期末复习必修4第三章三角恒等变换测试题

合集下载

(好题)高中数学必修四第三章《三角恒等变形》测试题(有答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试题(有答案解析)

一、选择题1.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( )A .23B .23-C .32D .32-2.已知2π()2sin ()1(0)3f x x ωω=+->,给出下列判断: ①若函数()f x 的图象的两相邻对称轴间的距离为π2,则=2ω; ②若函数()f x 的图象关于点π(,0)12对称,则ω的最小值为5; ③若函数()f x 在ππ[,]63-上单调递增,则ω的取值范围为1(0,]2; ④若函数()f x 在[0,2π]上恰有7个零点,则ω的取值范围为4147[,)2424. 其中判断正确的个数为( ) A .1 B .2C .3D .43.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15164.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭5.已知3cos 25α=,()0,2απ∈,则sin 4απ+⎛⎫= ⎪⎝⎭( )A B . C D .10-6.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈⎪⎝⎭,则cos β的值为( ) A .45-B .44125C .44125-D .457.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( )A .13B .23C .43D .838.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A .9-B .9C .79-D .799.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,BC 边上的高为h ,且3h =,则2c a b c c b b ++的最大值是( )A .B .C .4D .610.已知()0,απ∈,()2sin 2cos21παα-=-,则sin α=( )A .15B C .5-D 11.求sin10°sin50°sin70°的值( )A .12B C .18D12.已知A 是函数()3sin(2020))263f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( )A .2020πB .1010π C .32020πD 二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.14.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若2sin cos a B b C=,且()3sin sin 4A CB -=-,则sin B =_______.15.已知πsin(π)3sin()02αα+--=,则cos2α的值为________.16.求值:sin50sin30sin10cos50cos30sin10︒+︒︒︒-︒︒=_______17.()sin5013tan10︒+︒的值__________.18.若函数()23sin2cos2,[0,]f x x x xπ=-+∈的图象与直线y m=恰有两个不同交点,则m的取值范围是________.19.已知锐角α,β满足()sin23sinαββ+=,则()tan cotαβα+=______. 20.已知正n边形的边长为a,其外接圆的半径为R,内切圆的半径为r.给出下列四个结论:①2sinaRnπ=;②2π2sinaRn=;③2tan2aR rnπ+=;④π2tanaR rn+=.其中正确结论的序号是______.三、解答题21.函数()3sin()0,||2f x xπωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,其中7,03Bπ⎛⎫⎪⎝⎭,且最高点A与B的距离29ABπ=+(1)求函数()f x的解析式;(2)若(),,4363fππαα⎛⎫∈-=⎪⎝⎭,求cos2α的值.22.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期;(2)若函数()()2g x f x x =-,求函数()g x 的单调增区间.23.已知51,0,,sin ,cos()273παβααβ⎛⎫∈=+=- ⎪⎝⎭. (1)求tan2α的值; (2)求cos(2)αβ+的值.24.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.25.已知1sin cos 5αα+=,其中0απ<<. (1)求11sin cos αα+的值; (2)求tan α的值.26.在直角坐标系xOy 中,已知锐角α和β的顶点都在坐标原点,始边都与x 轴非负半轴重合,且终边与单位圆分别交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫⎪⎝⎭,求()sin αβ-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 2.C解析:C 【分析】先将()f x 化简,对于①,由条件知,周期为π,然后求出ω;对于②,由条件可得2()612k k Z ωπππ+=∈,然后求出16()k k Z ω=-+∈,即可求解;对于③,由条件,得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩,然后求出ω的范围;对于④,由条件,得74221212πππππωωωω-<-,然后求出ω的范围;,再判断命题是否成立即可. 【详解】解:2π2ππ()2sin ()1=-cos(2)=sin(2)336f x x x x ωωω=+-++, ∴周期22T ππωω==. ①.由条件知,周期为π,1w ∴=,故①错误;②.函数()f x 的图象关于点π(,0)12对称,则2()612k k Z ωπππ+=∈, 16()k k Z ω∴=-+∈,(0)>ω∴ω的最小值为5, 故②正确;③.由条件,ππ[,]63x ∈-,ππ2π236636x πωπωω-+≤+≤+ 由函数()f x 在ππ[,]63-上单调递增得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩, 12ω∴≤, 又0>ω,102ω∴<, 故③正确.④.由()sin(2)06f x x πω=+=得2()6x k k Z πωπ+=∈,解得()212k x k Z ππωω=-∈ ()sin(2)6f x x πω=+且()f x 在[0,2]π上恰有7个零点,可得74221212πππππωωωω-<-, ∴41472424ω<, 故④正确; 故选:C 【点睛】本题考查了三角函数的图象与性质,考查了转化思想和推理能力,属中档题.关键点点睛:利用整体思想,结合正弦函数的图像和性质是根据周期,对称,单调性,零点个数求求解参数的关键.3.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值. 【详解】22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.4.C解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()αβ+==. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.102+=>,所以1cos (,0)2β∈-所以2,23ππβ⎛⎫∈ ⎪⎝⎭.故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.5.C解析:C 【分析】 根据2α是4α的二倍角求出sin α的值,再求cos 4α和sin 4απ+⎛⎫⎪⎝⎭的值. 【详解】因为2α是4α的二倍角,所以2311cos 152sin 4225αα--===, 又()0,2απ∈,所以0,42a π⎛⎫∈ ⎪⎝⎭,所以sin 44αα===cos所以sin sin sin cos cos sin 4444445252104απαπαπαπ+⎛⎫⎛⎫=+=+=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C. 【点睛】 本题考查了二倍角的余弦公式,考查了同角公式,考查了两角和的正弦公式,属于中档题.6.B解析:B 【分析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果. 【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α= 22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B 【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题.7.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.8.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9.C解析:C 【分析】由余弦定理化简可得2222cos c b a a A b c bc bc++=+,利用三角形面积公式可得2sin a A =,解得22cos 4sin(6c b a A A A b c bc π++=+=+),利用正弦函数的图象和性质即可得解其最大值. 【详解】由余弦定理可得:2222cos b c a bc A +=+,故:22222222cos 22cos c b a a b c a bc A a A b c bc bc bc bc +++++===+, 而2111sin 222ABC S bc A ah a ∆===,故2sin a A =,所以:2222cos 2cos 4sin()46c b a a A A A A b c bc bc π++=+=+=+. 故选C . 【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.10.D解析:D 【分析】先利用诱导公式化简,再利用正弦、余弦的二倍角公式化简可得结果 【详解】解:由()2sin 2cos21παα-=-,得2sin 2cos21αα=-, 所以24sin cos 12sin 1ααα=--,即22sin cos sin ααα=-, 因为()0,απ∈,所以sin 0α≠, 所以2cos sin αα=-, 因为22sin cos 1αα+=,所以221sin sin 14αα+=,所以24sin 5α=, 因为()0,απ∈,所以sin 0α>,所以sin 5α=, 故选:D 【点睛】此题考查诱导公式的应用,考查二倍角公式的应用,考查同角三角函数的关系,属于中档题11.C解析:C 【分析】由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C 【点睛】本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.12.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))263f x x x ππ=+-,392020cos 2020cos 2020202044x x x x =+-,320220cos 20202x x =-3sin(2020)6x π=-,∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.14.【分析】代入展开整理得①化为与①式相加得转化为关于的方程求解即可得出结论【详解】因为所以所以因为所以则整理得解得故答案为:【点睛】本题考查正弦定理的边角互化考查三角函数化简求值属于中档题 解析:12【分析】sin sin()B A C =+代入()3sin sin 4A CB -=-,展开整理得32cos sin 4A C =,①2sin cos a B b C=化为22sin cos sin A C B =,与①式相加得 ()232sin cos cos sin sin 4A C A CB +=+,转化为关于sin B 的方程,求解即可得出结论.【详解】因为()3sin sin 4A CB -=-,所以()()3sin sin 4A C A C -=+-,所以32cos sin 4A C =,因为2sin cos a B b C=,所以22sin cos sin A C B =,则()232sin cos cos sin sin 4A C A CB +=+, 整理得23sin 2sin 04B B -+=,解得1sin 2B =. 故答案为:12. 【点睛】本题考查正弦定理的边角互化,考查三角函数化简求值,属于中档题.15.【分析】根据利用诱导公式结合商数关系得到然后由求解【详解】因为所以解得所以故答案为:【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用还考查了运算求解的能力属于中档题解析:45-【分析】根据πsin(π)3sin()02αα+--=,利用诱导公式结合商数关系得到tan 3α=-,然后由222222cos sin cos 2cos sin cos sin ααααααα-=-=+求解. 【详解】因为πsin(π)3sin()02αα+--=, 所以sin 3cos 0αα--=, 解得tan 3α=-,所以222222cos sin cos 2cos sin cos sin ααααααα-=-=+, ()()2222131tan 41tan 513αα---===-++-, 故答案为:45- 【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用,还考查了运算求解的能力,属于中档题.16.【分析】根据代入原式利用正余弦的和差角公式求解即可【详解】故答案为:【点睛】本题主要考查了非特殊角的三角函数化简与求值需要根据所给的角度与特殊角的关系并利用三角恒等变换进行求解属于中档题【分析】根据506010︒=︒-︒,代入原式利用正余弦的和差角公式求解即可. 【详解】()()sin 6010sin 30sin10sin 50sin 30sin10cos50cos30sin10cos 6010cos30sin10︒-︒+︒︒︒+︒︒=︒-︒︒︒-︒-︒︒sin 60cos10cos60sin10sin 30sin10cos60cos10sin 60sin10cos30sin10︒︒-︒︒+︒︒=︒︒+︒︒-︒︒sin 60cos10tan 60cos60cos10︒︒==︒=︒︒【点睛】本题主要考查了非特殊角的三角函数化简与求值,需要根据所给的角度与特殊角的关系,并利用三角恒等变换进行求解.属于中档题.17.1【分析】由结合辅助角公式可知原式为结合诱导公式以及二倍角公式可求值【详解】解:故答案为:1【点睛】本题考查了同角三角函数的基本关系考查了二倍角公式考查了辅助角公式考查了诱导公式本题的难点是熟练运用解析:1 【分析】由sin10tan10cos10︒︒=︒,结合辅助角公式可知原式为2sin50sin 40cos10︒︒︒,结合诱导公式以及二倍角公式可求值. 【详解】解: ()sin501sin50︒+︒=︒⨯()2sin50cos30sin10sin 30cos102sin50sin 402sin50cos50cos10cos10cos10︒︒︒+︒︒︒︒︒︒===︒︒︒()sin 10902sin50cos50sin100cos101cos10cos10cos10cos10︒+︒︒︒︒︒====︒︒︒︒.故答案为:1. 【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.18.【分析】化简函数解析式为做出函数的图象数形结合可得的取值范围【详解】解:因为所以由可得则函数的图象与直线恰有两个不同交点即方程在上有两个不同的解画出的图象如下所示:依题意可得时函数的图象与直线恰有两 解析:[4,6)【分析】化简函数解析式为()4sin()26f x x π=-+,做出函数的图象,数形结合可得m 的取值范围. 【详解】解:因为()2cos 2,[0,]f x x x x π=-+∈所以()2cos 24sin()26f x x x x π=-+=-+,[0,]x π∈,由[]0,x π∈,可得5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 则函数()f x ,[]0,x π∈的图象与直线y m =恰有两个不同交点,即方程4sin()26x m π-+=在[]0,x π∈上有两个不同的解,画出()f x 的图象如下所示:依题意可得46m ≤<时,函数()232cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,故答案为:[)4,6 【点睛】本题主要考查正弦函数的最大值和单调性,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.19.2【分析】将三角函数式配成与由正弦函数和角与差角公式展开即可求解【详解】锐角满足变形可得由正弦和角与差角公式展开可得合并化简可得等式两边同时除以可得即故答案为:2【点睛】本题考查了三角函数式化简求值解析:2 【分析】将三角函数式配成()αβα++与()αβα+-,由正弦函数和角与差角公式展开,即可求解. 【详解】锐角α,β满足()sin 23sin αββ+=变形可得()()sin 3sin αβααβα++=+-⎡⎤⎡⎤⎣⎦⎣⎦ 由正弦和角与差角公式展开可得()()()()sin cos sin cos 3sin cos 3sin cos αβαααβαβαααβ+++=+-+合并化简可得()()4sin cos 2sin cos ααβαβα+=+ 等式两边同时除以()2cos cos αβα+可得()2tan tan ααβ=+ 即()tan cot 2αβα+= 故答案为:2 【点睛】本题考查了三角函数式化简求值,角的变化形式,属于中档题.20.①③【分析】首先根据正边形的某个边作出内切圆和外接圆的半径的图形分析与角的关系判断选项【详解】如图是正边形的外接圆的半径是内切圆的半径设在中综上可知正确的选项是①③故答案为:①③【点睛】关键点点睛:解析:①③ 【分析】首先根据正n 边形的某个边,作出内切圆和外接圆的半径的图形,分析,R r 与角的关系,判断选项. 【详解】如图,OA 是正n 边形的外接圆的半径,OB 是内切圆的半径, 设,OA R OB r ==,nπα=,2a AB =, 在Rt OAB 中,2sin2sina a R nnππ==cos cos2sina n r R nnπππ=⋅=,21cos 2cos 22sin 4sin cos22a a n n R r n n nπππππ⎛⎫+ ⎪⎝⎭∴+===cos 22sin 2tan 22a a n n n πππ=, 综上可知正确的选项是①③.故答案为:①③ 【点睛】关键点点睛:本题的关键是作图,根据正n 边形的某个边,作出示意图,同时相邻的R 与r 的夹角是nπ,下面的问题就迎刃而解. 三、解答题21.(1)()13sin 26f x x π⎛⎫=- ⎪⎝⎭;(2 【分析】(1)根据最高点A 与点B 的距离AB ==,求得,T ω,点7,03B π⎛⎫ ⎪⎝⎭在图象上求解.(2)由(),,463f ππαα⎛⎫∈-= ⎪⎝⎭,求得sin 2,cos 266ππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,然后由cos2cos 266ππαα⎛⎫=-+ ⎪⎝⎭求解.【详解】(1)最高点A 与点B 的距离AB ==,14,2T πω==, ()13sin ,2f x x ϕ⎛⎫=+ ⎪⎝⎭因为点7,03B π⎛⎫ ⎪⎝⎭在图象上, 所以773sin 0,36f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭因为2πϕ<,所以6πϕ=-,所以()13sin 26f x x π⎛⎫=-⎪⎝⎭.(2)()43sin 22663f ππααα⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭, 因为,63ππα⎛⎫∈- ⎪⎝⎭,所以2,622πππα⎛⎫-∈- ⎪⎝⎭,所以cos 263πα⎛⎫-== ⎪⎝⎭, 所以cos2cos 266ππαα⎛⎫=-+⎪⎝⎭, cos 2cos sin 2sin 6666ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭=. 【点睛】 方法点睛:已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 22.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,. 【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()g x 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=. (2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法. 23.(1)-2).【分析】先判断角的范围,利用22sin cos 1αα+=求出 cos α,再利用和差角公式求出tan2α,cos(2)αβ+的值【详解】解:(1)因为50,sin 27παα<<=,所以sin cos tan 7cos 12αααα===,22tan 6tan 2251tan 124ααα===--- (2)因为1,0,,cos()23παβαβ⎛⎫∈+=- ⎪⎝⎭,所以sin()3αβ+=. cos(2)cos[()]cos cos()sin sin()αβααβααβααβ+=++=+-+1537⎛⎫=--= ⎪⎝⎭ 【点睛】利用三角公式求三角函数值的关键: (1)角的范围的判断;(2)根据条件进行合理的拆角,如(),2()βαβααβαβα=+-+=++等. 24.(1)7;(2)()2f x x x =+,单调递增;(3)-1.【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解.(2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解.【详解】(1)由题意()12f =,所以()()3214f f a a =+=+,又()2323631111f =⨯-⨯+=, 因为411a +=,所以7a =;(2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++, 又()()227f x f x +=+,代入解得:()2f x x x =+; 显然,()f x 在(0,2],(2,4]上分别是单增函数,又()26f =,而当2x +→时,7y →,因为76>,所以()f x 在(0,4]上单调递增;(3)由(2)知,()f x 是区间(0,4]上单调递增,且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =;再看函数()24 log 231x g x ⎛⎫=+⎪-⎝⎭, 由420031x x +>⇒>-,即定义域为(0,)+∞, 且4231x y =+-在(0,)+∞上单减, 所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在(0,)+∞上单减,又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立, ①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,当0t =代入得()10m -+≥,矛盾;③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩, 综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.25.(1)115sin cos 12αα+=-;(2)4tan 3α=-. 【分析】(1)将等式1sin cos 5αα+=两边平方,可求出sin cos αα的值,进而可求得11sin cos αα+的值; (2)法一:利用同角三角函数的基本关系可求得sin cos αα-的值,结合已知条件可得出关于sin α、cos α的方程组,解出sin α、cos α的值,进而可求得tan α的值; 法二:由弦化切可得出222sin cos tan 12sin cos tan 125αααααα==-++,可得出关于tan α的二次方程,由已知条件可得出tan 1α<-,由此可求得tan α的值.【详解】(1)由1sin cos 5αα+=①,得()21sin cos 12sin cos 25αααα+=+=. 12sin cos 25αα∴=-,所以,111sin cos 5512sin cos sin cos 1225αααααα++===--; (2)法一:由(1)知12sin cos 25αα=-, 0απ<<,sin 0α>,cos 0α<,sin cos 0αα∴->.()249sin cos 12sin cos 25αααα∴-=-=,7sin cos 5αα∴-=②.由①②得,4sin 5α,3cos 5α=-,sin 4tan cos 3∴==-ααα; 法二:由(1)知12sin cos 25αα=-,22sin cos 1αα+=,22sin cos 12sin cos 25αααα∴=-+. 2222sin cos 12cos sin cos 25cos αααααα∴=-+,即2tan 12tan 125αα=-+,整理可得212tan 25tan 120αα++=,得4tan 3α=-或3tan 4α=-. 因为0απ<<,所以sin 0α>,cos 0α<, 又1sin cos 05αα+=>,所以sin cos αα>,tan 1α∴<-,所以4tan 3α=-. 【点睛】方法点睛:在利用同角三角函数的基本关系求值时,可利用以下方法求解:(1)应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二;(2)关于sin α、cos α的齐次式,往往化为关于tan α的式子. 26.3365- 【分析】利用已知求出1213m =和45n =,再利用差角的正弦公式求解. 【详解】锐角α和β的顶点都在坐标原点始边都与x 轴非负半轴重合,且终边与单位圆交于点5,13P m ⎛⎫ ⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭, cos 0m α∴=>,5sin 13α=,2251169m +=,3cos 5β=,sin 0n β=>,29125n +=, 求得1213m =,45n =, 5312433sin()sin cos cos sin 13513565αβαβαβ∴-=-=⨯-⨯=-. 【点睛】结论点睛:三角函数的坐标定义:点(,)P x y 是角α终边上的任意的一点(原点除外),r代表点到原点的距离,r =sin α=y r , cos α=x r ,tan α=y x .。

(典型题)高中数学必修四第三章《三角恒等变形》测试(含答案解析)

(典型题)高中数学必修四第三章《三角恒等变形》测试(含答案解析)

一、选择题1.若10,0,cos ,sin 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( )A B .C . D 2.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( ) A .23 B .23-C .32D .32-3.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2B .2-C .12D .12-4.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫-⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 5.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭ B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭6.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =2,则有( ) A .c <a <bB .b <c <aC .a <b <cD .b <a <c7.已知()2020cos2020f x x x =+的最大值为A ,若存在实数1x ,2x ,使得对任意的实数x ,总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( )A .2020πB .1010π C .505π D .4040π 8.已知α,β均为锐角,5cos()13αβ+=-,3sin()35πβ+=,则sin()3πα-=( )A .3365B .3365-C .6365D .56659.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .8310.若11sin cos αα+=sin cos αα=( ) A .13- B .13C .13-或1D .13或1- 11.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .3-B .3C .13-D .1312.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形二、填空题13.已知1sin cos 5θθ+=,(0,)θπ∈,则tan θ=________. 14.函数2cos sin y x x =+的最大值为____________.15.在区间,22ππ⎛⎫- ⎪⎝⎭范围内,函数tan y x =与函数sin y x =的图象交点有_______个.16.已知sin10cos102cos140m ︒-︒=︒,则m =_________. 17.下列判断正确的有___________. ①如果θ是第一象限角,那么恒有sin02θ>;②sin 200a ︒=,则tan 200︒=③若()f x 的定义域为R ,周期为4,且满足()()f x f x -=-,则()f x 在[4,8]x ∈-至少有7个零点; ④若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且cos tan x y x ⋅=,则x y <. 18.已知α,()0,βπ∈,且()tan 3αβ-=,tan 11β=-,2αβ-的值为_______.19.已知()()sin 2sin 223cos cos 2πθπθπθπθ⎛⎫--- ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭,则22sin 2sin cos cos θθθθ+-=___________.20.若函数()sin()cos f x x x ϕ=++为偶函数,则常数ϕ的一个取值为________.三、解答题21.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期;(2)若函数()()2g x f x x =-,求函数()g x 的单调增区间.22.设函数()2cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 取得最大值时的自变量x 的值; (2)求函数()f x 的单调递增区间.23.(1)若角α的终边上有一点()1,3P ,求值:()()cos sin 32cos sin 22απαππαα-+-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭;(2)计算ln 229lg 20lg 2log 3log 162sin 330e -+⋅-+︒.24.已知函数()212sin sin 2cos 32f x x x x π⎛⎫=-+-⎪⎝⎭.(1)求函数()f x 的单调增区间; (2)当,64x ππ⎛⎫∈-⎪⎝⎭时,函数()()()221216g x f x mf x m =-+-有四个零点,求实数m 的取值范围.25.在直角坐标系xOy 中,已知锐角α和β的顶点都在坐标原点,始边都与x 轴非负半轴重合,且终边与单位圆分别交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫⎪⎝⎭,求()sin αβ-的值. 26.已知函数()2sin 22cos 1f x a x x =+-,再从条件①、②、③这三个条件中选择一个作为已知,求:(Ⅰ)()f x 的最小正周期; (Ⅱ)()f x 的单调递增区间. 条件①:()f x 图像的对称轴为8x π=;条件②:14f π⎛⎫= ⎪⎝⎭;条件③:a =注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭, 所以3444πππα<+<,sin +43πα⎛⎫= ⎪⎝⎭, 因为02πβ-<<,所以4422ππβπ<-<,又因为sin 42πβ⎛⎫-=⎪⎝⎭cos 42πβ⎛⎫-= ⎪⎝⎭而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13==. 故选:A. 【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.2.A解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 3.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.【详解】解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.4.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立知π4f a ⎛⎫==⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<, 当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.5.C解析:C 【分析】由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得61cos (,0)152β-=-,从而得解. 【详解】由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈. 又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()3αβ+==-. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.因为6127015230--+=>,所以1cos (,0)2β∈-所以2,23ππβ⎛⎫∈ ⎪⎝⎭. 故选:C.【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.6.A解析:A 【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系.【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数, 606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.7.B解析:B 【分析】化简函数()f x 的解析式可得周期与最大值,对任意的实数x ,总有()()()12f x f x f x ≤≤成立,即12x x -半周期的整数倍,代入求最小值即可.【详解】()2020cos 20202sin 20206f x x x x π⎛⎫=+=+ ⎪⎝⎭,则220201010T ππ==,2A = 1212210101010A x x ππ-≥⨯⨯=故选:B 【点睛】本题考查正弦函数的性质,考查三角恒等变换,考查周期与最值的求法,属于中档题.8.B解析:B 【分析】由所给三角函数值利用同角三角函数的关系求出()sin αβ+、cos 3πβ⎛⎫+⎪⎝⎭,3πα-记为()3παββ⎛⎫+-+⎪⎝⎭,利用两角差的正弦公式展开代入相应值计算即可.【详解】α,β均为锐角,5cos()013αβ+=-<,,2παβπ⎛⎫∴+∈ ⎪⎝⎭,∴()12sin 13αβ+==,β均为锐角,5,336πππβ⎛⎫∴+∈ ⎪⎝⎭,则1cos 322πβ⎛⎫⎛⎫+∈- ⎪ ⎪ ⎪⎝⎭⎝⎭,4cos 35πβ⎛⎫∴+==- ⎪⎝⎭或45(4152>,舍去),()sin()sin 33ππααββ⎡⎤⎛⎫∴-=+-+ ⎪⎢⎥⎝⎭⎣⎦()()sin cos cos sin 33ππαββαββ⎛⎫⎛⎫=+⋅+-+⋅+ ⎪ ⎪⎝⎭⎝⎭124533313513565⎛⎫⎛⎫=⨯---⨯=- ⎪ ⎪⎝⎭⎝⎭. 故选:B 【点睛】本题考查同角三角函数的关系、两角差的正弦公式、三角函数在各象限的符号,属于中档题.9.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.10.A解析:A 【分析】将已知式同分之后,两边平方,再根据22sin cos 1αα+=可化简得方程23(sin cos )2sin cos 10αααα--=,解出1sin cos 3αα=-或1,根据111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,得出1sin cos 3αα=-.【详解】由11sin cos sin cos sin cos αααααα++== 两边平方得22(sin cos )(sin cos )αααα+222sin cos 2sin cos (sin cos )αααααα++=212sin cos 3(sin cos )αααα+==23(sin cos )2sin cos 10αααα∴--=,1sin cos 3αα∴=-或1,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,1sin cos 3αα∴=-.故选:A. 【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对sin cos αα范围的判断.11.A解析:A 【分析】首先根据三角函数诱导公式,可由等式()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭求出tan 2α=;再由两角和的正切公式可求出tan 4απ⎛⎫+ ⎪⎝⎭. 【详解】 解:()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭, ∴由三角函数诱导公式化简得:sin 2cos αα-=-,即得tan 2α=,tantan 124tan()34121tan tan 4παπαπα++∴+===---⋅.故选:A. 【点睛】本题主要考查三角函数的诱导公式、两角和的正切公式,考查运算求解能力,属于基础题型.12.B解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=, 所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.二、填空题13.【分析】把已知等式两边平方求出的值再利用完全平方公式求出的值联立求解再结合同角三角函数间的基本关系可求得的值【详解】已知平方得得解得故答案为:【点睛】本题考查同角三角函数间的基本关系齐次方程的求解属解析:43-【分析】把已知等式两边平方,求出sin cos θθ的值,再利用完全平方公式求出sin cos θθ-的值,联立求解再结合同角三角函数间的基本关系可求得tan θ的值. 【详解】 已知1sin cos 5θθ+=,平方得()2221sin cos sin cos 2sin cos 25θθθθθθ+=++=,得12sin cos 25θθ=-, ∴()222sin cos sin cos 2sin cos 125252449θθθθθθ-=+-=+=,(0,)θπ∈,sin 0,cos 0θθ><,7sin cos 5θθ∴-=,7ta sin cos 1sin cos n 571t n 51a θθθθθθ=-=-+=+,解得4tan 3θ=-. 故答案为:43-【点睛】本题考查同角三角函数间的基本关系,齐次方程的求解,属于中档题.14.【分析】将函数解析式变形为且有利用二次函数的基本性质可求出该函数的最大值【详解】且因此当时函数取得最大值故答案为:【点睛】本题考查二次型三角函数的最值利用二倍角余弦公式将问题转化为二次函数的最值问题解析:98【分析】将函数解析式变形为22sin sin 1y x x =-++,且有1sin 1x -≤≤,利用二次函数的基本性质可求出该函数的最大值. 【详解】2219cos 2sin 12sin sin 2sin 48y x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,且1sin 1x -≤≤,因此,当1sin 4x =时,函数2cos sin y x x =+取得最大值98. 故答案为:98. 【点睛】本题考查二次型三角函数的最值,利用二倍角余弦公式将问题转化为二次函数的最值问题是解题的关键,考查计算能力,属于中等题.15.1【分析】将函数图象交点个数等价于方程在根的个数即可得答案【详解】∵函数图象交点个数等价于方程在根的个数∴解得:∴方程只有一解∴函数与函数的图象交点有1个故答案为:1【点睛】本题考查函数图象交点个数解析:1 【分析】将函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数,即可得答案. 【详解】∵函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数, ∴sin 1tan sin sin 0sin (1)0cos cos x x x x x x x=⇔-=⇔-=,解得:0x =, ∴方程只有一解,∴函数tan y x =与函数sin y x =的图象交点有1个. 故答案为:1. 【点睛】本题考查函数图象交点个数与方程根个数的等价性,考查函数与方程思想,考查逻辑推理能力和运算求解能力.16.【分析】化简得再利用诱导公式与和差角公式化简求解即可【详解】由题故答案为:【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题需要根据题中的角跟特殊角的关系用和差角公式属于中档题【分析】 化简得sin102cos140cos10m ︒-︒=︒,再利用诱导公式与和差角公式化简cos140︒求解即可.【详解】 由题()sin102cos 1030sin102cos140cos10cos10m ︒+︒+︒︒-︒==︒︒sin102cos10cos302sin10sin 302cos10cos302cos30cos10cos10︒+︒︒-︒︒︒︒===︒=︒︒.【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题.需要根据题中的角跟特殊角的关系用和差角公式,属于中档题.17.③【分析】①利用来判断;②利用来判断;③通过来判断;④通过当时有恒成立来判断【详解】解:①由已知则此时在第一或第三象限有可能小于零错误;②是第三象限角所以则与矛盾错误;③由已知为奇函数故则又所以则有解析:③ 【分析】 ①利用24k k θπππ来判断;②利用sin 2000a ︒=<来判断; ③通过(0)0f =,(2)0f =来判断; ④通过当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立来判断. 【详解】 解:①由已知22,2k k k Z ππθπ,则,24k k kZ θπππ,此时2θ在第一或第三象限,sin2θ有可能小于零,错误;②200︒是第三象限角,所以sin 2000a ︒=<, 则tan 2000︒=<,与tan 2000︒>矛盾,错误;③由已知()f x 为奇函数,故(0)0f =,则(4)(4)(8)(0)0f f f f -====, 又(2)(24)(2)(2)f f f f =-=-=-,所以(2)0f =,则有(2)(2)(6)0f f f =-==, 则()f x 在[4,8]x ∈-至少有7个零点,正确; ④当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立, 证明:单位圆中当0,2πα⎛⎫∈ ⎪⎝⎭时,如图点P 为角α的终边与单位圆的交点,由图可知OPA 的面积小<扇形OPA 的面积小<OTA 的面积 则211111sin 111tan 222ααα⋅⋅⋅<⋅⋅<⋅⋅⋅,整理得tan sin ααα>>. 若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,tan cos tan tan x x x y y >=⋅>,所以x y >,故错误. 故答案为:③ 【点睛】本题考查函数周期性的应用,考查当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立这个性质的灵活应用,考查角所在象限和三角函数值符号的关系,是中档题.18.【分析】根据正切差角公式代入可求得将角配凑后可求得根据及可得的范围即可求得的范围进而求得的值【详解】因为由正切差角公式展开可得代入化简可求得则因为所以即所以则所以故答案为:【点睛】本题考查了正切差角 解析:23π-【分析】根据正切差角公式,代入53tan 11β=-可求得3tan 9α=.将角配凑后可求得()tan 23αβ-=根据3tan 19α=<及53tan 011β=-<可得,αβ的范围,即可求得2αβ-的范围,进而求得2αβ-的值.【详解】 因为()3tan 3αβ-=,3tan 11β=- 由正切差角公式展开可得()tan tan 23tan 1tan tan αβαβαβ--==+⋅代入53tan 11β=-53tan 23113531tan 11αα=⎛⎫+⋅-⎪⎝⎭化简可求得tan 9α=则()()tan 2tan αβααβ-=+-⎡⎤⎣⎦()()tan tan 1tan tan ααβααβ+-=-⋅-+==因为tan 19α=< 所以04πα<<,即022πα<<tan 0β=< 所以2πβπ<<则20παβ-<-<所以223παβ-=- 故答案为: 23π- 【点睛】本题考查了正切差角与和角公式的应用,配凑角的形式求正切值,根据三角函数值判断角的取值范围,属于中档题.19.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系 解析:75【分析】利用诱导公式结合弦化切的思想求出tan θ的值,然后在代数式22sin 2sin cos cos θθθθ+-上除以22sin cos θθ+,并在所得分式的分子和分母中同时除以2cos θ可得出关于tan θ的分式,代值计算即可. 【详解】()()sin 2sin sin cos tan 1223sin cos tan 1cos cos 2πθπθθθθπθθθθπθ⎛⎫--- ⎪++⎝⎭===--⎛⎫+++ ⎪⎝⎭,解得tan 3θ=.因此,22222222sin 2sin cos cos tan 2tan 1sin 2sin cos cos sin os tan 1θθθθθθθθθθθθθ+-+-+-==++2232317315+⨯-==+. 故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tan θ的值,考查运算求解能力,属于中等题.20.(答案不唯一)【分析】根据函数为偶函数有化简得对任意恒成立所以有取其中一个值即可得出答案【详解】解:因为函数为偶函数则所以所以等价于对任意恒成立所以所以所以常数的一个取值为故答案为:(答案不唯一)【解析:π2(答案不唯一) 【分析】根据函数为偶函数有()()f x f x =-,化简得sin cos 0x ϕ=对任意x 恒成立,所以有()2k k Z πϕπ=+∈,取其中一个值即可得出答案.【详解】解:因为函数()sin()cos f x x x ϕ=++为偶函数,则()()f x f x =- 所以sin()cos sin()cos()x x x x ϕϕ++=-++-所以sin cos cos sin cos sin()cos cos()sin cos x x x x x x ϕϕϕϕ++=-+-+ 等价于sin cos 0x ϕ=对任意x 恒成立,所以cos 0ϕ=, 所以()2k k Z πϕπ=+∈,所以常数ϕ的一个取值为π2. 故答案为:π2(答案不唯一) 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.三、解答题21.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,. 【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()g x 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=.(2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法. 22.(1)π3x k π=-,k Z ∈时,()f x 取得最大值;(2)()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 【分析】(1)利用两角和的余弦公式、二倍角公式、辅助角公式对()f x 化简,再利用三角函数性质即可求解;(2)由(1)知()sin 216f x x π⎛⎫=-++ ⎪⎝⎭,解不等式3222262k x k πππππ+≤+≤+,k Z ∈即可求解.【详解】(1)()1cos 221cos 222f x x x x =-+-sin 216x π⎛⎫=-++ ⎪⎝⎭, 所以当sin 216x π⎛⎫+=- ⎪⎝⎭,即2262x k πππ+=-,k Z ∈,即π3x k π=-,k Z ∈时,()f x 取得最大值.(2)由(1)知,()sin 216f x x π⎛⎫=-++ ⎪⎝⎭, 要求其单调单增区间,只需求sin 26y x π⎛⎫=+ ⎪⎝⎭的单调递减区间, 令3222262k x k πππππ+≤+≤+,k Z ∈, 解得:263k x k ππππ+≤≤+,k Z ∈ 所以()f x 的单调递增区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:已知三角函数的解析式求单调区间先将解析式化为()sin y A ωx φ=+或()cos y A x ωϕ=+()0,0A ω>>的形式,然后将x ωϕ+看成一个整体,根据sin y x =与cos y x =的单调区间列不等式求解.23.(1)47-;(2)0. 【分析】(1)由三角函数定义求得tan α,用诱导公式化简后利用商数关系化为tan α的式子,代入tan α可得.(2)由对数的运算法则和诱导公式、特殊值的正弦函数计算. 【详解】解:(1)由已知3tan 31α,原式cos sin 1tan 42sin cos 2tan 17αααααα++==-=---+;(2)原式()242320lg log 3log 222sin 302=+⋅-+-︒ 231lg1032log 2222log ⎛⎫=+⋅-+- ⎪⎝⎭12210=+--=.【点睛】关键点点睛:本题考查三角函数的定义,考查诱导公式和同角间的三角函数关系,考查对数的运算法则.在三角函数求值中如果遇到关于sin ,cos αα的齐次式,一般利用商数关系化为tan α的代数式,代入tan α求值.当角比较复杂时利用诱导公式化简是首先需要考虑的问题.24.(1)5[,]1212k k ππππ-+,k Z ∈(2)1144m <<【分析】(1)化简()f x 的解析式,根据正弦函数的增区间可得结果;(2)转化为221()216h t t mt m =-+-在内有两个零点,根据二次函数列式可得结果. 【详解】(1)()212sin sin 2cos 32f x x x x π⎛⎫=-+-⎪⎝⎭12sin sin cos cos sin 1cos 2332x x x x ππ⎛⎫=-++- ⎪⎝⎭21cos sin 1cos 22x x x x =-++-212cos cos 222x x x =++-1cos 212cos 2222x x x +=++-32cos 22x x =+)3x π=+,由222232k x k πππππ-≤+≤+,k Z ∈,得51212k x k ππππ-≤≤+,k Z ∈, 所以函数()f x 的单调增区间为5[,]1212k k ππππ-+,k Z ∈.(2)当,64x ππ⎛⎫∈-⎪⎝⎭时,52(0,)36x ππ+∈,())3f x x π=+∈,因为函数()()()221216g x f x mf x m =-+-有四个零点,令()t f x =,则(t ∈且221()216h t t mt m =-+-在2内有两个零点,所以22144016020m m m h h ⎧⎛⎫∆=--> ⎪⎪⎝⎭<<⎨⎛⎫⎪> ⎪⎪ ⎪⎝⎭⎪⎪>⎪⎩,即222316043160m m m <<⎪⎪⎪+->⎨⎪⎪-+->⎪⎩,解得m <<⎪⎪⎨⎪⎪⎪⎪⎩m <<, 所以实数m的取值范是1144m <<. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 25.3365- 【分析】 利用已知求出1213m =和45n =,再利用差角的正弦公式求解. 【详解】锐角α和β的顶点都在坐标原点始边都与x 轴非负半轴重合, 且终边与单位圆交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭, cos 0m α∴=>,5sin 13α=,2251169m +=,3cos 5β=,sin 0n β=>,29125n +=, 求得1213m =,45n =, 5312433sin()sin cos cos sin 13513565αβαβαβ∴-=-=⨯-⨯=-. 【点睛】结论点睛:三角函数的坐标定义:点(,)P x y 是角α终边上的任意的一点(原点除外),r代表点到原点的距离,r =sin α=y r , cos α=x r ,tan α=y x. 26.(Ⅰ)答案见解析;(Ⅱ)答案见解析.【分析】选① (Ⅰ)逆用余弦的二倍角公式降幂后,使用辅助角公式化简得())f x x ϕ=+ ,根据对称轴求得ϕ的值,进而求得a 的值,得到函数的解析式,求得最小正周期;(Ⅱ) 根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选② (Ⅰ)逆用余弦的二倍角公式降幂得到()f x sin2cos2a x x =+,根据选择的条件求得a 的值,得到函数的解析式,并利用辅助角公式化简,然后求得()f x 的最小正周期; (Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选③逆用余弦的二倍角公式降幂后,使用辅助角公式化简得到()f x 2sin(2)6x π=+ 然后求得()f x 的最小正周期;(Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.【详解】选① (()f x 图像的一条对称轴为8x π=)解:(Ⅰ) ()2sin 22cos 1f x a x x =+-sin2cos2a x x =+22x x ⎛⎫=+⎪⎭)x ϕ=+(其中1tan aϕ=) 因为()f x 图像的一条对称轴为8x π=所以()1sin()84f ππϕ=+=即有,42k k Z ππϕπ+=+∈ 所以,4k k Z πϕπ=+∈ 所以1tan tan()tan 144k aππϕπ=+=== 1a故())4f x x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈ 3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k , 选② (()1)4f π= 解:(Ⅰ)()2sin 22cos 1f x a x x =+-sin2cos2a x x =+()sin cos 1422f a πππ∴=+= 1a ()sin 2cos 2f x x x =+2(22)22x x =+)4x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈ 3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k ,选③(a =解:(I )()222cos 1f x x x =+-2cos2x x =+ 312(sin 2cos 2)22x x 2sin(2)6x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,262k x k k Z πππππ-≤+≤∈ 2+22+2,33k x k k Z ππππ∴-≤≤∈ ++,36k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为[+],k 36k Z ππππ-∈+k , 【点睛】本题考查三角函数的恒等变形和三角函数的性质,关键是逆用余弦的二倍角公式降幂后,并使用辅助角公式化简.。

(易错题)高中数学必修四第三章《三角恒等变形》测试题(包含答案解析)

(易错题)高中数学必修四第三章《三角恒等变形》测试题(包含答案解析)

一、选择题1.已知23cos sin2αβ+=,1sin sin cos 3αββ+=,则)os(c 2αβ+=( )A .49B .59C .536D .518-2.已知θ为锐角,且满足如tan 311tan θθ=,则tan 2θ的值为( ) A .34 B .43 C .23 D .323.已知函数2()2sin cos (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( )A .1B .1--C .0D .-4.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( ) A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦5.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α=( )A .15B C .35D 6.已知4sin cos 3θθ+=,,42ππθ⎛⎫∈ ⎪⎝⎭,则sin cos θθ-的值为( )A .13-B .13C .3-D .37.已知sin cos x x +=,则1tan tan x x +=( ) A .6- B .7-C .8-D .9-8.已知3cos 25α=,()0,2απ∈,则sin 4απ+⎛⎫= ⎪⎝⎭( )A .10 B .10-C D .10-9.如下图,圆O 与x 轴的正半轴的交点为A ,点,C B 在圆O 上,且点C 位于第一象限,点B 的坐标为43,,,55AOC α⎛⎫-∠= ⎪⎝⎭若1BC =,则233cos sin cos 222ααα--的值为( )A .45B .35C .45-D .3510.函数()sin 3([,0])f x x x x π=∈-的单调递增区间是( ) A .5[,]6ππ--B .5[,]66ππ-- C .[,0]3π-D .[,0]6π-11.已知3sin 85πα⎛⎫+= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos2α=( ) A .31250 B .17250C .225D .22512.已知()1sin 30cos 3αα︒+=+,则()sin 230α+︒=( ) A .79-B .79C 43D .39-二、填空题13.给出下列命题:①()72cos 22f x x π⎛⎫=--⎪⎝⎭是奇函数;②若α、β都是第一象限角,且αβ>,则tan tan αβ>;③38x π=-是函数33sin 24y x π⎛⎫=-⎪⎝⎭的图像的一条对称轴;④已知函数()23sin12xf x π=+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2.其中正确命题的序号是______.14.已知函数()2cos 3sin cos f x x x x =在区间[]0,m 上单调递增,则实数m 的最大值是______.15.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____. 16.已知α满足1sin 3α=,那么ππcos cos 44αα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值为________.17.已知()()sin2sin223cos cos2πθπθπθπθ⎛⎫---⎪⎝⎭=⎛⎫+++⎪⎝⎭,则22sin2sin cos cosθθθθ+-=___________.18.已知,,0,2παβγ⎛⎫∈ ⎪⎝⎭,且222cos cos cos2αβγ++=,则cos cos cossin sin sinαβγαβγ++++的最小值为______.19.化简4cos803tan10︒︒+=________.20.已知x是第二象限的角.化简:1sin1sin1sin1sinx xx x+---+的值为____________.三、解答题21.如图,在扇形OPQ中,半径2OP=,圆心角3POQπ∠=,B是扇形弧上的动点,矩形ABCD内接于扇形.记BOCα∠=,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大值.22.已知23()3sin cos2222x x xf x=--.(1)求()f x图象的对称轴方程;(2)若存在0[0,]xπ∈,使()02f x t≤+,求实数t的取值范围.23.已知函数2()cos sin332233x x xf xππ⎛⎫⎛⎫=-+⎪ ⎪⎝⎭⎝⎭.(1)若,2xππ⎡⎤∈-⎢⎥⎣⎦,求()f x的递增区间和值域;(2)若0043()54f x xππ=+≤≤,求点02sin3x⎛⎫⎪⎝⎭.24.已知函数21()cos2sin 12sin 22x f x x x ⎛⎫=+⋅- ⎪⎝⎭,3()24g x x π⎛⎫=+ ⎪⎝⎭.(1)对任意的[]12,0,x x t ∈,当12x x <时,均有()()()()1212f x f x g x g x -<-成立,求正实数t 的最大值;(2)在满足(1)的条件时,若方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=在区间,4t π⎛⎫- ⎪⎝⎭上有解,求实数a 的取值范围.25.设函数2()cos cos 6f x x x x π⎛⎫=⋅-+ ⎪⎝⎭. (1)求()f x 的最小正周期和单调递增区间; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.26.已知函数())2cos sin 3f x x x x x R π⎛⎫=++∈ ⎪⎝⎭. (1)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值; (2)设函数()g x 对任意x ∈R ,有()2g x g x π⎛⎫+= ⎪⎝⎭,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-.求()g x 在区间[],0π-上的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将所给条件分别用二倍角公式变形可以得到2cos cos22αβ-=,22sin sin 23αβ+=,然后平方相加化简计算即可求得结果. 【详解】 由23cos sin2αβ+=知2cos cos22αβ-=①,在1sin sin cos 3αββ+=两边同时乘以2得22sin sin 23αβ+=②,将①②两个等式平方相加得()4414cos 249βα+-+=+,解得()5cos 236αβ+=.故选:C. 【点睛】思路点睛:出现两个角的三角函数的和差,求两角和的正弦或余弦时常采用平方相加或平方相减,化简计算可得到两角和或差的三角函数值.2.B解析:B 【分析】先利用两角和的正切计算tan tan 2tan 31tan tan 2θθθθθ+=-,再利用二倍角的正切化简前者,结合tan 311tan θθ=可得1tan 2θ=,从而可求tan 2θ.【详解】32222tan tan tan tan 23tan tan 1tan tan 32tan 1tan tan 213tan 1tan 1tan θθθθθθθθθθθθθθ++--===---⨯-, 故32223tan tan tan 33tan 13tan 11tan tan 13tan θθθθθθθθ---===-,故21tan 4θ=, 因为θ为锐角,故1tan 2θ=,故1242tan 21314θ⨯==-, 故选:B. 【点睛】思路点睛:已知θ的三角函数值,求()*n n N θ∈的三角函数值,应利用两角和的三角函数值逐级计算即可.3.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫ ⎪⎝⎭. 【详解】因为()21cos 22sin cos sin 22x f x x x x x ωωωωω-=-=-πsin 222sin 23x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.4.A解析:A 【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =, ∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数. 故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).5.D解析:D 【分析】先利用二倍角公式化简整理得到1sin cos 2αα=,再利用同角三角函数的平方关系,结合范围解出cos α即可. 【详解】由2sin 2cos21αα-=,0,2πα⎛⎫∈ ⎪⎝⎭,得2sin 21cos2αα=+,cos 0α>,所以24sin cos 2cos ααα=,即2sin cos αα=,故1sin cos 2αα=, 代入22sin cos 1αα+=得,25cos 14α=,故24cos 5α=,因为cos 0α>,所以cos α=. 故选:D. 【点睛】 关键点点睛:本题解题关键在于熟记公式并准确运算,还要注意角的范围的限制,才能突破难点.6.D解析:D 【分析】首先根据题意得到72sin cos 9θθ=,再计算()22sin cos 9θθ-=,根据,42ππθ⎛⎫∈ ⎪⎝⎭判断出sin cos θθ-的符号再进行开方计算即可得到答案. 【详解】 因为4sin cos 3θθ+=,所以()216sin cos 12sin cos 9θθθθ+=+=, 所以72sin cos 9θθ=, 所以()22sin cos 12sin cos 9θθθθ-=-=, 因为,42ππθ⎛⎫∈ ⎪⎝⎭,所以sin cos θθ>,即sin θcos θ0,所以sin cos θθ-= 故选:D . 【点睛】易错点睛:本题求sin cos θθ-的值时,采用的方法是先对其平方而后再开方,再开方时应注意根据θ的取值范围正确判断sin cos θθ-的符号,从而得到正确的答案.7.C解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos 2x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.8.C解析:C 【分析】 根据2α是4α的二倍角求出sin α的值,再求cos 4α和sin 4απ+⎛⎫⎪⎝⎭的值. 【详解】因为2α是4α的二倍角,所以2311cos 152sin 4225αα--===, 又()0,2απ∈,所以0,42a π⎛⎫∈ ⎪⎝⎭,所以sin 44αα===cos所以sin sin sin cos cos sin 4444445252104απαπαπαπ+⎛⎫⎛⎫=+=+=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C. 【点睛】 本题考查了二倍角的余弦公式,考查了同角公式,考查了两角和的正弦公式,属于中档题.9.B解析:B 【解析】∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=,∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 2222625αααππαααθθ⎛⎫⎛⎫-=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.10.D解析:D 【解析】()sin 23f x x x sin x π⎛⎫==-⎪⎝⎭,因为[],0x π∈-4,,333x πππ⎡⎤∴-∈--⎢⎥⎣⎦,由1,323x πππ⎡⎤-∈--⎢⎥⎣⎦,得,06x π⎡⎤∈-⎢⎥⎣⎦,函数()[]()sin ,0f x x x x π=∈-的单调递增区间是,06π⎡⎤-⎢⎥⎣⎦,故选D. 11.A解析:A 【分析】由平方关系得cos 8πα⎛⎫+ ⎪⎝⎭,然后由二倍角得出sin 24απ⎛⎫+ ⎪⎝⎭,cos 24πα⎛⎫+ ⎪⎝⎭,再由两角差的余弦公式求得cos2α. 【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴5,888πππα⎛⎫+∈ ⎪⎝⎭,若,828πππα5⎛⎫+∈ ⎪⎝⎭,则23sin sin 8325ππα⎛⎫+>=> ⎪⎝⎭,∴,882πππα⎛⎫+∈ ⎪⎝⎭,∴4cos 85πα⎛⎫+= ⎪⎝⎭,24sin 22sin cos 48825πππααα⎛⎫⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,237cos 2124525πα⎛⎫⎛⎫+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴cos 2cos 2cos 2cos sin 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦72425225250=⨯+⨯=. 故选:A . 【点睛】本题考查两角差的余弦公式,考查平方关系同、二倍角公式,解题时需要确定角的范围,才能在由平方关系求函数值时确定是否是唯一解.12.B解析:B 【分析】根据条件展开化简得到()1sin 303α-︒=,再利用角的变换,得到()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒,再利用二倍角公式化简求值.【详解】由()1sin 30cos 3αα︒+=+,得11cos cos 23ααα=+, 化简得()1sin 303α-︒=; ()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒ ()21712sin 301299α=--︒=-⨯=故选:B . 【点睛】本题考查三角恒等变换,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.①③④【分析】对①化简得可判断;对②取特殊值可说明;对③代入求值可判断;对④化简求出其最小正周期即可判断【详解】对①是奇函数故①正确;对②如但故②错误;对③当时取得最大值故③正确;对④则的最小正周期解析:①③④ 【分析】 对①,化简得()()2sin 2f x x =可判断;对②,取特殊值可说明;对③,代入38x π=-求值可判断;对④,化简()f x ,求出其最小正周期即可判断. 【详解】 对①,()()72cos 22sin 22f x x x π⎛⎫=--= ⎪⎝⎭是奇函数,故①正确; 对②,如7,33ππαβ==,但tan tan αβ=,故②错误; 对③,当38x π=-时,333sin 2384y ππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,取得最大值,故③正确; 对④,()()2353sin1cos 222xf x x ππ=+=-+,则()f x 的最小正周期为22ππ=,则c 的最小值是2,故④正确. 故答案为:①③④. 【点睛】本题考查三角函数奇偶性的判断,考查三角函数的单调性和对称性以及周期性,解题的关键是正确化简,正确理解三角函数的性质.14.【分析】利用辅助角公式进行化简结合函数的单调性进行求解即可【详解】解:当时∵在区间上单调递增∴得即m 的最大值为故答案为:【点睛】本题考查二倍角公式和辅助角公式化简考查三角函数的单调性属于基础题 解析:6π【分析】利用辅助角公式进行化简,结合函数的单调性进行求解即可. 【详解】解:()1cos 212sin 2262x f x x x π+⎛⎫==++ ⎪⎝⎭, 当0x m ≤≤时,266x m ππ≤≤+,∵()f x 在区间[]0,m 上单调递增, ∴262m ππ+≤,得6m π≤,即m 的最大值为6π. 故答案为:6π. 【点睛】本题考查二倍角公式和辅助角公式化简,考查三角函数的单调性,属于基础题.15.【分析】先根据配角公式将函数化为基本三角函数再根据正弦函数对称轴确定φ满足条件解得φ的值【详解】因为f(x)=sin2x+cos2x=sin 所以y=fsin 则有φ++kπ因此φ=+kπ(k ∈Z)当k解析:π4【分析】先根据配角公式将函数化为基本三角函数,再根据正弦函数对称轴确定φ满足条件,解得φ的值. 【详解】因为f (x )=sin 2x+cos 2sin π24x ⎛⎫+ ⎪⎝⎭,所以y=f 2x ϕ⎛⎫+= ⎪⎝⎭π24x ϕ⎛⎫++ ⎪⎝⎭,则有φ+ππ42=+k π,因此φ=π4+k π(k ∈Z),当k=0时,φ=π4. 【点睛】本题考查正弦函数对称性,考查基本分析求解能力.16.【分析】化简原式为即得解【详解】由题得故答案为:【点睛】本题主要考查和角差角的余弦考查二倍角的余弦意在考查学生对这些知识的理解掌握水平 解析:718【分析】 化简原式为21(12sin )2α-,即得解. 【详解】 由题得cos()cos()sin )+sin )4422ππαααααα+-=-⋅222111(cos sin )cos 2(12sin )222αααα=-==- 117(12)2918=-⨯=. 故答案为:718【点睛】本题主要考查和角差角的余弦,考查二倍角的余弦,意在考查学生对这些知识的理解掌握水平.17.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系 解析:75【分析】利用诱导公式结合弦化切的思想求出tan θ的值,然后在代数式22sin 2sin cos cos θθθθ+-上除以22sin cos θθ+,并在所得分式的分子和分母中同时除以2cos θ可得出关于tan θ的分式,代值计算即可. 【详解】()()sin 2sin sin cos tan 1223sin cos tan 1cos cos 2πθπθθθθπθθθθπθ⎛⎫--- ⎪++⎝⎭===--⎛⎫+++ ⎪⎝⎭,解得tan 3θ=.因此,22222222sin 2sin cos cos tan 2tan 1sin 2sin cos cos sin os tan 1θθθθθθθθθθθθθ+-+-+-==++2232317315+⨯-==+. 故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tan θ的值,考查运算求解能力,属于中等题.18.【分析】根据同角三角函数关系式及基本不等式可得同理证明另外两组式子成立不等式两边同时相加化简即可得解【详解】由题意知则因为则不等式两边同时加可得开平方可得同理相加可得化简得故答案为:【点睛】本题考查【分析】根据同角三角函数关系式及基本不等式,可得sin sin αβγ+≤,同理证明另外两组式子成立,不等式两边同时相加,化简即可得解. 【详解】由题意知222sin sin sin 1αβγ++=, 则2222sinsin 1sin cos αβγγ+=-=2222sin sin 1sin cos αγββ+=-= 2222sin sin 1sin cos βγαα+=-=因为,,0,2παβγ⎛⎫∈ ⎪⎝⎭,则222sin sin sin sin αβαβ⋅≤+,不等式两边同时加22sin sin αβ+ 可得()()222sin sin 2sin sin αβαβ+≤+开平方可得sin sin αβγ+≤=,同理sin sin βγα+≤=,sin sin γαβ+≤=,相加可得2sin 2sin 2sin αβγαβγ++≤++化简得cos cos cos sin sin sin αβγαβγ++≥++故答案为 【点睛】本题考查了三角函数式的化简求值,同角三角函数关系式的应用,根据基本不等式求最值,属于中档题.19.1【分析】利用诱导公式得到通分整理后由利用两角差的正弦公式展开化简后得到答案【详解】故答案为:【点睛】本题考查诱导公式进行化简求值利用两角差的正弦公式进行化简求值属于中档题解析:1 【分析】利用诱导公式,得到cos80sin10︒︒=,通分整理后,由()sin 20sin 3010︒︒︒=-,利用两角差的正弦公式,展开化简后,得到答案.【详解】4cos80︒︒2sin 20cos10︒︒︒+=()2sin 3010cos10︒︒︒︒-=2sin 30cos102sin10cos30cos10︒︒︒︒︒︒-+=1==. 故答案为:1.【点睛】本题考查诱导公式进行化简求值,利用两角差的正弦公式进行化简求值,属于中档题.20.【分析】本题可以先通过是第二象限的角得出然后对进行化简即可得到结果【详解】因为是第二象限的角所以所以故答案为:【点睛】关键点睛:本题主要考查三角函数式的化简利用三角函数的同角三角函数关系式进行化简是 解析:2tan x -【分析】本题可以先通过x 是第二象限的角得出cos 0x <进行化简即可得到结果. 【详解】因为x 是第二象限的角,所以cos 0x <,==1sin 1sin cos cos x xx x+-=---11tan tan cos cos x x x x=--+- 2tan x =-.故答案为:2tan x -. 【点睛】关键点睛:本题主要考查三角函数式的化简,利用三角函数的同角三角函数关系式进行化简是本题的关键.三、解答题21.当6πα=时,矩形ABCD. 【分析】由题意可得2cos CD αα=-,2sin BC α=,从而可得矩形ABCD 的面积为S CD BC =⋅(2cos )2sin ααα=⋅)6πα=+-,再由03πα<<可得52666πππα<+<,由此可得262ππα+=时,S 取得最大值【详解】在Rt OBC 中,2sin BC α=,2cos OC α=.在Rt ADO 中,tan 3AD OD π==, 所以OD AD α===, 所以2cosCD OC OD αα=-=. 设矩形ABCD 的面积为S ,则S CD BC =⋅(2cos )2sinααα=⋅ 24sin cosααα= 2sin 22αα=- )6πα=+.由03πα<<,得52666πππα<+<,所以当262ππα+=,即6πα=时,max S ==因此,当6πα=时,矩形ABCD 【点睛】关键点点睛:此题考查三角函数的应用,解题的关键是将四边形ABCD 的面积表示为S CD BC =⋅(2cos )2sinααα=⋅)6πα=+-,再利用三角函数的性质可求得其最大值,属于中档题 22.(1)对称轴方程6x k ππ=-+,k ∈Z ;(2)3t ≥-.【分析】(1)先运用降幂公式、辅助角公式,将原函数的解析式化为()()sin f x A x b ωϕ=++或()()cos f x A x b ωϕ=++的形式,然后运用整体法求解对称轴;(2)根据题目条件,只需使min ()2f x t ≤+成立即可,然后三角函数的图象及性质求解()f x 的最小值,然后解得t 的取值范围.【详解】解:(1)2()sin cos 2222x x x f x =--1cos sin 22x x =-cos 6x π⎛⎫=+ ⎪⎝⎭, 令6x k ππ+=,得6x k ππ=-+,k ∈Z ,所以()f x 图象的对称轴方程为6x k ππ=-+,k ∈Z .(2)若存在0[0,]x π∈,使()02f x t ≤+,则min ()2f x t ≤+, 由[0,]x π∈得7,666x πππ⎡⎤+∈⎢⎥⎣⎦,根据余弦函数的性质可得,当6x ππ+=, 即56x π=时,函数取得最小值1-, 所以12t -≤+,故3t ≥-. 【点睛】本题考查三角恒等变换、三角函数图象及性质的综合运用,解答的一般思路如下: (1)利用三角恒等变换研究三角函数的图象性质问题时,先利用正弦、余弦的二倍角公式将原函数解析式进行化简,将原函数解析式化简为()()sin f x A x b ωϕ=++的形式,然后可利用整体法求解原函数的单调区间、对称轴、对称中心等;(2)解答与三角函数图象性质有关的不等式恒成立、有解等问题时,要注意参数分离、整体思想的运用,将问题转化为处理函数最值问题来解决.23.(1),24ππ⎡⎤-⎢⎥⎣⎦,值域,122⎤+⎥⎣⎦;(2)024sin 310x +⎛⎫= ⎪⎝⎭. 【分析】(1)先利用诱导公式和降幂公式可将()f x 化为()2sin 332x f x π⎛⎫=++⎪⎝⎭数的性质可得函数的单调区间和值域.(2)利用两角差的正弦公式可求02sin 3x ⎛⎫ ⎪⎝⎭的值. 【详解】①2()sin cos 1cos 333x x x f x ⎫=++⎪⎝⎭2sin 33x π⎛⎫=+ ⎪⎝⎭, 由2222332x k k πππππ-≤+≤+得53344k x k ππππ-≤≤+,k Z ∈, 又2x ππ-≤≤,所以()f x 的递增区间为,24ππ⎡⎤-⎢⎥⎣⎦, 又2x ππ-≤≤,故2033x ππ≤+≤,所以20sin 133x π⎛⎫≤+≤ ⎪⎝⎭,()f x ∴值域为1⎤+⎥⎣⎦.②由024()sin 33252x f x π⎛⎫=++=+⎪⎝⎭得024sin 335x π⎛⎫+= ⎪⎝⎭, 因04x ππ≤≤,所以02233x πππ≤+≤,故023cos 335x π⎛⎫+=- ⎪⎝⎭00002222sin sin sin cos cos sin 3333333333x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦4134525210+=⨯+⨯=. 【点睛】方法点睛:形如()22sinsin cos cos f x A x B x x C x ωωωω=++的函数,可以利用降幂公式和辅助角公式将其化为()()'sin 2'f x A x B ωϕ=++的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法. 24.(1)4π;(2)32a <.【分析】(1)构造()()()h x f x g x =-,由单调性的定义得出()h x 在区间[0,]t 上为增函数,结合正弦型函数的单调性,得出正实数t 的最大值.(2)方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=有解,可分离参数为2()112()1()1h x a h x h x +==-++,在,44ππ⎛⎫- ⎪⎝⎭上有解,再根据()h x 的值域,求解实数a 的取值范围. 【详解】解:(1)依题可知:1()cos 2sin cos 2f x x x x =+sin 224x π⎛⎫=+ ⎪⎝⎭, 又∵()()()()1212f x f x g x g x -<-,∴()()()()1122f x g x f x g x -<-, 令()()()h x f x g x =-,则3()2244h x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭222424x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ sin 2x =.∵()()12h x h x <,∴()h x 在[]0,t 上单调递增, ∵22222k x k ππππ-≤≤+,∴()44k x k k Z ππππ-≤≤+∈,∴4t π≤,即t 的最大值为4π. (2)∵[()()1]2()2()10a f x g x f x g x ⋅-+-+-=, ∴(2)[()()]10a f x g x a --+-=, ∴2()112()1()1h x a h x h x +==-++,即12sin 21a x =-+在,44ππ⎛⎫- ⎪⎝⎭上有解,∵1sin 21x -<<,∴32a <. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.25.(1)T π=,单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)最大值为12,最小值为14-. 【分析】(1)本题首先可通过三角恒等变换将函数解析式转化为()1sin 223f x x π⎛⎫=- ⎪⎝⎭,然后通过周期计算公式即可求出最小正周期,通过正弦函数的单调性即可求出单调递增区间;(2)本题可根据,122x ππ⎡⎤∈⎢⎥⎣⎦得出22,363x πππ⎡⎤-∈-⎢⎥⎣⎦,然后根据正弦函数的性质即可求出最值. 【详解】(1)2()cos cos 64f x x x x π⎛⎫=⋅-- ⎪⎝⎭21cos sin2x x x x⎫=++-⎪⎪⎝⎭221cos sin cos224x x x x=++-)()2212cos1sin22sin1444224x x x=-+++-+-11cos2sin2cos2sin2244244x x x x x=+-=-111sin2cos2sin222223x x xπ⎛⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎝⎭,即()1sin223f x xπ⎛⎫=-⎪⎝⎭,则最小正周期22Tππ==,当222232k x kπππππ-+≤-≤+,即()51212k x k k Zππππ-+≤≤+∈,函数()f x单调递增,函数()f x的单调递增区间为()5,1212k k k Zππππ⎡⎤-++∈⎢⎥⎣⎦.(2)()1sin223f x xπ⎛⎫=-⎪⎝⎭,因为,122xππ⎡⎤∈⎢⎥⎣⎦,所以22,363xπππ⎡⎤-∈-⎢⎥⎣⎦,由正弦函数的性质易知,当236xππ-=-,即12xπ=时,函数()f x取最小值,最小值为14-;当232xππ-=,即512xπ=时,函数()f x取最大值,最大值为12.【点睛】关键点点睛:本题考查结合三角恒等变换判断三角函数性质,能否根据三角恒等变换将函数转化为()1sin223f x xπ⎛⎫=-⎪⎝⎭是解决本题的关键,考查三角函数周期性、单调性以及最值的求法,是中档题.26.(1)最大值为14,最小值为12-;(2)()11sin2,0223211sin2,2232x xg xx xπππππ⎧⎛⎫+--≤≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤<⎪⎪⎝⎭⎩.【分析】(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将()f x 化简,再由三角函数的性质求得最值;(2)利用0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-,对x 分类求出函数的解析式即可.【详解】(1)()2cos sin 34f x x x x ⎛⎫ ⎪⎝⎭π=++2cos sin cos cos sin 33x x x x ππ⎛⎫=+ ⎪⎝⎭1sin 224x x = 1sin 223x π⎛⎫=- ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦, 则1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 111sin 2,2324x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()f x 的最大值为14;()f x 的最小值为12-; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时, ()11sin 2223g x x π⎛⎫=-- ⎪⎝⎭, 当,02x ⎡⎤∈-⎢⎥⎣⎦π时,0,22x ππ⎡⎤+∈⎢⎥⎣⎦, ()11sin 22223g x g x x ππ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,0,2x ππ⎡⎫+∈⎪⎢⎣⎭; ()()11sin 2223g x g x x ππ⎛⎫=+=-- ⎪⎝⎭, 综上:()g x 在区间[],0π-上的解析式为:()11sin 2,0223211sin 2,2232x x g x x x πππππ⎧⎛⎫+--≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤< ⎪⎪⎝⎭⎩. 【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键.。

(好题)高中数学必修四第三章《三角恒等变形》测试题(含答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试题(含答案解析)

一、选择题1.已知2π()2sin ()1(0)3f x x ωω=+->,给出下列判断:①若函数()f x 的图象的两相邻对称轴间的距离为π2,则=2ω; ②若函数()f x 的图象关于点π(,0)12对称,则ω的最小值为5; ③若函数()f x 在ππ[,]63-上单调递增,则ω的取值范围为1(0,]2; ④若函数()f x 在[0,2π]上恰有7个零点,则ω的取值范围为4147[,)2424. 其中判断正确的个数为( ) A .1B .2C .3D .42.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( ) A .0,3πβ⎛⎫∈ ⎪⎝⎭ B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭3.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36的等腰三角形(另一种是顶角为108的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,51BC AC -=.根据这些信息,可得sin126=( )A .154- B .358+ C .154+ D .458+ 4.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫ ⎪⎝⎭5.已知α为锐角,且1sin 34πα⎛⎫-= ⎪⎝⎭,则sin α的值为( ) A .1358± B .1358+ C .1538± D .358+ 6.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则2sin 2θ=( ) A .1213-B .1213C .2413-D .24137.已知5cos 5α=,,02πα⎛⎫∈- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .13 B .3C .13D .13-8.已知角α满足1cos()63πα+=,则sin(2)6πα-=( ) A .429-B .429C .79-D .799.已知αβ、均为锐角,满足5310sin ,cos αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π 10.若函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点,则实数a 的取值范围( )A .2,2⎡⎤-⎣⎦B .92,4⎡⎤-⎢⎥⎣⎦C .2,2⎡⎤-⎣⎦D .92,4⎡⎤⎢⎥⎣⎦11.若,则的值为( )A .B .C .D .12.已知()0,απ∈,3sin cos 3αα+=,则cos2=α() A .5- B .53 C .5-D .5 二、填空题13.4cos50tan40-=______.14.已知tanα=2tan 8π,则3cos 8sin 8αππα⎛⎫- ⎪⎝⎭⎛⎫- ⎪⎝⎭=_____.15.已知02x π-<<,1sin cos 5x x +=,则22sin cos cos x x x -的值为___________. 16.在ABC 中,A ∠,B ,C ∠对应边分别为a ,b ,c ,且5a =,4b =,()31cos 32A B -=,则ABC 的边c =________. 17.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.18.函数()3sin cos22f x x x π⎛⎫=++ ⎪⎝⎭的最大值为_________.19.已知25cos 2βα⎛⎫-= ⎪⎝⎭,310cos 2αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,则2αβ+的值为__________. 20.已知x 是第二象限的角.1sin 1sin 1sin 1sin x xx x+--+的值为____________. 三、解答题21.已知函数2()2cos 23sin 1(0)2f x x x x πωωωω⎛⎫=-+-> ⎪⎝⎭,其最小正周期为π.(1)求ω的值及函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移3π个单位得到函数()y g x =,求函数()y g x =在区间70,12π⎛⎫ ⎪⎝⎭上的值域.22.如图,设A 是一块麦田,射线,AB AC 夹角为60°,若将水管P 设在BAC ∠围成的区域内(不含边界)(1)若P 到,AB AC 的距离之和为定值20,设PAB θ∠=,试将PA 的长用含θ的式子表示,并求出水管想要浇灌到麦田的最小射程;(2)若P 在以A 为圆心,10为半径的圆弧上运动,过P 作AP 的垂线分别交,AB AC 于,Q R 两点,求AQ AR +的最小值.23.已知02πα<<,02πβ-<<,310cos 10α=,3cos()42πβ-=.(1)求cos()4πα+的值;(2)求sin()2+βα的值.24.已知14cos ,sin()435πββα⎛⎫-=+= ⎪⎝⎭,其中π0π2αβ<<<<. (1)求tan β的值; (2)求cos 4πα⎛⎫+⎪⎝⎭的值. 25.已知sin α、cos α分别是方程2255120x x +-=的两根,且α是第二象限角. (1)求cos2α的值; (2)求2sin cos sin 3cos αααα-+的值.26.已知函数()4sin cos 33f x x x π⎛⎫=-⎪⎝⎭(1)求函数()f x 的最小正周期和单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的最值及取到最值时x 的值; (3)若函数()()g x f x m =-在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,求实数m 的取值范围,并求()12tan x x +的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先将()f x 化简,对于①,由条件知,周期为π,然后求出ω;对于②,由条件可得2()612k k Z ωπππ+=∈,然后求出16()k k Z ω=-+∈,即可求解;对于③,由条件,得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩,然后求出ω的范围;对于④,由条件,得74221212πππππωωωω-<-,然后求出ω的范围;,再判断命题是否成立即可. 【详解】解:2π2ππ()2sin ()1=-cos(2)=sin(2)336f x x x x ωωω=+-++, ∴周期22T ππωω==. ①.由条件知,周期为π,1w ∴=,故①错误;②.函数()f x 的图象关于点π(,0)12对称,则2()612k k Z ωπππ+=∈, 16()k k Z ω∴=-+∈,(0)>ω∴ω的最小值为5, 故②正确;③.由条件,ππ[,]63x ∈-,ππ2π236636x πωπωω-+≤+≤+ 由函数()f x 在ππ[,]63-上单调递增得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩, 12ω∴≤, 又0>ω,102ω∴<, 故③正确.④.由()sin(2)06f x x πω=+=得2()6x k k Z πωπ+=∈,解得()212k x k Z ππωω=-∈ ()sin(2)6f x x πω=+且()f x 在[0,2]π上恰有7个零点,可得74221212πππππωωωω-<-, ∴41472424ω<, 故④正确; 故选:C 【点睛】本题考查了三角函数的图象与性质,考查了转化思想和推理能力,属中档题.关键点点睛:利用整体思想,结合正弦函数的图像和性质是根据周期,对称,单调性,零点个数求求解参数的关键.2.C解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()αβ+==. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++423(0535=⨯+⨯=<.102+=>,所以1cos (,0)2β∈- 所以2,23ππβ⎛⎫∈ ⎪⎝⎭.故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.3.C解析:C 【分析】 计算出5cos 72=,然后利用二倍角公式以及诱导公式可计算得出sin126cos36=的值,即可得出合适的选项.【详解】因为ABC 是顶角为36的等腰三角形,所以,72ACB ∠=,则112cos72cos 4BCACB AC =∠==,()sin126sin 9036cos36=+=, 而2cos722cos 361=-,所以,131cos364+====.故选:C. 【点睛】本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.4.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 5.B解析:B 【分析】通过三角恒等式可求出cos 3πα⎛⎫- ⎪⎝⎭的值,再根据两角和的正弦即可得出结果.【详解】 ∵02πα<<,∴336πππα-<-<,又∵1sin 34πα⎛⎫-= ⎪⎝⎭,∴cos 3πα⎛⎫-=== ⎪⎝⎭∴11sin sin 3342ππαα⎛⎫=-+=⨯= ⎪⎝⎭ 故选:B.【点睛】本题主要考查了三角恒等式的应用以及通过两角和正弦公式求值,属于中档题.6.C解析:C 【分析】先根据对数函数性质得()3,2A -,进而根据正弦的二倍角公式和三角函数的定义求解即可得答案. 【详解】解:根据对数函数的性质得函数()log 42a y x =++(0a >,且1a ≠)的图象恒过()3,2A -,由三角函数的定义得:13r ==,sinθθ==, 所以根据二倍角公式得:242sin 24sin cos 413θθθ⎛===- ⎝. 故选:C. 【点睛】本题考查对数函数性质,三角函数定义,正弦的二倍角公式,考查运算能力,是中档题.7.D解析:D 【分析】根据同角三角函数基本关系式求出tan α,再代入两角和的正切公式求tan 4απ⎛⎫+ ⎪⎝⎭的值. 【详解】cos 5α=,,02πα⎛⎫∈- ⎪⎝⎭,sin α∴==,sin tan 2cos ααα==-, 1tan 121tan 41tan 123πααα+-⎛⎫+===- ⎪-+⎝⎭.故选:D 【点睛】本题考查同角三角函数基本关系式,两角和的正切公式,重点考查计算能力,属于基础题型.8.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.10.A解析:A 【分析】由题意结合函数零点的概念可得方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,令sin cos 2sin cos y x x x x =+-,通过换元法求得y 在3,44ππ⎡⎤--⎢⎥⎣⎦上的值域即可得解. 【详解】因为函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点, 所以方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解, 设sin cos 2sin 4t x x x π⎛⎫=+=+ ⎪⎝⎭,3,44x ππ⎡⎤∈--⎢⎥⎣⎦,∴,204x ππ⎡⎤+∈-⎢⎥⎣⎦,∴2,0t ⎡⎤∈-⎣⎦,212sin cos t x x =+,∴2215sin cos 2sin cos 124y x x x x t t t ⎛⎫=+-=-+=--+ ⎪⎝⎭, 当0t =时,y 取得最大值1,当2t =-时,y 取得最小值21--, 故可得2111a --≤-≤,∴22a -≤≤. 故选:A. 【点睛】本题考查了函数与方程的综合应用,考查了三角函数的性质及三角恒等变换的应用,考查了逻辑思维能力和运算求解能力,属于中档题.11.C解析:C 【解析】 试题分析:因,故应选C .考点:同角三角函数的关系及运用.12.A解析:A 【分析】在等式3sin cos 3αα+=两边同时平方可求得cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos 3αα+=,两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<, ()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin 3αα∴-=-, 则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+== 故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.二、填空题13.【详解】故答案为考点:三角函数诱导公式切割化弦思想【详解】4sin 40cos 40sin 404cos50tan 40cos 40--=2cos10sin 30cos10sin10cos30cos 40--=,1sin102cos 40⎫-⎪⎝⎭=40340==.考点:三角函数诱导公式、切割化弦思想.14.3【分析】由诱导公式对原式化简用两角和差公式展开分子分母同除即可得结果【详解】故答案为:3【点睛】本题考查了三角函数的诱导公式三角恒等变换等基本数学知识考查了运算求解能力属于基础题目解析:3 【分析】由诱导公式对原式化简3cos()sin()88sin()sin()88ππααππαα-+=--,用两角和差公式展开,分子分母同除cos cos8πα,即可得结果.3cos()sin()sin cos cos sin tan tan 888883sin()sin()sin cos cos sin tan tan88888πππππαααααπππππααααα-+++====---- 故答案为:3 【点睛】 本题考查了三角函数的诱导公式、三角恒等变换等基本数学知识,考查了运算求解能力,属于基础题目.15.【分析】根据得到将已知等式两边平方利用同角三角函数基本关系式可求的值然后利用二倍角公式化简求解【详解】∵∴∴∵两边平方可得∴故答案为:【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用还解析:85-【分析】 根据1sin cos 5x x +=得到|cos ||sin |x x >, 将已知等式两边平方,利用同角三角函数基本关系式可求sin 2x ,cos2x 的值,然后利用二倍角公式化简求解. 【详解】 ∵02x π-<<,1sin cos 5x x +=, ∴|cos ||sin |x x >, ∴04x π-<<,π202x -<< ∵1sin cos 5x x +=,两边平方, 可得24sin 225x =-,7cos 225x =,∴21cos 282sin cos cos sin 225x x x x x +-=-=-. 故答案为:85-.【点睛】本题主要考查三角函数的同角基本关系式以及倍角公式的应用,还考查了运算求解的能力,属于中档题.16.6【分析】由可知然后由可求再由正弦定理三角函数恒等变换的应用可求由可求结合同角平方关系可求代入进而可求进而根据余弦定理可求的值【详解】解:可知由正弦定理于是可得又可得可得由余弦定理可得故答案为:6【解析:6由a b >可知A B >,然后由cos()A B -可求sin()A B -,再由正弦定理,三角函数恒等变换的应用可求cos B ,由cos cos[()]cos()cos sin()sin A A B B A B B A B B =-+=---可求cos A ,结合同角平方关系可求sin A ,代入cos()cos cos sin sin A B A B A B +=-,进而可求cos C ,进而根据余弦定理可求c 的值.【详解】解:a b >, A B ∴>,31cos()32A B -=, ∴可知(0,)2A B π-∈,sin()A B ∴-==, 由正弦定理,sin 5sin 4A aB b ==, 于是可得5sin 31sin sin[()]sin()cos sin cos()sin 432B A A B B A B B B A B B B ==-+=-+-=+,3sin B B ∴,sin cos 22B B 1+=,又B A <,可得3cos 4B =,3139cos cos[()]cos()cos sin()sin 32416A AB B A B B A B B ∴=-+=---⨯=,可得sin A ,931cos cos()cos cos sin sin 1648C A B A B A B ∴=-+=-+=⨯=,∴由余弦定理可得6c .故答案为:6. 【点睛】本题主要考查了正弦定理、同角三角函数的基本关系及和差角的三角公式的综合应用,同时考查了运算的能力,属于中档题.17.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公解析:4π【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-, 因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+, 在ABP △中,tan BPBAP x AB ∠==, 在ADQ △中,tan DQDAQ y AD∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x yBAP DAQ DAQ BAP xy∠+∠+∠+∠===-∠∠-,又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠故答案为:4π 【点睛】本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.18.4【分析】采用二倍角公式和诱导公式转化为关于的二次函数再结合二次函数图像求解即可【详解】令则原函数等价于对称轴为画出大致图像如图:显然在时取到最大值所以函数最大值为4故答案为:4【点睛】本题考查诱导解析:4 【分析】采用二倍角公式和诱导公式转化为关于cos x 的二次函数,再结合二次函数图像求解即可 【详解】22()3sin cos 23cos 2cos 12cos 3cos 12f x x x x x x x π⎛⎫=++=+-=+- ⎪⎝⎭,令cos t x =[]11t ,∈-,则原函数等价于()2231f t t t =+-,对称轴为34t =-,画出大致图像,如图:显然在1t =时取到最大值,()max 4f t =,所以函数()3sin cos22f x x x π⎛⎫=++ ⎪⎝⎭最大值为4故答案为:4 【点睛】本题考查诱导公式,二倍角公式的应用,二次函数型三角函数最值的求解,属于中档题19.【分析】求出和再由两角和余弦公式求得然后可得角的大小【详解】∵且∴同理∴又由得∴故答案为:【点睛】本题考查已知三角函数值求角一般要求角可先这个角的某个三角函数值最好先确定这个角的范围选用在此范围内三解析:4π. 【分析】求出sin()2βα-和sin()2αβ-,再由两角和余弦公式求得cos 2αβ+,然后可得角的大小. 【详解】∵25cos 25βα⎛⎫-= ⎪⎝⎭,310cos 210αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭, ∴2255sin()1()255βα-=-=sin()2αβ-1010=, ∴coscos[()()]cos()cos()sin()sin()2222222αββαβαβααβαβαβ+=-+-=-----2531051025105102=⨯-=, 又由0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭得(0,)2αβπ+∈,∴2αβ+4π=. 故答案为:4π. 【点睛】本题考查已知三角函数值求角.一般要求角可先这个角的某个三角函数值,最好先确定这个角的范围,选用在此范围内三角函数是单调的函数求函数值后再确定角的大小.20.【分析】本题可以先通过是第二象限的角得出然后对进行化简即可得到结果【详解】因为是第二象限的角所以所以故答案为:【点睛】关键点睛:本题主要考查三角函数式的化简利用三角函数的同角三角函数关系式进行化简是 解析:2tan x -【分析】本题可以先通过x 是第二象限的角得出cos 0x <进行化简即可得到结果. 【详解】因为x 是第二象限的角,所以cos 0x <,==1sin 1sin cos cos x xx x+-=---11tan tan cos cos x x x x=--+- 2tan x =-.故答案为:2tan x -. 【点睛】关键点睛:本题主要考查三角函数式的化简,利用三角函数的同角三角函数关系式进行化简是本题的关键.三、解答题21.(1)1ω=,单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦;(2)(2]. 【分析】(1)化简得()2cos 23f x x πω⎛⎫=+ ⎪⎝⎭,再根据最小正周期得1ω=,进而整体代换求解得()f x 的单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦;(2)根据题意得()2cos 23g x x π⎛⎫=-⎪⎝⎭,由于70,12x π⎛⎫∈ ⎪⎝⎭,故52336x πππ-<-<,故cos 2123x π⎛⎫<-≤ ⎪⎝⎭,()2g x <≤,进而得函数值域. 【详解】(1)因为2()2cos sin 1(0)2f x x x x πωωωω⎛⎫=-+-> ⎪⎝⎭22cos 1cos x x x ωωω=--cos 22x x ωω=-12cos 2222x x ωω⎛⎫=- ⎪ ⎪⎝⎭2cos 23x πω⎛⎫=+ ⎪⎝⎭. 所以2|2|T πππωω===,即1ω=, ()2cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222()3k x k k Z ππππ-≤+≤∈,得2()36k x k k Z ππππ-≤≤-∈, 所以()f x 的单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦. (2)()2cos 23f x x π⎛⎫=+ ⎪⎝⎭向右平移3π个单位得到()2cos 23g x x π⎛⎫=- ⎪⎝⎭, 当70,12x π⎛⎫∈ ⎪⎝⎭时,52336x πππ-<-<,所以cos 2123x π⎛⎫-<-≤ ⎪⎝⎭,()2g x <≤, 所以函数()y g x =的值域为(2⎤⎦. 【点睛】本题考查三角函数恒等变换,三角函数的性质等,考查运算求解能力,是中档题.本题解题的关键在于根据三角恒等变换化简得函数()2cos 23f x x πω⎛⎫=+ ⎪⎝⎭,进而根据三角函数的性质求解. 22.(1)2003sin 3x πθπθ⎛⎫=<< ⎪⎛⎫⎝⎭+ ⎪⎝⎭,最小射程为20;(2. 【分析】(1)过点P 作PE AB ⊥于点,E PF AC ⊥于点F ,设PA x =,则可表示出,PE PF ,根据20PE PF +=,列出等式,化简整理,即可得PA 的表达式,根据θ的范围,即可求得答案;(2)设PAQ α∠=,则1010cos cos 3AQ AR παα+=+⎛⎫- ⎪⎝⎭,令6t πα=-,则,化简整理可得4cos cos AQ AR t t+=-,根据t 的范围,结合14cos cos y t t=-的单调性,即可求得答案. 【详解】(1)过点P 作PE AB ⊥于点,E PF AC ⊥于点F ,则20PE PF += 设PA x =,则sin ,sin 3x E PF x P πθθ⎛-==⎫⎪⎝⎭, 所以sin sin 203x x πθθ⎛⎫+-= ⎪⎝⎭,即202003sin sin sin 33x πθππθθθ⎛⎫==<< ⎪⎛⎫⎛⎫⎝⎭+-+ ⎪ ⎪⎝⎭⎝⎭ 所以20PA ≥(当且仅当6πθ=时取“=”),即水管想要浇灌到麦田的最小射程为20. (2)由题可知:10PA =,设,(0,)3PAQ παα∠=∈,则1010cos cos 3AQ AR παα+=+⎛⎫- ⎪⎝⎭, 令6t πα=-,则66t ππ-<<则2101014cos 14cos cos cos cos 66t AQ AR t t t t t ππ+=+==-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭由66t ππ-<<cos 1t <≤,且14cos cos y t t =-在为增函数, 所以当cos 1t =时,14cos cos y t t=-有最大值3,所以2101014cos 134cos cos cos cos 66t AQ AR t t t t t ππ+=+==≥-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,所以AQ AR + 【点睛】解题的关键是根据题意,结合三角函数的概念,进行求解,以实际问题作为载体,考查三角函数的综合应用,属中档题.23.(1;(2. 【分析】(1)根据02πα<<,cos α=sin α=,再利用两角和的余弦公式求解..(2)由(1)求得sin()45+=πα,再由02πβ-<<,求得sin()42πβ-=,然后由sin()sin[()()]2442+=+--βππβαα,利用两角差的正弦公式求解.【详解】(1)因为02πα<<,cos α=所以10sin α=, 所以cos()cos cossin sin444πππααα+=-,1021025=⋅-=. (2)因为02πα<<,所以3444πππα<+<,所以sin()45+=πα, 因为02πβ-<<,所以4422ππβπ<-<,所以sin()42πβ-=,所以sin()sin[()()]2442+=+--βππβαα,sin()cos()cos()sin()442442=+--+-ππβππβαα,535315=-=. 【点睛】 方法点睛:三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.24.(1)2)315;【分析】 由已知函数值以及角的范围得3444πππβ<-<,322ππαβ<+<,且()44ππββ=-+,()()44ππαβαβ+=+--,结合两角和差公式即可求值.【详解】(1)2πβπ<<知:3444πππβ<-<, ∵1cos 43πβ⎛⎫-= ⎪⎝⎭,则sin()43πβ-=,∴tan 4πβ⎛⎫-= ⎪⎝⎭tan tan[()]44ππββ=-+,∴tan()tan 44tan 1tan()tan 44ππββππβ-+===--(2)由cos cos[()()]44ππαβαβ⎛⎫+=+-- ⎪⎝⎭, ∴cos cos()cos()sin()sin()444πππαβαββαβ⎛⎫+=+-++- ⎪⎝⎭, 由π0π2αβ<<<<知:322ππαβ<+<,∴由题意,得3cos()5βα+=-,结合(1)有sin()43πβ-=,∴3143cos 4535315πα⎛⎫+=-⨯+⨯= ⎪⎝⎭.【点睛】关键点点睛:根据已知确定4πβ-,αβ+范围,并确定β,4πα+与已知角的关系,进而求函数值.25.(1)725;(2)109-. 【分析】 (1)由韦达定理及α是第二象限角可以求得sin α和cos α的值,再由22cos 2cos sin ααα=-计算即可;(2)由(1)可知sin α和cos α的值,然后代值计算即可.【详解】(1)因为sin α、cos α分别是方程2255120x x +-=的两根, 所以有1sin cos 512sin cos 25αααα⎧+=-⎪⎪⎨⎪=-⎪⎩, 又α是第二象限角,所以sin 0α>,cos 0α<,3sin 5α∴=,4cos 5α=-, 2222437cos 2cos sin 5525ααα⎛⎫⎛⎫∴=-=--= ⎪ ⎪⎝⎭⎝⎭; (2)由(1)知,3sin 5α=,4cos 5α=-, 3422sin cos 21055934sin 3cos 93555αααα⎛⎫⨯-- ⎪-⎝⎭∴===-+⎛⎫-+⨯- ⎪⎝⎭. 【点睛】易错点睛:本题易忽略角α的范围,从而导致错解sin α和cos α的值,最后结果错误. 26.(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)4x π=时,()f x 取得最大值1;12x π=-时,()f x 取得最小值2-;(3))m ∈,()12tan x x +=. 【分析】 (1)利用和与差以及辅助角公式基本公式将函数化为()sin y A ωx φ=+的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,利用正弦函数的定义域和值域,求得()f x 的最大值和最小值,并指出()f x 取得最值时对应的x 的值.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ,2x ,转化为函数()f x 与函数y m =有两个交点;可求m 的范围,结合三角函数的图象可知,1x ,2x ,关于对称轴是对称的,可知12x x +,即可求()12tan x x +的值.【详解】解:(1)函数()4sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭ 化简可得:()2112sin cos sin 2cos 222f x x x x x x ⎫=-=-++⎪⎭sin 222sin 23x x x π⎛⎫=-=- ⎪⎝⎭, 所以函数的最小正周期22T ππ==, 由222232k x k πππππ-≤-≤+,解得:1212k x k π5ππ-≤≤π+, 所以函数的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (2)由于64x ππ-≤≤,可得22336x πππ-≤-≤, 当236x ππ-=,即4x π=时,()f x 取得最大值1; 当232x ππ-=-,即12x π=-时,()f x 取得最小值2-.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ',2x ',转化为函数()f x 与函数y m =有两个交点, 令23u x π=-,∵ 0,2x π⎡⎤∈⎢⎥⎣⎦,∴2,33u ππ⎡⎤∈-⎢⎥⎣⎦, 可得sin y u =的图象(如图).从图可知:)m ∈时,函数sin y u =与函数y m =有两个交点,其横坐标分别为1x ',2x '.故得实数m 的取值范围是)3,2m ⎡∈⎣, 由题意可知1x ',2x '是关于对称轴是对称的: 那么函数在0,2π⎡⎤⎢⎥⎣⎦的对称轴512x π=, 所以1256x x π''+=, 所以()1253tan tan6x x π''+==-.【点睛】本题第三问解题的关键在于将问题转化为函数()f x 与函数y m =有两个交点,进而讨论函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,根据数形结合思想求解,考查运算求解能力,化归转化思想,是中档题.。

必修四:第三章-三角恒等变换测试题

必修四:第三章-三角恒等变换测试题

第三章 三角恒等变换 测试卷一、选择题. 1、已知3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则()cos βα-的值是( ). ( ) A 、3365-B 、6365C 、5665D 、1665- 2、已知α和β都是锐角,且5sin 13α=,()4cos 5αβ+=-,则sin β的值是( ). A 、3365 B 、1665 C 、5665 D 、63653、已知32,244x k k ππππ⎛⎫∈-+ ⎪⎝⎭()k Z ∈,且3cos 45x π⎛⎫-=-⎪⎝⎭,则cos2x 的值是( ). A 、725-B 、2425-C 、2425D 、7254、设()()12cos sin sin cos 13x y x x y x +-+=,且y 是第四象限角,则2ytan 的值是( ). A 、23±B 、32±C 、32-D 、23- 5、函数()sincos22f x x x ππ=+的最小正周期是( ).A 、πB 、2πC 、1D 、26、若函数()()()sin g x f x x π=为以2为最小正周期的奇函数,则函数()f x 可以是 ( ). A 、()sin x π B 、cos 2x π⎛⎫⎪⎝⎭ C 、sin 2x π⎛⎫⎪⎝⎭D 、sin 2x π⎛⎫⎪⎝⎭7、要得到函数2sin 2y x =的图像,只需要将函数2cos 2y x x =-的图像( ). A 、向右平移6π个单位 B 、向右平移12π个单位C 、向左平移6π个单位 D 、向左平移12π个单位8、已知12sin 41342x x πππ⎛⎫⎛⎫+=<<⎪ ⎪⎝⎭⎝⎭,则式子cos 2cos 4x x π⎛⎫- ⎪⎝⎭的值为( )A 、1013-B 、2413C 、513D 、1213- 9、函数sin 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53π C 、53x π=- D 、3x π=- 10、已知1cos sin 21cos sin x xx x-+=-++,则sin x 的值为 ( )A 、45 B 、45- C 、35- D、11、已知0,4πα⎛⎫∈ ⎪⎝⎭,()0,βπ∈,且()1tan 2αβ-=,1tan 7β=-,则2αβ-的值是 ( ) A 、56π-B 、23π-C 、 712π-D 、34π- 12、已知不等式()2cos 04442x x x f x m =--≤对于任意的566x ππ-≤≤恒成立,则实数m 的取值范围是 ( )A、m ≥ B、m ≤ C、m ≤ D、m ≤≤ 二、填空题. 13、已知1sin 3x =,()sin 1x y +=,则()sin 2y x += 14、函数sin 234y x x π⎛⎫=+++ ⎪⎝⎭的最小值是 15、函数1sin cosxy x-=图像的对称中心是(写出通式) 16、关于函数()cos2cos f x x x x =-,下列命题: ①、若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②、()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增;③、函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④、将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合.其中正确的命题序号 (注:把你认为正确的序号都填上) 三、解答题 17、已知02πα<<,15tan22tan2αα+=,试求sin 3πα⎛⎫- ⎪⎝⎭的值.18、已知1tan 42πα⎛⎫+=- ⎪⎝⎭,试求式子2sin 22cos 1tan ααα--的值.19、已知x R ∈,()211sin tan cos 2222tan 2x f x x x x ⎛⎫⎪=-+⎪ ⎪⎝⎭. (1) 若02x π<<,求()f x 的单调的递减区间;(2) 若()f x =x 的值.20、已知函数()f x 满足下列关系式: (i )对于任意的,x y R ∈,恒有 ()()222f x f y f x y f x y ππ⎛⎫⎛⎫=-+---⎪ ⎪⎝⎭⎝⎭; (ii )12f π⎛⎫=⎪⎝⎭. 求证:(1)()00f =; (2)()f x 为奇函数;(3)()f x 是以2π为周期的周期函数.《三角恒等变换》单元测试题答案一、选择题1、A ∵3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,∴4sin 5α=,又12sin 13β=-,β是第三象限角,∴5cos 13β=-,∴()cos βα-531243313513565⎛⎫⎛⎫=-⨯-+-⨯=- ⎪ ⎪⎝⎭⎝⎭2、C 依题意,∵5sin 13α=,∴12cos 13α=,又()4cos 5αβ+=-,∴2παβπ<+<,∴()3sin 5αβ+=,∵()sin sin[]βαβα=+-,因此有,3124556sin 51351365β⎛⎫=⨯--⨯=⎪⎝⎭ 3、B ∵32,244x k k ππππ⎛⎫∈-+ ⎪⎝⎭,∴cos sin 0x x ->,即)sin cos sin 042x x x π⎛⎫-=-> ⎪⎝⎭,∴4sin 45x π⎛⎫-= ⎪⎝⎭,又∵cos 2sin 22sin cos 244x x x x πππ⎛⎫⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴4324cos 225525x ⎛⎫=⨯⨯-=- ⎪⎝⎭ 4、D 由()()12cos sin sin cos 13x y x x y x +-+=得()12sin sin 13x x y y -+=-=⎡⎤⎣⎦,又∵y 是第四象限角,∴5cos 13y =,∵22sin 1cos 2tan 2sin 2sin cos 22yy y y y y -==5121312313-==--5、C 因为()()()1sin1cos 122f x x x ππ+=+++sin cos 2222x x ππππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()cossin22x x f x ππ=+-=,∴最小正周期是1T = 6、C ∵()()g x g x -=-,∴()()()()sin sin f x x f x x ππ--=-,即得:()()f x f x -=成立,∴()f x 为偶函数,又∵()()2g x g x +=,∴()()2f x f x +=,即()f x 的周期为2.7、D∵12cos 222cos 22y x x x x ⎫-=-⎪⎪⎝⎭2sin 26x π⎛⎫=- ⎪⎝⎭2sin 212x π⎛⎫=- ⎪⎝⎭,∵12122sin 22sin 212y x y x πππ⎛⎫−−−−−→==-←−−−−− ⎪⎝⎭向右平移得向左平移得选D8、A ∵42x ππ<<,∴5244x πππ<+<,则5cos 413x π⎛⎫+=-⎪⎝⎭,则式为sin 22sin cos 2442sin 4cos cos 44x x x x x x ππππππ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===- ⎪⎛⎫⎛⎫⎝⎭-- ⎪ ⎪⎝⎭⎝⎭2cos 4x π⎛⎫=+ ⎪⎝⎭9C∵sin 22x x y =+2sin 23x π⎛⎫=+ ⎪⎝⎭,令22323x k x k πππππ+=+⇒=+()k Z ∈,当1k =-时,53x π=-10、B ∵()()222sin 2sin cos 1cos sin 222tan 1cos sin 22cos 2sin cos 222x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭==+++2=-,∴22tan 42sin 51tan 2x x x ==-+11、D ∵()11127tan tan 113127ααββ-=-+==⎡⎤⎣⎦⎛⎫-⨯- ⎪⎝⎭,∴()()tan 2tan αβαβα-=-+⎡⎤⎣⎦1132111132+==-⨯,又∵()0,βπ∈,1tan 7β=-,0,4πα⎛⎫∈ ⎪⎝⎭,∴20παβ-<-<,∴2αβ-34π=-12、A ∵()26x f x π⎛⎫=+ ⎪⎝⎭0m -≤对于566x ππ-≤≤恒成立,即()max m f x ≥=二、填空题13、∵()sin 1x y +=,∴22x y k ππ+=+,∴22y k xππ=+-,∴()sin 2sin (2)2y x k y ππ⎡⎤+=++⎢⎥⎣⎦sin cos 2y yπ⎛⎫=+= ⎪⎝⎭cos 22k x ππ⎛⎫=+- ⎪⎝⎭1cos sin 23x x π⎛⎫=-==⎪⎝⎭14、令cos 4t x π⎛⎫=+ ⎪⎝⎭,∴cos 2324y x x ππ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭2225215222t ⎛⎛=--+≥---+=- ⎝⎭⎝⎭15、∵1cos tan sin 2x xy x -==∴对称中心为()(),0k k Z π∈16、∵()552sin 22sin 22sin 26612f x x x x πππ⎛⎫⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴周期T π=,①正确;∵递减区间是532262x πππ≤+≤,解之为,63ππ⎡⎤-⎢⎥⎣⎦,②错误;∵对称中心的横坐标5526212k x k x ππππ+=⇒=-,当1k =时,得③正确;应该是向右平移,④不正确.三、解答题17、解:由15tan22tan2αα+=,得1cos 1cos 54sin sin sin 25ααααα-++=⇒=,又02πα<<,∴3cos 5α=,所以4134sin 3525210πα-⎛⎫-=⨯-=⎪⎝⎭ 18、解:.3tan ,21tan 1tan 14tan -=∴-=-+=⎪⎭⎫⎝⎛+ααααπ2sin 22cos 1tan ααα--()ααααααα22222cos sin cos 2cos 2tan 11tan cos 2+-=-=--=().511321tan 222-=+--=+-=α 19、()211cos 1cos sin cos 22sin sin 2x x f x x x x x +-⎛⎫=-+ ⎪⎝⎭212cos 1sin 2sin 222sin 2x x x x x x =+=+sin 23x π⎛⎫=+ ⎪⎝⎭ (1)∵02x π<<,∴42233x πππ≤+<,即122x ππ≤<时,()f x 为减函数,故()f x 的递减区间为,122ππ⎡⎫⎪⎢⎣⎭;(2)∵sin 232x π⎛⎫+=⎪⎝⎭,∴()x k k Z π=∈,或()6x k k Z ππ=+∈().6,,02tan ,22Z k k x k x x k x ∈+=≠∴≠+≠πππππ故且20、(1)令0x y ==,()()22000022f f f f ππ⎛⎫⎛⎫=-=⇒= ⎪ ⎪⎝⎭⎝⎭;(2)令2x π=,y R ∈,()()()22f f y f y f y π⎛⎫=-- ⎪⎝⎭,∵12f π⎛⎫= ⎪⎝⎭,∴()()f y f y =--,故()f x 为奇函数;(3)令2y π=,x R ∈,有()()()21f x f x f x π=---,即()()f x f x π-=……①,再令2x π=-,y x=有()()()()21f x f x f x ππ-=+--()()f x f x π+-,即()()()f x f x f x ππ+=-=-,令x t π-=,则2x t ππ+=+,所以()()2f t f t π=+,即()f x 是以2π为周期的函数.。

(典型题)高中数学必修四第三章《三角恒等变形》检测卷(包含答案解析)

(典型题)高中数学必修四第三章《三角恒等变形》检测卷(包含答案解析)

一、选择题1.若160,0,cos ,sin 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( ) A .53B .3- C .53- D .3 2.设函数22()cos sin 2cos sin f x x x x x =-+,下列说法中,错误的是( ) A .()f x 的最小值为2- B .()f x 在区间,48ππ⎡⎤-⎢⎥⎣⎦上单调递增. C .函数()y f x =的图象可由函数2sin y x =的图象先向左平移4π个单位,再将横坐标缩短为原来的一半(纵坐标不变)而得到. D .将函数()y f x =的图象向左平移4π个单位,所得函数的图象关于y 轴对称. 3.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15164.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36的等腰三角形(另一种是顶角为108的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin126=( )A 125- B 35+ C 15+ D 45+ 5.若tan 2θ=,则cos2(θ= )A .45B .45-C .35D .35-6.已知α为锐角,且3cos()65πα+=,则sin α=( ) ABCD7.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118 C .-1718D .17188.函数()sin sin 22f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( ) A .2B .1C .18D .989.已知()0,απ∈,()2sin 2cos21παα-=-,则sin α=( ) A .15BC.-D10.已知()4cos 5αβ+=,()1cos 5αβ-=,则tan tan αβ⋅的值为( ) A .12B .35C .310-D .3511.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③12.已知()()()ππcos sin 22cos πtan πf ααααα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=---,则2020π3f ⎛⎫-= ⎪⎝⎭( )A. B .12-C .12D二、填空题13.将22sin cos x x x +化简为sin()A x B ωϕ++(0A >,0>ω,π2ϕ<)的形式为______. 14.已知,2παπ⎛⎫∈⎪⎝⎭,3tan 24α=.则2sin 2cos αα+=______.15.已知函数()sin cos ,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,有以下结论:①()f x 的图象关于y 轴对称; ②()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上单调递增; ③()f x 图象的一条对称轴方程是4x π=; ④()f x 的最大值为2.则上述说法中正确的是__________(填序号)16.在ABC 中,A ∠,B ,C ∠对应边分别为a ,b ,c ,且5a =,4b =,()31cos 32A B -=,则ABC 的边c =________. 17.已知4sin 3cos 0+=αα,则2sin 23cos +αα的值为____________. 18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222A Bsin +=1﹣cos 2C ,cos (B +C )>0,则ab的取值范围为_____. 19.已知2tan 3tan 5πα=,则2sin 59cos 10παπα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭________. 20.设函数()cos f x x x =-的图像为C ,有如下结论: ①图象C 关于直线2π3x =对称; ②()f x 的值域为[]22-,; ③函数()f x 的单调递减区间是π2π2π,2π33k k ⎡⎤-+⎢⎥⎣⎦()k Z ∈; ④图象C 向右平移π3个单位所得图象表示的函数是偶函数. 其中正确的结论序号是___________________.(写出所有正确结论的序号).三、解答题21.在ABC 中,A B C <<且 tan A ,tan B ,tan C 均为整数. (1)求A 的大小; (2)设AC 的中点为D ,求BCBD的值. 22.已知函数2()cos sin 32233x x x f x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭.(1)若,2x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的递增区间和值域; (2)若004()524f x x ππ=+≤≤,求点02sin 3x ⎛⎫ ⎪⎝⎭.23.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,ππ22ϕ-<<)的部分图像如图所示,π12,7π12是函数的两个相邻的零点,且图像过()0,1-点.(1)求函数()f x 的解析式; (2)求函数()()π4g x f x f x ⎛⎫=⋅- ⎪⎝⎭的单调增区间以及对称轴方程. 24.已知函数2()2sin sin 26f x x x.(1)求()f x 的最小正周期; (2)若,212x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 25.已知14cos ,sin()435πββα⎛⎫-=+= ⎪⎝⎭,其中π0π2αβ<<<<. (1)求tan β的值; (2)求cos 4πα⎛⎫+⎪⎝⎭的值. 26.已知函数3()sin (cos 3)2f x x x x =+-. (1)求3f π⎛⎫⎪⎝⎭的值及函数()f x 的单调增区间; (2)若,122x ππ⎡⎤∀∈⎢⎥⎣⎦,不等式()2m f x m <<+恒成立,求实数m 的取值集合.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭,所以3444πππα<+<,sin +43πα⎛⎫= ⎪⎝⎭, 因为02πβ-<<,所以4422ππβπ<-<,又因为sin 42πβ⎛⎫-=⎪⎝⎭cos 42πβ⎛⎫-= ⎪⎝⎭ 而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13==. 故选:A.【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.2.D解析:D 【分析】由二倍角公式及辅助角公式化简,再根据正弦型函数性质判断AB ,利用图象平移伸缩判断CD. 【详解】由22()cos sin 2cos sin cos 2sin 2)4f x x x x x x x x π=-+=+=+,可知函数的最小值为,故A 正确;当,48x ππ⎡⎤∈-⎢⎥⎣⎦时,2,442x πππ⎡⎤+∈-⎢⎥⎣⎦,由正弦函数单调性知())4f x x π=+单调递增,故B 正确;y x =的图象先向左平移4π个单位得)4y x π=+,再将横坐标缩短为原来的一半(纵坐标不变)得)4y x π=+,故C 正确;将函数()y f x =的图象向左平移4π个单位得)]))44424y x x x πππππ=++=++=+,图象不关于y 轴对称,故D 错误. 故选:D 【点睛】关键点点睛:首先要把函数解析式化简,利用正弦型函数的图象与性质判断值域与单调性,利用图象变换的时候,注意平移与伸缩都变在自变量上,属于中档题.3.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值. 【详解】22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.4.C解析:C 【分析】 计算出5cos 72=,然后利用二倍角公式以及诱导公式可计算得出sin126cos36=的值,即可得出合适的选项.【详解】因为ABC 是顶角为36的等腰三角形,所以,72ACB ∠=,则112cos72cos 4BCACB AC =∠==,()sin126sin 9036cos36=+=, 而2cos722cos 361=-,所以,131cos364+====. 故选:C. 【点睛】本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.5.D解析:D 【分析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为221tan 1tan θθ-+,把已知条件代入运算,求得结果. 【详解】tan 2θ=,22222222cos sin 1tan 3cos2cos sin cos sin 1tan 5θθθθθθθθθ--∴=-===-++, 故选D . 【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.6.B解析:B 【分析】由同角三角函数可得in (α6π+)4=5,再利用两角差的正弦公式展开sinα=sin[(α6π+)6π-]即可. 【详解】∵cos (α6π+)3=5(α为锐角),∴α6π+为锐角,∴sin (α6π+)4=5,∴sinα=sin[(α6π+)6π-]=sin (α6π+)cos 6πcos (α6π+)sin 6π4313525210=⋅-⋅=, 故选:B . 【点睛】本题考查了三角函数的同角公式和两角差的正弦公式,考查了计算能力和逻辑推理能力,属于基础题目.7.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】 由3cos 2sin 4παα⎛⎫=-⎪⎝⎭,可得())223cos sin cos sin 2αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin 2αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.8.D解析:D 【分析】利用诱导公式与二倍角的余弦公式化简,再结合二次函数配方法求解即可. 【详解】因为()sin sin 2sin cos 22f x x x x x π⎛⎫=++=+ ⎪⎝⎭, 2219sin 12sin 2sin 48x x x ⎛⎫=+-=--+ ⎪⎝⎭所以()f x 的最大值为98, 故选:D.【点睛】本题主要考查诱导公式与二倍角的余弦公式的应用,考查了二次函数的性质,属于基础题.9.D解析:D 【分析】先利用诱导公式化简,再利用正弦、余弦的二倍角公式化简可得结果 【详解】解:由()2sin 2cos21παα-=-,得2sin 2cos21αα=-, 所以24sin cos 12sin 1ααα=--,即22sin cos sin ααα=-, 因为()0,απ∈,所以sin 0α≠, 所以2cos sin αα=-, 因为22sin cos 1αα+=, 所以221sin sin 14αα+=,所以24sin 5α=,因为()0,απ∈,所以sin 0α>,所以sin α=, 故选:D 【点睛】此题考查诱导公式的应用,考查二倍角公式的应用,考查同角三角函数的关系,属于中档题10.B解析:B 【分析】根据两角和与差的余弦函数的公式,联立方程组,求得13cos cos ,sin sin 210αβαβ==-,再结合三角函数的基本关系式,即可求解.【详解】由4cos()cos cos sin sin 5αβαβαβ+=-=,1cos()cos cos sin sin 5αβαβαβ-=+=,联立方程组,可得13cos cos ,sin sin 210αβαβ==-, 又由sin sin 3tan tan cos()cos cos 5αβαβαβαβ=+==-.故选:B. 【点睛】本题主要考查了两角和与差的余弦函数,以及三角函数的基本关系式的化简、求值,其中解答中熟记三角恒等变换的公式,准确运算是解答的关键,着重考查运算与求解能力.11.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan ,tan 2tan 363ππαααα⎛⎫⎛⎫=-==-=-< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||2αα⎛⎫∴=∈ ⎪ ⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.12.B解析:B 【分析】根据诱导公式和同角三角函数关系式,化简函数式,最后代值计算即可. 【详解】()()()cos sin 22cos tan f ππαααπαπα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=--- ()()sin sin 2cos tan πααπαα⎡⎤⎛⎫-⋅-- ⎪⎢⎥⎝⎭⎣⎦=+⋅- ()()sin cos cos tan αααα-⋅-=-⋅- sin cos sin cos cos ααααα⋅=⋅cos α=, 所以2020202020201cos cos cos 673cos 333332f ππππππ⎛⎫⎛⎫⎛⎫-=-==+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B .【点睛】本题考查利用诱导公式和同角三角函数关系式化简三角函数式并求值,注意三角函数值的符号变化,属于基础题.二、填空题13.【分析】利用正弦二倍角和余弦二倍角公式及辅助角公式化简得解【详解】故答案为:【点睛】本题考查二倍角公式及辅助角公式属于基础题 解析:π2sin(2)16x -+ 【分析】利用正弦二倍角和余弦二倍角公式及辅助角公式化简得解.【详解】2π2sin cos 1cos 222sin(2)16x x x x x x +=-=-+ 故答案为:π2sin(2)16x -+【点睛】本题考查二倍角公式及辅助角公式,属于基础题. 14.【分析】由正切的二倍角公式求得用正弦二倍角公式变形化用1的代换化求值式为关于析二次齐次分式再弦化切后求值【详解】因为所以或(舍)所以故答案为:【点睛】本题考查二倍角公式考查同角间的三角函数解题关键是 解析:12- 【分析】由正切的二倍角公式求得tan α,用正弦二倍角公式变形化用“1”的代换化求值式为关于sin ,cos αα析二次齐次分式,再弦化切后求值.【详解】 因为22tan 3tan 21tan 4ααα==-,所以tan 3α=-或13(舍), 所以222222sin cos cos 2tan 11sin 2cos sin cos tan 12ααααααααα+++===-++. 故答案为:12-. 【点睛】本题考查二倍角公式,考查同角间的三角函数.解题关键是由221sin cos αα=+化待求值式为关于sin ,cos αα析二次齐次分式,然后利用弦化切求值. 15.①【分析】去掉绝对值利用辅助角公式化简函数解析式利用函数的奇偶性单调性对称性以及函数的最值对选项进行判断即可【详解】当时当时即函数为偶函数图象关于y 轴对称①正确;函数在区间上单调递增在区间上单调递减 解析:①【分析】去掉绝对值,利用辅助角公式化简函数解析式,利用函数的奇偶性,单调性,对称性以及函数的最值对选项进行判断即可.【详解】(),,042sin cos ,0,42x x f x x x x x ππππ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦=+=⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦, 当,02x ⎡⎤∈-⎢⎥⎣⎦π时,()()44f x x x f x ππ⎛⎫⎛⎫-=--=+= ⎪ ⎪⎝⎭⎝⎭, 当0,2x π⎛⎤∈ ⎥⎝⎦时,()()44f x x x f x ππ⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭, 即函数()f x 为偶函数,图象关于y 轴对称,①正确;函数()f x 在区间,24ππ⎡⎤--⎢⎥⎣⎦上单调递增,在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减,②错误; 因为函数()f x 的定义域为,22ππ⎡⎤-⎢⎥⎣⎦,不关于直线4x π=对称,所以直线4x π=不是一条对称轴,③错误;()f x,④错误.故答案为:①.【点睛】本题考查余弦函数的性质,考查余弦函数的奇偶性,单调性,对称性以及最值,考查辅助角公式的应用,考查学生的分析推理能力,属于中档题.16.6【分析】由可知然后由可求再由正弦定理三角函数恒等变换的应用可求由可求结合同角平方关系可求代入进而可求进而根据余弦定理可求的值【详解】解:可知由正弦定理于是可得又可得可得由余弦定理可得故答案为:6【 解析:6【分析】由a b >可知A B >,然后由cos()A B -可求sin()A B -,再由正弦定理,三角函数恒等变换的应用可求cos B ,由cos cos[()]cos()cos sin()sin A A B B A B B A B B =-+=---可求cos A ,结合同角平方关系可求sin A ,代入cos()cos cos sin sin A B A B A B +=-,进而可求cos C ,进而根据余弦定理可求c 的值.【详解】解:a b >,A B ∴>, 31cos()32A B -=, ∴可知(0,)2A B π-∈,sin()A B ∴-==, 由正弦定理,sin 5sin 4A aB b ==, 于是可得5sin 31sin sin[()]sin()cos sin cos()sin 432B A A B B A B B B A B B B ==-+=-+-=+,3sin B B ∴,sin cos 22B B 1+=,又B A <,可得3cos 4B =,3139cos cos[()]cos()cos sin()sin 32416A A B B A B B A B B∴=-+=---⨯=,可得sin A ,931cos cos()cos cos sin sin 1648C A B A B A B ∴=-+=-+=⨯=,∴由余弦定理可得6c .故答案为:6.【点睛】本题主要考查了正弦定理、同角三角函数的基本关系及和差角的三角公式的综合应用,同时考查了运算的能力,属于中档题.17.【分析】由已知式求出利用同角三角函数间的平方关系和商数关系将化为代入即可求值【详解】则故答案为:【点睛】本题考查了同角三角函数间的平方关系和商数关系正余弦其次式的计算二倍角的正弦公式属于中档题 解析:2425【分析】 由已知式求出3tan 4α=-,利用同角三角函数间的平方关系和商数关系,将2sin 23cos +αα化为22tan 3tan 1αα++,代入即可求值.【详解】4sin 3cos 0αα+=,3tan 4α∴=-, 则22222sin cos 3cos sin 23cos sin cos ααααααα++=+ 22tan 3tan 1αα+=+ 232()343()14⨯-+=-+ 2425=. 故答案为:2425. 【点睛】本题考查了同角三角函数间的平方关系和商数关系,正、余弦其次式的计算,二倍角的正弦公式,属于中档题.18.(2+∞)【分析】由已知结合二倍角公式及诱导公式可求然后结合正弦定理及同角基本关系可求【详解】∵21﹣cos2C ∴1﹣2cos2C ∴cos (A+B )=2cos2C ﹣1即﹣cosC =2cos2C ﹣1整解析:(2,+∞)【分析】由已知结合二倍角公式及诱导公式可求C ,然后结合正弦定理及同角基本关系可求.【详解】∵222A B sin +=1﹣cos 2C , ∴1﹣222A B sin+=cos 2C , ∴cos (A +B )=2cos 2C ﹣1,即﹣cosC =2cos 2C ﹣1, 整理可得,(2cosC ﹣1)(cosC +1)=0,∵cosC ≠﹣1,∴cosC 12=, 0C π<<∴C 13π=,∵cos (B +C )>0, ∴11032B ππ+<<, ∴06B π<<, 由正弦定理可得13sin B a sinA b sinB sinBπ+==(),=,12=+, ∵06B π<<,∴0tanB <∴1tanB122, 故a b的范围(2,+∞). 故答案为:(2,)+∞【点睛】本题考查三角形的正弦定理和内角和定理的运用,考查运算能力,属于中档题. 19.【分析】由可得然后用正弦的和差公式展开然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换解决此类问题时要善于发现角之间的关系 解析:12【分析】 由259210πππαα+=++可得22sin sin 5592cos sin 105ππααππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值【详解】 因为2tan 3tan 5πα=所以222sin sin sin 555922cos cos sin 10255πππαααππππααα⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2222sincos cos sin tan tan 2tan 1555522222sin cos cos sin tan tan 4tan 5555ππππαααππππααα---====----- 故答案为:12【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系. 20.①②④【分析】化简函数代入求最值可判断①;求出的最值可判断②;求出函数的单调递减区间可判断③;求出向右平移个单位的解析式化简后可判断④【详解】当时取得最大值2故①正确;因为的最大值为2最小值为所以的解析:①②④.【分析】化简函数()2sin 6f x x π⎛⎫=- ⎪⎝⎭ 代入2π3x =求最值可判断①;求出()f x 的最值可判断②;求出函数()f x 的单调递减区间可判断③;求出()f x 向右平移π3个单位的解析式化简后可判断④.【详解】 ()1cos 2cos 22f x x x x x ⎛⎫=-=- ⎪ ⎪⎝⎭ 2cos sin sin cos 2sin 666x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭, 当2π3x =时,22π2sin 2336f ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,取得最大值2,故①正确; 因为()π2sin 6f x x ⎛⎫=-⎪⎝⎭的最大值为2,最小值为2-,所以()f x 的值域为[]22-,,故②正确; 令π322262k x k ππππ+≤-≤+()k Z ∈,得252233k x k ππππ+≤≤+, 即()f x 的单调递减区间是2π5π2π,2π33k k ⎡⎤++⎢⎥⎣⎦()k Z ∈,故③错误;图象C 向右平移π3个单位得π2sin 2sin 2cos 362y x x x ππ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭是偶函数,故④正确. 故答案为:①②④.【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简()f x 的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题21.(1)45A =︒;(2)1BC BD = 【分析】(1)A B C <<,A 不能是钝角,且若tan 2A ≥,与A B C π++=矛盾,可得45A =︒;(2)由(1)结合两角和与差的正切公式,以及tan B ,tan C 均为整数,可得tan ,tan B C ,再利用正弦定理结合平面向量求出BD ,进而得出答案.【详解】(1)A B C <<,A ∴不能是钝角,tan 0A >若tan 2A ≥,tan 60︒=tan y x =在0,2π⎡⎫⎪⎢⎣⎭内单调递增,60A ∴>︒ 又A B C <<,,B C ∴都大于60︒,与A B C π++=矛盾tan 1A ∴=,即45A =︒(2)45,135A B C =︒∴+=︒,()tan tan1351B C +=︒=-又()tan tan tan 11tan tan B C B C B C++==--,即tan tan 1tan tan B C B C -=+ 由tan B ,tan C 均为整数,且B C <,可得tan 2,tan 3B C ==则cos B B ==;cos C C ==由正弦定理sin 45sin sin a b c B C ==︒,可得,55b ac a == 又AC 的中点为D ,则2214BA BC BD AC ⋅=-, 即221cos 4c a ABC BD AC ⋅⋅∠=-2214a BD ⎫⋅=-⎪⎪⎝⎭解得BD a =,故1BC a BD a== 【点睛】 关键点点睛:本题考查三角恒等变换,考查同角三角函数的关系,考查正弦定理以及平面向量的应用,解决本题的关键点是充分利用A B C <<且tan A ,tan B ,tan C 均为整数,结合两角和与差的正切公式以及同角三角函数的关系,得出所求的比值,考查学生逻辑推理能力和计算能力,属于中档题.22.(1),24ππ⎡⎤-⎢⎥⎣⎦,值域,122⎤+⎥⎣⎦;(2)024sin 310x +⎛⎫= ⎪⎝⎭. 【分析】(1)先利用诱导公式和降幂公式可将()f x 化为()2sin 33x f x π⎛⎫=+⎪⎝⎭数的性质可得函数的单调区间和值域.(2)利用两角差的正弦公式可求02sin 3x ⎛⎫⎪⎝⎭的值. 【详解】①2()sincos 1cos 333x x x f x ⎫=++⎪⎝⎭2sin 33x π⎛⎫=+ ⎪⎝⎭, 由2222332x k k πππππ-≤+≤+得53344k x k ππππ-≤≤+,k Z ∈, 又2x ππ-≤≤,所以()f x 的递增区间为,24ππ⎡⎤-⎢⎥⎣⎦, 又2x ππ-≤≤,故2033x ππ≤+≤,所以20sin 133x π⎛⎫≤+≤ ⎪⎝⎭,()f x ∴值域为1⎤+⎥⎣⎦.②由024()sin 33252x f x π⎛⎫=++=+ ⎪⎝⎭得024sin 335x π⎛⎫+= ⎪⎝⎭, 因04x ππ≤≤,所以02233x πππ≤+≤,故023cos 335x π⎛⎫+=- ⎪⎝⎭ 00002222sin sin sin cos cos sin 3333333333x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦4134525210+=⨯+⨯=. 【点睛】方法点睛:形如()22sin sin cos cos f x A x B x x C x ωωωω=++的函数,可以利用降幂公式和辅助角公式将其化为()()'sin 2'f x A x B ωϕ=++的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法.23.(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭;(2)5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈,对称轴方程为5π244k x π=+,k Z ∈. 【分析】 (1)先利用图象解得周期和ω,再结合π3f A ⎛⎫=⎪⎝⎭, ()01f =-,解得ϕ和A ,即得解析式;(2)先根据解析式化简()g x ,再利用整体代入法求解单调区间和对称轴方程即可.【详解】解:(1)由图可知7212122T πππ=-=,周期T π=,故22T πω==, 由π12,7π12是函数的两个相邻的零点,则17π2123π12π⎛⎫= ⎪⎭+⎝处取得最大值, 故π2πsin 33f A A ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,得2πsin 13ϕ⎛⎫+= ⎪⎝⎭,即2π2,32k k Z πϕπ+=+∈, 又ππ22ϕ-<<,故π6ϕ=-, 由()0sin sin 16f A A πϕ⎛⎫==-=- ⎪⎝⎭,得2A =, 所以()π2sin 26f x x ⎛⎫=- ⎪⎝⎭; (2)()πππππ2sin 22sin 24sin 2cos 262666g x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅--=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ π4sin 43x ⎛⎫=-- ⎪⎝⎭, 当ππ32π4π2π232k x k +≤-≤+,k Z ∈时,5ππ11ππ242242k k x +≤≤+,()g x 单调递增, 所以()g x 的单调增区间为5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈, 令ππ4π32x k -=+,对称轴方程为5π244k x π=+,k Z ∈.【点睛】思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.24.(1)最小正周期T π=;(2)3()0,2f x ⎡⎤∈⎢⎥⎣⎦. 【分析】(1)先利用余弦的二倍角公式和两角差的正弦化简后,再由辅助角公式化简,利用周期公式求周期;(2)由x 的范围求出26x π-的范围,再由正弦函数的有界性求f (x )的值域. 【详解】 由已知2()2sin sin 26f x x x11cos 22cos 22x x x =-+12cos 212x x =-+ sin 216x π⎛⎫=-+ ⎪⎝⎭ (1)函数()f x 的最小正周期T π=;(2)因为,212x ππ⎡⎤∈-⎢⎥⎣⎦,所以72,066x ππ⎡⎤-∈-⎢⎥⎣⎦ 所以1sin 21,62x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以3()0,2f x ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查三角函数的周期性、值域及两角和与差的正弦、二倍角公式,关键点是对()f x 的解析式利用公式进行化简,考查学生的基础知识、计算能力,难度不大,综合性较强,属于简单题.25.(1)97+-2)315; 【分析】由已知函数值以及角的范围得3444πππβ<-<,322ππαβ<+<,且()44ππββ=-+,()()44ππαβαβ+=+--,结合两角和差公式即可求值. 【详解】(1)2πβπ<<知:3444πππβ<-<, ∵1cos 43πβ⎛⎫-= ⎪⎝⎭,则sin()43πβ-=,∴tan 4πβ⎛⎫-= ⎪⎝⎭tan tan[()]44ππββ=-+,∴tan()tan 944tan 71tan()tan 44ππββππβ-++===--- (2)由cos cos[()()]44ππαβαβ⎛⎫+=+-- ⎪⎝⎭, ∴cos cos()cos()sin()sin()444πππαβαββαβ⎛⎫+=+-++- ⎪⎝⎭, 由π0π2αβ<<<<知:322ππαβ<+<, ∴由题意,得3cos()5βα+=-,结合(1)有sin()43πβ-=,∴3143cos 4535315πα⎛⎫+=-⨯+⨯= ⎪⎝⎭. 【点睛】 关键点点睛:根据已知确定4πβ-,αβ+范围,并确定β,4πα+与已知角的关系,进而求函数值.26.(1)2,单调增区间5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)11,2⎛⎫-- ⎪⎝⎭. 【分析】 (1)根据三角恒等变换化简函数()f x ,代值求3f π⎛⎫⎪⎝⎭,用整体代换法求单调递增区间; (2)求出函数在,122ππ⎡⎤⎢⎥⎣⎦上的值域,原不等式等价于函数()f x 在,122ππ⎡⎤⎢⎥⎣⎦上的值域是(),2m m +的子集,列出不等式组化简即可.【详解】解:(1))21()sin (cos )sin 22sin 1222f x x x x x x =+-=+-1sin 22sin 223x x x π⎛⎫==- ⎪⎝⎭所以sin 2s 3in 3332f ππππ⎛⎛⎫= ⎫⎛⎫⨯-== ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭ 由222()232k x k k Z πππππ-≤-≤+∈得5()1212k x k k Z ππππ-≤≤+∈, 故函数的单调增区间为5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1(),12f x ⎡⎤∈-⎢⎥⎣⎦, 因为,122x ππ⎡⎤∀∈⎢⎥⎣⎦不等式()2m f x m <<+恒成立 所以1112212m m m ⎧<-⎪⇒-<<-⎨⎪<+⎩所以实数m 的取值集合11,2⎛⎫--⎪⎝⎭. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.。

必修4第三章《-三角恒等变换》测试题及答案

必修4第三章《-三角恒等变换》测试题及答案

第三章《三角恒等变换》测试题 A 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在 题后的括号内(每小题 5分,共50分).1.计算1 — °的结果等于2. cos39 cos(— 9 °— sin39 Sin(— 9 °等于C.D J n 3 .已知 cos a — 4 1 4,贝U sin2 a 的值为 4.函数y 7 B .— 8 3 D .— 4 x l x sin 3 cos —的图像的一条对称轴方程是( 2 2 11 B. 5. cos 275 3+ cos 215 °+ cos75 5x3°os15的值是(C.D .D.10 .已知 3cos(2 a+ 3 + 5cos 3= 0,则 tan( a+ ® tan a 的值为 A . ± 4B . 4C.— 4D . 1、填空题(每小题 6分,共计24 分) 11. (1 + tan 17 )(1 + tan28 )= _________ 12.化简 J3ta n12 — 3sin12 4cos 212 ° — 2的结果为 ________ 13.若 a 、 3为锐角,且 cos a= |—, ^10 sin 3=-2,^U a+ 3=寸514.函数f (x )= sin 2x —壬—^f2sin 2x 的最小正周期是 ___________ 三、解答题(共76 分)15.(本题满分 12分)已知 cos a — sin a= 2, 且3 sin2 a+ 2sin 2 n <<2 n求 1— tan a °的值.6. y = cos 2x — sin 2x + 2sinxcosx 的最小值是—逼C. 2D.7 .已知sinn 1 “ na — 3 = 3,则 cos 6 +a 的值为B .D .C. 21 亠 亠. 9 .把 2【sin2 0+ cos^ — 2 0)] — sin ^cosG + 27t12 12 B )化简, 可得16.(本题满分12分)已知a 、3均为锐角,且 cos a= — 5,a — 3的值.17.(本题满分ir12分)已知 A 、B 、C 是 ABC 三内角,向量 m (1, 3),A . sin2 0B .— sin2 0C. cos2 0 D .— cos2 0n (cos A,sin A),且=1(1)sinx — cosx 的值;第三章《三角恒等变换》测试题 A 卷参考答案选择题(1)求角A ; ⑵若 [Sin2B23,求 tanC.cos B sin B2x x x 2x3s in 2?— 2si n2coS2 + cos ; (2)求 ------------- 1 ---------- 的值.tanx+贡18.(本题满分 a+ B 的值. 12分)已知—n <a <n ,— n <0<n ,且tan a 、tan B 是方程x 2 + 6x + 7 = 0的两个根,求1 1 n20.(本题满分 14 分)已知函数 f(x)= ?sin2xsin $+ cos 2xcos ^—~sin ? + $(°< ©v n ,其图象过点n 16,2 . (1)求0的值;1 一⑵将函数y = f(x)的图象上各点的横坐标缩短到原来的?,纵坐标不变,得到函数 尸g(x)的图象,求n函数g(x)在 0,;上的最大值和最小值.19.(本题满分 114 分)已知一2V x v 0, sinx + cosx = 5,求:【解析】1 — °= COS 45°==2,故选B. 2.【答案】B. 【解析】 cos39°os(— 9°— sin39 Sin( — 9°= cos(39 °— 9°= cos30°= 填空题11.【答案】2【解析】原式=1 +tan17 °tan28 ° tan17 °an28 ° 又 tan(17 ° 28°=鸚;霍8 = tan45 = 1, o (3.【答案】B. n n【解析】sin2 a= cos(2 a — 2) = 2cos 2 a — 4 — 1 =— 7 8. 4.【答案】 5.【答案】 【解析】 原式=sin 2i5 ° cos 215 °+ sin15 cos15 = 1 + ^si n30 =4*6.【答案】【解析】y = cos2x + sin2x = ;2sin(2x + 才),•. y max =— ‘2 7.【答案】B. 【解析】=sin n — a 尸一sin a —才1 3.8.【答案】 C. 【解析】 3 — sin70 2— cos 2103 — sin70 1 + cos20 2 — 2 3 ― cos20 = 2. 3 — cos20 9.【答案】 A. 【解析】原式=••• tan 17 0+ tan28 °° 1 — tan 17 0 tan28 ° 代入原式可得结果为 2. 12.【答案】—4 .: 3:3ta n12 ° 3【解析] —sin12 • 4cos 212 °— 2 2sin12 ©os24 :3tan12 ° 3 2cos12 ° 2, 3sin12 °6cos122sin 12 ©os12 °cos24sin 484 :3 sin12 °os60 ° cos12 °n6013.【答案】乎【解析】•••—4 3sin48 °sin 48sin483110 sin a = ~10 ,cos 3= 5cos( a+ 3 = cos acos 3— sin «sin 314.【答案】nn 【解析】f(x) = sin 2x —- cos2x — 2认又—2 ■ 2sin 2x子sin2x —子cos2x + ■' 2cos2x — ,' 2 0<n aV ~2,O v n 3<2 .n 3 n--2< a+ 3< n. •- a+ 3= ~4 • _n =sin 2x — 4—;'2(1 — cos2x) = sin2 xcos^— sin4cos2x + 2石^sin2x + '~cos2x —' 2= sin 2x +亍—.:2•最小正周期为71 .f[cos (2— 2 0) + cos (3— 2 0)]— sin 右cos@ + 2 0) = cos^— 2 B)cos 右—sin 右sin (石—20) 71 12 71 解答题5 n=cos [(石—2 0)+ 石]兀=cos (2— 2 0)= sin2 0. 15.解:3^2 . 18 .7因为 cos a — sin a= 5,所以 1 — 2sin acos a= 25,所以 2sin a cos a= 10.【答案】C. 【解析】 3cos[(a+ 3)+ a + 5cos 3= 0, 即即 3cos(a+ 3)cos a — 3sin( a+ 3)sin a+ 5cos 3= 0. 3 n 7),故■4^2sin a + cos a =— T + 2sin ^os a =— 5 ,3cos(a+ 3)cos a — 3sin( a+ ®sin a+ 5cos[( a+ 3)— a = 0, 3cos(a+ 3cos a — 3sin( a+ 3)sin a+ 5cos(a+ 3) C OS a+2sin2 a+ 2sin a 所以——1 — tan a5sin( a+ 3sin a= 0, 8cos( a+ 3>cos a+ 2sin(a+ 3)sin a= 0, 8+ 2tan( a+ 3)tan a= 0,二 tan( a+ ®tan a=7422— X — 「 2sin 久cos a+ 2sin 2 a cos a_ 2sin 久cos a cos a+ sin a 25 ________ 5_cos a — sin a cos a — sin a 3 252875.2 小16.解: 已知a 、3均为锐角,且 cos a= ^J5,贝V sin a=(X 、2 2 11—"□1 -3 又.sin 3= ------- , • cos 3= p 103_ 2__L .10 10.• sin (a — 3)= sin a cos 3— cos as in 3 又;sin a <sin 3, /• 0< a <® n 2. n 2< a — n3<0. • • a — 3= — 4. 17.(1)3 18.解: 由题意知 tan a+ tan 3=— 6, tan atan 3= 7 ••• tan a <0, tan 3<0. _ n n n n 又一2<a <2,— 2< 3<2,• —n n 2< a <0, — 2< 3<0. • •— n<a+ 3<0.tan a+ tan 3 .tan( a + 3= 1— tan ^n 3 1 — 7 3 n• a + 3=—孑 1 如2419.解:(1)由 sinx + cosx = □,得 2sinxcosx =—亦 49 .(sinx — cosx)2= 1 — 2sinxcosx = 25 n ―2< x < sinx <0,cosx > °. • sinx — cosx < 0.故 sinx — cosx =— 5 3s in 2》-2si 门》0$2+ ⑵—— = tanx + 氐2X2si n : — sinx +1 sinx cosxcosx sinx =sinxcosx Zsin^- sinx + 12x=sinxcosx[2(1 — cos ;) — sinx + 1)] =sin xcosx 1 — 2cos 2| + 2 — si nx =sin xcosx(— cosx + 2— sinx)12 125 x 2 — □108 125.1 1 n20.解:(1)因为 f(x) = ?sin2xsin 0+ cos 2xcos 0 — ?sin 2 + 0 (0< 0< n) 1 1 + cos2x 1所以 f(x) = ^sin2xsin 0+ 2 cos 0— ?cos 01 1 j 1=?sin2xsin $+ ?cos2xcos 0=?(sin2xsin $+ cos2xcos 妨=^cos(2x — 妨.n又函数图象过点-, 1 1所以2 = ?cosn2召—n3.口 rr n即 cos 3 — 0 = 1.31⑵由(1)知 f(x) = ?cos 2x —-11 n将f(x)图象上所有点的横坐标缩短到原来的 ,纵坐标不变,变为g(x)= cos 4x —;.2 2 3nn1 当4x —-= 0,即x = 12时,g(x)有最大值-;当4x - 3= 23n ,即 x =1,g (x )有最小值—1.。

(好题)高中数学必修四第三章《三角恒等变形》测试(包含答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试(包含答案解析)

一、选择题1.已知3sin cosx x+=,则1tantanxx+=()A.6-B.7-C.8-D.9-2.设等差数列{}n a满足:()22222222272718sin cos cos cos sin sin1sina a a a a aa a-+-=+,公差()1,0d∈-.若当且仅当11n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是()A.9,10ππ⎛⎫⎪⎝⎭B.11,10ππ⎡⎤⎢⎥⎣⎦C.9,10ππ⎡⎤⎢⎥⎣⎦D.11,10ππ⎛⎫⎪⎝⎭3.如下图,圆O与x轴的正半轴的交点为A,点,C B在圆O上,且点C位于第一象限,点B的坐标为43,,,55AOCα⎛⎫-∠=⎪⎝⎭若1BC=,则233cos sin cos2222ααα--的值为()A.45B.35C.45-D.354.函数12log(sin cos)y x x=的单调增区间是()A.(,)()44k k k Zππππ-+∈B.3(,)()44k k k Zππππ++∈C.(,)()4k k k Zπππ+∈D.(,)()42k k k Zππππ++∈5.已知,22ππα⎛⎫∈-⎪⎝⎭,1cos63πα⎛⎫+=⎪⎝⎭,则sinα=()A126-B223-C.261+D261-6.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos63πα⎛⎫+=⎪⎝⎭,则sinα的值等于()A .6B .6C .16D .16-7.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .838.已知α为锐角,且3cos()65πα+=,则sin α=( )A B C D 9.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .11010.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③11.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若3,44ππα⎛⎫∈ ⎪⎝⎭,且3sin 45πα⎛⎫+= ⎪⎝⎭,则0x 的值为( )A B C .D .12.已知()0,απ∈,sin cos αα+=cos2=α( )A .BC .9-D .9二、填空题13.有下列5个关于三角函数的命题:①0x R ∃∈00cos 3x x +=;②函数22sin cos y x x =-的图像关于y 轴对称;③x R ∀∈,1sin 2sin x x+≥; ④[]π,2πx ∀∈cos 2x=-; ⑤当()2sin cos f x x x =+取最大值时,cos x =. 其中是真命题的是______.14.222cos 402cos 50cos35cos65cos55cos155︒-︒=︒︒+︒︒_________.15.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________. 16.已知α,β均为锐角,()5cos 13αβ+=-,π3sin 35β⎛⎫+= ⎪⎝⎭,则πsin 3α⎛⎫-= ⎪⎝⎭______.17.在△ABC 中,cosA 35=,cosB 45=,则cosC =_____. 18.已知()()sin 2sin 223cos cos 2πθπθπθπθ⎛⎫--- ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭,则22sin 2sin cos cos θθθθ+-=___________.19.设)sin17cos172a =︒+︒,22cos 131b =︒-,c =则a ,b ,c 的大小关系是______.20.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________.三、解答题21.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()2sin f x x =. (1)求0x <时,函数()f x 的解析式; (2)已知f (4π-α)=65,f (54π+β)=-2413,α∈(4π,34π),β∈(0,4π),求()f αβ+的值.22.已知函数2()cos 2cos 1(0)f x x x x ωωωω=-+>,且()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π. (1)求函数()f x 的最小正周期和单调递减区间; (2)将函数()f x 图象上的所有点向左平移6π个单位,得到函数()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于x 的方程()g x a =有两个不相等的实数根,求实数a 的取值范围. 23.设函数2()cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最大值及取得最大值时x 的集合; (2)若,42⎛⎫∈⎪⎝⎭ππα,且2()5f α=,求sin 2α.24.已知函数()212sin 26f x x x π⎛⎫=-+- ⎪⎝⎭. (1)求函数()f x 的对称中心和最小正周期;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值及取得最大值时自变量x 的集合. 25.已知函数()2sin 22cos 1f x a x x =+-,再从条件①、②、③这三个条件中选择一个作为已知,求:(Ⅰ)()f x 的最小正周期; (Ⅱ)()f x 的单调递增区间.条件①:()f x 图像的对称轴为8x π=;条件②:14f π⎛⎫=⎪⎝⎭;条件③:a =注:如果选择多个条件分别解答,按第一个解答计分.26.已知函数2()[2sin()sin ]cos 3f x x x x x π=++.(1)求函数()f x 的最小正周期和单调递减区间;(2)若函数()f x 的图象关于点(,)m n 对称,求正数m 的最小值;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.2.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 3.B解析:B【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 222222625αααππαααθθ⎛⎫⎛⎫--=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.4.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.5.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】 由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 63πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11132326-=⨯-⨯=. 故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.6.C解析:C 【分析】求出sin 6απ⎛⎫+ ⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+== ⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1132=-⨯=故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.7.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.8.B解析:B 【分析】由同角三角函数可得in (α6π+)4=5,再利用两角差的正弦公式展开sinα=sin[(α6π+)6π-]即可. 【详解】∵cos (α6π+)3=5(α为锐角),∴α6π+为锐角,∴sin (α6π+)4=5,∴sinα=sin[(α6π+)6π-]=sin (α6π+)cos 6πcos (α6π+)sin 6π431552=-⋅=, 故选:B . 【点睛】本题考查了三角函数的同角公式和两角差的正弦公式,考查了计算能力和逻辑推理能力,属于基础题目.9.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.10.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan tan 2tan 36ππαααα⎛⎫⎛⎫=-==-=< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||αα⎫∴=∈⎪⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.11.C解析:C 【分析】利用两角和差的余弦公式以及三角函数的定义进行求解即可. 【详解】3,44ππα⎛⎫∈⎪⎝⎭, ,42ππαπ⎛⎫∴+∈ ⎪⎝⎭, 3sin 45πα⎛⎫+= ⎪⎝⎭,4cos 45πα⎛⎫∴+=- ⎪⎝⎭,则0cos cos cos cos sin sin 444444x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43525210=-⨯+⨯=-, 故选C . 【点睛】本题主要考查两角和差的三角公式的应用,结合三角函数的定义是解决本题的关键.12.A解析:A 【分析】在等式sin cos 3αα+=两边同时平方可求得cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos αα+=两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<,()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin αα∴-=,则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+== 故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.二、填空题13.②④⑤【分析】本题可通过判断出①错误然后通过判断出②正确再然后通过可以为负值判断出③错误通过以及判断出④正确最后通过将函数转化为根据当时取最大值判断出⑤正确【详解】①:则①错误;②:关于轴对称②正确解析:②④⑤ 【分析】000cos 2sin 6x x x π⎛⎫+= ⎪⎝⎭+判断出①错误,然后通过22sin cos cos 2x x x -=-判断出②正确,再然后通过sin x 可以为负值判断出③错误,=cos02x 判断出④正确,最后通过将函数转化为()()f x x p =+,根据当()22x p k k Z ππ=-++∈时取最大值判断出⑤正确.【详解】①000001cos 2cos 2sin 262x x x x x π+⎫⎛⎫+=+=≤⎪ ⎪⎪⎝⎭⎝⎭,00cos 3x x +≠,①错误;②:()2222sin cos cos sin cos 2y x x x x x =-=--=-,关于y 轴对称,②正确;③:因为sin x 可以为负值,所以1sin 2sin x x+≥错误,③错误; ④:因为[]π,2πx ∈,所以π,π22x ⎡⎤∈⎢⎥⎣⎦,cos 02x ,cos2x ===-,④正确; ⑤:()2sin cos sin cos 55f x x x x x ⎫=+=+⎪⎪⎭()x p =+,(注:5sin 5p,25cos 5p ), 当函数()f x 取最大值时,22x p k ππ+=+,即()22x p k k Z ππ=-++∈,此时cos cos n 52si 2=p k x p ππ-++⎛⎫==⎪⎝⎭,故⑤正确, 故答案为:②④⑤. 【点睛】关键点点睛:本题考查根据三角恒等变换以及三角函数性质判断命题是否正确,考查二倍角公式以及两角和的正弦公式的灵活应用,考查计算能力,考查化归与转化思想,是中档题.14.【分析】用诱导公式降次公式两角和与差的正余弦公式化简求值得到答案【详解】原式故答案为:【点睛】本题考查了三角关系的化简与求值诱导公式转化角两角和与差公式二倍角公式属于中档题 解析:2-【分析】用诱导公式、降次公式、两角和与差的正余弦公式化简求值,得到答案. 【详解】原式()()22222cos 40cos 502cos 402cos 50sin 55cos 65cos55sin 65sin 5565︒-︒︒-︒==︒︒-︒︒︒-︒. ()2cos80sin 10︒=-︒2sin10sin10︒=-︒2=-故答案为:2-. 【点睛】本题考查了三角关系的化简与求值,诱导公式转化角,两角和与差公式,二倍角公式,属于中档题.15.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=, 所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-. 【点睛】本题考查正切函数的两角和公式,属于基础题.16.【分析】先求出再由并结合两角和与差的正弦公式求解即可【详解】由题意可知则又则或者因为为锐角所以不成立即成立所以故故答案为:【点睛】本题考查两角和与差的正弦公式的应用考查同角三角函数基本关系的应用考查 解析:3365-【分析】先求出()sin αβ+,πcos 3β⎛⎫+⎪⎝⎭,再由()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,并结合两角和与差的正弦公式求解即可. 【详解】由题意,可知0,παβ,则()sin 1213αβ+===,又π31sin 352β⎛⎛⎫+=∈ ⎪ ⎝⎭⎝⎭,则πππ,364β⎛⎫+∈ ⎪⎝⎭,或者π3π5π,346β⎛⎫+∈ ⎪⎝⎭, 因为β为锐角,所以πππ,364β⎛⎫+∈ ⎪⎝⎭不成立,即π3π5π,346β⎛⎫+∈ ⎪⎝⎭成立,所以π4cos 35β⎛⎫+===- ⎪⎝⎭.故()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()ππsin cos cos sin 33αββαββ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭533311245651533⎛⎫-⨯=- ⎪⎛⎫=⨯--⎝ ⎪⎝⎭⎭.故答案为:3365-. 【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.17.0【分析】计算得到再利用和差公式计算得到答案【详解】则故答案为:【点睛】本题考查了同角三角函数关系和差公式意在考查学生的计算能力解析:0 【分析】 计算得到43sin ,sin 55A B ==,再利用和差公式计算得到答案. 【详解】34cos ,cos 55A B ==,则43sin ,sin 55A B ==.()()cos cos cos sin sin cos cos 0C A B A B A B A B π=--=-+=-=.故答案为:0. 【点睛】本题考查了同角三角函数关系,和差公式,意在考查学生的计算能力.18.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系 解析:75【分析】利用诱导公式结合弦化切的思想求出tan θ的值,然后在代数式22sin 2sin cos cos θθθθ+-上除以22sin cos θθ+,并在所得分式的分子和分母中同时除以2cos θ可得出关于tan θ的分式,代值计算即可. 【详解】()()sin 2sin sin cos tan 1223sin cos tan 1cos cos 2πθπθθθθπθθθθπθ⎛⎫--- ⎪++⎝⎭===--⎛⎫+++ ⎪⎝⎭,解得tan 3θ=.因此,22222222sin 2sin cos cos tan 2tan 1sin 2sin cos cos sin os tan 1θθθθθθθθθθθθθ+-+-+-==++2232317315+⨯-==+. 故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tan θ的值,考查运算求解能力,属于中等题.19.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 62a =︒+︒=︒+︒=, 22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<. 故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.20.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅=当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.三、解答题21.(1)()2sin f x x =-;(2)12665. 【分析】(1)根据偶函数定义求解析式;(2)代入已知条件,确定角的范围,由平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,5sin 4πβ⎛⎫+⎪⎝⎭,然后结合诱导公式、两角差的正弦公式计算. 【详解】解:(1)设0x <,则0x ->, 故()2sin()2sin f x x x -=-=-, 又()f x 是定义在R 上的偶函数,当0x <时,()2sin f x x =-. (2)344ππα⎛⎫∈ ⎪⎝⎭,,04πβ⎛⎫∈ ⎪⎝⎭,,,042ππα⎛⎫∴-∈- ⎪⎝⎭,553442πππβ⎛⎫+∈ ⎪⎝⎭,,,4παβπ⎛⎫+∈ ⎪⎝⎭, 6()2sin()445f ππαα∴-=--=,化简得3sin 45πα⎛⎫-=- ⎪⎝⎭,则4cos 45πα⎛⎫-= ⎪⎝⎭.5524()2sin()4413f ππββ+=+=-,化简得512sin 413πβ⎛⎫+=-⎪⎝⎭,则55cos 413πβ⎛⎫+=- ⎪⎝⎭.512435126()2sin()2sin ()2()4413551365f ππαβαββα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+--=--⨯--⨯-=⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.【点睛】关键点点睛:本题考查由奇偶性求解析式,考查两角差的正弦公式,同角间的三角函数关系,诱导公式等.解题关键是确定已知角和未知角的关键,以确定选用的公式.在用平方关系求值时需确定角的范围,从而确定函数值的正负.22.(1)最小正周期为π,单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)化简可得()2sin 26f x x πω⎛⎫=-⎪⎝⎭,由题可得T π=,则可解出1ω=,令3222,262k x k k Z πππππ+≤-≤+∈可求出单调递减区间; (2)可得()2sin 26g x x π⎛⎫=+⎪⎝⎭,题目等价于找出()g x 有两个点相等的区间,即可求出a 的范围.【详解】(1)()2cos 22sin 26f x x x x πωωω⎛⎫=-=-⎪⎝⎭, ()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π,T π∴=,则22ππω=,解得1ω=, ()2sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令3222,262k x k k Z πππππ+≤-≤+∈, 解得5,36k x k k Z ππππ+≤≤+∈, 故()f x 的单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)可得()2sin 22sin 26666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,()1,12g x ⎡⎤∈-⎢⎥⎣⎦, 要使关于x 的方程()g x a =有两个不相等的实数根, 只需找出()g x 有两个点相等的区间即可, 当2,662x πππ⎡⎫-∈⎪⎢⎣⎭和52,626x πππ⎛⎤-∈ ⎥⎝⎦时满足题意,此时()1,12g x ⎡⎫∈⎪⎢⎣⎭,1,12a ⎡⎫∴∈⎪⎢⎣⎭.【点睛】本题考查三角函数与方程的应用,解题的关键是得出题目等价于找出()g x 有两个点相等的区间.23.(1),3x xx k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =;(2)410. 【分析】(1)利用两角和的余弦展开和正弦的降幂公式化简,再利用两角和的正弦写成()()sin f x A x ωϕ=+形式可求最值及对应的x 的值;(2)由3sin 265πα⎛⎫+= ⎪⎝⎭和α的范围利用平方关系求出cos 26πα⎛⎫+ ⎪⎝⎭,再利用凑角sin 2sin 266ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦可得答案.【详解】(1)1()cos 221cos 22f x x x x =+-1sin 26x π⎛⎫=-+ ⎪⎝⎭,当2262x k πππ+=-+,即,3x xx k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =. (2)21sin 265πα⎛⎫-+= ⎪⎝⎭,3sin 265πα⎛⎫∴+= ⎪⎝⎭,,42ππα⎛⎫∈ ⎪⎝⎭,272,636πππα⎛⎫∴+∈ ⎪⎝⎭,4cos 265πα⎛⎫∴+==- ⎪⎝⎭3414sin 2sin 266525210ππαα⎡⎤-⎛⎫=+-=⨯-⨯=⎪⎢⎥⎝⎭⎣⎦. 【点睛】本题考查了三角函数的性质、三角函数的化简求值,关键点是正用两角和的余弦、正弦公式和逆用两角和的正弦公式,利用凑角求三角函数值,考查了学生的基础知识、基本运算能力.24.(1)最小正周期T π=;对称中心为,0122k k Z ππ⎛⎫+∈ ⎪⎝⎭,;(2)()max 1f x =,自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【分析】(1)先利用两角和与差的余弦公式及辅助角公式将函数化成标准形式11()sin 2262f x x π⎛⎫=-+ ⎪⎝⎭,再利用周期公式计算周期,整体代入法计算对称中心即可;(2)利用整体代入法,由0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,根据正弦函数最值的特征得到何时取最值即可. 【详解】解:(1)()212sin 6f x x x π⎛⎫=+- ⎪⎝⎭31cos 21cos 22442xx x -=-+-11112cos 2sin 242262x x x π⎛⎫=-+=-+ ⎪⎝⎭ 故最小正周期22T ππ==,令2,6x k k π-=π∈Z ,解得,122k x k Z ππ=+∈,故对称中心为,0122k k Z ππ⎛⎫+∈⎪⎝⎭,; (2)∵02x π≤≤,∴52666x πππ-≤-≤,当226x ππ-=时,max sin 216πx ⎛⎫-= ⎪⎝⎭,故()max 111122f x =⨯+=,此时3x π=,即自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【点睛】 方法点睛:求三角函数性质问题时,通常先利用两角和与差的三角函数公式、二倍角公式及辅助角公式将函数化简成基本形式()()sin f x A x b ωϕ=++,再利用整体代入法求解单调性、对称性,最值等性质.25.(Ⅰ)答案见解析;(Ⅱ)答案见解析. 【分析】选① (Ⅰ)逆用余弦的二倍角公式降幂后,使用辅助角公式化简得())f x x ϕ=+ ,根据对称轴求得ϕ的值,进而求得a 的值,得到函数的解析式,求得最小正周期;(Ⅱ) 根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选② (Ⅰ)逆用余弦的二倍角公式降幂得到()f x sin2cos2a x x =+,根据选择的条件求得a 的值,得到函数的解析式,并利用辅助角公式化简,然后求得()f x 的最小正周期; (Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选③逆用余弦的二倍角公式降幂后,使用辅助角公式化简得到()f x 2sin(2)6x π=+然后求得()f x 的最小正周期;(Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间. 【详解】选① (()f x 图像的一条对称轴为8x π=)解:(Ⅰ) ()2sin 22cos 1f x a x x =+-sin2cos2a x x =+22x x ⎛⎫=+⎪⎭)x ϕ=+(其中1tan aϕ=) 因为()f x 图像的一条对称轴为8x π=所以()1sin()84f ππϕ=+=即有,42k k Z ππϕπ+=+∈所以,4k k Z πϕπ=+∈所以1tan tan()tan 144k aππϕπ=+===1a故())4f x x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k , 选② (()1)4f π=解:(Ⅰ)()2sin 22cos 1f x a x x =+-sin2cos2a x x =+()sin cos 1422f a πππ∴=+=1a()sin 2cos 2f x x x =+22)x x =)4x π=+所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k ,选③(a =解:(I )()222cos 1f x x x =+-2cos2x x =+ 312(sin 2cos 2)2x x 2sin(2)6x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,262k x k k Z πππππ-≤+≤∈ 2+22+2,33k x k k Z ππππ∴-≤≤∈ ++,36k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为[+],k 36k Z ππππ-∈+k , 【点睛】本题考查三角函数的恒等变形和三角函数的性质,关键是逆用余弦的二倍角公式降幂后,并使用辅助角公式化简.26.(1)T π=,7[,],1212++∈k k k Z ππππ;(2)3π. 【分析】(1)先利用三角恒等变换,将函数转化为()2sin(2)3f x x π=+,再利用正弦函数的性质求解.(2)根据函数()f x 的图象关于点(,)m n 对称,令2()3m k k Z ππ+=∈求解. 【详解】(1)2()[2sin()sin ]cos 3=++f x x x x x π2(sin sin )cos =++-x x x x x2(2sin )cos =+x x x x222sin cos sin )x x x x =+-sin 222sin(2)3x x x π==+, T π=, 由3222232k x k πππππ+≤+≤+, 解得71212k x k ππππ+≤≤+, 则()f x 的单调递减区间是7[,],1212++∈k k k Z ππππ. (2)2()3+=∈m k k Z ππ,,26∴=-∈k m k Z ππ 又0m >m ∴的最小值为3π. 【点睛】 方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.。

(典型题)高中数学必修四第三章《三角恒等变形》检测题(包含答案解析)

(典型题)高中数学必修四第三章《三角恒等变形》检测题(包含答案解析)

一、选择题1.已知函数()sin 3cos f x x x ωω=+()0ω>的图像与直线2y =交于,A B 两点,若AB 的最小值为π,则函数()f x 的一条对称轴是( )A .3x π=B .4x π=C .6x π=D .12x π=2.已知函数2()2sin cos 23sin (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( ) A .13- B .13--C .0D .23-3.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( ) A .23 B .23-C .32D .32-4.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A .7210 B .7210-C .210D .210-5.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin 2θ的值为( )A .12B .32C .1225D .24256.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( ) A 223- B 223+ C 261- D .261- 7.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈⎪⎝⎭,则cos β的值为( ) A .45-B .44125C .44125-D .458.已知α,β均为锐角,5cos()13αβ+=-,3sin()35πβ+=,则sin()3πα-=( )A .3365B .3365-C .6365D .56659.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .171810.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .17B .7C .17-D .-711.若函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点,则实数a 的取值范围( )A .⎡⎤⎣⎦B .94⎡⎤⎢⎥⎣⎦C .⎡-⎣D .94⎤⎥⎦12.已知()4cos 5αβ+=,()1cos 5αβ-=,则tan tan αβ⋅的值为( ) A .12B .35C .310-D .35二、填空题13.已知10cos ,0,42ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭______ 14.已知4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,则tan 4πθ⎛⎫+= ⎪⎝⎭____________. 15.已知()2cos (sin cos )f x x x x =+,若对任意[0,]2x π∈不等式2()m f x m -≤≤+恒成立,则实数m 的取值范围是___________.16.已知函数()sin cos ,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,有以下结论: ①()f x 的图象关于y 轴对称; ②()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上单调递增; ③()f x 图象的一条对称轴方程是4x π=; ④()f x 的最大值为2.则上述说法中正确的是__________(填序号)17.在ABC 中,A ∠,B ,C ∠对应边分别为a ,b ,c ,且5a =,4b =,()31cos 32A B -=,则ABC 的边c =________. 18.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.19.已知sin10cos102cos140m ︒-︒=︒,则m =_________.20.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是A ,B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为________.三、解答题21.已知函数2211()sin 2cos 2cos 2sin 22,22f x x x x x x R =+-+∈. (I )求函数|()|f x 最小正周期和最小值; (Ⅱ)将函数()y f x =的图象向左平移8π个单位长度,得到()y g x =图象.若对任意12,[0,]x x m ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-成立,求实数m 的最大值.22.(1)求值:4sin 220tan320-︒︒; (2)已知43sin ,4544x x πππ⎛⎫+=--<<⎪⎝⎭,求22cos sin 2x x +的值.23.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.24.在下列三个条件中任选一个,补充在下面问题中,并进行解答.①函数()2sin(2)f x x ωϕ=+(0>ω,||2ϕπ<)的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②函数())cos(2)(0)f x x x ωπωω=-->; ③函数()4cos sin 1(0)6f x x x πωωω⎛⎫=+-> ⎪⎝⎭; 问题:已知________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若0,2πα⎛⎫∈ ⎪⎝⎭,()f α=α的值.25.已知函数()22sin cos 1444x x x f x ⎛⎫=+- ⎪⎝⎭.(1)求函数()f x 的最小正周期及()f x 的单调递减区间﹔ (2)将()f x 的图象先向左平移6π个单位长度,再将其横坐标缩小为原来的12,纵坐标不变得到函数()g x ,若()04g x =,05,4x ππ⎛⎫∈⎪⎝⎭,求0sin x 的值.26.已知函数()21sin cos 12f x x x x =+-(x ∈R ) (1)求()f x 的最小正周期;(2)求()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值,并分别写出相应的x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】化简得()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由题可得周期为π,即可求出2ω=,令2,32πππ+=+∈x k k Z 求出对称轴即可得出答案.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,()f x 直线2y =交于,A B 两点,且AB 的最小值为π,T π=,则22T πω==,即()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令2,32πππ+=+∈x k k Z ,则,122k x k Z ππ=+∈, ()f x ∴的对称轴为,122k x k Z ππ=+∈, 当0k =时,12x π=.故选:D. 【点睛】本题考查正弦型函数的对称轴问题,解题的关键是利用辅助角公式化简函数得出周期,求出解析式,即可解决.2.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫ ⎪⎝⎭. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω-=-=- πsin 222sin 23x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.3.A解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 4.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.5.D解析:D 【分析】由图形可知三角形的直角边长度差为1,设直角边分别为a ,根据大正方形的边长是直角三角形的斜边长列方程组求出直角边,然后得出sin θ,代入二倍角公式即可得出答案. 【详解】由题意可知小正方形的边长为1,直角边长度差为1,大正方形的面积为25, 边长为5,大正方形的边长是直角三角形的斜边长, 设直角三角形的直角边分别为a ,b 且a b <,则1b a =+,所以()2222125a b a a +=++=,得2120a a +-=,所以3a =或4a =-舍去, 所以4b =,∴3sin 5θ=,4cos 5θ=,24sin 22sin cos 25θθθ==. 故选:D . 【点睛】关键点点睛:本题考查了三角函数值、二倍角公式的计算,解答本题的关键是根据直角三角形的斜边长等于大正方形的边长求出直角三角形的一个直角边,考查了学生的运算求解能力.6.C解析:C 【分析】求出sin 6απ⎛⎫+ ⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+== ⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11132326-=⨯-⨯=.故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.7.B解析:B 【分析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果. 【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B 【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题.8.B解析:B 【分析】由所给三角函数值利用同角三角函数的关系求出()sin αβ+、cos 3πβ⎛⎫+⎪⎝⎭,3πα-记为()3παββ⎛⎫+-+⎪⎝⎭,利用两角差的正弦公式展开代入相应值计算即可.【详解】α,β均为锐角,5cos()013αβ+=-<,,2παβπ⎛⎫∴+∈ ⎪⎝⎭,∴()12sin 13αβ+==,β均为锐角,5,336πππβ⎛⎫∴+∈ ⎪⎝⎭,则1cos 32πβ⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,4cos 35πβ⎛⎫∴+==- ⎪⎝⎭或45(4152>,舍去),()sin()sin 33ππααββ⎡⎤⎛⎫∴-=+-+ ⎪⎢⎥⎝⎭⎣⎦()()sin cos cos sin 33ππαββαββ⎛⎫⎛⎫=+⋅+-+⋅+ ⎪ ⎪⎝⎭⎝⎭124533313513565⎛⎫⎛⎫=⨯---⨯=- ⎪ ⎪⎝⎭⎝⎭. 故选:B 【点睛】本题考查同角三角函数的关系、两角差的正弦公式、三角函数在各象限的符号,属于中档题.9.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】 由3cos 2sin 4παα⎛⎫=-⎪⎝⎭,可得())223cos sin cos sin 2αααα-=-, 又由,2παπ⎛⎫∈ ⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin 2αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.10.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.11.A解析:A 【分析】由题意结合函数零点的概念可得方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,令sin cos 2sin cos y x x x x =+-,通过换元法求得y 在3,44ππ⎡⎤--⎢⎥⎣⎦上的值域即可得解. 【详解】因为函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点, 所以方程1sin cos 2sin cos a x x x x -=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,3,44x ππ⎡⎤∈--⎢⎥⎣⎦,∴,204x ππ⎡⎤+∈-⎢⎥⎣⎦,∴t ⎡⎤∈⎣⎦,212sin cos t x x =+,∴2215sin cos 2sin cos 124y x x x x t t t ⎛⎫=+-=-+=--+ ⎪⎝⎭, 当0t =时,y 取得最大值1,当t =y取得最小值1-,故可得111a ≤-≤,∴2a ≤≤.故选:A.【点睛】本题考查了函数与方程的综合应用,考查了三角函数的性质及三角恒等变换的应用,考查了逻辑思维能力和运算求解能力,属于中档题.12.B解析:B【分析】 根据两角和与差的余弦函数的公式,联立方程组,求得13cos cos ,sin sin 210αβαβ==-,再结合三角函数的基本关系式,即可求解. 【详解】 由4cos()cos cos sin sin 5αβαβαβ+=-=,1cos()cos cos sin sin 5αβαβαβ-=+=, 联立方程组,可得13cos cos ,sin sin 210αβαβ==-, 又由sin sin 3tan tan cos()cos cos 5αβαβαβαβ=+==-. 故选:B.【点睛】本题主要考查了两角和与差的余弦函数,以及三角函数的基本关系式的化简、求值,其中解答中熟记三角恒等变换的公式,准确运算是解答的关键,着重考查运算与求解能力. 二、填空题13.【分析】先由求得的值进而求得的值再根据两角差的正弦公式求得的值【详解】依题意即故由于而所以故因此所以【点睛】本小题主要考查二倍角公式考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数【分析】 先由cos 4πθ⎛⎫+ ⎪⎝⎭求得πcos 22θ⎛⎫+⎪⎝⎭的值,进而求得sin 2,cos 2θθ的值,再根据两角差的正弦公式,求得sin 23πθ⎛⎫-⎪⎝⎭的值. 【详解】依题意πcos 22θ⎛⎫+ ⎪⎝⎭2π42cos 145θ⎛⎫=+-=- ⎪⎝⎭,即4sin 25θ-=-,故4sin 25θ=,由于πππ3π0,,,2444θθ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭,而πcos 04θ⎛⎫+> ⎪⎝⎭,所以πππ,442θ⎛⎫+∈ ⎪⎝⎭,故ππ0,,20,42θθ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,因此3cos 25θ===.所以ππsin 2sin 2cos cos 2sin 333πθθθ⎛⎫-=- ⎪⎝⎭= 【点睛】本小题主要考查二倍角公式,考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于中档题.14.【分析】由且求得得到再结合两角和的正切公式即可求解【详解】因为且可得所以又由故答案为:【点睛】本题主要考查了三角函数的基本关系式以及两角和的正切公式的化简求证其中解答中熟记三角函数的基本关系式和两角 解析:17【分析】 由4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,求得3sin 5θ=-,得到3tan 4θ=-,再结合两角和的正切公式,即可求解.【详解】 因为4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,可得3sin 5θ===-,所以sin 3tan cos 4θθθ==-, 又由311tan 14tan 341tan 714πθθθ-+⎛⎫+=== ⎪-⎝⎭+. 故答案为:17. 【点睛】 本题主要考查了三角函数的基本关系式,以及两角和的正切公式的化简、求证,其中解答中熟记三角函数的基本关系式和两角和的正切公式,准确运算是解答的关键,着重考查运算与求解能力.15.【分析】先将化解成正弦型然后根据取值范围求出最值根据恒成立可建立不等式解出不等式即可【详解】当时恒成立解得故答案为:【点睛】本题考查三角函数的化解以及以及已知范围求正弦型函数的最值解析:[1,2]【分析】先将()f x 化解成正弦型,然后根据x 取值范围求出()f x 最值,根据恒成立可建立不等式,解出不等式即可.【详解】2()=2sin cos 2cos =sin2cos 21)14f x x x x x x x π+++=++, 当[0,]2x π∈时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,∴0)114x π≤++≤,2()m f x m -≤≤+恒成立,02212m m,解得12m ≤≤.故答案为:[1,2]【点睛】 本题考查三角函数的化解以及以及已知x 范围求正弦型函数的最值.16.①【分析】去掉绝对值利用辅助角公式化简函数解析式利用函数的奇偶性单调性对称性以及函数的最值对选项进行判断即可【详解】当时当时即函数为偶函数图象关于y 轴对称①正确;函数在区间上单调递增在区间上单调递减 解析:① 【分析】去掉绝对值,利用辅助角公式化简函数解析式,利用函数的奇偶性,单调性,对称性以及函数的最值对选项进行判断即可.【详解】 (),,042sin cos ,0,42x x f x x x x x ππππ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦=+=⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦, 当,02x ⎡⎤∈-⎢⎥⎣⎦π时,()()44f x x x f x ππ⎛⎫⎛⎫-=--=+= ⎪ ⎪⎝⎭⎝⎭, 当0,2x π⎛⎤∈ ⎥⎝⎦时,()()44f x x x f x ππ⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭, 即函数()f x 为偶函数,图象关于y 轴对称,①正确;函数()f x 在区间,24ππ⎡⎤--⎢⎥⎣⎦上单调递增,在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减,②错误; 因为函数()f x 的定义域为,22ππ⎡⎤-⎢⎥⎣⎦,不关于直线4x π=对称,所以直线4x π=不是一条对称轴,③错误; ()f x,④错误.故答案为:①.【点睛】本题考查余弦函数的性质,考查余弦函数的奇偶性,单调性,对称性以及最值,考查辅助角公式的应用,考查学生的分析推理能力,属于中档题.17.6【分析】由可知然后由可求再由正弦定理三角函数恒等变换的应用可求由可求结合同角平方关系可求代入进而可求进而根据余弦定理可求的值【详解】解:可知由正弦定理于是可得又可得可得由余弦定理可得故答案为:6【 解析:6【分析】由a b >可知A B >,然后由cos()A B -可求sin()A B -,再由正弦定理,三角函数恒等变换的应用可求cos B ,由cos cos[()]cos()cos sin()sin A A B B A B B A B B =-+=---可求cos A ,结合同角平方关系可求sin A ,代入cos()cos cos sin sin A B A B A B +=-,进而可求cos C ,进而根据余弦定理可求c 的值.【详解】解:a b >,A B ∴>, 31cos()32A B -=, ∴可知(0,)2A B π-∈,sin()A B ∴-==, 由正弦定理,sin 5sin 4A aB b ==, 于是可得5sin 31sin sin[()]sin()cos sin cos()sin 432B A A B B A B B B A B B B ==-+=-+-=+,3sin B B ∴,sin cos 22B B 1+=,又B A <,可得3cos 4B =,3139cos cos[()]cos()cos sin()sin 32416A AB B A B B A B B∴=-+=---⨯=,可得sin A ,931cos cos()cos cos sin sin 1648C A B A B A B ∴=-+=-+=⨯=,∴由余弦定理可得6c .故答案为:6.【点睛】本题主要考查了正弦定理、同角三角函数的基本关系及和差角的三角公式的综合应用,同时考查了运算的能力,属于中档题.18.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公 解析:4π 【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-,因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+,在ABP △中,tan BP BAP x AB∠==, 在ADQ △中,tan DQ DAQ y AD ∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x y BAP DAQ DAQ BAP xy ∠+∠+∠+∠===-∠∠-, 又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠ 故答案为:4π 【点睛】 本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.19.【分析】化简得再利用诱导公式与和差角公式化简求解即可【详解】由题故答案为:【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题需要根据题中的角跟特殊角的关系用和差角公式属于中档题【分析】 化简得sin102cos140cos10m ︒-︒=︒,再利用诱导公式与和差角公式化简cos140︒求解即可. 【详解】 由题()sin102cos 1030sin102cos140cos10cos10m ︒+︒+︒︒-︒==︒︒sin102cos10cos302sin10sin 302cos10cos302cos30cos10cos10︒+︒︒-︒︒︒︒===︒=︒︒.【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题.需要根据题中的角跟特殊角的关系用和差角公式,属于中档题.20.【分析】设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最小值也等价于取得最大值结合已知即可求得答案【详解】不妨设点的坐标为由于为定值由正弦定理可知当取得最大值时的外接圆面积取得最 解析:22122x y -=. 【分析】设点P 的坐标为()()2,0m m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,结合已知,即可求得答案.【详解】不妨设点P 的坐标为()()2,0m m >, 由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值,2tan a APF m +∠=,2tan a BPF m-∠=, ∴()2222tan tan 221a a a a m m APB APF BPF a a b b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当()20b m m m=>,即当m b =时,等号成立, 此时APB ∠最大,即APB ∆的外接圆面积取最小值.点P 的坐标为()2,b ,代入22221x y a b-=,可得a =b =∴双曲线的方程为22122x y -=. 故答案为:22122x y -=. 【点睛】本题主要考查了求双曲线的方程,解题关键是掌握双曲线基础知识和灵活使用均值不等式,考查了分析能力和计算能力,属于难题.三、解答题21.(I )2π.(Ⅱ) 8π. 【分析】(I )先将函数解析式整理,得到()4224f x x π⎛⎫=++ ⎪⎝⎭,根据正弦函数的周期,即可求出函数 |()|f x 的最小正周期;再由正弦函数的取值范围,即可求出函数的最小值; (Ⅱ)记()()()h x f x g x =-,根据题中条件,先判断 ()h x 在[0,]m 上是增函数;再由题中条件,得到函数()h x 的解析式,根据正弦函数的单调性,即可求出结果.【详解】(I )2211()sin 2cos 2cos 2sin 2222f x x x x x =+-+ 11sin 4cos 4222x x =++ 11cos 4sin 4222x x =++4204x π⎛⎫=++> ⎪⎝⎭, 所以()f x 的最小正周期为2T π=,当sin 414x π⎛⎫+=- ⎪⎝⎭时,函数 |()|f x 的最小值为42. (Ⅱ)因为对任意12,[0,]x x m ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,即()()()()1122f x g x f x g x -<-,记()()()h x f x g x =-,即()()12h x h x <,所以()h x 在[0,]m 上是增函数.又3()42428844g x f x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.所以3()()()442424h x f x g x x x ππ⎛⎫⎛⎫=-=+-+ ⎪ ⎪⎝⎭⎝⎭2sin 4cos sin 44x x π==, 令24222k x k ππππ-≤≤+, 求得2828k k x ππππ-≤≤+. 故()h x 的单调增区间为,2828k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈, 所以实数m 的最大值为8π. 【点睛】 关键点睛:本题主要考查三角函数的恒等变换及三角函数的性质,涉及到函数的平移,利用构造函数的思想,求正弦型函数的单调区间,以及利用单调性求参数是解决本题的关键.22.(1)2)825. 【分析】(1)利用诱导公式,同角三角函数的基本关系,二倍角公式,两角和的正弦与余弦公式以及辅助角公式求解即可;(2)先利用已知条件得到4x π+的范围,进而求出cos 4x π⎛⎫+ ⎪⎝⎭的值,再利用二倍角公式和诱导公式求解即可.【详解】(1)4sin 220tan320-︒︒ ()()sin 18040tan 360404︒+︒-︒-=︒sin 440tan 40︒+=-︒sin 440sin 40cos 40︒︒=-+︒ sin 40cos 40sin 40cos 440︒︒+︒-=︒ sin80sin 40co 402s -=︒+︒︒()0sin 3010cos 402cos1︒+︒+︒=-︒0sin 30cos10cos32cos 0sin10co 01s 4︒+︒︒+︒︒=-︒3cos1022cos 40-︒︒︒== (2)344x ππ-<<, 422x πππ∴-<+<,则cos 04x π⎛⎫+> ⎪⎝⎭, 所以3cos 45x π⎛⎫+= ⎪⎝⎭, 又2cos 22cos 1x x =-,cos 2sin 2sin 22sin cos 2444x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭432425525⎛⎫=⨯-⨯=- ⎪⎝⎭, 则22412cos cos 2112525x x =+=-+=; sin 2cos 2cos 224x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭2972cos 12142525x π⎡⎤⎛⎫⎛⎫=-+-=-⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以21782cos sin 2252525x x +=+=; 【点睛】关键点睛:本题主要考查了三角函数与三角恒等变换问题.灵活的运用诱导公式,同角三角函数的基本关系,二倍角公式,两角和的正弦与余弦公式以及辅助角公式是解决本题的关键.23.(1)7;(2)()2f x x x =+,单调递增;(3)-1. 【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解.(2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解.【详解】(1)由题意()12f =,所以()()3214f f a a =+=+,又()2323631111f =⨯-⨯+=, 因为411a +=,所以7a =;(2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++, 又()()227f x f x +=+,代入解得:()2f x x x =+; 显然,()f x 在(0,2],(2,4]上分别是单增函数,又()26f =,而当2x +→时,7y →,因为76>,所以()f x 在(0,4]上单调递增;(3)由(2)知,()f x 是区间(0,4]上单调递增,且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =;再看函数()24 log 231x g x ⎛⎫=+⎪-⎝⎭, 由420031x x +>⇒>-,即定义域为(0,)+∞, 且4231x y =+-在(0,)+∞上单减, 所以()24log 231x g x ⎛⎫=+⎪-⎝⎭在(0,)+∞上单减, 又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立, ①当0m =时,不等式化为210t -≥,显然不满足恒成立; ②当0m >时,当0t =代入得()10m -+≥,矛盾; ③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩,综上,实数m 的值为-1. 【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想. 24.(Ⅰ)()2sin(2)6f x x π=+(Ⅱ)12πα=或4πα=【分析】分别选择①,②,③求出函数()2sin(2)6f x x π=+, (Ⅰ)根据正弦函数的增区间列式可求出()f x 的递增区间; (Ⅱ)代入()f α,根据α的范围可求出结果. 【详解】因为函数()f x 的图象相邻两条对称轴之间的距离为2π.所以22T ππ=⨯=, 选择①,则22ππω=,得1ω=,所以()2sin(2)f x x ϕ=+, 所以()()2sin 2()1212g x f x x ππϕ⎡⎤=-=-+⎢⎥⎣⎦2sin(2)6x πϕ=-+, 因为()g x 的图象关于原点对称,所以()g x 为奇函数,所以(0)0g =, 所以2sin()06πϕ-=,所以6k πϕπ-=,k Z ∈,所以6k πϕπ=+,k Z ∈,因为||2ϕπ<,所以0,6k πϕ==,所以()2sin(2)6f x x π=+, 选择②,())cos(2)f x x x ωπω=--(0)ω>=()()2cos 2x x ωω+2sin(2)6x πω=+,所以22ππω=,所以1ω=,所以()2sin(2)6f x x π=+,选择③,()4cos sin 1(0)6f x x x πωωω⎛⎫=+-> ⎪⎝⎭4cos sin cos cos sin 66x x x ππωωω⎛⎫=+ ⎪⎝⎭1-=14cos cos 12x x x ωωω⎫+-⎪⎪⎝⎭2cos 2cos 1x x x ωωω=+-2cos 2x x ωω=+2sin 26x πω⎛⎫=+ ⎪⎝⎭,所以22ππω=,所以1ω=,所以()2sin(2)6f x x π=+, (Ⅰ)由222262k x k πππππ-+≤+≤+,k Z ∈,得36k x k ππππ-+≤≤+,k Z ∈,所以()f x 的单调递增区间为[,]36ππk πk π-++,k Z ∈.(Ⅱ)若0,2πα⎛⎫∈ ⎪⎝⎭,()f α=2sin(2)6πα+=sin(2)62πα+=, 因为02πα<<,所以72666πππα<+<, 所以263ππα+=或2263ππα+=,得12πα=或4πα=.【点睛】关键点点睛:根据三角函数的性质求出()f x 的解析式是解题关键.25.(1)最小正周期为4π,单调递减区间是5114,4,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2). 【分析】(1)利用完全平方公式、正弦的二倍角公式、逆用两角差正弦公式化简()f x ,再求最小正周期及()f x 的单调递减区间;(2)求出()f x 的图象变换后的解析式,再求出04x π-的正余弦值利用凑角可得答案.【详解】()22sin cos 112sin cos 1cos 1444442x x x x x x f x ⎛⎫⎫=+-=++ ⎪⎪⎝⎭⎭1sin 2sin 2sin 22222223x x x x x π⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭. (1)()f x 的最小正周期为4T π=, 由3222232x k k πππππ+≤-≤+,k ∈Z ,解得5114433k x k ππππ+≤≤+,k ∈Z , 所以函数()f x 的单调递减区间是5114,4,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .(2)将()f x 的图象先向左平移6π个单位长度,得到函数62sin 2sin 2324x x y πππ⎛⎫+ ⎪⎛⎫=-=- ⎪ ⎪⎝⎭ ⎪⎝⎭,再将其横坐标缩小为原来的12, 纵坐标不变得到函数()2sin 4g x x π⎛⎫=-⎪⎝⎭,据题意有0sin 48x π⎛⎫-= ⎪⎝⎭,且03,44x πππ⎛⎫-∈ ⎪⎝⎭,则0cos 48x π⎛⎫-=- ⎪⎝⎭, 则0000sin sin sin cos cos sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦==. 【点睛】本题考查了三角函数的图象和性质,其中解答中利用三角恒等变换的公式,化简()f x 的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考了学生的计算能力,属于基础题.26.(1)π;(2)当3x π=时,()max1f x =-;当12x π=-时,()min32f x =-. 【分析】(1)利用二倍角公式和辅助角公式,将函数转化为()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭求解.. (2)根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,得到22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,再利用正弦函数的性质求解.【详解】 (1)()21sin cos 12f x x x x =+,1sin 2cos 2144x x =--, 1sin 2123x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期为22T ππ==. (2)∵,63x ππ⎡⎤∈-⎢⎥⎣⎦, ∴22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当233x ππ-=,即3x π=,()max14f x =-, 当232x ππ-=-,12x π=-时,()()min 131122f x =⨯--=-. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.。

(好题)高中数学必修四第三章《三角恒等变形》检测(含答案解析)

(好题)高中数学必修四第三章《三角恒等变形》检测(含答案解析)

一、选择题1.若10,0,cos ,sin 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( )A B .C . D 2.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2 B .2-C .12D .12-3.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A .10 B .10-C .10D .10-4.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665 D .3365 5.若tan 2θ=,则cos2(θ= ) A .45B .45-C .35D .35-6.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .17187.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A .9-B .9C .79-D .798.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫-= ⎪⎝⎭( )A .4-B .4C .13-D .139.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,BC 边上的高为h ,且h =2c a b c c b b ++的最大值是( )A .B .C .4D .610.求sin10°sin50°sin70°的值( ) A .12BC .18D11.若()tan 804sin 420α+=,则()tan 20α+的值为( )A.5-B.5C.19D.712.人体满足黄金分割比的人体是最美人体,0.618是黄金分割比12m =的近似值,黄金分割比还可以表示为2cos72︒( ) A .4B1C .2D1二、填空题13.在ABC 中,三个内角A 、B 、C 满足2A+C =B ,且4cos 5A =,则cos C ________.14.已知函数2()cos2cos (0)222xxxf x ωωωω=+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k =+恰有两个不同的零点,则实数k 的取值范围是__________.15.关于x的方程)2210x x m ++=的两个根为sin θ和cos θ,则sin cos 11tan 1tan θθθθ+=--______. 16.已知(0,)θπ∈,且sin 4πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=__________. 17.已知tanα=2tan 8π,则3cos 8sin 8αππα⎛⎫- ⎪⎝⎭⎛⎫- ⎪⎝⎭=_____.18.已知sin 46πα⎛⎫+= ⎪⎝⎭,()0,απ∈,则cos 26πα⎛⎫+= ⎪⎝⎭__________. 19.已知3tan 4α=-,()1tan 4αβ+=,则tan β=______. 20.已知,,0,2παβγ⎛⎫∈ ⎪⎝⎭,且222cos cos cos 2αβγ++=,则cos cos cos sin sin sin αβγαβγ++++的最小值为______.三、解答题21.已知函数21()cos cos 22f x x x x π⎛⎫=++- ⎪⎝⎭. (1)若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,求实数a 的取值范围; (2)若先将()y f x =的图像上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向左平移6π个单位长度,得到函数()y g x =的图像,求函数1()3y g x =-在区间[],3ππ-内的所有零点之和.22.已知02πα<<,4sin 5α. (1)求tan2α的值; (2)求cos 24πα⎛⎫+ ⎪⎝⎭的值; (3)若02πβ<<且1cos()3αβ+=-,求sin β的值.23.已知函数2()cos sin 32233x x x f x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭.(1)若,2x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的递增区间和值域;(2)若004()54f x x ππ=+≤≤,求点02sin 3x ⎛⎫ ⎪⎝⎭.24.①角α的终边上有一点()2,4M ;②角α的终边与单位圆的交点在第一象限且横坐标为13;③2α为锐角且22sin 42cos 22sin 2ααα=-.在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.问题:已知角α的顶点在原点O ,始边在x 轴的非负半轴上,___________.求cos 23πα⎛⎫+ ⎪⎝⎭的值.注:如果选择多个条件分别解答,则按第一个解答记分.25.已知函数21()cos sin 2f x x x x =+-. (1)求()f x 的单调递增区间;(2)若(,)123A ππ∈,1()3f A =,求5cos(2)6A π-的值.26.已知函数21()cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点________;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.你需要在①、②中选择一个,补在(2)中的横线上,并加以解答. ①向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半; ②纵坐标保持不变,横坐标缩短到原来的一半,再向右平移4π个单位.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭,所以3444πππα<+<,sin +43πα⎛⎫= ⎪⎝⎭, 因为02πβ-<<,所以4422ππβπ<-<,又因为sin 42πβ⎛⎫-=⎪⎝⎭cos 42πβ⎛⎫-= ⎪⎝⎭ 而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭133339=⨯+=. 故选:A.【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.2.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.【详解】解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.3.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下:(1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.4.A解析:A 【分析】 由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.5.D解析:D 【分析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为221tan 1tan θθ-+,把已知条件代入运算,求得结果. 【详解】tan 2θ=,22222222cos sin 1tan 3cos2cos sin cos sin 1tan 5θθθθθθθθθ--∴=-===-++, 故选D . 【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.6.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin αα+=,对等式平方即可得结果. 【详解】 由3cos 2sin 4παα⎛⎫=-⎪⎝⎭,可得())223cos sin cos sin 2αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin 2αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.7.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.8.C【解析】 因为cos()2cos()2παπα+=-,所以sin 2cos tan 2ααα-=-⇒=,所以1tan 1tan()41tan 3πααα--==-+,故选C. 9.C解析:C 【分析】由余弦定理化简可得2222cos c b a a A b c bc bc ++=+,利用三角形面积公式可得2sin a A =,解得22cos 4sin(6c b a A A A b c bc π++=+=+),利用正弦函数的图象和性质即可得解其最大值. 【详解】由余弦定理可得:2222cos b c a bc A +=+,故:22222222cos 22cos c b a a b c a bc A a A b c bc bc bc bc +++++===+, 而2111sin 222ABC S bc A ah a ∆===,故2sin a A =,所以:2222cos 2cos 4sin()46c b a a A A A A b c bc bc π++=+=+=+. 故选C . 【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.10.C解析:C 【分析】由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.11.D解析:D 【分析】 由()tan804sin 420α+=得:()tan 804sin 4204sin 6023α+===,然后将()tan 20α+化为()tan 8060α⎡⎤+-⎣⎦,用正切的差角公式求解.【详解】 因为()tan804sin 4204sin 6023α+===,则()()()()tan 80tan 6023tan 20tan 806071tan 80tan6012αααα+-⎡⎤+=+-===⎣⎦++⋅+. 故选:D . 【点睛】本题考查诱导公式、正切的差角公式的运用,难度一般.解答时要注意整体思想的运用,即观察目标式与条件式角度之间的和差关系,然后运用公式求解.12.C解析:C 【分析】根据2cos72m ︒=,结合三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算,即可求解. 【详解】根据题意,可得2cos72m ︒=,则22cos722sin1442cos 271cos54cos54︒==︒-︒︒()2sin 90542cos542cos54cos54︒+︒︒===︒︒. 故选:C . 【点睛】本题主要考查了三角函数的化简、求值,其中解答中熟练应用三角函数的基本关系式,诱导公式和余弦的倍角公式,准确运算是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】利用及易得由同角三角函数的关系易得的值然后由代值计算即可得解【详解】因为又所以因为所以故答案为:【点睛】关键点睛:本题的解题关键是利用公式并结合两角和的余弦公式展开进行计算 解析:410利用2A+C =B 及A B C π++=易得3B π=,由同角三角函数的关系易得sinA 的值,然后由()cos cos cos cos sin sin C A B A B A B =-+=-+代值计算即可得解. 【详解】因为2A+C =B ,又A B C π++=, 所以3B π=,因为4cos 5A =,所以3sin 5A ===,()4134cos cos cos cos sin sin 525210C A B A B A B =-+=-+=-⨯+⨯=.. 【点睛】关键点睛:本题的解题关键是利用公式()cos cos C A B =-+并结合两角和的余弦公式展开进行计算.14.【分析】先利用二倍角公式和辅助角公式结合周期为求得然后将时函数恰有两个不同的零点转化为时恰有两个不同的根在同一坐标系中作出函数的图象利用数形结合法求解【详解】函数因为函数的周期为所以因为时函数恰有两 解析:(3,2]--【分析】先利用二倍角公式和辅助角公式,结合周期为23π求得()2sin 316f x x π⎛⎫=++ ⎪⎝⎭,然后将0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k =+恰有两个不同的零点,转化为0,3x π⎡⎤∈⎢⎥⎣⎦时,()f x k =-恰有两个不同的根,在同一坐标系中作出函数(),y f x y k ==-的图象,利用数形结合法求解. 【详解】函数2()cos2cos 222xxxf x ωωω=+,cos 1x x ωω=++, 2sin 16x πω⎛⎫=++ ⎪⎝⎭, 因为函数()f x 的周期为,所以23 23πωπ==,()2sin316f x xπ⎛⎫=++⎪⎝⎭因为0,3xπ⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k=+恰有两个不同的零点,所以0,3xπ⎡⎤∈⎢⎥⎣⎦时,()f x k=-恰有两个不同的根,在同一坐标系中作出函数(),y f x y k==-的图象如图所示:由图象可知:23k≤-<,即2k-3<≤-,所以实数k的取值范围是(3,2]--,故答案为:(3,2]--【点睛】方法点睛:函数零点个数问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.15.【分析】利用方程的根得到的关系化简所求式代入求值即可【详解】因为方程的两个根为和所以因此故答案为:【点睛】本题考查了韦达定理和三角函数正余弦和正切化简求值属于基础题解析:31+【分析】利用方程的根得到sin,cosθθ的关系,化简所求式,代入求值即可.【详解】因为方程)22310x x m++=的两个根为sinθ和cosθ,所以31sin cos2θθ+=-,sin cos2mθθ=,因此,2222sin cos sin cos sin cos sin cos 11tan sin cos cos sin sin cos 1tan 12θθθθθθθθθθθθθθθθ-+=+==+=------故答案为: 【点睛】本题考查了韦达定理和三角函数正余弦和正切化简求值,属于基础题.16.【分析】根据利用诱导公式和二倍角公式转化为求解【详解】因为所以故答案为:【点睛】本题主要考查二倍角公式及诱导公式的应用还考查了转化求解问题的能力属于中档题 解析:2425【分析】根据sin 4πθ⎛⎫-= ⎪⎝⎭,利用诱导公式和二倍角公式转化为2sin 2cos 2122sin 4πθθπθ⎛⎫=-=- ⎪⎛⎫- ⎪⎝⎝⎭⎭求解.【详解】因为sin 410πθ⎛⎫-= ⎪⎝⎭, 所以224sin 4sin 2cos 2co 25s 21224πππθθθθ⎡⎤⎛⎫⎛⎫=-=-=- ⎪⎛⎫-= ⎪⎝⎭ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为:2425【点睛】本题主要考查二倍角公式及诱导公式的应用,还考查了转化求解问题的能力,属于中档题.17.3【分析】由诱导公式对原式化简用两角和差公式展开分子分母同除即可得结果【详解】故答案为:3【点睛】本题考查了三角函数的诱导公式三角恒等变换等基本数学知识考查了运算求解能力属于基础题目解析:3 【分析】由诱导公式对原式化简3cos()sin()88sin()sin()88ππααππαα-+=--,用两角和差公式展开,分子分母同除cos cos8πα,即可得结果.【详解】3cos()sin()sin cos cos sin tan tan 888883sin()sin()sin cos cos sin tan tan88888πππππαααααπππππααααα-+++====---- 故答案为:3 【点睛】 本题考查了三角函数的诱导公式、三角恒等变换等基本数学知识,考查了运算求解能力,属于基础题目.18.【分析】构造角再用两角和的余弦公式及二倍公式打开【详解】故答案为:【点睛】本题是给值求值题关键是构造角应注意的是确定三角函数值的符号【分析】 构造角22643πππαα⎛⎫+=+- ⎪⎝⎭,cos 4πα⎛⎫+ ⎪⎝⎭求,再用两角和的余弦公式及二倍公式打开. 【详解】()50,,,444πππαπα⎛⎫∈+∈ ⎪⎝⎭,sin 42πα⎛⎫+=< ⎪⎝⎭,cos 4πα⎛⎫∴+= ⎪⎝⎭,22cos 22cos 1443ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭,sin 22sin cos 444πππααα⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2cos 2cos 2cos sin 2sin 6434343πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2132⎛=⨯+= ⎝⎭故答案为:26【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.19.【分析】根据以及两角差正切公式求解【详解】故答案为:【点睛】本题考查两角差正切公式考查基本分析求解能力属基础题 解析:1613【分析】根据()βαβα=+-以及两角差正切公式求解. 【详解】13tan()tan 1644tan tan[()]31tan()tan 13116αβαβαβααβα++-=+-===++-故答案为:1613【点睛】本题考查两角差正切公式,考查基本分析求解能力,属基础题.20.【分析】根据同角三角函数关系式及基本不等式可得同理证明另外两组式子成立不等式两边同时相加化简即可得解【详解】由题意知则因为则不等式两边同时加可得开平方可得同理相加可得化简得故答案为:【点睛】本题考查【分析】根据同角三角函数关系式及基本不等式,可得sin sin αβγ+≤,同理证明另外两组式子成立,不等式两边同时相加,化简即可得解. 【详解】由题意知222sin sin sin 1αβγ++=, 则2222sinsin 1sin cos αβγγ+=-=2222sin sin 1sin cos αγββ+=-= 2222sin sin 1sin cos βγαα+=-=因为,,0,2παβγ⎛⎫∈ ⎪⎝⎭,则222sin sin sin sin αβαβ⋅≤+,不等式两边同时加22sin sin αβ+ 可得()()222sin sin 2sin sin αβαβ+≤+开平方可得sin sin αβγ+≤=,同理sin sin βγα+≤=,sin sin γαβ+≤=,相加可得2sin 2sin 2sin αβγαβγ++≤++化简得cos cos cos sin sin sin αβγαβγ++≥++故答案为【点睛】本题考查了三角函数式的化简求值,同角三角函数关系式的应用,根据基本不等式求最值,属于中档题.三、解答题21.(1)1a ≤-,(2)6π 【分析】(1)先对函数()f x 化简变形,然后求出函数()f x 在,32x ππ⎡⎤∈-⎢⎥⎣⎦上的最小值,则可得到实数a 的取值范围;(2)根据题意,利用函数sin()y A x ωϕ=+的图像变换规律,先得到()g x 的解析式,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,再根据正弦函数图像的对称性得到结论 【详解】解:(1)21()cos cos 22f x x x x π⎛⎫=++- ⎪⎝⎭21cos (2sin 1)2x x x =+-12cos 2sin(2)226x x x π=-=-, 若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,则只需min ()f x a ≥即可, 因为,32x ππ⎡⎤∈-⎢⎥⎣⎦,所以552[,]666x πππ-∈-, 所以当262x ππ-=-即π6x =-时,()f x 取得最小值为1-,所以1a ≤-, (2)先将()f x 的图像上每个点的纵坐标不变,横坐标变为原来的2倍,可得sin()6y x π=-的图像,然后再向左平移6π个单位得到函数()sin g x x =的图像,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,设为1234,,,x x x x ,则根据对称性可知这4个根关于直线32x π=对称,所以1234342x x x x π+++=,所以12346x x x x π+++= 【点睛】关键点点睛:此题考查三角函数恒等变换、正弦函数的定义域和值域,函数恒成立问题,函数sin()y A x ωϕ=+的图像变换规律,第2问解题的关键是运用正弦函数的对称性进行求解,属于中档题 22.(1)247-,(2),(3【分析】(1)由02πα<<,4sin 5α,可求出35cos α=,从而可求出4tan 3α=,进而利用正切的二倍角公式可求得答案;(2)先利用两角和的余弦公式展开,再利用二倍角公式求解;(3)先由已知条件求出sin()3αβ+=,再利用sin sin[()]βαβα=+-展开代值可求得结果 【详解】解:(1)因为02πα<<,4sin 5α,所以3cos 5α===, 所以4sin 45tan 3cos 35ααα===, 所以22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, (2)cos 2cos 2cos sin 2sin 444πππααα⎛⎫+=- ⎪⎝⎭2sin 2)αα=-2(12sin 2sin cos )2ααα=--1643(122)2255550=-⨯-⨯⨯=-, (3)因为02πα<<,02πβ<<,所以0αβ<+<π,因为1cos()3αβ+=-,所以sin()3αβ+===,所以sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+314()535=--⨯=【点睛】关键点点睛:此题考查三角函数恒等变换公式的应用,考查计算能力,考查同角三角函数的关系的应用,角的变换公是解题的关键,属于中档题23.(1),24ππ⎡⎤-⎢⎥⎣⎦,值域,122⎤+⎥⎣⎦;(2)024sin 310x +⎛⎫= ⎪⎝⎭. 【分析】(1)先利用诱导公式和降幂公式可将()f x 化为()2sin 332x f x π⎛⎫=++⎪⎝⎭数的性质可得函数的单调区间和值域.(2)利用两角差的正弦公式可求02sin 3x ⎛⎫ ⎪⎝⎭的值. 【详解】①2()sin cos 1cos 333x x x f x ⎫=++⎪⎝⎭2sin 33x π⎛⎫=+ ⎪⎝⎭, 由2222332x k k πππππ-≤+≤+得53344k x k ππππ-≤≤+,k Z ∈, 又2x ππ-≤≤,所以()f x 的递增区间为,24ππ⎡⎤-⎢⎥⎣⎦, 又2x ππ-≤≤,故2033x ππ≤+≤,所以20sin 133x π⎛⎫≤+≤ ⎪⎝⎭,()f x ∴值域为1⎤+⎥⎣⎦.②由024()sin 33252x f x π⎛⎫=++=+⎪⎝⎭得024sin 335x π⎛⎫+= ⎪⎝⎭, 因04x ππ≤≤,所以02233x πππ≤+≤,故023cos 335x π⎛⎫+=- ⎪⎝⎭00002222sin sin sin cos cos sin 3333333333x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦4134525210+=⨯+⨯=. 【点睛】方法点睛:形如()22sinsin cos cos f x A x B x x C x ωωωω=++的函数,可以利用降幂公式和辅助角公式将其化为()()'sin 2'f x A x B ωϕ=++的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法. 24.答案见解析 【分析】选条件①,则根据三角函数定义得cosα=,sin α=,进而根据二倍角公式得3cos25α=-,4sin 25α=,再结合余弦的和角公式求解即可;选条件②,由三角函数单位圆的定义得1cos 3α=,sin 3α=,进而根据二倍角公式得7cos 29α=-,sin 2α=,再结合余弦的和角公式求解即可; 选条件③,由二倍角公式得222sin 42tan 22cos 22sin 212tan 2ααααα==--,并结合题意得1tan 22α=,故cos 2α=,sin 2α=【详解】解:方案一:选条件①. 由题意可知2cos ||OM α===4sin ||OM α===. 所以23cos 22cos 15αα=-=-,4sin 22sin cos 5ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭3145252=-⨯-⨯= 方案二:选条件②.因为角α的终边与单位圆的交点在第一象限且横坐标为13,所以1cos 3α=,sin 3α==.所以27cos 22cos 19αα=-=-,sin 22sin cos ααα==所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭7192=-⨯-718+=-. 方案三:选条件③.22222sin 42sin 2cos 22tan 22cos 22sin 2cos 22sin 212tan 2ααααααααα===---, 结合2α为锐角,解得1tan 22α=, 所以cos 2α=,sin 2α=. 所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭122=10=. 【点睛】本题解题的关键在于根据三角函数的定义求得cos ,sin αα,进而根据三角恒等变换求解,考查运算求解能力,是基础题.25.(1)(,)()63k k k ππππ-++∈Z ;(2 【分析】(1)先把21()cos sin 2f x x x x =+-化为“一角一名一次”结构,利用“同增异减”讨论单调区间;(2)由1()3f A =,得到1sin(2)cos(2)6363A A ππ-=-=,,利用两角差公式求5cos(2)6A π-的值. 【详解】解:(1)21cos 1()2sin(2)2226x f x x x π-=+-=-,令222262k x k πππππ-+<-<+,解得,63k x k k Z ππππ-+<<+∈.所以()f x 的单调增区间为(,)()63k k k ππππ-++∈Z .(2)1()sin(2)63f A A π=-=,令26A πθ=-,则02πθ<<,所以1sin 3θ=,cos 3θ=, 则5222cos(2)cos()cos cos sin sin 6333A πθπθπθπ-=-=+11()323=⨯-+=. 【点睛】利用三角公式求三角函数值的关键: (1)角的范围的判断; (2)根据条件进行合理的拆角,如()()2()βαβαααβαβ=+-=++-,等. 26.(1)函数的周期为2π;(2)条件选择见解析,max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】(1)用正弦余弦的二倍角公式整理()f x 可得正弦函数标准型,可得函数最小正周期; (2)选①先平移变换后周期变换可得对应的()g x ,可得()g x 的最值; 选②先周期变换后平移变换得对应的()g x ,由此可求得最值. 【详解】(1)∵函数1cos 1()sin sin()12226x f x x x π+=++=++, 所以函数的周期为2π;(2)<选择①>依题意:()cos(2)16g x x π=-++,令226x k πππ+=+,即5()12x k k Z ππ=+∈. 使函数()g x 取得最大值2,即max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;<选择②>依题意:()cos(2)16g x x π=-++, 令226x k πππ+=+,即5()12x k k Z ππ=+∈,使函数()g x 取得最大值2,即max ()2g x =使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】关键点点睛:在解决正弦型函数的周期,最值,单调性等性质时,关键在于利用三角恒等变换将函数化成正弦型函数的标准形,再利用整体代换的思想求解.。

(好题)高中数学必修四第三章《三角恒等变形》测试题(包含答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试题(包含答案解析)

一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α的值为( )A .15B C D 2.设函数22()cos sin 2cos sin f x x x x x =-+,下列说法中,错误的是( )A .()f x 的最小值为B .()f x 在区间,48ππ⎡⎤-⎢⎥⎣⎦上单调递增.C .函数()y f x =的图象可由函数y x =的图象先向左平移4π个单位,再将横坐标缩短为原来的一半(纵坐标不变)而得到. D .将函数()y f x =的图象向左平移4π个单位,所得函数的图象关于y 轴对称.3.已知sin cos x x +=,则1tan tan x x +=( ) A .6- B .7-C .8-D .9-4.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈B .3(,)()44k k k Z ππππ++∈ C .(,)()4k k k Z πππ+∈D .(,)()42k k k Z ππππ++∈ 5.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665D .33656.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A .6 B .6C .16D .16-7.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈⎪⎝⎭,则cos β的值为( ) A .45-B .44125C .44125-D .458.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7 B .17C .-17D .-79.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③10.已知()0,απ∈,sin cos 3αα+=cos2=α( ) A.BC.9-D.911.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形 D .等边三角形12.若sin 2α=()sin βα-=,且,4απ⎡⎤∈π⎢⎥⎣⎦,3,2βπ⎡⎤∈π⎢⎥⎣⎦,则αβ+的值是( ) A .74π B .94πC .54π或74πD .54π或94π 二、填空题13.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____. 14.已知A 、B 、C 为△ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为______. 15.已知sin 3α=,()1cos 3αβ+=-,且,0,2παβ⎛⎫∈ ⎪⎝⎭,则sin β=_____.16.已知tanα=2tan 8π,则3cos 8sin 8αππα⎛⎫- ⎪⎝⎭⎛⎫- ⎪⎝⎭=_____.17.已知4sin 3cos 0+=αα,则2sin 23cos +αα的值为____________.18.ABC ∆中,若2AC AB >,4A π=,则角C的取值范围是________. 19.在直角三角形ABC 中,C ∠为直角,45BAC ∠>,点D 在线段BC 上,且13CD CB =,若1tan 2DAB ∠=,则BAC ∠的正切值为_____.20.已知角θ的终边经过点(4,3)P -,则22cos sin 122sin()4--=+θθπθ_____________.三、解答题21.已知函数2211()sin 2cos 2cos 2sin 22,22f x x x x x x R =+-+∈. (I )求函数|()|f x 最小正周期和最小值; (Ⅱ)将函数()y f x =的图象向左平移8π个单位长度,得到()y g x =图象.若对任意12,[0,]x x m ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-成立,求实数m 的最大值.22.如图,在扇形OPQ 中,半径2OP =,圆心角3POQ π∠=,B 是扇形弧上的动点,矩形ABCD 内接于扇形.记BOC α∠=,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值.23.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.24.已知函数2()2cos sin()3sin sin cos 3f x x x x x x π=+-+.(1)若[,]126x ππ∈-,求函数()f x 的最值;(2)记锐角△ABC 的内角A 、B 、C 的对边分别为a b c 、、,若()0f A =,4b c +=,求△ABC 面积的最大值.25.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式. (2)若3()5f x =-,且36x ππ-<<,求cos2x 的值.26.已知,2παπ⎛⎫∈⎪⎝⎭,且2sin cos 22αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式化简得到2sin cos ,αα=再利用同角的平方关系求解.【详解】由题得24sin cos 12cos 1,ααα+-= 所以24sin cos 2cos ,ααα=因为0,2πα⎛⎫∈ ⎪⎝⎭,所以2sin cos ,αα=因为22221sin cos 1,cos cos 14αααα+=∴+=,所以24cos ,(0,),cos 52πααα=∈∴= 故选:D 【点睛】方法点睛:三角函数求值常用的方法有:三看(看角、看名、看式)三变(变角、变名、变式).2.D解析:D 【分析】由二倍角公式及辅助角公式化简,再根据正弦型函数性质判断AB ,利用图象平移伸缩判断CD. 【详解】由22()cos sin 2cos sin cos 2sin 2)4f x x x x x x x x π=-+=+=+,可知函数的最小值为,故A 正确;当,48x ππ⎡⎤∈-⎢⎥⎣⎦时,2,442x πππ⎡⎤+∈-⎢⎥⎣⎦,由正弦函数单调性知())4f x x π=+单调递增,故B 正确;y x =的图象先向左平移4π个单位得)4y x π=+,再将横坐标缩短为原来的一半(纵坐标不变)得)4y x π=+,故C 正确;将函数()y f x =的图象向左平移4π个单位得)]))44424y x x x πππππ=++=++=+,图象不关于y 轴对称,故D 错误. 故选:D 【点睛】关键点点睛:首先要把函数解析式化简,利用正弦型函数的图象与性质判断值域与单调性,利用图象变换的时候,注意平移与伸缩都变在自变量上,属于中档题.3.C解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos 2x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.4.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.5.A解析:A 【分析】 由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.6.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+==⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11132326-=⨯-⨯=. 故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.7.B解析:B 【分析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果. 【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B 【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题.8.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.9.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan tan 2tan 36ππαααα⎛⎫⎛⎫=-==-=< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||αα⎫∴=∈⎪⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.10.A解析:A 【分析】在等式sin cos 3αα+=两边同时平方可求得cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos 3αα+=,两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<,()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin 3αα∴-=-,则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+== 故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.11.B解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=,所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.12.A解析:A 【分析】先计算2α和βα-的取值范围,根据取值范围解出cos2α和()cos βα-的值,再利用()()()()cos cos 2cos 2cos sin 2sin αβαβααβααβα+=+-=---⎡⎤⎣⎦求解()cos αβ+的值.【详解】∵,4απ⎡⎤∈π⎢⎥⎣⎦,∴2,22απ⎡⎤∈π⎢⎥⎣⎦.∵sin 25α=,∴2,2απ⎡⎤∈π⎢⎥⎣⎦,∴,42ππα⎡⎤∈⎢⎥⎣⎦,cos 25α=-. ∵3,2βπ⎡⎤∈π⎢⎥⎣⎦,∴5,24βαππ⎡⎤-∈⎢⎥⎣⎦,∴()cos βα-=, ∴()()()()cos cos 2cos 2cos sin 2sin αβαβααβααβα+=+-=---⎡⎤⎣⎦2⎛⎛=⨯= ⎝⎭⎝⎭. 又∵5,24αβπ⎡⎤+∈π⎢⎥⎣⎦, ∴74αβπ+=. 故选:A. 【点睛】本题考查三角恒等变换中和差角公式的运用,难度一般.解答时,要注意三角函数值的正负问题,注意目标式与条件式角度之间的关系,然后通过和差角公式求解.二、填空题13.【分析】先根据配角公式将函数化为基本三角函数再根据正弦函数对称轴确定φ满足条件解得φ的值【详解】因为f(x)=sin2x+cos2x=sin 所以y=fsin 则有φ++kπ因此φ=+kπ(k ∈Z)当k 解析:π4【分析】先根据配角公式将函数化为基本三角函数,再根据正弦函数对称轴确定φ满足条件,解得φ的值.【详解】因为f (x )=sin 2x+cos 2sin π24x ⎛⎫+⎪⎝⎭,所以y=f 2x ϕ⎛⎫+= ⎪⎝⎭π24x ϕ⎛⎫++ ⎪⎝⎭,则有φ+ππ42=+k π,因此φ=π4+k π(k ∈Z),当k=0时,φ=π4. 【点睛】本题考查正弦函数对称性,考查基本分析求解能力.14.【分析】由三角形内角的性质结合可得由目标函数式并利用基本不等式即可求得其最小值注意基本不等式的使用条件一正二定三相等其中为锐角【详解】为△的三内角为锐角∴故有即可得∴当且仅当时等号成立∴的最小值为故 解析:23【分析】由三角形内角的性质结合tan 2tan B A =,可得23tan tan tan 2B C B =-,由目标函数式11tan tan B C+并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中A 为锐角,tan 2tan 0B A =>【详解】A 、B 、C 为△ABC 的三内角,A 为锐角,tan 2tan 0B A =>∴tan 2tan[()]2tan()B B C B C π=-+=-+ 故有2(tan tan )tan tan tan 1B C B B C +=-,即可得23tan tan tan 2B C B =-∴2111tan 2tan 12tan tan tan 3tan 33tan 3B B BC B B B -+=+=+≥=,当且仅当tan 1B =时等号成立 ∴11tan tan B C +的最小值为23故答案为:23本题考查了由三角形内角间的函数关系,利用三角恒等变换以及基本不等式求目标三角函数的最值,注意两角和正切公式、基本不等式(使用条件要成立)的应用15.【分析】由已知分别求得再由展开两角差的正弦得答案【详解】解:∵∴∴∴又∴则故答案为:【点睛】本题考查同角三角函数间的关系正弦的差角公式给值求值型的问题属于中档题解析:9【分析】由已知分别求得cos α,()sin αβ+,再由()sin sin βαβα=+-⎡⎤⎣⎦,展开两角差的正弦得答案.【详解】解:∵sin 3α=,0,2πα⎛⎫∈ ⎪⎝⎭,∴1cos 3α==, ∴,0,2παβ⎛⎫∈ ⎪⎝⎭,∴()0,αβπ+∈,又()1cos 3αβ+=-,∴()sin 3αβ+==. 则()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦1133339⎛⎫=⨯--⨯= ⎪⎝⎭. 故答案为:9. 【点睛】本题考查同角三角函数间的关系,正弦的差角公式,给值求值型的问题,属于中档题. 16.3【分析】由诱导公式对原式化简用两角和差公式展开分子分母同除即可得结果【详解】故答案为:3【点睛】本题考查了三角函数的诱导公式三角恒等变换等基本数学知识考查了运算求解能力属于基础题目 解析:3 【分析】 由诱导公式对原式化简3cos()sin()88sin()sin()88ππααππαα-+=--,用两角和差公式展开,分子分母同除cos cos 8πα,即可得结果.3cos()sin()sin cos cos sin tan tan 888883sin()sin()sin cos cos sin tan tan 88888πππππαααααπππππααααα-+++====---- 故答案为:3【点睛】 本题考查了三角函数的诱导公式、三角恒等变换等基本数学知识,考查了运算求解能力,属于基础题目.17.【分析】由已知式求出利用同角三角函数间的平方关系和商数关系将化为代入即可求值【详解】则故答案为:【点睛】本题考查了同角三角函数间的平方关系和商数关系正余弦其次式的计算二倍角的正弦公式属于中档题 解析:2425【分析】 由已知式求出3tan 4α=-,利用同角三角函数间的平方关系和商数关系,将2sin 23cos +αα化为22tan 3tan 1αα++,代入即可求值. 【详解】4sin 3cos 0αα+=, 3tan 4α∴=-, 则22222sin cos 3cos sin 23cos sin cos ααααααα++=+ 22tan 3tan 1αα+=+ 232()343()14⨯-+=-+ 2425=. 故答案为:2425. 【点睛】本题考查了同角三角函数间的平方关系和商数关系,正、余弦其次式的计算,二倍角的正弦公式,属于中档题.18.;【分析】由利用正弦定理边角互化以及两角和的正弦公式可得进而可得结果【详解】由正弦定理可得又则即则C 是三角形的内角则故答案为:【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用属于中档题正弦定理 解析:04C π<<;【分析】由AC AB>,利用正弦定理边角互化以及两角和的正弦公式可得11tan C >,进而可得结果.【详解】由正弦定理可得sin sin AC B AB C=> 又4A π=,则())cos sin sin 2sin sin C C A C C C ++=2tan 2C =+> 即11tan C>,则0tan 1C <<,C 是三角形的内角, 则04C π<<, 故答案为:04C π<<.【点睛】 本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.19.3【分析】在直角三角形中设利用两角差的正切公式求解【详解】设则故故答案为:3【点睛】此题考查在直角三角形中求角的正切值关键在于合理构造角的和差关系其本质是利用两角差的正切公式求解解析:3【分析】在直角三角形中设3BC =,3AC x =<,1tan tan()2DAB BAC DAC ∠=∠-∠=,利用两角差的正切公式求解.【详解】设3BC =,3AC x =<, 则31tan ,tan BAC DAC x x∠=∠=22221tan tan()13321x x DAB BAC DAC x x x ∠=∠-∠===⇒=++, 故tan 3BAC ∠=.故答案为:3【点睛】 此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.20.7【分析】根据角终边定义得将所求分式用倍角公式和差公式化简化为齐次式代化简即可【详解】解:由角的终边经过点得所以故答案为:7【点睛】任意角的三角函数值:(1)角与单位圆交点则;(2)角终边任意一点则; 解析:7【分析】 根据角终边定义得3tan 4θ=-,将所求分式用倍角公式、和差公式化简,化为齐次式,代3tan 4θ=-化简即可. 【详解】解:由角θ的终边经过点(4,3)P -得3tan 4θ=-所以222cos sin 1(2cos 1)sin cos sin 22sin cos )cos cos sin )444-----==+++θθθθθθπππθθθθθ 31cos sin 1tan 473sin cos tan 114θθθθθθ⎛⎫-- ⎪--⎝⎭====++-+. 故答案为:7【点睛】任意角的三角函数值:(1)角α与单位圆交点(,)P x y ,则sin ,cos ,tan (0)y y x x xααα===≠; (2)角α终边任意一点(,)P x y,则sin tan (0)y x xααα===≠; 三、解答题21.(I )4;22π.(Ⅱ) 8π. 【分析】(I )先将函数解析式整理,得到()4224f x x π⎛⎫=++ ⎪⎝⎭,根据正弦函数的周期,即可求出函数 |()|f x 的最小正周期;再由正弦函数的取值范围,即可求出函数的最小值; (Ⅱ)记()()()h x f x g x =-,根据题中条件,先判断 ()h x 在[0,]m 上是增函数;再由题中条件,得到函数()h x 的解析式,根据正弦函数的单调性,即可求出结果.【详解】(I )2211()sin 2cos 2cos 2sin 2222f x x x x x =+-+ 11sin 4cos 4222x x =++ 11cos 4sin 4222x x =++sin 42024x π⎛⎫=++> ⎪⎝⎭, 所以()f x 的最小正周期为2T π=,当sin 414x π⎛⎫+=- ⎪⎝⎭时,函数 |()|f x 的最小值为42. (Ⅱ)因为对任意12,[0,]x x m ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,即()()()()1122f x g x f x g x -<-,记()()()h x f x g x =-,即()()12h x h x <,所以()h x 在[0,]m 上是增函数.又3()sin 42sin 42828424g x f x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.所以3()()()442424h x f x g x x x ππ⎛⎫⎛⎫=-=+-+ ⎪ ⎪⎝⎭⎝⎭2sin 4cos sin 424x x π=⨯=, 令24222k x k ππππ-≤≤+,求得2828k k x ππππ-≤≤+. 故()h x 的单调增区间为,2828k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈, 所以实数m 的最大值为8π. 【点睛】 关键点睛:本题主要考查三角函数的恒等变换及三角函数的性质,涉及到函数的平移,利用构造函数的思想,求正弦型函数的单调区间,以及利用单调性求参数是解决本题的关键.22.当6πα=时,矩形ABCD . 【分析】 由题意可得2cosCD αα=-,2sin BC α=,从而可得矩形ABCD 的面积为S CD BC =⋅(2cos )2sinααα=⋅)6πα=+-,再由03πα<<可得52666πππα<+<,由此可得262ππα+=时,S 取得最大值 【详解】在Rt OBC 中,2sin BC α=,2cos OC α=.在Rt ADO 中,tan 3AD OD π==, 所以OD AD α===, 所以2cosCD OC OD αα=-=. 设矩形ABCD 的面积为S ,则S CD BC =⋅(2cos )2sinααα=⋅ 24sin cosααα= 2sin 22αα=- )6πα=+. 由03πα<<,得52666πππα<+<,所以当262ππα+=,即6πα=时,max S ==因此,当6πα=时,矩形ABCD 【点睛】 关键点点睛:此题考查三角函数的应用,解题的关键是将四边形ABCD 的面积表示为S CD BC =⋅(2cos )2sinααα=⋅)6πα=+-,再利用三角函数的性质可求得其最大值,属于中档题 23.(1)7;(2)()2f x x x =+,单调递增;(3)-1.【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解.(2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解.【详解】(1)由题意()12f =,所以()()3214f f a a =+=+,又()2323631111f =⨯-⨯+=, 因为411a +=,所以7a =;(2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++, 又()()227f x f x +=+,代入解得:()2f x x x =+; 显然,()f x 在(0,2],(2,4]上分别是单增函数,又()26f =,而当2x +→时,7y →,因为76>,所以()f x 在(0,4]上单调递增;(3)由(2)知,()f x 是区间(0,4]上单调递增,且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =;再看函数()24 log 231x g x ⎛⎫=+⎪-⎝⎭, 由420031x x +>⇒>-,即定义域为(0,)+∞, 且4231x y =+-在(0,)+∞上单减, 所以()24log 231x g x ⎛⎫=+⎪-⎝⎭在(0,)+∞上单减, 又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立, ①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,当0t =代入得()10m -+≥,矛盾;③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩, 综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.24.(1)最大值为2,最小值为1(2【分析】(1)利用两角和差的正弦、余弦公式、二倍角公式化简函数的解析式为()f x =2sin (2x +3π),由,126x ππ⎡⎤∈-⎢⎥⎣⎦,再根据正弦函数的定义域和值域求得函数()f x 的最值; (2)锐角△ABC 中,由f (A )=0 可得A =3π,利用基本不等式求得bc ≤4,即bc 的最大值为4,由此求得△ABC 的面积1sin 2S bc A =的最大值. 【详解】(1)∵函数2()2cos sin()sin cos 3f x x x x x x π=++22cos s s sin cos in x x x x x x -+=sin 222sin(2)3x x x π==+ ∵,126x ππ⎡⎤∈-⎢⎥⎣⎦, ∴6π≤2x +3π≤23π, 1sin(2)123x π∴≤+≤ 故函数f (x )的最大值为2,最小值为1.(2)锐角△ABC 中,由()0f A =可得 sin (2A +)03π=, ∴A =3π. ∵b +c =当且仅当b =c 时取等号,故bc ≤4,即bc 的最大值为 4.故△ABC 面积1sin 24S bc A ==≤故△ABC【点睛】 关键点点睛:求三角形面积的最值问题,一般需要利用面积公式111sin sin sin 222S bc A ac B ab C ===.根据题目条件选择合适的方法求出两边之积的最值,一般考虑余弦定理及均值不等式,属于中档题.25.(1)()sin 26f x x π⎛⎫=+⎪⎝⎭;(2. 【分析】(1)根据最大值求出A ,根据周期求出ω,根据极大值点求出ϕ (2)根据角的范围求出4cos 265x π⎛⎫+= ⎪⎝⎭,将cos2x 写成cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和与差的余弦公式展开,求解即可. 【详解】(1)由图知121,,2362A T πππ==-= ,2πω∴==T 又22,,62k k Z ππϕπ⨯+=+∈26k πϕπ∴=+又||2πϕ<,,()sin 266f x x ππϕ⎛⎫∴==+ ⎪⎝⎭ (2)3()5f x =- 所以3sin 265x π⎛⎫+=- ⎪⎝⎭, ,236262x x πππππ-<<-<+<, 又因为34sin 2,cos 26565x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,所以 cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ cos 2cos sin 2sin 6666x x ππππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭431552=-⨯=【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ. (2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.26.(1);(2. 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sin cos 222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-, 所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.。

(易错题)高中数学必修四第三章《三角恒等变形》测试题(答案解析)

(易错题)高中数学必修四第三章《三角恒等变形》测试题(答案解析)

一、选择题1.已知函数()f x 满足()cos 1cos21f x x -=-,则()f x 的解析式为( ) A .()()22420f x x x x =+-≤≤B .()()224f x x x x R =+∈C .()()2120f x x x =--≤≤D .()()21f x x x R =-∈2.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形3.已知α为锐角,且3cos()65πα+=,则sin α=( )A B C D 4.函数()sin sin 22f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( ) A .2B .1C .18D .985.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫-= ⎪⎝⎭( ) A .4-B .4C .13-D .136.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,BC 边上的高为h ,且3h =,则2c a b c c b b ++的最大值是( )A .B .C .4D .67.已知()0,απ∈,()2sin 2cos21παα-=-,则sin α=( )A .15B C .5-D 8.已知3sin 85πα⎛⎫+= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos2α=( )A .50 B .50C .25D .259.若()tan 804sin 420α+=,则()tan 20α+的值为( )A .BC D10.已知()()()ππcos sin 22cos πtan πf ααααα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=---,则2020π3f ⎛⎫-= ⎪⎝⎭( )A .3-B .12-C .12D .3211.已知3cos()63πα+=,则sin(2)6πα-的值为( ) A .223B .13C .13-D .223-12.已知()1sin 30cos 3αα︒+=+,则()sin 230α+︒=( ) A .79-B .79C .43D .43-二、填空题13.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____. 14.已知4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,则tan 4πθ⎛⎫+= ⎪⎝⎭____________. 15.已知O 为单位圆,A 、B 在圆上,向量OA ,OB 的夹角为60°,点C 在劣弧AB 上运动,若OC xOA yOB =+,其中,x y R ∈,则x y +的取值范围___________. 16.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.17.若函数()()()sin cos 2f x x x πϕϕϕ⎛⎫=+++<⎪⎝⎭为偶函数,则ϕ=______. 18.若角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭,则cos2=α______. 19.已知1cos cos 2αβ+=,1sin sin 3αβ+=,则cos()αβ-=______. 20.已知,,0,2παβγ⎛⎫∈ ⎪⎝⎭,且222coscos cos 2αβγ++=,则cos cos cos sin sin sin αβγαβγ++++的最小值为______.三、解答题21.已知函数()1cos 2sin cos 2f x x x x =+⋅,其中x ∈R . (1)求使()12f x ≥的x 的取值范围; (2)若函数()23sin 224g x x π⎛⎫=+ ⎪⎝⎭,且对任意的120x x t ≤<≤,恒有()()()()1212f x f x g x g x -<-成立,求实数t 的最大值.22.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.23.设函数23()3sin cos 3sin 2f x x x x =+-. (1)求函数的单调递减区间;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的值域. 24.如图,角θ的顶点与平面直角坐标系xOy 的原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点P ,若点P 的坐标为04(,)5y -.(1)求tan sin 2θθ-的值;(2)若将OP 绕原点O 按逆时针方向旋转40︒,得到角α,设tan m α=,求()tan 85θ+︒的值.25.已知函数21()cos2sin 12sin 22x f x x x ⎛⎫=+⋅- ⎪⎝⎭,23()24g x x π⎛⎫=+ ⎪⎝⎭.(1)对任意的[]12,0,x x t ∈,当12x x <时,均有()()()()1212f x f x g x g x -<-成立,求正实数t 的最大值;(2)在满足(1)的条件时,若方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=在区间,4t π⎛⎫- ⎪⎝⎭上有解,求实数a 的取值范围.26.已知函数21()cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点________;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.你需要在①、②中选择一个,补在(2)中的横线上,并加以解答. ①向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半; ②纵坐标保持不变,横坐标缩短到原来的一半,再向右平移4π个单位.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用换元法,设[]cos 12,0x t -=∈-,将原函数转化成关于t 的关系式,进行整理即得()f x 的解析式.【详解】函数()f x 满足()22cos 1cos212cos 112cos 2f x x x x -=-=--=-,设cos 1x t -=,则cos 1x t =+,由[]cos 1,1x ∈-知[]2,0t ∈-, 故原函数可转化为()()2221224f t t t t =+-=+,[]2,0t ∈-,即()f x 的解析式为()()22420f x x x x =+-≤≤.故选:A. 【点睛】方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解.2.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 3.B解析:B 【分析】由同角三角函数可得in (α6π+)4=5,再利用两角差的正弦公式展开sinα=sin[(α6π+)6π-]即可. 【详解】∵cos (α6π+)3=5(α为锐角),∴α6π+为锐角,∴sin (α6π+)4=5,∴sinα=sin[(α6π+)6π-]=sin (α6π+)cos 6πcos (α6π+)sin 6π4313525210=⋅-⋅=, 故选:B . 【点睛】本题考查了三角函数的同角公式和两角差的正弦公式,考查了计算能力和逻辑推理能力,属于基础题目.4.D解析:D 【分析】利用诱导公式与二倍角的余弦公式化简,再结合二次函数配方法求解即可. 【详解】因为()sin sin 2sin cos 22f x x x x x π⎛⎫=++=+ ⎪⎝⎭, 2219sin 12sin 2sin 48x x x ⎛⎫=+-=--+ ⎪⎝⎭所以()f x 的最大值为98, 故选:D. 【点睛】本题主要考查诱导公式与二倍角的余弦公式的应用,考查了二次函数的性质,属于基础题.5.C解析:C 【解析】因为cos()2cos()2παπα+=-,所以sin 2cos tan 2ααα-=-⇒=, 所以1tan 1tan()41tan 3πααα--==-+,故选C. 6.C解析:C 【分析】由余弦定理化简可得2222cos c b a a A b c bc bc ++=+,利用三角形面积公式可得2sin a A =,解得22cos 4sin(6c b a A A A b c bc π++=+=+),利用正弦函数的图象和性质即可得解其最大值. 【详解】由余弦定理可得:2222cos b c a bc A +=+,故:22222222cos 22cos c b a a b c a bc A a A b c bc bc bc bc +++++===+, 而2111sin 222ABC S bc A ah a ∆===,故2sin a A =,所以:2222cos 2cos 4sin()46c b a a A A A A b c bc bc π++=+=+=+. 故选C .【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.7.D解析:D 【分析】先利用诱导公式化简,再利用正弦、余弦的二倍角公式化简可得结果 【详解】解:由()2sin 2cos21παα-=-,得2sin 2cos21αα=-, 所以24sin cos 12sin 1ααα=--,即22sin cos sin ααα=-, 因为()0,απ∈,所以sin 0α≠, 所以2cos sin αα=-, 因为22sin cos 1αα+=, 所以221sin sin 14αα+=,所以24sin 5α=,因为()0,απ∈,所以sin 0α>,所以sin 5α=, 故选:D 【点睛】此题考查诱导公式的应用,考查二倍角公式的应用,考查同角三角函数的关系,属于中档题8.A解析:A 【分析】由平方关系得cos 8πα⎛⎫+⎪⎝⎭,然后由二倍角得出sin 24απ⎛⎫+⎪⎝⎭,cos 24πα⎛⎫+ ⎪⎝⎭,再由两角差的余弦公式求得cos2α. 【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴5,888πππα⎛⎫+∈ ⎪⎝⎭,若,828πππα5⎛⎫+∈ ⎪⎝⎭,则23sin sin 835ππα⎛⎫+>=> ⎪⎝⎭,∴,882πππα⎛⎫+∈ ⎪⎝⎭,∴4cos 85πα⎛⎫+= ⎪⎝⎭,24sin 22sin cos 48825πππααα⎛⎫⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,237cos 2124525πα⎛⎫⎛⎫+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴cos 2cos 2cos 2cos sin 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦72425225250=⨯+⨯=. 故选:A . 【点睛】本题考查两角差的余弦公式,考查平方关系同、二倍角公式,解题时需要确定角的范围,才能在由平方关系求函数值时确定是否是唯一解.9.D解析:D 【分析】 由()tan804sin 420α+=得:()tan 804sin 4204sin 6023α+===,然后将()tan 20α+化为()tan 8060α⎡⎤+-⎣⎦,用正切的差角公式求解.【详解】 因为()tan804sin 4204sin 6023α+===,则()()()()tan 80tan 6023tan 20tan 806071tan 80tan 6012αααα+-⎡⎤+=+-===⎣⎦++⋅+. 故选:D . 【点睛】本题考查诱导公式、正切的差角公式的运用,难度一般.解答时要注意整体思想的运用,即观察目标式与条件式角度之间的和差关系,然后运用公式求解.10.B解析:B 【分析】根据诱导公式和同角三角函数关系式,化简函数式,最后代值计算即可. 【详解】()()()cos sin 22cos tan f ππαααπαπα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=--- ()()sin sin 2cos tan πααπαα⎡⎤⎛⎫-⋅-- ⎪⎢⎥⎝⎭⎣⎦=+⋅- ()()sin cos cos tan αααα-⋅-=-⋅- sin cos sin cos cos ααααα⋅=⋅cos α=,所以2020202020201cos cos cos 673cos 333332f ππππππ⎛⎫⎛⎫⎛⎫-=-==+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B . 【点睛】本题考查利用诱导公式和同角三角函数关系式化简三角函数式并求值,注意三角函数值的符号变化,属于基础题.11.B解析:B 【解析】∵cos 63πα⎛⎫+= ⎪⎝⎭,则5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.12.B解析:B 【分析】根据条件展开化简得到()1sin 303α-︒=,再利用角的变换,得到()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒,再利用二倍角公式化简求值.【详解】由()1sin 30cos 3αα︒+=+,得11cos cos 223ααα+=+, 化简得()1sin 303α-︒=; ()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒ ()21712sin 301299α=--︒=-⨯=故选:B . 【点睛】本题考查三角恒等变换,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.【分析】先根据配角公式将函数化为基本三角函数再根据正弦函数对称轴确定φ满足条件解得φ的值【详解】因为f(x)=sin2x+cos2x=sin 所以y=fsin 则有φ++kπ因此φ=+kπ(k ∈Z)当k解析:π4【分析】先根据配角公式将函数化为基本三角函数,再根据正弦函数对称轴确定φ满足条件,解得φ的值.【详解】因为f(x)=sin 2x+cos 2sinπ24x⎛⎫+⎪⎝⎭,所以y=f2xϕ⎛⎫+=⎪⎝⎭π24xϕ⎛⎫++⎪⎝⎭,则有φ+ππ42=+kπ,因此φ=π4+kπ(k∈Z),当k=0时,φ=π4.【点睛】本题考查正弦函数对称性,考查基本分析求解能力.14.【分析】由且求得得到再结合两角和的正切公式即可求解【详解】因为且可得所以又由故答案为:【点睛】本题主要考查了三角函数的基本关系式以及两角和的正切公式的化简求证其中解答中熟记三角函数的基本关系式和两角解析:1 7【分析】由4cos5θ=,且,02πθ⎛⎫∈-⎪⎝⎭,求得3sin5θ=-,得到3tan4θ=-,再结合两角和的正切公式,即可求解.【详解】因为4cos5θ=,且,02πθ⎛⎫∈-⎪⎝⎭,可得3sin5θ===-,所以sin3tancos4θθθ==-,又由311tan14tan341tan714πθθθ-+⎛⎫+=== ⎪-⎝⎭+.故答案为:1 7 .【点睛】本题主要考查了三角函数的基本关系式,以及两角和的正切公式的化简、求证,其中解答中熟记三角函数的基本关系式和两角和的正切公式,准确运算是解答的关键,着重考查运算与求解能力.15.【分析】以O为原点OA为x轴正方向建立直角坐标系可得AB的坐标设点根据题干条件可得x+y的表达式根据三角函数图像与性质结合的范围即可得答案【详解】由题意以O 为原点OA 为x 轴正方向建立直角坐标系如图所解析:231,3⎡⎤⎢⎥⎣⎦【分析】以O 为原点,OA 为x 轴正方向建立直角坐标系,可得A,B 的坐标,设点(cos ,sin ),[0,]3C πθθθ∈,根据题干条件,可得x+y 的表达式,根据三角函数图像与性质,结合θ的范围,即可得答案. 【详解】由题意,以O 为原点,OA 为x 轴正方向建立直角坐标系,如图所示:由题意得:13(1,0),(,223A B AOB π∠=,则(1,0)OA =,13(,22OB =, 设点(cos ,sin ),[0,]3C πθθθ∈,则(cos ,sin )OC θθ=,因为OC xOA yOB =+,所以1cos 23sin 2x y yθθ⎧=+⎪⎪⎨⎪=⎪⎩,整理得323cos )3x y πθθθ+=+=+,因为03πθ≤≤,得2333πππθ≤+≤, 3sin()13πθ≤+≤,即23231)3πθ≤+≤, 所以x y +的取值范围为231,3⎡⎢⎣⎦.故答案为:231,3⎡⎢⎣⎦.【点睛】本题考查平面向量的坐标运算、辅助角公式的应用、正弦型函数的图像与性质,难点在于根据所给条件,在适当位置建系,再进行求解,考查分析理解,求值化简的能力及数形结合的思想,属中档题.16.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公解析:4π【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-, 因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+, 在ABP △中,tan BPBAP x AB ∠==, 在ADQ △中,tan DQDAQ y AD∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x yBAP DAQ DAQ BAP xy∠+∠+∠+∠===-∠∠-,又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠故答案为:4π 【点睛】本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.17.【分析】先用辅助角公式函数化简为由偶函数的条件可知是函数的对称轴则又由求得的值【详解】由得因为是偶函数故为其对称轴则又因为所以故答案为:【点睛】本题考查了三角函数的恒等变换三角函数的奇偶性对称性属于解析:4π【分析】先用辅助角公式函数化简为())4f x x πϕ=++,由偶函数的条件可知,0x =是函数的对称轴,则()42k k Z ππϕπ+=+∈,又由2πϕ<求得ϕ的值.【详解】由()()()sin cos ()2f x x x πϕϕϕ=+++<得())4f x x πϕ=++,因为()f x 是偶函数,故0x =为其对称轴,()42k k Z ππϕπ+=+∈,则()4k k ϕπ=π+∈Z , 又因为2πϕ<,所以4πϕ=.故答案为:4π. 【点睛】本题考查了三角函数的恒等变换,三角函数的奇偶性,对称性,属于中档题.18.【分析】由题意利用任意角的三角函数的定义求得再利用二倍角公式求得的值【详解】由题意角的终边与单位圆的交点为可得解得即又由故答案为:【点睛】本题主要考查了任意角的三角函数的定义二倍角的正弦公式的应用其解析:79【分析】由题意利用任意角的三角函数的定义求得cos α,再利用二倍角公式求得cos2α的值. 【详解】由题意,角α的终边与单位圆的交点为1,()3m m R ⎛⎫∈ ⎪⎝⎭,可得2119m +=,解得3m =±,即cos 3α=±, 又由287cos 22cos 12199αα=-=⋅-=. 故答案为:79. 【点睛】本题主要考查了任意角的三角函数的定义,二倍角的正弦公式的应用,其中解答中熟记三角函数的定义,结合余弦的倍角公式求解是解答的关键,属于基础题.19.【分析】把两个条件平方相加再利用两角差的余弦公式求得的值【详解】将两式平方可得:①②将①和②相加可得:即解得故答案为:【点睛】本题考查同角三角函数间的基本关系和两角差的余弦公式的应用考查逻辑思维能力解析:5972-【分析】把两个条件平方相加,再利用两角差的余弦公式求得cos()αβ-的值. 【详解】1cos cos 2αβ+=,1sin sin 3αβ+=,将两式平方可得: 221cos 2cos cos cos 4ααββ++=①, 221sin 2sin sin sin 9ααββ++=②, 将①和②相加可得:1322cos cos 2sin sin 36αβαβ++=, 即1322cos()36αβ+-=,解得59cos()72αβ-=-. 故答案为:5972-. 【点睛】本题考查同角三角函数间的基本关系和两角差的余弦公式的应用,考查逻辑思维能力和运算能力,属于常考题.20.【分析】根据同角三角函数关系式及基本不等式可得同理证明另外两组式子成立不等式两边同时相加化简即可得解【详解】由题意知则因为则不等式两边同时加可得开平方可得同理相加可得化简得故答案为:【点睛】本题考查【分析】根据同角三角函数关系式及基本不等式,可得sin sin αβγ+≤,同理证明另外两组式子成立,不等式两边同时相加,化简即可得解. 【详解】由题意知222sin sin sin 1αβγ++=, 则2222sinsin 1sin cos αβγγ+=-=2222sin sin 1sin cos αγββ+=-= 2222sin sin 1sin cos βγαα+=-=因为,,0,2παβγ⎛⎫∈ ⎪⎝⎭,则222sin sin sin sin αβαβ⋅≤+,不等式两边同时加22sin sin αβ+ 可得()()222sin sin 2sinsin αβαβ+≤+开平方可得sin sin αβγ+≤=,同理sin sin βγα+≤=,sin sin γαβ+≤=,相加可得2sin 2sin 2sin αβγαβγ++≤++化简得cos cos cos sin sin sin αβγαβγ++≥++故答案为 【点睛】本题考查了三角函数式的化简求值,同角三角函数关系式的应用,根据基本不等式求最值,属于中档题.三、解答题21.(1),,4k k k Z πππ⎡⎤+∈⎢⎥⎣⎦;(2)4π. 【分析】(1)化简())24f x x π=+,根据正弦函数的图象解不等式sin 242x π⎛⎫+≥⎪⎝⎭可得结果;(2)构造函数()()()sin 2F x f x g x x =-=,将题意转化为当[0,]x t ∈时,()sin 2F x x =为增函数,根据[0,][,]22t ππ⊆-可解得结果.【详解】(1)()111cos 2sin cos cos 2sin 2222224f x x x x x x x π=+⋅=+=+(),()12f x ≥,即sin 242x π⎛⎫+≥ ⎪⎝⎭, 所以3222444k x k k Z πππππ+≤+≤+∈,, 解得4k x k k Z πππ≤≤+∈,,即使()12f x ≥的x 的取值范围是4k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,,.(2)令()()()32244F x f x g x x x ππ=-=+-+()()22sin 22424x x x ππ=+-+=()(), 因为对任意的120x x t ≤≤<,恒有()()()()1212f x f x g x g x -<-成立, 所以当[0,]x t ∈时,()sin 2F x x =为增函数,所以[0,][,]22t ππ⊆-,所以22t π≤,解得4t π≤, 所以实数t 的最大值为4π.【点睛】关键点点睛:构造函数()()()sin 2F x f x g x x =-=,根据函数()sin 2F x x =在[0,]t 上为增函数求解是解题关键.22.(1)7;(2)()2f x x x =+,单调递增;(3)-1.【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解. (2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解. 【详解】(1)由题意()12f =,所以()()3214f f a a =+=+, 又()2323631111f =⨯-⨯+=,因为411a +=,所以7a =; (2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++,又()()227f x f x +=+,代入解得:()2f x x x =+;显然,()f x 在(0,2],(2,4]上分别是单增函数, 又()26f =,而当2x +→时,7y →, 因为76>,所以()f x 在(0,4]上单调递增; (3)由(2)知,()f x 是区间(0,4]上单调递增, 且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++ ()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =; 再看函数()24 log 231x g x ⎛⎫=+ ⎪-⎝⎭, 由420031xx +>⇒>-,即定义域为(0,)+∞, 且4231xy =+-在(0,)+∞上单减, 所以()24log 231xg x ⎛⎫=+⎪-⎝⎭在(0,)+∞上单减, 又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立, 即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立; ②当0m >时,当0t =代入得()10m -+≥,矛盾; ③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩,综上,实数m 的值为-1. 【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.23.(1)511[,] ()1212k k k Z ππππ++∈;(2)3[2-. 【分析】(1)由二倍角公式,两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的单调区间求解.(2)由图象变换得出()g x ,由整体法可求值域. 【详解】解:(1)()23()22sin 122f x x x =+-=32cos222x x -23x π⎫⎛=- ⎪⎝⎭因为:3222232k x k πππππ+≤-≤+5111212k x k ππππ⇔+≤≤+.所以函数的单调递减区间是511[,] ()1212k k k Z ππππ++∈(2)由题可知, ()))4312g x x x πππ=+-=-.因为1344x ππ-≤≤⇔123123x πππ-≤-≤,所以sin()1212x π-≤-≤.故()g x 在3[,]44ππ-上的值域为3[2-. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 如果求函数值域,则可由x 的范围求出x ωϕ+的范围,然后由正弦函数性质得值域. 24.(1)21100;(2)11m m+-. 【分析】(1)由三角函数定义求得cos θ,再由同角间三角函数关系求得sin θ,tan θ,用二倍角公式得sin 2θ后可得结论;(2)由角的关系得8545θα+︒=+︒,利用两角和的正切公式可求得tan(85)θ+︒. 【详解】解:(1)由题意得:4cos 5θ=-,且角θ为第二象限的角则3sin 5θ==,3tan 4θ=- ∴tan sin 2tan 2sin cos θθθθθ-=-334324212455425100⎛⎫=--⨯⨯-=-+= ⎪⎝⎭(2)由题意知40αθ=+︒,则40θα=-︒ 则()()tan 85tan 45θα+︒=+︒tan tan 451tan tan 45αα+︒=-︒11m m +=-. 【点睛】 关键点点睛:本题考查三角函数的定义,两角和与差的正切公式,二倍角公式,同角韹三角函数关系.解题确定角的关系是关键.由旋转得40αθ=+︒,则40θα=-︒,从而有8545θα+︒=+︒,再结合已知条件柯得结论.确定已知角和未知角的关系选用恰当的公式也是解题关键. 25.(1)4π;(2)32a <.【分析】(1)构造()()()h x f x g x =-,由单调性的定义得出()h x 在区间[0,]t 上为增函数,结合正弦型函数的单调性,得出正实数t 的最大值.(2)方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=有解,可分离参数为2()112()1()1h x a h x h x +==-++,在,44ππ⎛⎫- ⎪⎝⎭上有解,再根据()h x 的值域,求解实数a 的取值范围. 【详解】解:(1)依题可知:1()cos 2sin cos 2f x x x x =+24x π⎛⎫=+ ⎪⎝⎭, 又∵()()()()1212f x f x g x g x -<-,∴()()()()1122f x g x f x g x -<-, 令()()()h x f x g x =-,则3()222424h x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222424x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ sin 2x =.∵()()12h x h x <,∴()h x 在[]0,t 上单调递增, ∵22222k x k ππππ-≤≤+,∴()44k x k k Z ππππ-≤≤+∈,∴4t π≤,即t 的最大值为4π. (2)∵[()()1]2()2()10a f x g x f x g x ⋅-+-+-=, ∴(2)[()()]10a f x g x a --+-=,∴2()112()1()1h x a h x h x +==-++,即12sin 21a x =-+在,44ππ⎛⎫- ⎪⎝⎭上有解,∵1sin 21x -<<,∴32a <. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.26.(1)函数的周期为2π;(2)条件选择见解析,max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】(1)用正弦余弦的二倍角公式整理()f x 可得正弦函数标准型,可得函数最小正周期; (2)选①先平移变换后周期变换可得对应的()g x ,可得()g x 的最值; 选②先周期变换后平移变换得对应的()g x ,由此可求得最值. 【详解】(1)∵函数1cos 1()sin sin()12226x f x x x π+=++=++, 所以函数的周期为2π;(2)<选择①>依题意:()cos(2)16g x x π=-++,令226x k πππ+=+,即5()12x k k Z ππ=+∈. 使函数()g x 取得最大值2,即max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; <选择②>依题意:()cos(2)16g x x π=-++,令226x k πππ+=+,即5()12x k k Z ππ=+∈,使函数()g x 取得最大值2,即max ()2g x =使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】 关键点点睛:在解决正弦型函数的周期,最值,单调性等性质时,关键在于利用三角恒等变换将函数化成正弦型函数的标准形,再利用整体代换的思想求解.。

(典型题)高中数学必修四第三章《三角恒等变形》检测题(答案解析)

(典型题)高中数学必修四第三章《三角恒等变形》检测题(答案解析)

一、选择题1.已知sin cos sin cos θθθθ-=,则角θ所在的区间可能是( ).A .0,4π⎛⎫⎪⎝⎭B .,42ππ⎛⎫⎪⎝⎭C .3,24ππ⎛⎫⎪⎝⎭D .3,4ππ⎛⎫⎪⎝⎭2.已知函数()sin 3cos f x x x ωω=+()0ω>的图像与直线2y =交于,A B 两点,若AB 的最小值为π,则函数()f x 的一条对称轴是( )A .3x π=B .4x π=C .6x π=D .12x π=3.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α=( ) A .15B .5 C .35D .254.在ABC 中,2cos 2A =-,1tan 3B =,则()tan A B -=( )A .2-B .12-C .12D .25.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 3cos 23b A a B b c -=-,则A =( )A .3πB .4π C .6π D .23π 7.函数()()sin 0y x πϕϕ=+>的部分图象如图所示,设P 是图象最高点,,A B 是图象与x 轴的交点,记APB θ∠=,则sin 2θ的值是( )A .1665B .6365C .1663-D .1665-8.在ABC 中三内角A ,B ,C 的对边分别为a ,b ,c ,且222b c a +=,2bc =,则角C 的大小是( )A .6π或23π B .3πC .23π D .6π9.函数2()3sin cos f x x x x =+的最大值为( )A B .C .D .3+10.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-711.已知()0,απ∈,()2sin 2cos21παα-=-,则sin α=( )A .15B C .5-D 12.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若3,44ππα⎛⎫∈ ⎪⎝⎭,且3sin 45πα⎛⎫+= ⎪⎝⎭,则0x 的值为( )A B .10C .10-D .二、填空题13.经过点(4,1)P -作圆2220x y y +-=的切线,设两个切点分别为A ,B ,则tan APB ∠=__________.14.222cos 402cos 50cos35cos65cos55cos155︒-︒=︒︒+︒︒_________.15.已知A 、B 、C 为△ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为______.16.若cos()3πα-=-,02πα⎛⎫∈- ⎪⎝⎭,则tan α的值是____________.17.若1tan 20201tan αα+=-,则1tan 2cos 2αα+=____________.18.已知方程23310x ax a +++=,()2a >的两根为tan α,tan β,α,,22ππβ⎛⎫∈- ⎪⎝⎭,则αβ+=________.19.设)sin17cos172a =︒+︒,22cos 131b =︒-,c =则a ,b ,c 的大小关系是______.20.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________.三、解答题21.已知函数()2cos 2f x x x =-,[,]34x ππ∈-. (1)求函数()f x 的周期和值域; (2)设()3a g x x x =+,若对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,求实数a 的取值范围.22.已知函数2()2cos sin 1(0)2f x x x x πωωωω⎛⎫=-+-> ⎪⎝⎭,其最小正周期为π.(1)求ω的值及函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移3π个单位得到函数()y g x =,求函数()y g x =在区间70,12π⎛⎫ ⎪⎝⎭上的值域.23.已知函数()212sin 26f x x x π⎛⎫=-+- ⎪⎝⎭. (1)求函数()f x 的对称中心和最小正周期; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值及取得最大值时自变量x 的集合. 24.在直角坐标系xOy 中,已知锐角α和β的顶点都在坐标原点,始边都与x 轴非负半轴重合,且终边与单位圆分别交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫⎪⎝⎭,求()sin αβ-的值. 25.已知sin α、cos α分别是方程2255120x x +-=的两根,且α是第二象限角. (1)求cos2α的值; (2)求2sin cos sin 3cos αααα-+的值.26.已知函数()2sin 22cos 1f x a x x =+-,再从条件①、②、③这三个条件中选择一个作为已知,求:(Ⅰ)()f x 的最小正周期; (Ⅱ)()f x 的单调递增区间.条件①:()f x 图像的对称轴为8x π=;条件②:14f π⎛⎫=⎪⎝⎭;条件③:a =注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先化简已知得sin24πθθ⎛⎫-= ⎪⎝⎭,然后根据各个选项确定等式两端的取值范围从而得到答案. 【详解】由sin cos sin cos θθθθ-=得,sin24πθθ⎛⎫-= ⎪⎝⎭, 对于A , 当0,4πθ⎛⎫∈ ⎪⎝⎭时,,044ππθ⎛⎫-∈- ⎪⎝⎭,sin 04πθ⎛⎫-< ⎪⎝⎭, 而0,22θπ⎛⎫⎪⎝⎭∈,sin20θ>,两个式子不可能相等,故错误;对于B ,当,42ππθ⎛⎫∈ ⎪⎝⎭时,0,44ππθ⎛⎫-∈ ⎪⎝⎭,sin 4πθ⎛⎛⎫-∈ ⎪ ⎝⎭⎝⎭,()0,24πθ⎛⎫-∈ ⎪⎝⎭ ,22,ππθ∈⎛⎫⎪⎝⎭,()sin20,1θ∈,存在θ使得sin24πθθ⎛⎫-= ⎪⎝⎭,故正确;对于C , 3,24ππθ⎛⎫∈ ⎪⎝⎭时,42,4πππθ⎛⎫-∈ ⎪⎝⎭,sin 42πθ⎛⎫⎛⎫-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,(2,4πθ⎛⎫-∈ ⎪⎝⎭,而3,22πθπ⎛∈⎫⎪⎝⎭,()sin21,0θ∈-,不可能相等,所以错误;对于D , 当3,4πθπ⎛⎫∈⎪⎝⎭时,3,424πππθ⎛⎫-∈ ⎪⎝⎭,sin 4πθ⎫⎛⎫-∈⎪ ⎪⎪⎝⎭⎝⎭, (2,4πθ⎛⎫-∈ ⎪⎝⎭,而3,222ππθ⎛∈⎫⎪⎝⎭,()sin21,0θ∈-,不可能相等,所以错误 故选:B. 【点睛】本题主要考查了三角恒等式的应用,三角函数在各象限内的符号,关键点是根据各个选项确定等号两端式子的取值范围,考查了学生分析问题、解决问题的能力.2.D解析:D 【分析】化简得()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由题可得周期为π,即可求出2ω=,令2,32πππ+=+∈x k k Z 求出对称轴即可得出答案.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,()f x 直线2y =交于,A B 两点,且AB 的最小值为π,T π=,则22T πω==,即()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令2,32πππ+=+∈x k k Z ,则,122k x k Z ππ=+∈, ()f x ∴的对称轴为,122k x k Z ππ=+∈, 当0k =时,12x π=.故选:D. 【点睛】本题考查正弦型函数的对称轴问题,解题的关键是利用辅助角公式化简函数得出周期,求出解析式,即可解决.3.D解析:D 【分析】先利用二倍角公式化简整理得到1sin cos 2αα=,再利用同角三角函数的平方关系,结合范围解出cos α即可. 【详解】由2sin 2cos21αα-=,0,2πα⎛⎫∈ ⎪⎝⎭,得2sin 21cos2αα=+,cos 0α>, 所以24sin cos 2cos ααα=,即2sin cos αα=,故1sin cos 2αα=, 代入22sin cos 1αα+=得,25cos 14α=,故24cos 5α=,因为cos 0α>,所以cos 5α=. 故选:D. 【点睛】 关键点点睛:本题解题关键在于熟记公式并准确运算,还要注意角的范围的限制,才能突破难点.4.A解析:A 【分析】根据已知条件计算出tan A 的值,然后根据两角差的正切公式结合tan ,tan A B 的值计算出()tan A B -的值.【详解】因为cos A =且()0,A π∈,所以34A π=,所以tan 1A =-,所以()()11tan tan 3tan 211tan tan 113A BA B A B ----===-++-⨯,故选:A. 【点睛】关键点点睛:解答本题的关键是根据特殊角的余弦值求出其正切值以及两角差的正切公式的熟练运用.5.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 6.C解析:C 【分析】由正弦定理,两角和的正弦函数公式化简已知等式,结合sin 0B ≠,可得2sin 23A π⎛⎫+= ⎪⎝⎭,根据题意可求范围(0,)A π∈,根据正弦函数的图象和性质即可求解A 的值. 【详解】解:∵ bsin cos 2A B b -=,∴由正弦定理可得:sin sin cos 2sin B A A B B C =,∴sin sin cos 2sin B A A B B C =2sin cos cos sin )B A B A B =-+,∴sin sin 2sin sin B A B A B =, 又∵sin 0B ≠,∴sin 2A A +=, ∴2sin 23A π⎛⎫+= ⎪⎝⎭,可得232A k πππ+=+,Z k ∈, 又(0,)A π∈,∴6A π=.故选:C . 【点睛】本题考查正弦定理和三角恒等变换的运用,考查运算求解能力,求解时注意角的范围.7.A解析:A 【分析】过点P 作x 轴的垂线,垂足为D ,由三角函数性质得2AB =,12AD =,1DP =,32DB =,故1tan 2APD ∠=,3tan 2BPD ∠=,进而得()tan tan 8APD BPD θ=∠+∠=,故2222sin cos 2tan 16sin 22sin cos sin cos tan 165θθθθθθθθθ====++. 【详解】解:根据题意,如图,过点P 作x 轴的垂线,垂足为D , 由于函数的最小正周期为22T ππ==,最大值为max 1y =,所以2AB =,12AD =,1DP =,32DB =, 所以在直角三角形ADP 和直角三角形BDP 中,1tan 2APD ∠=,3tan 2BPD ∠=, 所以()tan tan tan APB APD BPD θ=∠=∠+∠tan tan 28311tan tan 122APD BPD APD BPD ∠+∠===-∠⋅∠-⨯,所以2222sin cos 2tan 16sin 22sin cos sin cos tan 165θθθθθθθθθ====++.故选:A.【点睛】本题考查三角函数的性质,同角三角函数关系,正切的和角公式,考查运算能力,是中档题.8.A解析:A 【分析】由2223b c bc a +=可得cosA 3=2bc 3a =可得233sin A 4=结合内角和定理可得C 值. 【详解】∵2223b c bc a +=,∴cos A 222332b c a bc bc +-===, 由0<A <π,可得A 6π=,∵23bc a =,∴233sin A =∴53sin 64C sinC π⎛⎫-=⎪⎝⎭,即)133sinCcosC 122cos C +-=解得350C 6π<<∴2C=3π或43π,即C=6π或23π 故选A 【点睛】本题考查正弦定理和余弦定理的运用,同时考查两角和差的正弦公式和内角和定理,属于中档题.9.A解析:A 【分析】利用降次公式、二倍角公式和辅助角公式化简()f x ,由此求得()f x 的最大值. 【详解】 依题意()1cos 233sin 2sin 22222x f x x x x -=+=+12cos 2222262x x x π⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭, 所以()f x22=. 故选:A 【点睛】本小题主要考查降次公式、二倍角公式和辅助角公式,考查三角函数的最值的求法,属于中档题.10.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.11.D解析:D 【分析】先利用诱导公式化简,再利用正弦、余弦的二倍角公式化简可得结果 【详解】解:由()2sin 2cos21παα-=-,得2sin 2cos21αα=-, 所以24sin cos 12sin 1ααα=--,即22sin cos sin ααα=-, 因为()0,απ∈,所以sin 0α≠, 所以2cos sin αα=-, 因为22sin cos 1αα+=, 所以221sin sin 14αα+=,所以24sin 5α=,因为()0,απ∈,所以sin 0α>,所以sin 5α=, 故选:D 【点睛】此题考查诱导公式的应用,考查二倍角公式的应用,考查同角三角函数的关系,属于中档题12.C解析:C 【分析】利用两角和差的余弦公式以及三角函数的定义进行求解即可. 【详解】3,44ππα⎛⎫∈⎪⎝⎭, ,42ππαπ⎛⎫∴+∈ ⎪⎝⎭, 3sin 45πα⎛⎫+= ⎪⎝⎭,4cos 45πα⎛⎫∴+=- ⎪⎝⎭,则0cos cos cos cos sin sin 444444x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43525210=-⨯+⨯=-, 故选C .本题主要考查两角和差的三角公式的应用,结合三角函数的定义是解决本题的关键.二、填空题13.【分析】由圆的方程可以求出圆心坐标及半径进而可以求出从而求出的值由利用二倍角的正切公式可以求出的值【详解】圆的方程可化为则圆心为半径为r=1设则【点睛】本题考查了直线与圆的位置关系考查了圆的性质考查 解析:199【分析】由圆的方程可以求出圆心坐标及半径,进而可以求出25PD =,1DA=,从而求出tan APD ∠的值,由2APB APD ∠∠=,利用二倍角的正切公式,可以求出tan APB ∠的值. 【详解】圆的方程可化为()2211x y +-=,则圆心为()0,1D ,半径为r =1,设APD ∠θ=,AP DA ⊥,()2241125PD =+--=,2220119PA PD r =-=-=,则19tan 19DA PA θ===,22192tan 1919 tan tan211tan 119APB θθθ∠====--.【点睛】本题考查了直线与圆的位置关系,考查了圆的性质,考查了两点间的距离公式,二倍角的正切公式,属于基础题.14.【分析】用诱导公式降次公式两角和与差的正余弦公式化简求值得到答案【详解】原式故答案为:【点睛】本题考查了三角关系的化简与求值诱导公式转化角两角和与差公式二倍角公式属于中档题 解析:2-【分析】用诱导公式、降次公式、两角和与差的正余弦公式化简求值,得到答案.原式()()22222cos 40cos 502cos 402cos 50sin 55cos 65cos55sin 65sin 5565︒-︒︒-︒==︒︒-︒︒︒-︒. ()2cos80sin 10︒=-︒2sin10sin10︒=-︒2=-故答案为:2-. 【点睛】本题考查了三角关系的化简与求值,诱导公式转化角,两角和与差公式,二倍角公式,属于中档题.15.【分析】由三角形内角的性质结合可得由目标函数式并利用基本不等式即可求得其最小值注意基本不等式的使用条件一正二定三相等其中为锐角【详解】为△的三内角为锐角∴故有即可得∴当且仅当时等号成立∴的最小值为故解析:23【分析】由三角形内角的性质结合tan 2tan B A =,可得23tan tan tan 2BC B =-,由目标函数式11tan tan B C+并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中A 为锐角,tan 2tan 0B A => 【详解】A 、B 、C 为△ABC 的三内角,A 为锐角,tan 2tan 0B A => ∴tan 2tan[()]2tan()B B C B C π=-+=-+故有2(tan tan )tan tan tan 1B C B B C +=-,即可得23tan tan tan 2BC B =-∴2111tan 2tan 12tan tan tan 3tan 33tan 3B B BC B B B -+=+=+≥=,当且仅当tan 1B =时等号成立 ∴11tan tan B C +的最小值为23故答案为:23【点睛】本题考查了由三角形内角间的函数关系,利用三角恒等变换以及基本不等式求目标三角函数的最值,注意两角和正切公式、基本不等式(使用条件要成立)的应用16.【分析】由诱导公式化简再利用同角三角函数间的关系和角的范围可得答案【详解】由且得故答案为:【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系在运用公式时注意角的范围属于基础题解析:2-【分析】由诱导公式化简cos()πα-,再利用同角三角函数间的关系和角的范围可得答案. 【详解】由cos()3πα-=-,且,02πα⎛⎫∈- ⎪⎝⎭,得cos tan 32ααα=====-.故答案为:. 【点睛】本题考查三角函数的诱导公式和同角三角函数间的关系,在运用公式时,注意角的范围,属于基础题.17.2020【分析】由条件求出化简待求式为的形式即可求解【详解】因为解得所以故答案为:2020【点睛】本题主要考查了同角三角函数的基本关系考查了运算能力属于中档题解析:2020 【分析】由条件求出tan α,化简待求式为tan α的形式即可求解. 【详解】 因为1tan 20201tan αα+=-,解得2019tan 2021α=, 所以222222221cos sin 2tan 1tan 2tan tan 2cos 2cos sin 1tan 1tan 1tan αααααααααααα+++=+=+---- 2220191(1tan )1tan 2021=202020191tan 1tan 12021αααα+++===---, 故答案为:2020 【点睛】本题主要考查了同角三角函数的基本关系,考查了运算能力,属于中档题.18.【分析】根据方程的两根为得到由两角和的正切公式得到再确定的范围求解【详解】因为方程的两根为所以则因为所以所以所以故答案为:【点睛】本题主要考查两角和与差的正切公式的应用还考查了运算求解的能力属于中档题解析:34π-【分析】根据方程23310x ax a +++=,()2a >的两根为tan α,tan β,得到tan tan 3,tan tan 31a a αβαβ+=-⋅=+,由两角和的正切公式得到()tan αβ+,再确定αβ+的范围求解. 【详解】因为方程23310x ax a +++=,()2a >的两根为tan α,tan β, 所以tan tan 3,tan tan 31a a αβαβ+=-⋅=+, 则()tan tan tan 11tan tan αβαβαβ++==-⋅,因为2a >,所以tan tan 30,tan tan 310a a αβαβ+=-<⋅=+>, 所以tan 0,tan 0αβ<<,α,,02πβ⎛⎫∈-⎪⎝⎭, (),0αβπ+∈-,所以34παβ+=-. 故答案为:34π- 【点睛】本题主要考查两角和与差的正切公式的应用,还考查了运算求解的能力,属于中档题.19.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 622a =︒+︒=︒+︒=,22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<.故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.20.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅= 当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.三、解答题21.(1)T π=,[3]-;(2)14a ≥. 【分析】(1)利用辅助角公式化简可得()2sin(2)6f x x π=-,代入周期公式,可求得周期T ,根据x 的范围,求得26x π-的范围,根据正弦型函数的性质,即可求得答案.(2)根据题意可得min max ()()g x f x ≥,由(1)可得max ()3f x =0a <,0a =,0a >三种,()3ag x x x=+的最小值,结合对勾函数的性质,即可求得答案.【详解】(1)1()2cos 2)2sin(2)26f x x x x π=-=-, 周期22T ππ== 由[,]34x ππ∈-,则52[,]663x πππ-∈-, 所以当262x ππ-=-,即6x π=-时,()2sin(2)6f x x π=-有最小值-1当263x ππ-=,即4x π=时,()2sin(2)6f x x π=-所以1sin(2)62x π-≤-≤,所以22sin(2)6x π-≤-≤即()f x 的值域为[-(2)对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,只需当min max ()()g x f x ≥由(1)知,max ()f x =当0a <,()3ag x x x=+为(0,)+∞上增函数,值域为R ,不满足题意; 当0a =,()3g x x =为(0,)+∞上增函数,值域为(0,)+∞,不满足题意;当0a >,()3ag x x x=+为对勾函数,所以()3a g x x x =+≥=min ()g x =,当且仅当3ax x=,即x =.由题意,即可,所以14a ≥. 【点睛】解题的关键是将题干条件等价为min max ()()g x f x ≥,分别根据12,x x 的范围,求得两函数的最值,再进行求解,考查分析计算的能力,属中档题.22.(1)1ω=,单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦;(2)(2].(1)化简得()2cos 23f x x πω⎛⎫=+ ⎪⎝⎭,再根据最小正周期得1ω=,进而整体代换求解得()f x 的单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦; (2)根据题意得()2cos 23g x x π⎛⎫=-⎪⎝⎭,由于70,12x π⎛⎫∈ ⎪⎝⎭,故52336x πππ-<-<,故cos 2123x π⎛⎫<-≤ ⎪⎝⎭,()2g x <≤,进而得函数值域. 【详解】(1)因为2()2cos sin 1(0)2f x x x x πωωωω⎛⎫=-+-> ⎪⎝⎭22cos 1cos x x x ωωω=--cos 22x x ωω=-12cos 2222x x ωω⎛⎫=- ⎪ ⎪⎝⎭2cos 23x πω⎛⎫=+ ⎪⎝⎭. 所以2|2|T πππωω===,即1ω=, ()2cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222()3k x k k Z ππππ-≤+≤∈,得2()36k x k k Z ππππ-≤≤-∈, 所以()f x 的单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦. (2)()2cos 23f x x π⎛⎫=+ ⎪⎝⎭向右平移3π个单位得到()2cos 23g x x π⎛⎫=- ⎪⎝⎭, 当70,12x π⎛⎫∈ ⎪⎝⎭时,52336x πππ-<-<,所以cos 213x π⎛⎫<-≤ ⎪⎝⎭,()2g x <≤,所以函数()y g x =的值域为(2⎤⎦. 【点睛】本题考查三角函数恒等变换,三角函数的性质等,考查运算求解能力,是中档题.本题解题的关键在于根据三角恒等变换化简得函数()2cos 23f x x πω⎛⎫=+⎪⎝⎭,进而根据三角函数的23.(1)最小正周期T π=;对称中心为,0122k k Z ππ⎛⎫+∈ ⎪⎝⎭,;(2)()max 1f x =,自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【分析】(1)先利用两角和与差的余弦公式及辅助角公式将函数化成标准形式11()sin 2262f x x π⎛⎫=-+ ⎪⎝⎭,再利用周期公式计算周期,整体代入法计算对称中心即可;(2)利用整体代入法,由0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,根据正弦函数最值的特征得到何时取最值即可. 【详解】解:(1)()212sin 26f x x x π⎛⎫=-+- ⎪⎝⎭31cos 21cos 2242xx x -=-+-11112cos 2sin 2442262x x x π⎛⎫=-+=-+ ⎪⎝⎭ 故最小正周期22T ππ==,令2,6x k k π-=π∈Z ,解得,122k x k Z ππ=+∈,故对称中心为,0122k k Z ππ⎛⎫+∈⎪⎝⎭,; (2)∵02x π≤≤,∴52666x πππ-≤-≤, 当226x ππ-=时,max sin 216πx ⎛⎫-= ⎪⎝⎭,故()max 111122f x =⨯+=,此时3x π=,即自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【点睛】 方法点睛:求三角函数性质问题时,通常先利用两角和与差的三角函数公式、二倍角公式及辅助角公式将函数化简成基本形式()()sin f x A x b ωϕ=++,再利用整体代入法求解单调性、对称性,最值等性质.24.3365-【分析】 利用已知求出1213m =和45n =,再利用差角的正弦公式求解.【详解】锐角α和β的顶点都在坐标原点始边都与x 轴非负半轴重合, 且终边与单位圆交于点5,13P m ⎛⎫ ⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭, cos 0m α∴=>,5sin 13α=,2251169m +=,3cos 5β=,sin 0n β=>,29125n +=, 求得1213m =,45n =,5312433sin()sin cos cos sin 13513565αβαβαβ∴-=-=⨯-⨯=-. 【点睛】结论点睛:三角函数的坐标定义:点(,)P x y 是角α终边上的任意的一点(原点除外),r代表点到原点的距离,r =sin α=y r , cos α=x r ,tan α=yx. 25.(1)725;(2)109-. 【分析】(1)由韦达定理及α是第二象限角可以求得sin α和cos α的值, 再由22cos 2cos sin ααα=-计算即可;(2)由(1)可知sin α和cos α的值,然后代值计算即可. 【详解】(1)因为sin α、cos α分别是方程2255120x x +-=的两根,所以有1sin cos 512sin cos 25αααα⎧+=-⎪⎪⎨⎪=-⎪⎩,又α是第二象限角,所以sin 0α>,cos 0α<,3sin 5α∴=,4cos 5α=-,2222437cos 2cos sin 5525ααα⎛⎫⎛⎫∴=-=--= ⎪ ⎪⎝⎭⎝⎭;(2)由(1)知,3sin 5α=,4cos 5α=-,3422sin cos 21055934sin 3cos 93555αααα⎛⎫⨯-- ⎪-⎝⎭∴===-+⎛⎫-+⨯- ⎪⎝⎭.【点睛】易错点睛:本题易忽略角α的范围,从而导致错解sin α和cos α的值,最后结果错误. 26.(Ⅰ)答案见解析;(Ⅱ)答案见解析. 【分析】选① (Ⅰ)逆用余弦的二倍角公式降幂后,使用辅助角公式化简得())f x x ϕ=+ ,根据对称轴求得ϕ的值,进而求得a 的值,得到函数的解析式,求得最小正周期;(Ⅱ) 根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选② (Ⅰ)逆用余弦的二倍角公式降幂得到()f x sin2cos2a x x =+,根据选择的条件求得a 的值,得到函数的解析式,并利用辅助角公式化简,然后求得()f x 的最小正周期; (Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选③逆用余弦的二倍角公式降幂后,使用辅助角公式化简得到()f x 2sin(2)6x π=+然后求得()f x 的最小正周期;(Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间. 【详解】选① (()f x 图像的一条对称轴为8x π=)解:(Ⅰ) ()2sin 22cos 1f x a x x =+-sin2cos2a x x =+22x x ⎛⎫=+⎪⎭)x ϕ=+(其中1tan aϕ=) 因为()f x 图像的一条对称轴为8x π=所以()1sin()84f ππϕ=+=即有,42k k Z ππϕπ+=+∈所以,4k k Z πϕπ=+∈所以1tan tan()tan 144k aππϕπ=+=== 1a故())4f x x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈ 3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k , 选② (()1)4f π= 解:(Ⅰ)()2sin 22cos 1f x a x x =+-sin2cos2a x x =+()sin cos 1422f a πππ∴=+= 1a()sin 2cos 2f x x x =+22)x x =)4x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈ 3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k ,选③(a =解:(I )()222cos 1f x x x =+-2cos2x x =+ 312(sin 2cos 2)22x x 2sin(2)6x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,262k x k k Z πππππ-≤+≤∈ 2+22+2,33k x k k Z ππππ∴-≤≤∈ ++,36k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为[+],k 36k Z ππππ-∈+k , 【点睛】本题考查三角函数的恒等变形和三角函数的性质,关键是逆用余弦的二倍角公式降幂后,并使用辅助角公式化简.。

(压轴题)高中数学必修四第三章《三角恒等变形》测试(有答案解析)

(压轴题)高中数学必修四第三章《三角恒等变形》测试(有答案解析)

一、选择题1.已知23cos sin 2αβ+=,1sin sin cos 3αββ+=,则)os(c 2αβ+=( )A .49B .59C .536D .518-2.若10,0,cos ,sin 224342ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭cos 2βα⎛⎫+= ⎪⎝⎭( )A B .C . D 3.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( )A .1B .2-或1 C .34-或1 D .1或-14.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7125.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( )A .23B .23-C .32D .32-6.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2B .2-C .12D .12-7.已知2π()2sin ()1(0)3f x x ωω=+->,给出下列判断: ①若函数()f x 的图象的两相邻对称轴间的距离为π2,则=2ω; ②若函数()f x 的图象关于点π(,0)12对称,则ω的最小值为5; ③若函数()f x 在ππ[,]63-上单调递增,则ω的取值范围为1(0,]2;④若函数()f x 在[0,2π]上恰有7个零点,则ω的取值范围为4147[,)2424. 其中判断正确的个数为( ) A .1B .2C .3D .48.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( ) A .0,3πβ⎛⎫∈ ⎪⎝⎭ B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭9.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形 B .等边三角形 C .等腰三角形或直角三角形 D .等腰直角三角形10.已知cos 2π)4αα=+1tan tan αα+等于( ) A .92B .29C .9-2D .2-911.=( )A .1B .2CD12.若函数()sin cos 2sin cos 1f x x x x x a =+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点,则实数a 的取值范围( )A.⎡⎤⎣⎦ B.94⎡⎤⎢⎥⎣⎦C.⎡-⎣D.94⎤⎥⎦二、填空题13.设a ,b 是非零实数,且满足sincos1077tan 21cos sin 77a b a b πππππ+=-,则b a =_______.14.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若2sin cos a B b C=,且()3sin sin 4A CB -=-,则sin B =_______.15.函数3sin 4cos y x x =-在x θ=处取得最大值,则sin θ= ______16.已知πsin(π)3sin()02αα+--=,则cos2α的值为________. 17.已知方程23310x ax a +++=,()2a >的两根为tan α,tan β,α,,22ππβ⎛⎫∈- ⎪⎝⎭,则αβ+=________.18.已知1sin cos 5αα-=,0απ≤≤,则sin(2)4απ-=__________; 19.ABC ∆中,若2AC AB >,4A π=,则角C 的取值范围是________. 20.下列判断正确的有___________.①如果θ是第一象限角,那么恒有sin02θ>;②sin 200a ︒=,则2tan 2001a ︒=-;③若()f x 的定义域为R ,周期为4,且满足()()f x f x -=-,则()f x 在[4,8]x ∈-至少有7个零点; ④若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且cos tan x y x ⋅=,则x y <. 三、解答题21.已知角α的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边过点(1,2).(1)求23cos 22sin()cos 2232cos sin(2)2ππαπααπααπ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭⎛⎫-++ ⎪⎝⎭的值;(2)已知,02πβ⎛⎫∈-⎪⎝⎭且10sin β=-,求cos()αβ-的值. 22.如图,角θ的顶点与平面直角坐标系xOy 的原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点P ,若点P 的坐标为04(,)5y -.(1)求tan sin 2θθ-的值;(2)若将OP 绕原点O 按逆时针方向旋转40︒,得到角α,设tan m α=,求()tan 85θ+︒的值.23.已知函数2()2cos 123cos (01)f x x x x ωωωω=-+<<,直线3x π=是函数f (x )的图象的一条对称轴.(1)求函数f (x )的单调递增区间;(2)已知函数y =g (x )的图象是由y =f (x )的图象上各点的横坐标伸长到原来的2倍,然后再向左平移23π个单位长度得到的,若6(2),(0,),352g ππαα+=∈求sin α的值.24.已知0πx <<,sin cos x x +=. (Ⅰ)求sin cos x x -的值;(Ⅱ)求2sin 22sin 1tan x xx+-的值.25.已知函数()21sin cos 12f x x x x =+-(x ∈R ) (1)求()f x 的最小正周期; (2)求()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值,并分别写出相应的x 的值. 26.在直角坐标系xOy 中,已知锐角α和β的顶点都在坐标原点,始边都与x 轴非负半轴重合,且终边与单位圆分别交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫⎪⎝⎭,求()sin αβ-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将所给条件分别用二倍角公式变形可以得到2cos cos22αβ-=,22sin sin 23αβ+=,然后平方相加化简计算即可求得结果. 【详解】 由23cos sin2αβ+=知2cos cos22αβ-=①,在1sin sin cos 3αββ+=两边同时乘以2得22sin sin 23αβ+=②,将①②两个等式平方相加得()4414cos 249βα+-+=+,解得()5cos 236αβ+=.故选:C.思路点睛:出现两个角的三角函数的和差,求两角和的正弦或余弦时常采用平方相加或平方相减,化简计算可得到两角和或差的三角函数值.2.A解析:A 【分析】 由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭,所以3444πππα<+<,sin +43πα⎛⎫= ⎪⎝⎭, 因为02πβ-<<,所以4422ππβπ<-<,又因为sin 42πβ⎛⎫-=⎪⎝⎭cos 42πβ⎛⎫-= ⎪⎝⎭ 而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13==. 故选:A. 【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.3.C解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论.∵1sin cos 2αα-=,∴αα=sin()4πα-=1cos sin 2ββ-=,4cos 22ββ-=,cos()44πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.4.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.5.A解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 6.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.【详解】解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.7.C解析:C 【分析】先将()f x 化简,对于①,由条件知,周期为π,然后求出ω;对于②,由条件可得2()612k k Z ωπππ+=∈,然后求出16()k k Z ω=-+∈,即可求解;对于③,由条件,得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩,然后求出ω的范围;对于④,由条件,得74221212πππππωωωω-<-,然后求出ω的范围;,再判断命题是否成立即可. 【详解】解:2π2ππ()2sin ()1=-cos(2)=sin(2)336f x x x x ωωω=+-++, ∴周期22T ππωω==. ①.由条件知,周期为π,1w ∴=,故①错误;②.函数()f x 的图象关于点π(,0)12对称,则2()612k k Z ωπππ+=∈, 16()k k Z ω∴=-+∈,(0)>ω∴ω的最小值为5, 故②正确;③.由条件,ππ[,]63x ∈-,ππ2π236636x πωπωω-+≤+≤+ 由函数()f x 在ππ[,]63-上单调递增得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩, 12ω∴≤, 又0>ω,102ω∴<, 故③正确.④.由()sin(2)06f x x πω=+=得2()6x k k Z πωπ+=∈,解得()212k x k Z ππωω=-∈ ()sin(2)6f x x πω=+且()f x 在[0,2]π上恰有7个零点,可得74221212πππππωωωω-<-, ∴41472424ω<, 故④正确; 故选:C 【点睛】本题考查了三角函数的图象与性质,考查了转化思想和推理能力,属中档题.关键点点睛:利用整体思想,结合正弦函数的图像和性质是根据周期,对称,单调性,零点个数求求解参数的关键.8.C解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()αβ+==. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++423(0535=⨯+⨯=<.102+=>,所以1cos (,0)2β∈- 所以2,23ππβ⎛⎫∈ ⎪⎝⎭.故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.9.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 10.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π)4αα=+cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin22sin coscos2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+⎪⎛⎫⎛⎫⎝⎭+++⎪ ⎪⎝⎭⎝⎭,4πα⎛⎫+=⎪⎝⎭,则cos4πα⎛⎫+=⎪⎝⎭所以24cos22cos1249ππαα⎛⎫⎛⎫+=+-=-⎪ ⎪⎝⎭⎝⎭,又4cos2sin229παα⎛⎫+=-=-⎪⎝⎭,所以4sin29α=,所以1sin cos1229tan4tan cos sin sin cos sin229ααααααααα+=+====.故选:A.【点睛】本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.11.C解析:C【解析】202000000000cos10sin10cos10sin1055cos35(cos10sin10)cos35cos35-+===-选C.12.A解析:A【分析】由题意结合函数零点的概念可得方程1sin cos2sin cosa x x x x-=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,令sin cos2sin cosy x x x x=+-,通过换元法求得y在3,44ππ⎡⎤--⎢⎥⎣⎦上的值域即可得解.【详解】因为函数()sin cos2sin cos1f x x x x x a=+-+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有零点,所以方程1sin cos2sin cosa x x x x-=+-在3,44ππ⎡⎤--⎢⎥⎣⎦上有解,设sin cos4t x x xπ⎛⎫=+=+⎪⎝⎭,3,44x ππ⎡⎤∈--⎢⎥⎣⎦,∴,204x ππ⎡⎤+∈-⎢⎥⎣⎦,∴t ⎡⎤∈⎣⎦,212sin cos t x x =+,∴2215sin cos 2sin cos 124y x x x x t t t ⎛⎫=+-=-+=--+ ⎪⎝⎭, 当0t =时,y 取得最大值1,当t =y取得最小值1-,故可得111a ≤-≤,∴2a ≤≤. 故选:A. 【点睛】本题考查了函数与方程的综合应用,考查了三角函数的性质及三角恒等变换的应用,考查了逻辑思维能力和运算求解能力,属于中档题.二、填空题13.【分析】先把已知条件转化为利用正切函数的周期性求出即可求得结论【详解】因为(tanθ)∴∴tanθ=tan (kπ)∴故答案为【点睛】本题主要考查三角函数中的恒等变换应用考查了两角和的正切公式属于中档题【分析】先把已知条件转化为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-.利用正切函数的周期性求出3k πθπ=+,即可求得结论.【详解】因为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-,(tanθb a =) ∴10721k ππθπ+=+ ∴3k πθπ=+.tanθ=tan (k π3π+)=∴ba=. 【点睛】本题主要考查三角函数中的恒等变换应用,考查了两角和的正切公式,属于中档题.14.【分析】代入展开整理得①化为与①式相加得转化为关于的方程求解即可得出结论【详解】因为所以所以因为所以则整理得解得故答案为:【点睛】本题考查正弦定理的边角互化考查三角函数化简求值属于中档题 解析:12【分析】sin sin()B A C =+代入()3sin sin 4A CB -=-,展开整理得32cos sin 4A C =,①2sin cos a B b C=化为22sin cos sin A C B =,与①式相加得 ()232sin cos cos sin sin 4A C A CB +=+,转化为关于sin B 的方程,求解即可得出结论.【详解】因为()3sin sin 4A CB -=-,所以()()3sin sin 4A C A C -=+-,所以32cos sin 4A C =,因为2sin cos a B b C=,所以22sin cos sin A C B =,则()232sin cos cos sin sin 4A C A CB +=+, 整理得23sin 2sin 04B B -+=,解得1sin 2B =. 故答案为:12. 【点睛】本题考查正弦定理的边角互化,考查三角函数化简求值,属于中档题.15.【分析】利用辅助角公式两角差的正弦公式化简解析式:并求出和由条件和正弦函数的最值列出方程求出的表达式由诱导公式求出的值【详解】解:其中依题意可得即所以故答案为:【点睛】本题主要考查辅助角公式诱导公式解析:35【分析】利用辅助角公式、两角差的正弦公式化简解析式:()5sin y x ϕ=-,并求出cos ϕ和sin ϕ,由条件和正弦函数的最值列出方程,求出θ的表达式,由诱导公式求出sin θ的值. 【详解】解:()343sin 4cos 5sin cos 5sin 55y x x x x x ϕ⎛⎫=-=-=- ⎪⎝⎭,其中3cos 5ϕ=,4sin 5ϕ=依题意可得()5sin 5θϕ-=,即()sin 1θϕ-=,2,2k k Z πθϕπ∴-=+∈所以3sin sin 2cos 25k πθϕπϕ⎛⎫=++== ⎪⎝⎭故答案为:35【点睛】本题主要考查辅助角公式、诱导公式,以及正弦函数的最大值的应用,考查化简、变形能力.16.【分析】根据利用诱导公式结合商数关系得到然后由求解【详解】因为所以解得所以故答案为:【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用还考查了运算求解的能力属于中档题解析:45-【分析】根据πsin(π)3sin()02αα+--=,利用诱导公式结合商数关系得到tan 3α=-,然后由222222cos sin cos 2cos sin cos sin ααααααα-=-=+求解. 【详解】因为πsin(π)3sin()02αα+--=, 所以sin 3cos 0αα--=, 解得tan 3α=-,所以222222cos sin cos 2cos sin cos sin ααααααα-=-=+, ()()2222131tan 41tan 513αα---===-++-, 故答案为:45- 【点睛】本题主要考查诱导公式和二倍角公式以及同角三角函数基本关系式的应用,还考查了运算求解的能力,属于中档题.17.【分析】根据方程的两根为得到由两角和的正切公式得到再确定的范围求解【详解】因为方程的两根为所以则因为所以所以所以故答案为:【点睛】本题主要考查两角和与差的正切公式的应用还考查了运算求解的能力属于中档题 解析:34π-【分析】根据方程23310x ax a +++=,()2a >的两根为tan α,tan β,得到tan tan 3,tan tan 31a a αβαβ+=-⋅=+,由两角和的正切公式得到()tan αβ+,再确定αβ+的范围求解. 【详解】因为方程23310x ax a +++=,()2a >的两根为tan α,tan β, 所以tan tan 3,tan tan 31a a αβαβ+=-⋅=+, 则()tan tan tan 11tan tan αβαβαβ++==-⋅,因为2a >,所以tan tan 30,tan tan 310a a αβαβ+=-<⋅=+>, 所以tan 0,tan 0αβ<<,α,,02πβ⎛⎫∈-⎪⎝⎭, (),0αβπ+∈-,所以34παβ+=-. 故答案为:34π- 【点睛】本题主要考查两角和与差的正切公式的应用,还考查了运算求解的能力,属于中档题.18.【分析】由题意和同角三角函数基本关系可得和进而由二倍角公式可得和代入两角差的正弦公式计算可得【详解】又故解得故答案为:【点睛】本题考查两角和与差的三角函数公式涉及同角三角函数的基本关系和二倍角公式属解析:50【分析】由题意和同角三角函数基本关系可得sin α和cos α,进而由二倍角公式可得sin 2α和cos2α,代入两角差的正弦公式计算可得. 【详解】221sin cos ,sin cos 15αααα-=+=又0απ≤≤,sin 0α∴≥,故解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,24sin 22sin cos 25ααα∴==, 227cos 2cos sin 25ααα=-=-,sin(2)224πααα∴-=247()22525=+=.故答案为:50. 【点睛】本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系和二倍角公式,属中档题.19.;【分析】由利用正弦定理边角互化以及两角和的正弦公式可得进而可得结果【详解】由正弦定理可得又则即则C 是三角形的内角则故答案为:【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用属于中档题正弦定理解析:04C π<<;【分析】由AC AB>,利用正弦定理边角互化以及两角和的正弦公式可得11tan C >,进而可得结果.【详解】由正弦定理可得sin sin AC BAB C=> 又4A π=,则())cos sin sin 2sin sin C C A C C C++=2tan 2C =+> 即11tan C>,则0tan 1C <<,C 是三角形的内角,则04C π<<,故答案为:04C π<<.【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.20.③【分析】①利用来判断;②利用来判断;③通过来判断;④通过当时有恒成立来判断【详解】解:①由已知则此时在第一或第三象限有可能小于零错误;②是第三象限角所以则与矛盾错误;③由已知为奇函数故则又所以则有解析:③ 【分析】 ①利用24k k θπππ来判断;②利用sin 2000a ︒=<来判断; ③通过(0)0f =,(2)0f =来判断; ④通过当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立来判断. 【详解】 解:①由已知22,2k k k Z ππθπ,则,24k k kZ θπππ,此时2θ在第一或第三象限,sin2θ有可能小于零,错误;②200︒是第三象限角,所以sin 2000a ︒=<, 则tan 2000︒=<,与tan 2000︒>矛盾,错误;③由已知()f x 为奇函数,故(0)0f =,则(4)(4)(8)(0)0f f f f -====, 又(2)(24)(2)(2)f f f f =-=-=-,所以(2)0f =,则有(2)(2)(6)0f f f =-==, 则()f x 在[4,8]x ∈-至少有7个零点,正确; ④当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立, 证明:单位圆中当0,2πα⎛⎫∈ ⎪⎝⎭时,如图点P 为角α的终边与单位圆的交点,由图可知OPA 的面积小<扇形OPA 的面积小<OTA 的面积 则211111sin 111tan 222ααα⋅⋅⋅<⋅⋅<⋅⋅⋅,整理得tan sin ααα>>. 若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,tan cos tan tan x x x y y >=⋅>,所以x y >,故错误. 故答案为:③ 【点睛】本题考查函数周期性的应用,考查当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立这个性质的灵活应用,考查角所在象限和三角函数值符号的关系,是中档题.三、解答题21.(1)3;(2)210. 【分析】(1)利用任意角三角函数的定义求得tan α,再利用诱导公式及同角三角函数基本关系式即可求得要求的式子的值;(2)利用任意角三角函数的定义求得sin ,cos αα,再利用同角三角函数基本关系式求得cos β,再利用两角差的余弦公式即可求得()cos αβ-的值.【详解】(1)依题意tan 2α=, 原式222sin 22sin (sin )sin cos sin cos sin 1tan 1232sin sin 2sin sin cos sin cos tan 121ααααααααααααααααα--++++======-----(2)因为α的终边过点5,25), 所以255sin αα==, 因为02πβ-<<,且10sin β=,所以cos 10β==,所以cos()cos cos sin sin 10αβαβαβ⎛-=+== ⎝⎭. 【点睛】关键点点睛:该题主要考查的是三角函数的定义、同角三角函数的基本关系式、正余弦的诱导公式以及两角差的余弦公式的应用,正确解题的关键是熟练掌握这些公式. 22.(1)21100;(2)11m m+-. 【分析】(1)由三角函数定义求得cos θ,再由同角间三角函数关系求得sin θ,tan θ,用二倍角公式得sin 2θ后可得结论;(2)由角的关系得8545θα+︒=+︒,利用两角和的正切公式可求得tan(85)θ+︒. 【详解】解:(1)由题意得:4cos 5θ=-,且角θ为第二象限的角则3sin 5θ==,3tan 4θ=- ∴tan sin 2tan 2sin cos θθθθθ-=-334324212455425100⎛⎫=--⨯⨯-=-+= ⎪⎝⎭(2)由题意知40αθ=+︒,则40θα=-︒ 则()()tan 85tan 45θα+︒=+︒tan tan 451tan tan 45αα+︒=-︒11m m +=-. 【点睛】关键点点睛:本题考查三角函数的定义,两角和与差的正切公式,二倍角公式,同角韹三角函数关系.解题确定角的关系是关键.由旋转得40αθ=+︒,则40θα=-︒,从而有8545θα+︒=+︒,再结合已知条件柯得结论.确定已知角和未知角的关系选用恰当的公式也是解题关键.23.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2【分析】(1)首先化简函数()2sin 26f x x πω⎛⎫=+⎪⎝⎭,再根据3x π=是函数的一条对称轴,代入求ω,再求函数的单调递增区间;(2)先根据函数图象变换得到()12cos2g x x =,并代入6(2)35g πα+=后,得3cos 65πα⎛⎫+= ⎪⎝⎭,再利用角的变换求sin α的值.【详解】(1)()cos 222sin 26f x x x x πωωω⎛⎫==+ ⎪⎝⎭, 当3x π=时,2,362k k Z πππωπ⨯+=+∈,得13,22kk Z ω=+∈, 01ω<<,12ω∴=, 即()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,令22262k x k πππππ-+≤+≤+,解得:22233k x k ππππ-+≤≤+,k Z ∈, 函数的单调递增区间是22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)()1212sin 2cos 2362g x x x ππ⎡⎤⎛⎫=++= ⎪⎢⎥⎝⎭⎣⎦, 622cos 365g ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,得3cos 65πα⎛⎫+= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,2,663πππα⎛⎫+∈ ⎪⎝⎭,4sin 65πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦431552=-⨯=【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.24.(1)5;(2)415【分析】(1)先根据sin cos x x +的值和二者的平方关系联立求得 sin cos x x 的值,再把sin cos x x -平方即可求出;(2)结合(1)求sin x ,cos x 的值,最后利用商数关系求得tan x 的值,代入即可得解.【详解】(1)∵sin cos 5x x +=, ∴21(sin cos )12sin cos 5x x x x +=+=, ∴2sin cos 5x x =-, ∵0πx <<, ∴sin 0x >,cos 0x <,sin cos 0x x -> ∴249(sin cos )12sin cos 155x x x x -=-=+=,∴sin cos x x -=. (2)sin cos 5x x +=,sin cos x x -=解得sin x =cos x = ∴sin tan 2cos x x x==- ∵4sin 25x =-,24sin 5x =, ∴24sin 22sin 4551tan 81215x x x -++==-+. 【点睛】 方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变式).25.(1)π;(2)当3x π=时,()max 1f x =;当12x π=-时,()min 32f x =-. 【分析】(1)利用二倍角公式和辅助角公式,将函数转化为()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭求解.. (2)根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,得到22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,再利用正弦函数的性质求解.【详解】(1)()21sin cos cos 1224f x x x x =-+-,1sin 2cos 2144x x =--, 1sin 2123x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期为22T ππ==. (2)∵,63x ππ⎡⎤∈-⎢⎥⎣⎦, ∴22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当233x ππ-=,即3x π=,()max 1f x =-, 当232x ππ-=-,12x π=-时,()()min 131122f x =⨯--=-. 【点睛】 方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.26.3365- 【分析】 利用已知求出1213m =和45n =,再利用差角的正弦公式求解. 【详解】锐角α和β的顶点都在坐标原点始边都与x 轴非负半轴重合, 且终边与单位圆交于点5,13P m ⎛⎫⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭, cos 0m α∴=>,5sin 13α=,2251169m +=,3cos 5β=,sin 0n β=>,29125n +=, 求得1213m =,45n =,5312433sin()sin cos cos sin 13513565αβαβαβ∴-=-=⨯-⨯=-. 【点睛】结论点睛:三角函数的坐标定义:点(,)P x y 是角α终边上的任意的一点(原点除外),r代表点到原点的距离,r =sin α=y r , cos α=x r ,tan α=y x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换测试题
一.选择题(共12小题,每小题5分,共60分) 1.已知)2,2
3(
,1312cos ππαα∈=
,则=
+
)4
(cos π
α ( ) A.
13
25 B.
13
27 C.
26
2
17 D.
2627
2.若均βα,为锐角,==
+=
ββααcos ,5
3)(sin ,5
52sin 则( )
A. 552
B.
25
52 C.
25
52552或
D. 5
52-
3.=+-)12
sin
12
(cos
)12sin
12
(cos
π
π
π
π
( ) A. 2
3-
B. 2
1-
C.
2
1 D.
2
3
4.=-+0
tan50tan703tan50tan70
( )
A. 3
B.
3
3 C. 3
3-
D. 3-
5.
=⋅

αα
αcos2cos cos212sin22
( )
A. αtan
B. αtan2
C. 1
D.
2
1
6.已知x 为第三象限角,化简=-x 2cos 1( )
A.
x sin 2 B. x sin 2-
C.
x cos 2 D. x cos 2-
7. 已知等腰三角形顶角的余弦值等于
5
4,则这个三角形底角的正弦值为( )
A .10
10 B .10
10- C .10
103 D .10
103-
8. 若).(),sin(32cos 3sin 3ππϕϕ-∈-=-
x x x ,则=ϕ( )
A. 6
π
-
B.
6
π
C.
6
5π D. 6
5π-
9. 已知1sin cos 3
αα+=
,则sin 2α=( )
A .89
-
B .2
1-
C .
2
1 D .
89
10. 已知cos 23
θ=,则44cos sin θθ-的值为( )
A .3
- B .
3
C .
49
D .1
11. 求=11
5cos
11
4cos
11
3cos 11
2cos
11cos
πππππ
( )
A.
5
2
1
B.
4
2
1 C. 1 D. 0
12. 函数sin
22
x x y =+
的图像的一条对称轴方程是 ( )
A .x =
113
π B .x =53
π C .53
x π=-
D .3
x π
=-
二.填空题(共4小题,每小题4分,共16分) 13.已知βα,为锐角,的值为则βαβα+=
=
,5
1cos ,10
1cos .
14.在A B C ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则
t a n C = .
15.若5
42
cos
,5
32
sin
-
==
α
α
,则角α的终边在 象限.
16.代数式sin 15cos 75cos15sin 105o o o o += . 三.解答题(共6个小题,共74分) 17.(12分)△ABC 中,已知的值求sinC ,13
5B c ,5
3cosA =
=os .
18.(12分)已知αβαβαπαβπ
sin2,5
3)(sin ,13
12)(cos ,4
32
求-
=+=
-<
<<.
19.(12分)已知α为第二象限角,且 sinα=,4
15求
1
2cos 2sin )
4sin(+++
ααπ
α的值.
20. (12分)已知7
1tan ,2
1)tan(),,0(),4
,0(-
==
-∈∈ββαπβπα且,
求)2tan(βα-的值及角βα-2.
21.(12分)已知函数2()cos cos 1f x x x x =++,x R ∈. (1)求证)(x f 的小正周期和最值; (2)求这个函数的单调递增区间.
22. (14分) 已知A 、B 、C 是
ABC ∆三内角,向量(m
=-
(cos ,sin ),n A A =

m.n=1
(1)求角A; (2)若2
2
1sin 23,cos sin B B B
+=--求tanC
.。

相关文档
最新文档