效应管2SK1885N沟30V35A70W金属氧化物驱动场效应管2SK1886N沟30V15A25W金属氧化物驱动场效应管2SK1887N沟30V20A25W金属氧化物驱动场效应管2SK1888N沟30V30A30W金属氧化物驱动场效应管2SK1889N沟30V35A70W金属氧化物驱动场效应管2SK1890N沟30V22A60W金属氧化物驱动场效应管2SK1891N沟30V35A70W金属氧化物驱动场效应管2SK1892N沟60V15A50W金属氧化物驱动场效应管2SK1893N沟60V18A60W金属氧化物驱动场效应管2SK1894N沟60V30A70W金属氧化物驱动场效应管2SK1895N沟60V12A25W金属氧化物驱动场效应管2SK1896N沟60V15A25W金属氧化物驱动场效应管2SK1897N沟60V25A70W金属氧化物驱动场效应管2SK1898N沟60V15A50W金属氧化物驱动场效应管2SK1899N沟60V18A60W金属氧化物驱动场效应管2SK189N沟场效应音频(低频)管2SK18AN沟40V0.45-2.8m0.2W2SK18N沟40V10mA200mW2SK18-ON沟40V0.8-1.6mA0.2W2SK18-RN沟40V0.45-2.8m0.2W2SK18-YN沟40V 1.4-2.8mA0.2W2SK1900N沟60V30A70W金属氧化物驱动场效应管2SK1901N沟60V12A50W金属氧化物驱动场效应管2SK1902N沟60V15A60W金属氧化物驱动场效应管2SK1903N沟60V25A70W金属氧化物驱动场效应管2SK1904N沟60V10A25W金属氧化物驱动场效应管2SK1905N沟60V12A25W金属氧化物驱动场效应管2SK1906N沟60V20A30W金属氧化物驱动场效应管2SK1907N沟60V12A50W金属氧化物驱动场效应管2SK1908N沟60V15A60W金属氧化物驱动场效应管2SK1909N沟60V25A70W金属氧化物驱动场效应管2SK190EN沟40V6-50mA0.8W场效应音频(低频)管2SK190FN沟40V6-50mA0.8W场效应音频(低频)管2SK190HN沟40V6-50mA0.8W场效应音频(低频)管2SK190N沟40V10mA800mW低频放大场效应管2SK1910N沟60V25A通用型场效应管2SK1911N沟60V40A通用型场效应管2SK1913N沟600V 2.5A40W通用型场效应管2SK1916拆N沟450V18A2SK1916N沟450V18A80W场效应开关管2SK1917-MN沟25V10A50W场效应开关管2SK1918N沟60V25A场效应开关管2SK1919N沟60V40A通用型场效应管2SK191N沟15V10mA1W2SK1920N沟250V4A30W金属氧化物高压高速开关场效应管2SK1929N沟900V 2.5A100W通用型场效应管2SK192AN沟18V3-24mA0.2W2SK192-BLN沟18V12-24mA0.2W2SK192-GRN沟18V6-14mA0.2W2SK192N沟18V10mA200mW2SK192-YN沟18V3-7mA0.2W2SK1930N沟1000V3A100W通用型场效应管2SK1933N沟900V10A通用型场效应管2SK1934N沟1000V8A通用型场效应管2SK1936-01N沟500V10A100W场效应开关管2SK1937-01N沟500V15A125W场效应开关管2SK1938-01N沟500V18A100W场效应开关管2SK1938N沟800V3A125W通用型场效应管2SK1939-01N沟600V8A100W场效应开关管2SK1939N沟900V3A150W通用型场效应管2SK193N沟20V10mA250mW2SK1940-01N沟600V12A125W场效应开关管2SK1940N沟600V12A125W2SK1941拆2SK1941-01N沟600V16A100W场效应开关管2SK1942-01N沟900V3A80W场效应开关管2SK1943-01N沟900V5A80W场效应开关管2SK1944-01N沟900V5A100W场效应开关管2SK1945-01LN沟900V5A80W场效应开关管2SK1945-01SN沟900V5A80W场效应开关管2SK1946-01MN沟60V45A50W电机控制场效应管2SK1947N沟250V50A通用型场效应管2SK1948N沟250V50A通用型场效应管2SK1949N沟60V5A场效应开关管2SK194N沟40V10mA400mW2SK1950N沟60V3A通用型场效应管2SK1951N沟60V25A通用型场效应管2SK1952N沟60V40A通用型场效应管2SK1953N沟600V1A25W场效应开关管2SK1954N沟180V2A20W场效应开关管2SK1957N沟200V5A通用型场效应管2SK1958N沟16V0.01A0.15W2SK1959N沟16V1A2W2SK195N沟20V10mA250mW2SK1960N沟16V 1.5A2W2SK1962N沟16V 1.5A2W2SK1963N沟4V12-60mA0.2W。

欧姆龙PLC CP1E系列I-O接线图

欧姆龙PLC CP1E系列I-O接线图

A-2接线图A-2-1CPU 单元20点I/O型CPU单元A-2 接线图附录A-2-1 CPU 单元30点I/O 型CPU 单元40点I/O型CPU单元A-2 接线图附录A-2-2 扩展I/O 单元分配给扩展I/O 单元的首输入字显示为CIO m 且首输出字显示为CIO n 。

A-2-2扩展I/O 单元8点输入单元8点输出单元16点输出单元A-2 接线图附录A-2-2 扩展I/O单元32点输出单元A-2 接线图附录A-2-2 扩展I/O单元20点I/O单元A-2 接线图附录A-2-2 扩展I/O 单元40点I/O 单元A-2-3扩展单元CP1W-AD041模拟量输入单元接线图z 输入端子排列注电流输入时,请将V IN1~I IN1, V IN2~I IN2,V IN3~I IN3以及V IN4~I IN4短路。

z 接线方式示例:V IN1电压输入 1I IN1电流输入 1COM1输入公共端 1V IN2电压输入 2I IN2电流输入 2COM2输入公共端 2V IN3电压输入 3I IN3电流输入 3COM3输入公共端 3V IN4电压输入 4I IN4电流输入 4COM4输入公共端 4A-2 接线图附录A-2-3 扩展单元CP1W-DA041模拟量输出单元接线图z 输出端子排列z 接线方式示例:V OUT1电压输出 1I OUT1电流输出 1COM1输出公共端 1V OUT2电压输出 2I OUT2电流输出 2COM2输出公共端 2V OUT3电压输出 3I OUT3电流输出 3COM3输出公共端 3V OUT4电压输出 4I OUT4电流输出 4COM4输出公共端4CP1W-MAD11 模拟量I/O 单元接线图z I/O 端子排列注 电流输入时,请将V IN0~I IN0以及V IN1~I IN1短路。

z 接线方式•模拟量输入接线•模拟量输出接线V OUT 电压输出I OUT 电流输出COM 输出公共端V IN0电压输入 0I IN0电流输入 0COM0输入公共端 0V IN1电压输入 1I IN1电流输入 1COM1输入公共端1A-2 接线图附录A-2-3 扩展单元示例:CP1W-TS001/TS002/TS101/TS102 温度传感器单元接线图z 热电偶的连接•CP1W-TS001CP1W-TS001中最多可连接2 个热电偶K 、J 。

HORIBA SZ-100 Particle Size Analyzer 和 Autotitrato

HORIBA SZ-100 Particle Size Analyzer 和 Autotitrato

SZ-100Particle Size AnalyzerAN206 Using the SZ-100 Autotitrator to fi nd Isoelectric Point (IEP)The isoelectric point, IEP, of a colloidal system is determined automatically with the SZ-100 and Autotitrator from HORIBA Instruments. Zeta potential data as a function of pH is collected while the author is drinking coffee and writing support documents.IntroductionZeta potential is the charge on a particle at the shear plane. This value of surface charge is useful for understanding and predicting interactions between particles in suspension. A large magnitude (either positive or negative), that is, over about 25 mV, zeta potential is generally considered an indication that the particle suspension will be electrostatically stabilized. Zeta potential can be measured with the HORIBA SZ-100-Z shown in Figure 1.Figure 1: SZ-100 Nanoparticle AnalyzerZeta potential is a function of both the particle surface chemistry and the suspending medium chemistry (1). The ions that are at the particle surface and controlling surface potential are a function of the concentration and nature of the ions in the bulk liquid. In addition, the concentration of ions affects the distance over which charge effects persist. For example, a signifi cant amount of dissolved salt will shield the electrostatic interactions between particles. Some ions, known as specifi c ions will prefer to stick to the particle surface as the concentration of these ions increases. Examples of specifi c ions include H+ and polyvalent ions. In this work, the effect of H+ concentration on particle surface charge is studied. Other examples on the effect of various ion concentrations can be found in (2) and (3). T ypically, and for good reason, H+ concentration is discussed in terms of pH. pH has a strong effect on the surface charge of many types of particles. In addition, pH is a parameter that is often and readily changed in a formulation. For these reasons, the effect of pH on particle surface charge is often studied. One number that characterizes a surface is the isoelectric point, IEP, or point of zero charge, PZC, which refers to the conditions, often pH, at which the particle surface charge is zero. At pH values lower than the IEP, the particle surface charge is positive and at pH values higher than the IEP, the particle surface charge is negative. One rule of thumb for stable suspensions is to ensure that the pH is one full pH unit away from the IEP. Values of IEP are obtained by measuring the zeta potential as a function of pH and identifying the pH at which the zeta potential value crosses zero. In most cases this is achieved by interpolating the experimental data. T extbook values of IEP are often not useful for practical work since the value of IEP can change dramatically with even a small amount of impurity that is driven to the sample surface. IEP measurement results can also be affected by incomplete particle surface wetting or by the choice of surfactants. For example, adding TSPP to a metal oxide suspension will cause the IEP to shift to extremely low pH values or disappear altogether. For these reasons, IEP values are typically measured and that is a process that can be automated. The automation of isoelectric point measurement is achieved with the HORIBA Autotitrator accessory for theFigure 2:Autotitrator accessory for the SZ-100Page 2/2SZ-100 shown in Figure 2. The Autotitrator automatically adds acid or base to adjust the pH of the sample, records pH, and loads the sample into the graphite electrode cell in the SZ-100. Zeta potential is then determined and the cycle is automatically repeated for the next pH in the series.Materials and Methods Arti fi cial coffee creamer was diluted until slightly cloudy in DI water. Sample pH was automatically decreased to pH 2 and then increased stepwise with the HORIBA Autotitrator. Zeta potential was measured with the reusable graphite electrode cell in the HORIBA SZ-100Z nanoparticle analyzer. Sample pH was measured with the HORIBA 9621C temperature-compensated pH electrode. In this study, 100 mM nitric acid and 100 mM sodium hydroxide were used as the acid and base reagents respectively. The Autotitrator reagent containers include provision for molecular sieve treatment of incoming air that replaces removed titrant. The 5 mL burettes precisely deliver the reagents without bubbles eliminating the need for degassing. The smallest reagent dose that can be delivered manually is 0.0025 mL. The Autotitrator was set up in the software via a wizard type interface as shown in Figure 3 below. T he available manual mode was not used in this study.Figure 3: Screen Shot of Autotitratorsetup screen in the software.The pH probe was fi lled and calibrated using HORIBA standard solution set 101-S. After cleaning, it was held in place over the sample beaker with an integrated ring stand. The integrated stir plate mixed the sample as reagent was automatically delivered. When the target pH was reached, a peristaltic pump rinsed the zeta potential cell and delivered the sample for measurement. The zeta potential was measured in triplicate and pH monitored for drift during measurement. Then, the cycle was repeated for the next pH in the series.Results and DiscussionThe zeta potential of the coffee powder suspension as a function of pH is shown in Figure 3 below. From pH 2 to pH3, the zeta potential value of the coffee creamer emulsion increases. This is probably due to speci fi c shifts in the structure of the emulsion at low pH. From pH 3 to pH 11, the shape of the curve is the classical backwards S shape. At low pH, the particle charge is positive due to the large H + ion concentration. At high pH, the particle charge is negative due to the large OH- ion concentration. The obtained valueof the isoelectric point where the zeta potential crosses frompositive to negative is at pH 5. Finally, there is a decreasein the magnitude of the zeta potential between pH 11 and pH 13. This is either due to another structural shift in the emulsion or due to the shielding effect of the increased number of ions in the suspension. The main point of this plot is that the isoelectric point of this system is at pH 5.Figure 4: Screen shot of results of automatic titrationresults with the SZ-100 and Autotitrator.ConclusionsThe IEP of a suspension can be automatically determined using the HORIBA SZ-100 and the HORIBA Autotitrator. The IEP of this particular arti fi cial coffee creamer was found to be at pH 5.References(1) HORIBA Application Note AN195 “Isoelectric Point Determination”, available at /fi leadmin/uploads/Scienti fi c/Documents/PSA/AN195_app.pdf (2) HORIBA Application Note AN201 “Wastewater T reatment: Zeta Potential Analysis of Suspended Clay Solids”, available at /fi leadmin/uploads/Scienti fi c/Documents/PSA/Application_Notes/AN201_app.pdf(3) HORIBA Application Note AN202 “Zeta Potential Analysis of Re fi nery Wastewater and Its T reatment,” available at /fi leadmin/uploads/Scienti fi c/Documents/PSA/Application_Notes/AN202_app.pdf******************/scienti fi cUSA: (800) 446-7422 France:+33 (0)1 64 54 13 00 Japan: +81 (0)3 38618231T h i s d o c u m e n t i s n o t c o n t r a c t u a l l y b i n d i n g u n d e r a n y c i r c u m s t a n c e s - © H O R I B A I n s t r u m e n t s , I n c . 05/2012。

TB1002

TB1002

TB1002IntroductionTB1002 is an advanced robot designed to perform various tasks efficiently and accurately. This document provides an overview of the robot’s capabilities, specifications, and usage instructions.Key Features1.Multiple Task Capabilities: TB1002 is equippedwith a wide range of sensors and tools, enabling it toperform tasks like cleaning, gardening, and carrying objects.2.Intelligent Navigation: The robot utilizes advancedmapping technology and obstacle avoidance algorithms to navigate and operate in any environment.er-Friendly Interface: TB1002 comes with anintuitive touch screen control panel, making it easy forusers to interact and program the robot.4.Wireless Connectivity: The robot supportswireless connectivity, allowing users to control andmonitor its activities remotely via a mobile app orcomputer.Specifications•Dimensions: The robot has a compact and lightweight design, measuring approximately 50cm in height and weighing 5kg.•Battery Life: TB1002 is powered by a long-lasting lithium-ion battery, providing up to 10 hours of continuous operation on a single charge.•Sensors: The robot is equipped with various sensors, including cameras, ultrasonic sensors, and infrared sensors, to navigate and interact with its surroundings.•Tools and Attachments: TB1002 comes with a range of interchangeable tools and attachments, such as brushes for cleaning, grippers for object handling, and water spray nozzles for gardening.•Connectivity: The robot supports Wi-Fi and Bluetooth connectivity, allowing seamless integration with various devices and applications.Usage Instructions1.Initial Setup: Before using TB1002, ensure that the battery is fully charged. Turn on the robot by pressing the power button and make sure it is connected to a stable Wi-Fi network.2.Control and Navigation: Use the touch screen control panel to navigate the robot. Drag your finger acrossthe screen to move the robot in different directions. Use the virtual buttons to control specific functions.3.Task Execution: Select the appropriate tool or attachment for the desired task. For example, attach the brush for cleaning or the gripper for object handling. Use the touch screen control panel to initiate the task and monitor its progress.4.Remote Control: To control TB1002 remotely, download and install the mobile app or access the control panel via a web browser. Connect to the robot using the provided credentials and follow the on-screen instructions.5.Maintenance: Regularly clean and inspect the robot’s sensors and tools to ensure optimal performance. Replace worn-out tools or attachments as needed.Safety Guidelines1.Keep Children and Pets Away: While TB1002 is designed to be safe, keep children and pets away from the robot while it is operating to prevent accidents.2.Avoid Obstacles: Ensure that the robot has enough clearance to navigate through doorways and around obstacles. Remove any potential hazards from its path.3.Do Not Modify or Disassemble: Do not modify or disassemble TB1002, as doing so may void the warranty and compromise its functionality.4.Caution During Cleaning: If using the robot forcleaning purposes, ensure that the cleaning agents used are suitable for the surface being cleaned. Follow themanufacturer’s instructions and take necessaryprecautions to avoid accidents or damage.In conclusion, TB1002 is a versatile and intelligent robot with advanced capabilities and user-friendly features. With its multiple task capabilities, intelligent navigation, and wireless connectivity, it offers a convenient and efficient solution for various tasks. By following the provided usage instructions and safety guidelines, users can maximize the robot’s potential while ensuring safety and reliability.。

电梯型号参数表2003版本用

电梯型号参数表2003版本用

载货梯(3000
顶层高度 K 4800 4800
3000 4000
0.5 0.25 0.5 0.25 0.5
1500 1500
5000
2500x3800
2400x2400
3950x4160
3950x4160
1500
4800
XO-CONB
载重 速度 1 1.5 1600 1.75 2 2.5 1450x2600 1100x2100(中 2500x2810 分) 3150x4460 轿厢净尺寸 (宽CW*深 CD) 开门净尺寸 (宽OP*高 OPH) 井道净尺寸 (宽HW*深 HD) 机房净尺寸 (宽MW*深 MD) 底坑深度S 1450 1550 1550 1650 2050
XO-REBO
载重 630 (550) 速度 轿厢净尺寸 (宽CW*深 CD) 1400x1050 开门净尺寸 (宽OP*高 OPH) 800x2100 井道净尺寸 (宽HW*深 HD) 1850x1700 HD1 HD2
客梯(500-1050KG&1.0-1.
机房净尺寸 底坑深度 (宽MW*深 S MD) 2500x2350 1450 1450
无机房电梯(630-1000KG
其它定位尺寸 D1 800 D2 700
630
1100x1600
700x2100
1800x1800
680
1200x1600
800x2100
2000x1800
850
750
800
1400x1600
800x2100
2100x1800
950
850
900
1500x1600
900x2100
客梯(800-1050KG&2.0-2

航海学 航速与航程

航海学 航速与航程

2 1 03m46s
21m30s
03m45s 2078863 L2 85′.63
V1
3600S t1
3600 0.98 204
17.29(4 节)
L1
SL
(L2 L2 L1
L1 )
100%
0.98 (79.73 78.70) 100% 4.854% 79.73 78.70
3
03m20s 2080791 L1 90′.38
V
17.362
答:略。
21.4Kn
2、求计程仪改正率
L1
SL
(L2 L2 L1
L1 )
100 %
3 (113 .2 110 .0) 113 .2 110 .0
100 %
6.25 %
L2
SL
(L4 L3 ) 100 % L4 L3
3 (118 .0 115 .2) 100 % 118 .0 115 .2
+7.14%
延时与船舶航速的关系:
S
2 1•S
V 2V
τ
图1-1(
图1-1(
由于多普勒计程仪与声相关计程仪从船底向海底反射的超声波的有效作
用距离为几米到十几米,只有当此超声波能作用到海底时,才可作为绝对计
程仪。因此,一般情况下,多普勒计程仪与声相关计程仪也是相对计程仪。
2.计程仪改正率△L:
1)定义:计程仪每记录1海里的误差用百分数表示。 2)公式:
(1) L SL (L2 L1 ) 100 % L2 L1
(2) SL (L2 L1) (1 L)
(3)
L2
L1
SL 1 L
例题5-3:已知L1=100′.0, L2=130′.0,△L=+5%, 求计程仪航程SL。

DIN EN 10020-1988:钢的分类概念

DIN EN 10020-1988:钢的分类概念

内容 1. 目的和使用范围 ··········································· 3 2. 参阅标准 ······················································· 3 3. 钢的概念 ······················································· 3 4. 按化学成分分类 ··········································· 3 4.1 作为标准的成分 ··········································· 3 4.2 概念······························································· 4 4.2.1 非合金钢···················································· 4 4.2.2 合金钢························································ 4 5. 主要质量等级分类法 ··································· 4 5.1 非合金钢主要质量等级 ······························· 4 5.1.1 原钢···························································· 4 5.1.2 非合金优质钢 ············································ 5
表 2 普通钢分类的极限值
如果成品分析获得一个值,按该值对钢进行 分类,被视为原始规定的类别并证实是可信的。 4.1.6 如果涉及到多层的产品或具有镀层和涂覆 产品,母体材料的化学成分便是至关 0.5%重要 的。 4.1.7 作为标准的含量小数点后以同等的位数给 出,如表 1 对于该元素给出的极限值。例如在使 用本标准时 0.3~0.5%铬含量作为 0.30~0.50 铬来 评价,2%锰含量作为 2.00 锰来评价。 4.2 概念 4.2.1 非合金钢

OE100标准

OE100标准

OE 100 标准跟踪并证明购买和处理认证的混纺纱线、面料及成品的有机纤维使用情况目录I.介绍A.前言B.什么是OE 100标准?C.OE 100 标准要求企业做些什么?D.为什么开发OE 100标准?E.OE101 标准怎样开发?II.OE 100标准使用指南III.混纺纱线、面料和成品OE 100标准A.定义B.范围C.所有生产操作需认证要求(1)轧花操作特定要求(2)仓储特定要求(3)纺纱操作特定要求(4)织布/针织操作特定要求(5)染/整理及服装加工操作特定要求(6)刺绣/裁剪及缝纫操作特定要求(7)批发/零售操作特定要求(8)认证机构要求第I 部分: 介绍A. 前言(略)B.什么是OE 100标准?OE 100 是一个跟踪并证明购买、处理及使用认证的混纺纱线、面料及成品有机棉花纤维的标准。

开发OE 100标准以完善并符合现有的由美国农业部门、欧洲共同体及其它制定规章的团体采用的控制含100%认证的有机纤维产品的规章。

这意指OE只认证100%有机棉,而不是认证混纺成份。

OE 100帮助保证有机混纺产品的消费者相信含认证的有机成份的产品达到标签上说明的标准。

C.OE 100 要求企业做些什么?OE 100要求企业:①从认证的有机生产商那购买纤维。

②纤维处理要使之整齐有序直至混纺成纱线。

③处理并标注含有机纤维的纱线、面料及成品,以便可以在每道生产加工中证明购买及使用认证的有机纤维情况,并且证明:④由制定规章的团体认可的独立的第三方证明按照OE100标准生产的产品。

D.为什么开发OE 100 ?在过去十五年里,欧洲和美国的企业给消费者提供了服装、家用品、个人使用产品及其它含100%认证的有机纤维项目。

美国农业部门、欧洲共同体及其它机构(如美国国家有机程序有机生产和加工标准及EU规章2092/91)采用规章和标准以说明在消费者市场上这些产品成份是怎样生长、加工及标注销售的。

过去五年里,一批企业决定加少部分棉纤维到产品中,如混和5%有机棉纤维于95%普通棉纤维中,生产出100%棉产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《世界2》烈焰金刚100%猎杀揭秘
世界2烈焰金刚又被冒险者与王都骑士们称为「火山魔兵」,生活在特洛斯大陆北领地的熔
岩地,以熔岩火浆为食,性情狂躁易怒,领地观念极强,一般不离开栖息地,然而近来却积极往中部平原拓进,并造成沿途村庄的伤亡与极大恐慌。

虽然烈焰金刚极度危险,但其头顶的熔岩犄角却是许多冒险者与宝物商人垂涎不已的高级素材,那些以犄角打造的惊世神兵,往往灌注着数代冒险者的不朽英灵。

烈焰金刚是玩家进入世界2遇到的第一个怪物,对游戏细心的朋友也会发现Boss身上可以破坏的部位,那到底怎么才能达到100%部位破坏,下面就让我们来看下正确的打烈焰金刚姿势。

百度攻略&当乐网提供,更多精彩攻略访问1
上图中就是Boss可以破坏的部位,只要在击杀Boss前,成功破坏掉这些部位就可以达
成100%破坏的评定哦~当然,需要准确的打中这些部位累计足够的伤害才能破坏,先别急着杀
死Boss。

击杀Boss可以获得材料:金刚岩壳,金刚觭角,金刚之心,烈炎觭角,金刚觭角,金刚
百度攻略&当乐网提供,更多精彩攻略访问2
岩壳,金刚之心,不同等级的烈焰金刚还会获得不同品质材料。

以上就是本次为你介绍的烈焰金刚资料,希望能帮助到大家。

百度攻略&当乐网提供,更多精彩攻略访问3。

相关文档
最新文档