2018年晋江市初中毕业班数学试题及答案

合集下载

2018年福建省中考数学A卷含答案

2018年福建省中考数学A卷含答案

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是( )A .3-B .2-C .0D .π 2.某几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .长方体D .四棱锥3.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,5 4.一个n 边形的内角和为360°,则n 等于( )A .3B .4C .5D .65.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15°B .30°C .45°D .60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 7.已知m =m 的估算正确的( )A .23m <<B .34m <<C .45m <<D .56m <<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩9.如图,AB 是O 的直径,BC 与O 相切于点B ,AC 交O 于点D ,若50ACB ∠=︒°,则BOD ∠等于( )A .40°B .50°C .60°D .80°10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于s x 的方程20x bx a ++=的根毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分,请把答案填在题中的横线上)11.计算:01-=⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组31320x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1,410.x y x y +=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD ,BC 分别相交于点E ,F .求证:OE OF =.19.(本小题满分8分)先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中1m =.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC △及线段A B '',A A A ∠'∠'=∠(),以线段A B ''为一边,在给出的图形上用尺规作出A B C '''△,使得A B C '''△∽ABC △,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A按逆时针方向旋转90°得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D .(1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元; 乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题: ①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD MN ≤.已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若20a =,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)24.(本小题满分12分)已知四边形ABCD 是O 的内接四边形,AC 是O 的直径,DE AB ⊥,垂足为E . (1)延长DE 交O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC PB =; (2)过点B 作BC AD ⊥,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB 1DH =,80OHD ∠=︒,求BDE ∠的大小.25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,. (1)若点(0)也在该抛物线上,求a ,b 满足的关系式;(2)若该抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当1x <2x <0时,12120x x y y (-)(-)>;当120x x <<时,12120x x y y (-)(-)<.以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且ABC △有一个内角为60°. ①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分MPN ∠.数学试卷 第9页(共22页) 数学试卷 第10页(共22页)福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】解:在实数3-,-2,0,π中,33-=,则203π--<<<,故最小的数是:2-.故选:B.分析:直接利用绝对值的性质化简,进而比较大小得出答案. 2.【答案】C【解析】解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意; B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意; C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意. 故选:C.分析:根据常见几何体的三视图逐一判断即可得. 3.【答案】C【解析】解:A 、112+=,不满足三边关系,故错误; B 、124+<,不满足三边关系,故错误; C 、234+>,满足三边关系,故正确; D 、235+=,不满足三边关系,故错误. 故选:C.分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解. 4.【答案】B【解析】解:根据n 边形的内角和公式,得:2180360n =(-),解得4n =.分析:n 边形的内角和是2180n (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .故选:B.5.【答案】A.【解析】解:∵等边三角形ABC 中,AD BC ⊥, ∴BD CD =,即:AD 是BC 的垂直平分线, ∵点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠, ∵45EBC ∠=︒, ∴45ECB ∠=︒, ∵ABC △是等边三角形, ∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒. 故选:A.分析:先判断出AD 是BC 的垂直平分线,进而求出45EBC ∠=︒,即可得出结论.6.【答案】D【解析】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误; B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误; C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误; D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确; 故选:D.分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 7.【答案】B【解析】解:∵2m +,12, ∴34m <<. 故选:B.. 8.【答案】A【解析】解:设索长为x 尺,竿子长为y 尺,数学试卷 第11页(共22页) 数学试卷 第12页(共22页)根据题意得:5,1 5.2x y x y =+⎧⎪⎨=-⎪⎩故选:A.分析:设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 9.【答案】D【解析】解:∵BC 是O 的切线, ∴90ABC ∠=︒,∴9040A ACB ∠=︒-∠=︒,由圆周角定理得,280BOD A ∠=∠=︒, 故选:D.分析:根据切线的性质得到90ABC ∠=︒,根据直角三角形的性质求出A ∠,根据圆周角定理计算即可. 10.【答案】D.【解析】解:∵关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,∴2210(2)4(1)0a b a +≠⎧⎨∆=-+=⎩,, ∴1b a =+或(1)b a =-+.当1b a =+时,有10a b +=-,此时1-是方程20x bx a ++=的根; 当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根. ∵10a +≠, ∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根. 故选:D.分析:根据方程有两个相等的实数根可得出1b a =+或(1)b a =-+,当1b a =+时,1-是方程20x bx a ++=的根;当(1)b a =-+时,1是方程20x bx a ++=的根.再结合1(1)a a +≠-+,可得出1和1-不都是关于x 的方程20x bx a ++=的根.第Ⅱ卷二、填空题11.【答案】0【解析】解:原式110==-,故答案为:0. 分析:根据零指数幂:01(0)a a =≠进行计算即可. 12.【答案】120【解析】解:∵这组数据中120出现次数最多,有3次, ∴这组数据的众数为120. 故答案为:120.分析:根据众数的定义:一组数据中出现次数最多的数据即为众数. 13.【答案】3【解析】解:∵90ACB ∠=︒,D 为AB 的中点, ∴116322CD AB ==⨯=. 故答案为:3.分析:根据直角三角形斜边上的中线等于斜边的一半解答. 14.【答案】2x >【解析】解:313,2x x x ++⎧⎨-⎩>①>0,②∵解不等式①得:1x >,解不等式②得:2x >, ∴不等式组的解集为2x >,分析:先求出每个不等式的解集,再求出不等式组的解集即可. 15.1【解析】解:如图,过点A 作AF BC ⊥于F ,数学试卷 第13页(共22页) 数学试卷 第14页(共22页)在Rt ABC △中,45B ∠=︒,∴2BC =,1BF AF AB ===, ∵两个同样大小的含45︒角的三角尺, ∴2AD BC ==,在Rt ADF △中,根据勾股定理得,DF∴121CD BF DF BC =+==-,分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论.16.【答案】6【解析】解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=,整理,得230x mx +=-, 则a b m +=-,3ab =-,∴222))((412a b a b ab m -+=+=-. ∵1•2ABCS AC BC =△ 222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6. 分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x=相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-,则方程组的解为3,2.x y =⎧⎨=-⎩【解析】分析:方程组利用加减消元法求出解即可. 18.【答案】证明:∵四边形ABCD 是平行四边形, ∴OA OC =,AD BC ∥, ∴OAE OCF ∠=∠, 在OAE △和OCF △中,,,,OAE OCF OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE COF △≌△(ASA ), ∴OE OF =.【解析】分析:由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF △≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷ ⎪⎝⎭()()2111m m mm m m +-=+-数学试卷 第15页(共22页) 数学试卷 第16页(共22页)()()111m mm m m +=+-11m =-当1m =时,原式=. 【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将m 的值代入即可解答本题.20.【答案】(1)解:如图所示,A B C '''△即为所求;(2)已知,如图,ABC A B C '''△∽△,k AB BC A B CA B C A C =='''''=',D 是AB 的中点,D '是A B ''的中点,求证:DC kD C ''=.证明:∵D 是AB 的中点D '是A B ''的中点, ∴12AD AB =,12A D A B ''='',∴1212A B AB AB A D A B AD ''''=='', ∵ABC A B C '''△∽△, ∴A A CB AB AC ='''','A A ∠=∠, ∵A A A D AD CC ''''=,'A A ∠=∠, ∴A C D ACD '''△∽△, ∴k CD D C A C CA ''''==. 【解析】分析:(1)作=A B C ABC '''∠∠,即可得到A B C '''△; (2)依据D 是AB 的中点,D '是A B ''的中点,即可得到=,根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A C D ACD '''△∽△,可得k CD D C A C CA ''''==. 21.【答案】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到,∴90DAB ∠=︒,10AD AB ==, ∴45ABD ∠=︒,∵EFG △是ABC △沿CB 方向平移得到, ∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥, ∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒, ∵90DAB ∠=︒,∴90ADE ∠=︒, ∵90ACB ∠=︒, ∴ADE ACB ∠=∠, ∴ADE ACB △∽△, ∴AD AEAC AB=, ∵8AB =,10AB AD ==, ∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】分析:(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质数学试卷 第17页(共22页) 数学试卷 第18页(共22页)即可得出结论;(2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论.22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天, 所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元,乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦ ()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦=159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘. 【解析】分析:(1)根据概率公式计算可得; (2)分别根据平均数的定义及其意义解答可得.23.【答案】解:(1)设m AB x =,则()1002m BC x =-, 根据题意得()1002450x x =-,解得15x =,245x =, 当5x =时,10029020x =->,不合题意舍去; 当45x =时,100210x =-, 答:AD 的长为10 m ; (2)设m AD x =, ∴()()21110050125022S x x x ==--+-, 当50a ≥时,则50x =时,S 的最大值为1250;当050a <<时,则当0x a <≤时,S 随x 的增大而增大,当x a =时,S 的最大值为21502a a -,综上所述,当50a ≥时,S 的最大值为1250;当050a <<时,S 的最大值为21502a a -. 【解析】分析:(1)设m AB x =,则()1002m BC x =-,利用矩形的面积公式得到()1002450x x =-,解方程得15x =,245x =,然后计算1002x -后与20进行大小比较即可得到AD 的长;(2)设m A D x =,利用矩形面积得到()11002S x x =-,配方得到()215012502S x =--+,讨论:当50a ≥时,根据二次函数的性质得S 的最大值为1250;当050a <<时,则当0x a <≤时,根据二次函数的性质得S 的最大值为21502a a -. 24.【答案】解:(1)如图1,∵AC 是O 的直径,∴90ABC ∠=︒, ∵DE AB ⊥, ∴90DEA ∠=︒, ∴DEA ABC ∠=∠, ∴BC DF ∥, ∴F PBC ∠=∠,∵四边形BCDF 是圆内接四边形,∴180F DCB ∠+∠=︒, ∵180PCB DCB ∠+∠=︒, ∴F PCB ∠=∠, ∴PBC PCB ∠=∠, ∴PC PB =;(2)如图2,连接OD ,∵AC 是O 的直径,数学试卷 第19页(共22页) 数学试卷 第20页(共22页)∴90ADC ∠=︒, ∵BG AD ⊥, ∴90AGB ∠=︒, ∴ADC AGB ∠=∠, ∴BG DC ∥, ∵BC DE ∥,∴四边形DHBC 是平行四边形, ∴1BC DH ==,在Rt ABC △中,AB =tan ABACB BC∠=, ∴60ACB ∠=︒, ∴12BC AC OD ==, ∴DH OD =,在等腰三角形DOH 中,80DOH OHD ∠=∠=︒, ∴20ODH ∠=︒, 设DE 交AC 于N , ∵BC DE ∥,∴60ONH ACB ∠=∠=︒,∴()18040NOH ONH OHD ∠=︒∠+∠=︒-, ∴40DOC DOH NOH ∠=∠∠=︒-, ∵OA OD =,∴1202OAD DOC ∠=∠=︒, ∴20CBD OAD ∠=∠=︒, ∵BC DE ∥,∴20BDE CBD ∠=∠=︒.【解析】分析:(1)先判断出BC DF ∥,再利用同角的补角相等判断出F PCB ∠=∠,即可得出结论;(2)先判断出四边形DHBC 是平行四边形,得出1BC DH ==,再用锐角三角函数求出60ACB ∠=︒,进而判断出DH OD =,求出20ODH ∠=︒,即可得出结论.25.【答案】解:(1)∵抛物线2y ax bx c =++过点2(0)A ,, ∴2c =.又∵点(0)也在该抛物线上,∴2((0a b c +=+,∴220(0)a a +=≠.(2)①∵当120x x <<时,1212()()0x x y y -->, ∴120x x -<,120y y -<,∴当0x <时,y 随x 的增大而增大; 同理:当0x >时,y 随x 的增大而减小, ∴抛物线的对称轴为y 轴,开口向下, ∴0b =.∵OA 为半径的圆与拋物线的另两个交点为B 、C , ∴ABC △为等腰三角形, 又∵ABC △有一个内角为60°, ∴ABC △为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又∵2OB OC OA ===,∴•cos30CD OC =︒=,•sin301OD OC =︒=. 不妨设点C 在y 轴右侧,则点C的坐标为1)-. ∵点C 在抛物线上,且2c =,0b =, ∴321a +=-, ∴1a =-,∴抛物线的解析式为22y x =+-.数学试卷 第21页(共22页) 数学试卷 第22页(共22页)②证明:由①可知,点M 的坐标为211(2)x x -+,,点N 的坐标为222(2)x x -+,.直线OM 的解析式为11(0)y k x k =≠. ∵O 、M 、N 三点共线,∴10x ≠,20x ≠,且22121222x x x x -+-+=, ∴121222x x x x -+=-+, ∴1212122()x x x x x x =---, ∴122x x =-,即212x x =-, ∴点N 的坐标为211242x x ⎛⎫-+ ⎪⎝⎭,-. 设点N 关于y 轴的对称点为点N ',则点N '的坐标为211242x x ⎛⎫+ ⎪⎝⎭,-. ∵点P 是点O 关于点A 的对称点, ∴24OP OA ==,∴点P 的坐标为(04),. 设直线PM 的解析式为24y k x =+, ∵点M 的坐标为21(2)x x +,-, ∴212124x k x +=+-,∴21212x k x +=-,∴直线PM 的解析式为21124x y x +=-+.∵22211122111122(2)4244==2x x x x x x x +-++-+-+, ∴点N '在直线PM 上, ∴PA 平分MPN∠.【解析】分析:(1)由抛物线经过点A 可求出2c =,再代入(0)即可找出220(0)a a +=≠;(2)①根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向下,进而可得出0b =,由抛物线的对称性可得出ABC △为等腰三角形,结合其有一个60︒的内角可得出ABC △为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;②由①的结论可得出点M 的坐标为211(2)x x -+,、点N 的坐标为222(2)x x -+,,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点N '的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点N '在直线PM 上,进而即可证出PA 平分MPN ∠s.。

2018-2019学年福建省泉州市晋江市八年级(上)期末数学试卷 (解析版)

2018-2019学年福建省泉州市晋江市八年级(上)期末数学试卷 (解析版)

2018-2019学年福建省泉州市晋江市八年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分1.9的平方根是()A.81B.±3C.3D.﹣32.下列实、、π、中,不是无理数的是()A.B.C.πD.3.为了能直观地反映我国奥运代表团在近八届奥运会上所获奖牌总数变化情况,以下最适合使用的统计图()A.条形统计图B.扇形统计图C.折线统计图D.三种都可以4.计算(﹣2a2)3的结果是()A.2a4B.﹣2a4C.8a6D.﹣8a65.以下列长度的三条线段为边,能构成直角三角形的是()A.3、4、5B.1、2、2C.、、3D.4、7.5、86.下列多项式的因式分解中,正确的是()A.x2+4x+3=x(x+4)+3B.a2﹣9=(a﹣3)2C.x2﹣2xy+y2=(x+y)2D.3a5b+6a3b=3 a3b(a2+2)7.反证法证明命题:“在△ABC中,若∠B≠∠C,则AB≠AC”应先假设()A.AB=AC B.∠B=∠C C.AB>AC D.AB<AC8.下列各命题的逆命题是真命题的是()A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等9.估算9的值,下列结论正确的是()A.4和5之间B.5和6之间C.6和7之间D.7和8之间10.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是()A.15°B.40°C.15°或20°D.15°或40°二、填空题:本题共6小题,每小题4分,共24分.11..12.测量某班学生的身高,得身高在1.6m以上的学生有10人,1.6m及1.6m以下的学生有40人,则该班学生身高1.6m以上的频率是.13.如图,在△ABC中,AB=AC,AD平分∠BAC,若BD=5,则BC的长度为.14.如图,在四边形ABCD中,∠B=∠D=90°,AB=AD,∠BAC=65°,则∠ACD的度数为.15.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O为圆心,长方形的对角线OB长为半径作弧,交数轴正半轴于点A,则点A表示的实数是.16.如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a>b)(1)如图①所示的几何体的体积是.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式.三、解答題:本題共9小题,共86分17.计算:3a2•(﹣b)﹣8ab(b a).18.因式分解:x(x﹣12)+4(3x﹣1).19.先化简,再求值:[(2ab﹣1)2(6ab﹣3)]÷(﹣4ab),其中a=3,b.20.如图,点A、C、B、D在同一直线上,且AB=CD,AE∥DF,AE=DF.求证:BE=CF.21.春节是我国的传统节日,为了调查学生对于各地春节民俗活动的了解程度,某校随机抽取一部分学生进行问卷调查,将调查结果按“A:非常了解、B:基本了解、C:了解较少、D:不太了解”四类分别进行统计,并绘制出下面两幅不完整的统计图.请根据两幅统计图的信息,解答下列问题:(1)此次共调查了个学生;(2)扇形统计图中,A所在的扇形的圆心角度数为;(3)将上面的条形统计图补画完整.22.如图,一架2.5m长的梯子AB斜靠在墙AC上,梯子的顶端A离地面的高度为2.4m,如果梯子的底部B向外滑出1.3m后停在DE位置上,则梯子的顶部下滑多少米?23.如图,在△ABC中,∠C=90°,AC=5cm,BC=12cm,将△ABC沿过A点的直线折叠,使点C落在AB边上的点D处,折痕与BC交于点E.(1)试用尺规作图作出折痕AE;(要求:保留作图痕迹,不写作法.)(2)连接DE,求线段DE的长度.24.阅读下列材料利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2﹣12x+37的最小值.解:x2﹣12x+37=x2﹣2x•6+62﹣62+37=(x﹣6)2+1.因为不论x取何值,(x﹣6)2总是非负数,即(x﹣6)2≥0.所以(x﹣6)2+1≥1.所以当x=6时,x2﹣12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+=(x﹣)2.(2)将x2+10x﹣2变形为(x+m)2+n的形式,并求出x2+10x﹣2的最小值.(3)如图①所示的长方形边长分别是2a+5、3a+2,面积为S1:如图②所示的长方形边长分别是5a、a+5,面积为S2.试比较S1与S2的大小,并说明理由.25.如图,在△ABC中,∠ACB=90°,AC=BC,点P是AC边上的一动点(点P不与端点A、C重合),过点A作AE⊥BP于D,交BC的延长线于点E.(1)求证:△ACE≌△BCP;(2)在点P的移动过程中,若AD=DC,试求CP的长;(3)试探索:在点P的移动过程中,∠ADC的大小是否保持不变?若保持不变,请求出∠ADC的大小;若有变化,请说明变化情况.2018-2019学年福建省泉州市晋江市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分1.9的平方根是()A.81B.±3C.3D.﹣3【解答】解:9的平方根是:±±3.故选:B.2.下列实、、π、中,不是无理数的是()A.B.C.πD.【解答】解:是无理数,故选项A不合题意;是分数,属于有理数,故选项B符合题意;π是无理数,故选项C不合题意;是无理数,故选项D不合题意.故选:B.3.为了能直观地反映我国奥运代表团在近八届奥运会上所获奖牌总数变化情况,以下最适合使用的统计图()A.条形统计图B.扇形统计图C.折线统计图D.三种都可以【解答】解:为了直观地表示我国奥运代表团在近八届夏季奥运会上获得奖牌总数的变化趋势,结合统计图各自的特点,应选择折线统计图.故选:C.4.计算(﹣2a2)3的结果是()A.2a4B.﹣2a4C.8a6D.﹣8a6【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故选:D.5.以下列长度的三条线段为边,能构成直角三角形的是()A.3、4、5B.1、2、2C.、、3D.4、7.5、8【解答】解:A、∵32+42=25,52=25,25=25,∴3,4,5能作为直角三角形的三条边长;B、∵12+22=5,22=4,5≠4,∴1,2,2不能作为直角三角形的三条边长;C、∵()2+32=15,()2=14,15≠14,∴,,3不能作为直角三角形的三条边长;D、∵42+7.52=72.25,82=64,72.25≠64,∴4,7.5,8不能作为直角三角形的三条边长.故选:A.6.下列多项式的因式分解中,正确的是()A.x2+4x+3=x(x+4)+3B.a2﹣9=(a﹣3)2C.x2﹣2xy+y2=(x+y)2D.3a5b+6a3b=3 a3b(a2+2)【解答】解:A.x2+4x+3=(x+1)(x+3),A选项错误;B.a2﹣9=(a+3)(a﹣3),B选项错误;C.x2﹣2xy+y2=(x﹣y)2,C选项错误;D.3a5b+6a3b=3a3b(a2+2).故选:D.7.反证法证明命题:“在△ABC中,若∠B≠∠C,则AB≠AC”应先假设()A.AB=AC B.∠B=∠C C.AB>AC D.AB<AC【解答】解:用反证法证明命题“在△ABC中,∠B≠∠C,那么AB≠AC”的过程中,第一步应是假设AB=AC.故选:A.8.下列各命题的逆命题是真命题的是()A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等【解答】解:A、对顶角相等的逆命题为“相等的角为对顶角”,此命题为假命题,故本选项错误;B、全等三角形的对应角等的逆命题为“对应角相等的三角形是全等三角形”,此命题为假命题,故本选项错误;C、相等的角是同位角的逆命题为“如果两个角的同位角,那么这两个角为相等”,此命题为假命题,故本选项错误;D、等边三角形的三个内角都相等的逆命题为“如果三个角相等,那么这个三角形是等边三角形”,此命题为真命题,故本选项正确;故选:D.9.估算9的值,下列结论正确的是()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:∵<<,∴<<,∴<<,∴9的值在5和6之间.故选:B.10.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是()A.15°B.40°C.15°或20°D.15°或40°【解答】解:如图1,当∠A=120°,AD=BD,CD=AC时,∠ABD=∠BAD=40°,∠DAC=80°,故∠C=180°﹣40°﹣120°=20°;如图2,当∠A=120°,AD=AB,DB=DC时,∠ABD=∠ADB=(180°﹣120°)÷2=30°,∠BDC=∠C=30°÷2=15°,故∠ABC=30°+15°=45°.故这个三角形最小的内角度数是15°或20°.故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.1.【解答】解:原式=﹣(﹣1)=1,故答案为:112.测量某班学生的身高,得身高在1.6m以上的学生有10人,1.6m及1.6m以下的学生有40人,则该班学生身高1.6m以上的频率是0.2.【解答】解:∵身高在1.6m以上的学生有10人,1.6m及1.6m以下的学生有40人,∴该班学生身高1.6m以上的频率是:0.2.故答案为:0.2.13.如图,在△ABC中,AB=AC,AD平分∠BAC,若BD=5,则BC的长度为10.【解答】解:∵AB=AC,AD平分∠BAC,∴BC=2BD=10.故答案为:10.14.如图,在四边形ABCD中,∠B=∠D=90°,AB=AD,∠BAC=65°,则∠ACD的度数为25°.【解答】解:在Rt△ADC和Rt△ABC中,∵,∴Rt△ADC≌Rt△ABC(HL),∴∠ACD=∠ACB,∵∠BAC=65°,∴∠ACB=90°﹣65°=25°,∴∠ACD=25°,故答案为25°15.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O为圆心,长方形的对角线OB长为半径作弧,交数轴正半轴于点A,则点A表示的实数是.【解答】解:由勾股定理可知,∵OB,∴这个点表示的实数是.故答案为:16.如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a>b)(1)如图①所示的几何体的体积是a3﹣b3.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式(a﹣b)(a2+ab+b2)=a3﹣b3.【解答】解:(1)根据题意,得a3﹣b3.故答案为a3﹣b3.(2)根据题意,得a2(a﹣b)+ab(a﹣b)+b2(a﹣b)=a3﹣a2b+a2b﹣ab2+b2a﹣b3=a3﹣b3∴a3﹣b3=(a﹣b)(a2+ab+b2)故答案为(a﹣b)(a2+ab+b2)=a3﹣b3三、解答題:本題共9小题,共86分17.计算:3a2•(﹣b)﹣8ab(b a).【解答】解:3a2•(﹣b)﹣8ab(b a)=﹣3a2b﹣8ab2+4a2b=a2b﹣8ab2.18.因式分解:x(x﹣12)+4(3x﹣1).【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).19.先化简,再求值:[(2ab﹣1)2(6ab﹣3)]÷(﹣4ab),其中a=3,b.【解答】解:原式=(4a2b2+1﹣4ab+2ab﹣1)÷(﹣4ab)=(4a2b2﹣2ab)÷(﹣4ab)=﹣ab,当a=3,b时,原式=﹣3×()=3.20.如图,点A、C、B、D在同一直线上,且AB=CD,AE∥DF,AE=DF.求证:BE=CF.【解答】证明:∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,∵AB=CD,∠A=∠D,AE=DF,∴△ABE≌△DCF(SAS),∴BE=CF.21.春节是我国的传统节日,为了调查学生对于各地春节民俗活动的了解程度,某校随机抽取一部分学生进行问卷调查,将调查结果按“A:非常了解、B:基本了解、C:了解较少、D:不太了解”四类分别进行统计,并绘制出下面两幅不完整的统计图.请根据两幅统计图的信息,解答下列问题:(1)此次共调查了100个学生;(2)扇形统计图中,A所在的扇形的圆心角度数为54°;(3)将上面的条形统计图补画完整.【解答】解:(1)(19+22)÷40%=100人,故答案为:100.(2)C组人数为:100×39%=39,A组人数为:100﹣41﹣39﹣5=15,A所在的扇形的圆心角度数为:360°54°,故答案为:54°.(3)A组的人数:15人,其中男生15﹣5=10人,C组的人数:39人,其中女生39﹣21=18人,补全条形统计图如图所示:22.如图,一架2.5m长的梯子AB斜靠在墙AC上,梯子的顶端A离地面的高度为2.4m,如果梯子的底部B向外滑出1.3m后停在DE位置上,则梯子的顶部下滑多少米?【解答】解:由题意得,AB=DE=2.5,AC=2.4,BD=1.3,∵∠C=90°,∴BC..0.7,∴CD=BC+BD=2,∵CE. 1.5,∴AE=AC﹣CE=2.4﹣1.5=0.9,答:梯子的顶部下滑0.9米.23.如图,在△ABC中,∠C=90°,AC=5cm,BC=12cm,将△ABC沿过A点的直线折叠,使点C落在AB边上的点D处,折痕与BC交于点E.(1)试用尺规作图作出折痕AE;(要求:保留作图痕迹,不写作法.)(2)连接DE,求线段DE的长度.【解答】解:(1)如图所示,线段AE即为所求;(2)∵△ABC沿AE折叠,点C落在AB边上的点D处,∴AD=AC=5,DE=CE,∠ADE=∠C=90°,∴BD=AB﹣AD=8,BE=BC﹣CE=12﹣DE,在Rt△BDE中,由勾股定理得,BD2+DE2=BE2,即82+DE2=(12﹣DE)2,解得:DE.24.阅读下列材料利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2﹣12x+37的最小值.解:x2﹣12x+37=x2﹣2x•6+62﹣62+37=(x﹣6)2+1.因为不论x取何值,(x﹣6)2总是非负数,即(x﹣6)2≥0.所以(x﹣6)2+1≥1.所以当x=6时,x2﹣12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+16=(x﹣4)2.(2)将x2+10x﹣2变形为(x+m)2+n的形式,并求出x2+10x﹣2的最小值.(3)如图①所示的长方形边长分别是2a+5、3a+2,面积为S1:如图②所示的长方形边长分别是5a、a+5,面积为S2.试比较S1与S2的大小,并说明理由.【解答】解:(1)x2﹣8x+16=(x﹣4)2,故答案为:16;4;(2)x2+10x﹣2=x2+10x+25﹣25﹣2=x2+10x+25﹣27=(x+5)2﹣27,当x=﹣5时,x2+10x﹣2的最小值为﹣27;(3)S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1﹣S2=6a2+19a+10﹣(5a2+25a)=a2﹣6a+10=(a﹣3)2+1,∵(a﹣3)2≥0,∴(a﹣3)2+1>0,∴S1﹣S2>0,∴S1>S2.25.如图,在△ABC中,∠ACB=90°,AC=BC,点P是AC边上的一动点(点P不与端点A、C重合),过点A作AE⊥BP于D,交BC的延长线于点E.(1)求证:△ACE≌△BCP;(2)在点P的移动过程中,若AD=DC,试求CP的长;(3)试探索:在点P的移动过程中,∠ADC的大小是否保持不变?若保持不变,请求出∠ADC的大小;若有变化,请说明变化情况.【解答】(1)证明:∵AE⊥BP,∴∠DBE+∠DEB=90°,∵∠ACB=90°,∴∠DBE+∠CPB=90°,∴∠CPB=∠DEB,在△ACE和△BCP中,,∴△ACE≌△BCP(AAS);(2)解:在Rt△ABC中,AB2,∵AD=CD,∴∠DAC=∠DCA,∵∠DAC+∠DEC=90°,∠DCE+∠DCA=90°,∴∠DCE=∠DEC,∴DC=DE,∴AD=DE,∵AD=DE,BD⊥AE,∴BE=AB=2,∵△ACE≌△BCP,∴CP=CE=BE﹣BC=2;(3)解:∠ADC的大小是否保持不变,理由如下:作CF⊥BD于F,CH⊥AE于H,∵△ACE≌△BCP,∴CE=CP,∠BPC=∠E,在△CFP和△CHE中,,∴△CFP≌△CHE(AAS)∴CF=CH,又CF⊥BD,CH⊥AE,∴CD平分∠EDB,∴∠EDC∠EDB=45°,∴∠ADC=180°﹣∠EDC=135°,即∠ADC的大小保持不变,为135°.。

2018年福建省中考数学A卷试卷(含详细答案)

2018年福建省中考数学A卷试卷(含详细答案)

数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是( )A .3-B .2-C .0D .π 2.某几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .长方体D .四棱锥3.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,5 4.一个n 边形的内角和为360°,则n 等于( )A .3B .4C .5D .65.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15°B .30°C .45°D .60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 7.已知m =m 的估算正确的( )A .23m <<B .34m <<C .45m <<D .56m <<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩9.如图,AB 是O 的直径,BC 与O 相切于点B ,AC 交O 于点D ,若50ACB ∠=︒°,则BOD ∠等于( )A .40°B .50°C .60°D .80°10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于s x 的方程20x bx a ++=的根毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分,请把答案填在题中的横线上)11.计算:01-=⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组31320x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1,410.x y x y +=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD ,BC 分别相交于点E ,F .求证:OE OF =.19.(本小题满分8分)先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中1m =.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC △及线段A B '',A A A ∠'∠'=∠(),以线段A B ''为一边,在给出的图形上用尺规作出A B C '''△,使得A B C '''△∽ABC △,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A按逆时针方向旋转90°得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D .(1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元; 乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题: ①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD MN ≤.已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若20a =,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共34页) 数学试卷 第8页(共34页)24.(本小题满分12分)已知四边形ABCD 是O 的内接四边形,AC 是O 的直径,DE AB ⊥,垂足为E . (1)延长DE 交O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC PB =; (2)过点B 作BC AD ⊥,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB 1DH =,80OHD ∠=︒,求BDE ∠的大小.25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,. (1)若点(0)也在该抛物线上,求a ,b 满足的关系式;(2)若该抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当1x <2x <0时,12120x x y y (-)(-)>;当120x x <<时,12120x x y y (-)(-)<.以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且ABC △有一个内角为60°. ①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分MPN ∠.5 / 17福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】解:在实数3-,-2,0,π中,33-=,则203π--<<<,故最小的数是:2-.故选:B. 分析:直接利用绝对值的性质化简,进而比较大小得出答案. 2.【答案】C【解析】解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C. 分析:根据常见几何体的三视图逐一判断即可得. 3.【答案】C【解析】解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C. 分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解. 4.【答案】B【解析】解:根据n 边形的内角和公式,得:2180360n =(-),解得4n =.分析:n 边形的内角和是2180n (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .故选:B. 5.【答案】A.【解析】解:∵等边三角形ABC 中,AD BC ⊥, ∴BD CD =,即:AD 是BC 的垂直平分线, ∵点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠,数学试卷 第11页(共34页)数学试卷 第12页(共34页)∵45EBC ∠=︒, ∴45ECB ∠=︒, ∵ABC △是等边三角形, ∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒. 故选:A.分析:先判断出AD 是BC 的垂直平分线,进而求出45EBC ∠=︒,即可得出结论. 6.【答案】D【解析】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 7.【答案】B【解析】解:∵2m12,∴34m <<.故选:B.. 8.【答案】A【解析】解:设索长为x 尺,竿子长为y 尺,根据题意得:5,1 5.2x y x y =+⎧⎪⎨=-⎪⎩故选:A.分析:设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 9.【答案】D【解析】解:∵BC 是O 的切线, ∴90ABC ∠=︒,∴9040A ACB ∠=︒-∠=︒,由圆周角定理得,280BOD A ∠=∠=︒,7 / 17故选:D.分析:根据切线的性质得到90ABC ∠=︒,根据直角三角形的性质求出A ∠,根据圆周角定理计算即可. 10.【答案】D.【解析】解:∵关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,∴2210(2)4(1)0a b a +≠⎧⎨∆=-+=⎩,,∴1b a =+或(1)b a =-+.当1b a =+时,有10a b +=-,此时1-是方程20x bx a ++=的根; 当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根. ∵10a +≠, ∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根. 故选:D.分析:根据方程有两个相等的实数根可得出1b a =+或(1)b a =-+,当1b a =+时,1-是方程20x bx a ++=的根;当(1)b a =-+时,1是方程20x bx a ++=的根.再结合1(1)a a +≠-+,可得出1和1-不都是关于x 的方程20x bx a ++=的根.第Ⅱ卷二、填空题11.【答案】0【解析】解:原式110==-,故答案为:0. 分析:根据零指数幂:01(0)a a =≠进行计算即可. 12.【答案】120【解析】解:∵这组数据中120出现次数最多,有3次, ∴这组数据的众数为120. 故答案为:120.数学试卷 第15页(共34页)数学试卷 第16页(共34页)分析:根据众数的定义:一组数据中出现次数最多的数据即为众数. 13.【答案】3【解析】解:∵90ACB ∠=︒,D 为AB 的中点, ∴116322CD AB ==⨯=. 故答案为:3.分析:根据直角三角形斜边上的中线等于斜边的一半解答. 14.【答案】2x >【解析】解:313,2x x x ++⎧⎨-⎩>①>0,②∵解不等式①得:1x >,解不等式②得:2x >, ∴不等式组的解集为2x >,分析:先求出每个不等式的解集,再求出不等式组的解集即可. 15.1【解析】解:如图,过点A 作AF BC ⊥于F ,在Rt ABC △中,45B ∠=︒,∴2BC =,1BF AF AB ===, ∵两个同样大小的含45︒角的三角尺, ∴2AD BC ==,在Rt ADF △中,根据勾股定理得,DF =∴121CD BF DF BC =+==-,分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论. 16.【答案】69 / 17【解析】解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=, 整理,得230x mx +=-, 则a b m +=-,3ab =-,∴222))((412a b a b ab m -+=+=-. ∵1•2ABC S AC BC =△ 222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6. 分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x =相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-,则方程组的解为3,2.x y =⎧⎨=-⎩【解析】分析:方程组利用加减消元法求出解即可.数学试卷 第19页(共34页)数学试卷 第20页(共34页)18.【答案】证明:∵四边形ABCD 是平行四边形, ∴OA OC =,AD BC ∥, ∴OAE OCF ∠=∠, 在OAE △和OCF △中,,,,OAE OCF OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE COF △≌△(ASA ), ∴OE OF =.【解析】分析:由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF△≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷⎪⎝⎭()()2111m m mm m m +-=+-()()111m mm m m +=+-11m =-当1m=时,原式==. 【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将m 的值代入即可解答本题. 20.【答案】(1)解:如图所示,A B C '''△即为所求;(2)已知,如图,ABC A B C '''△∽△,k AB BC A B CA B C A C =='''''=',D 是AB 的中点,D '是A B ''的中点, 求证:DC kD C ''=.证明:∵D 是AB 的中点D '是A B ''的中点, ∴12AD AB =,12A D A B ''='',∴1212A B AB AB A D A B AD ''''=='', ∵ABC A B C '''△∽△,∴A A CB AB AC ='''','A A ∠=∠, ∵A A A D AD CC ''''=,'A A ∠=∠, ∴A CD ACD '''△∽△, ∴k CD D C A C CA ''''==. 【解析】分析:(1)作=A B C ABC '''∠∠,即可得到A B C '''△; (2)依据D 是AB 的中点,D '是A B ''的中点,即可得到=,根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A CD ACD '''△∽△,可得k CD D C A C CA ''''==.21.【答案】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到, ∴90DAB ∠=︒,10AD AB ==, ∴45ABD ∠=︒,∵EFG △是ABC △沿CB 方向平移得到, ∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥, ∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒, ∵90DAB ∠=︒, ∴90ADE ∠=︒, ∵90ACB ∠=︒,∴ADE ACB ∠=∠, ∴ADE ACB △∽△, ∴AD AEAC AB=, ∵8AB =,10AB AD ==, ∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】分析:(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论; (2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论. 22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元,乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦ ()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦=159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘. 【解析】分析:(1)根据概率公式计算可得; (2)分别根据平均数的定义及其意义解答可得.23.【答案】解:(1)设m AB x =,则()1002m BC x =-, 根据题意得()1002450x x =-,解得15x =,245x =, 当5x =时,10029020x =->,不合题意舍去; 当45x =时,100210x =-, 答:AD 的长为10 m ; (2)设m AD x =, ∴()()21110050125022S x x x ==--+-, 当50a ≥时,则50x =时,S 的最大值为1250;当050a <<时,则当0x a <≤时,S 随x 的增大而增大,当x a =时,S 的最大值为21502a a -, 综上所述,当50a ≥时,S 的最大值为1250;当050a <<时,S 的最大值为21502a a -.【解析】分析:(1)设m AB x =,则()1002m BC x =-,利用矩形的面积公式得到()1002450x x =-,解方程得15x =,245x =,然后计算1002x -后与20进行大小比较即可得到AD 的长; (2)设m A D x =,利用矩形面积得到()11002S x x =-,配方得到()215012502S x =--+,讨论:当50a ≥时,根据二次函数的性质得S 的最大值为1250;当050a <<时,则当0x a <≤时,根据二次函数的性质得S 的最大值为21502a a -.24.【答案】解:(1)如图1,∵AC 是O 的直径,∴90ABC ∠=︒, ∵DE AB ⊥, ∴90DEA ∠=︒, ∴DEA ABC ∠=∠, ∴BC DF ∥, ∴F PBC ∠=∠,∵四边形BCDF 是圆内接四边形, ∴180F DCB ∠+∠=︒, ∵180PCB DCB ∠+∠=︒, ∴F PCB ∠=∠, ∴PBC PCB ∠=∠, ∴PC PB =;(2)如图2,连接OD ,∵AC 是O 的直径,∴90ADC ∠=︒, ∵BG AD ⊥, ∴90AGB ∠=︒, ∴ADC AGB ∠=∠, ∴BG DC ∥, ∵BC DE ∥,∴四边形DHBC 是平行四边形, ∴1BC DH ==,在Rt ABC △中,AB =tan ABACB BC∠=, ∴60ACB ∠=︒, ∴12BC AC OD ==, ∴DH OD =,在等腰三角形DOH 中,80DOH OHD ∠=∠=︒, ∴20ODH ∠=︒, 设DE 交AC 于N , ∵BC DE ∥,∴60ONH ACB ∠=∠=︒,∴()18040NOH ONH OHD ∠=︒∠+∠=︒-, ∴40DOC DOH NOH ∠=∠∠=︒-, ∵OA OD =,∴1202OAD DOC ∠=∠=︒, ∴20CBD OAD ∠=∠=︒, ∵BC DE ∥,∴20BDE CBD ∠=∠=︒.【解析】分析:(1)先判断出BC DF ∥,再利用同角的补角相等判断出F PCB ∠=∠,即可得出结论; (2)先判断出四边形DHBC 是平行四边形,得出1BC DH ==,再用锐角三角函数求出60ACB ∠=︒,进而判断出DH OD =,求出20ODH ∠=︒,即可得出结论.25.【答案】解:(1)∵抛物线2y ax bx c =++过点2(0)A ,, ∴2c =.又∵点(0)也在该抛物线上,∴2((0a b c +=+,∴220(0)a a +=≠.(2)①∵当120x x <<时,1212()()0x x y y -->, ∴120x x -<,120y y -<,∴当0x <时,y 随x 的增大而增大; 同理:当0x >时,y 随x 的增大而减小, ∴抛物线的对称轴为y 轴,开口向下, ∴0b =.∵OA 为半径的圆与拋物线的另两个交点为B 、C , ∴ABC △为等腰三角形, 又∵ABC △有一个内角为60°, ∴ABC △为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又∵2OB OC OA ===,∴•cos30CD OC =︒=,•sin301OD OC =︒=.不妨设点C 在y 轴右侧,则点C 的坐标为1)-. ∵点C 在抛物线上,且2c =,0b =, ∴321a +=-, ∴1a =-,∴抛物线的解析式为22y x =+-.②证明:由①可知,点M 的坐标为211(2)x x -+,,点N 的坐标为222(2)x x -+,. 直线OM 的解析式为11(0)y k x k =≠. ∵O 、M 、N 三点共线,∴10x ≠,20x ≠,且22121222x x x x -+-+=, ∴121222x x x x -+=-+, ∴1212122()x x x x x x =---, ∴122x x =-,即212x x =-, ∴点N 的坐标为211242x x ⎛⎫-+ ⎪⎝⎭,-. 设点N 关于y 轴的对称点为点N ',则点N '的坐标为211242x x ⎛⎫+ ⎪⎝⎭,-. ∵点P 是点O 关于点A 的对称点, ∴24OP OA ==,∴点P 的坐标为(04),. 设直线PM 的解析式为24y k x =+, ∵点M 的坐标为21(2)x x +,-, ∴212124x k x +=+-,∴21212x k x +=-,∴直线PM 的解析式为21124x y x +=-+.∵22211122111122(2)4244==2x x x x x x x +-++-+-+, ∴点N '在直线PM 上, ∴PA 平分MPN ∠.【解析】分析:(1)由抛物线经过点A 可求出2c =,再代入(0)即可找出220(0)a a +=≠; (2)①根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向下,进而可得出0b =,由抛物线的对称性可得出ABC △为等腰三角形,结合其有一个60︒的内角可得出ABC △为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;②由①的结论可得出点M 的坐标为211(2)x x -+,、点N 的坐标为222(2)x x -+,,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点N '的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点N '在直线PM 上,进而即可证出PA 平分MPN ∠s.。

福建省晋江市2017-2018学年八年级下期末考试数学试题(有答案)

福建省晋江市2017-2018学年八年级下期末考试数学试题(有答案)

晋江2018年春季八年级学业期末检测数学试题(试卷满分:150分考试时间:120分钟)友情提示:所有答案必须填写到答题卡相应的位置上.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位置内作答.1、计算(23)0的结果是().A.0B .1C .23D .232、一个纳米粒子的直径是1纳米(1纳米=0.000000001米),则该纳米粒子的直径1纳米用科学记数法可表示为().A .0.1⨯10-8米B .1⨯109米C .10⨯10-10米D .1⨯10-9米3、点A (2,-3)关于原点的对称点的坐标是().A .(-2,-3)B .(2,3)C .(-2,3)D .(-3,-2)4、若分式22x x -+有意义,则实数x 的取值范围是()A .2x =B .2x =-C .2x ≠D .2x ≠-5、下列四边形中,是中心对称图形但不是轴对称图形的是().A .平行四边形B .矩形C .菱形D .正方形6、对于正比例函数y =3x ,下列说法正确的是().A .y 随x 的增大而减小B .y 随x 的增大而增大C .y 随x 的减小而增大D .y 有最小值7、一组数据1,2,3,4,5的方差与下列哪组数据的方差相同的是().A .2,4,6,8,10B .10,20,30,40,50C .11,12,13,14,15D .11,22,33,44,558、若直线2y kx =+经过第一、二、四象限,则化简2k -的结果是()A .2+kB .2-kC .k -2D .不能确定9、在□ABCD 中,对角线AC 与BD 相交于点O ,AC =10,BD =6,则下列线段不.可.能.是□ABCD 的边长的是().A .5B .6C .7D .810、若14a a =+,则221a a+的值为().A .14B .16C .18D .20第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11、2-1=12、计算:2133a a a ++++=___13、若正比例函数y =(k -2)x 的图象经过点A (1,-3),则k 的值是.14、如图,把Rt △ABC (∠ABC =90︒)沿着射线BC 方向平移得到Rt △DEF ,AB =8,BE =5,则四边形ACFD 的面积是.15、如图,在菱形ABCD 中,过点C 作CE ⊥BC 交对角线BD 于点E ,若∠ECD =20︒,则∠ADB = ︒.16、在平面直角坐标系xOy 中,点O 是坐标原点,点B 的坐标是(3m ,4m -4),则OB 的最小值是.三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17、(本小题满分8分)解方程:231x x =+18、(本小题满分8分)先化简、再求值:()29339x x x x ⎛⎫+-÷ ⎪+-⎝⎭,其中2x =-19、(本小题满分8分)在某校课外体育兴趣小组射击队日常训练中,教练为了掌握同学们一阶段以来的射击训练情况,对射击小组进行了射击测试,根据他们某次射击的测试数据绘制成不完整的条形统计图及扇形统计图如图所示:(I)请.补.全.条.形.统.计.图.;(II)填空:该射击小组共有个同学,射击成绩的众数是,中位数是;(III)根据上述数据,小明同学说“平均成绩与中位数成绩相同”,试判断小明的说法是否正确?并说明理由.20、(本小题满分8分)在等腰三角形ABD中,AB=AD.(I)试利用无刻度的直尺和圆规作图,求作:点C,使得四边形ABCD是菱形.(保留作图痕迹,不写作法和证明);(II)在菱形ABCD中,连结AC交BD于点O,若AC=8,BD=6,求AB边上的高h的长.21、(本小题满分8分)求证:有一组对边平行且有一组对角相等的四边形是平行四边形.(要求:画出图形,写出已知、求证及证明过程)22、(本小题满分10分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?23、(本小题满分10分)如图,在平面直角坐标系中,直线111 2y x=+与直线211 3y x=-+相交于点A.(I)求直线211 3y x=-+与x轴的交点坐标,并在坐标系中标出点A及画出直线2y的图象;(II)若点P是直线1y在第一象限内的一点,过点P作PQ//y轴交直线2y于点Q,△POQ的面积等于60,试求点P的横坐标.如图,在矩形ABCD中,AB=16,BC=18,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在点B'处.(I)若AE=0时,且点B'恰好落在AD边上,请直接写出DB'的长;(I I)若AE=3时,且△CDB'是以DB'为腰的等腰三角形,试求DB'的长;(I I I)若AE=8时,且点B'落在矩形内部(不含边长),试直接写出DB'的取值范围.F如图,已知点A 、C 在双曲线()10m y m x =>上,点B 、D 在双曲线()20n y n x=<上,AD//BC//y 轴.(I)当m=6,n=-3,AD=3时,求此时点A 的坐标;(II)若点A 、C 关于原点O 对称,试判断四边形ABCD 的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD 的面积为492,求mn 的最小值.2018年春季八年级期末学业跟踪检测数学试题参考答案及评分标准一、选择题:(每小题4分,共40分)(1)B ;(2)D ;(3)C ;(4)D ;(5)A ;(6)B ;(7)C ;(8)B ;(9)D ;(10)C ;二、填空题:(每小题4分,共24分)(11)21;(12)1;(13)1-;(14)40;(15)35;(16)125.三、解答题:(共86分)(17)(8分)解:方程两边同时乘以(1)x x +,得2(1)3x x +=…………………………4分223x x+=2x =…………………………………7分检验:当2x =时,(1)0x x +≠∴原方程的解为2x =………………………………………8分(18)(8分)解:原式()()9333392-÷⎥⎦⎤⎢⎣⎡+-+++=x x x x x x ………………………2分9393922-÷⎥⎦⎤⎢⎣⎡+-++=x xx x x ………………………………3分9322-÷+=x x x x …………………………………………………4分()()x x x x x 3332-+⋅+=………………………………………………5分()3-=x x x x 32-=…………………………………………………6分当2x =-时,原式()223(2)4610=--⨯-=+=………………………………8分(19)(8分)(I)如图所示,………………………2分;(II)207环7.5环(没写单位不扣分)………………………5分;(III)不正确……………………………………………………………6分;人数射击成绩条形统计图平均成绩:6.72010193867763==⨯+⨯+⨯+⨯+⨯=x (环)…7分;∵7.5环<7.6环,∴小明的说法不正确.…………………………8分;(20)(8分)(I)如图,点C 是所求作的点,……………………3分∴四边形ABCD 是菱形.……………………………………4分(II)∵四边形ABCD 是菱形,∴BD AC ⊥,362121=⨯===BD OB OD ,482121=⨯===AC OC OA ,…………………………5分在ABO Rt ∆中,由勾股定理得:5=AB ,…………………6分∵h AB BD AC S ABCD ⋅=⋅=21菱形,∴h 58621=⨯⨯,解得:524=h .………………………8分(21)(8分)(画出图形)………………………1分已知:在四边形ABCD 中,AD ∥BC ,C A ∠=∠.…………2分求证:四边形ABCD 是平行四边形.………………3分证明:∵AD ∥BC ,∴︒=∠+∠180B A ,………………………………………4分∵C A ∠=∠,∴︒=∠+∠180B C ,∴AB ∥CD ,………………………………………6分又AD ∥BC ,∴四边形ABCD 是平行四边形.…………………………8分(22)(10分)解:设原计划每天加工x 套,依题意可得:…………………1分18%)201(160400160=+-+xx ,…………………………………………………6分解得:20=x ,……………………………………………………………8分经检验,20=x 是原方程的根,且符合题意.………………………………9分答:原计划每天加工服装20套.…………………………………………10分OBA (第19题图)D B A(第21题图)CDBA(第19题图)D(23)(10分)解:(I)在1312+-=x y 中,令0=y ,则0131=+-x ,解得:3=x ,∴2y 与x 轴的交点B 的坐标为()0,3.……………………3分由113112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩解得01x y =⎧⎨=⎩所以点A ()0,1过A 、B 两点作直线2y 的图象如图所示.……………………6分(II)∵点P 是直线1y 在第一象限内的一点,∴设点P 的坐标为⎪⎭⎫⎝⎛+121,x x ()0>x ,又PQ ∥y 轴,∴点⎪⎭⎫⎝⎛+-131,x x Q …………………………………………………………………………………7分∴xx x y y PQ 6513112121=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+=-=∵2115522612POQ S PQ x x x x ∆=⋅==,又POQ ∆的面积等于60,…………………………………9分∴601252=x ,解得:12=x 或12-=x (舍去)∴点P 的横坐标为12………………………………………………………………………………10分(24)(13分)解:(I)2'=DB ;……………………………………………………………………………………3分(II)∵四边形ABCD 是矩形,∴16==AB DC ,18==BC AD .分两种情况讨论:(i )如图1,当16'==DC DB 时,即'CDB ∆是以'DB 为腰的等腰三角形.…………………………………………………………………5分(ii )如图2,当C B D B ''=时,过点'B 作GH ∥AD ,分别交xyOBA(第23题图)P QADE 'BAB 与CD 于点G 、H .∵四边形ABCD 是矩形,∴AB ∥CD ,︒=∠90A 又GH ∥AD ,∴四边形AGHD 是平行四边形,又︒=∠90A ,∴□AGHD 是矩形,∴DH AG =,︒=∠90GHD ,即B H CD '⊥,又C B D B ''=,∴8162121=⨯===CD HC DH ,8==DH AG ,…………………………………………………………………7分∵3=AE ,∴13316=-=-=AE AB BE ,∴538=-=-=AE AG EG ,……………………………8分在Rt EGB '∆中,由勾股定理得:12513'22=-=GB ,∴61218''=-=-=GB GH H B ,在HD B Rt '∆中,由勾股定理得:1086'22=+=D B ,综上,'DB 的长为16或10.…………………………………………………………………………10分(III)1452'8972<≤-DB .(或写成580'8388<≤-DB 不扣分)………………………13分(25)(13分)解:(I)∵6=m ,3-=n ,∴x y 61=,xy 32-=,设点A 的坐标为⎪⎭⎫ ⎝⎛t t 6,,则点D 的坐标为⎪⎭⎫⎝⎛-t t 3,,由3=AD 得:336=--t t ,解得:3=t ,∴此时点A 的坐标为()2,3.……………………………………………………………………………3分(II)四边形ABCD 是平行四边形,理由如下:设点A 的坐标为⎪⎭⎫ ⎝⎛t m t ,,∵点A 、C 关于原点O 对称,∴点C 的坐标为⎪⎭⎫ ⎝⎛--t m t ,,………………5分∵AD ∥BC ∥y 轴,且点B 、D 在双曲线x n y =2上,A ⎪⎭⎫ ⎝⎛t m t ,,ABCD NOPx Oyx (第25题图)A BCDE F(第24题图2)G C H G 'B∴点B ⎪⎭⎫ ⎝⎛--t n t ,,点D ⎪⎭⎫ ⎝⎛t n t ,,∴点B 与点D 关于原点O 对称,即OD OB =,且B 、O 、D 三点共线……………………………7分又点A 、C 关于原点O 对称,即OC OA =,且A 、O 、C 三点共线∴AC 与BD 互相平分∴四边形ABCD 是平行四边形.………………………………………………8分(III)设AD 与BC 的距离为h ,3=AD ,4=BC ,梯形ABCD 的面积为249,∴()24921=⋅+h BC AD ,即()2494321=⋅+h ,解得:7=h ,…………………9分设点A 的坐标为⎪⎭⎫ ⎝⎛x m x ,,则点⎪⎭⎫ ⎝⎛x n x D ,,⎪⎭⎫ ⎝⎛--7,7x n x B ,⎪⎭⎫ ⎝⎛--7,7x m x C ,由3=AD ,4=BC ,可得:⎪⎪⎩⎪⎪⎨⎧=---=-477,3x m x n n m ,则x n m 3=-,()74-=-x m n ,∴()743--=x x ,解得:4=x ,∴12=-n m ,……………………………………………………………………………………11分法一:∵22()()40m n m n mn +=-+≥∴21240mn +≥∴4144mn ≥-,即36mn ≥-又0>m ,0<n ,∴当0m n +=取到等号即6=m ,6-=n 时,mn 的最小值是36-.………………………………13分法二:∵0>m ,0<n ,∴0>-n ,∴()()361222=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+≤-n m n m ,当6=m ,6-=n 时,()n m -的最大值是36,mn 的最小值是36-.………………………………13分。

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析一、选择题本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在实数|﹣3|,﹣2,0,π中,最小的数是( )A.|﹣3|B.﹣2C.0D.π答案解析:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B. 2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥答案解析:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,5答案解析:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.一个n边形的内角和为360°,则n等于( )A.3B.4C.5D.6答案解析:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30°C.45°D.60°答案解析:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12答案解析:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.已知m=+,则以下对m的估算正确的( )A.2<m<3B.3<m<4C.4<m<5D.5<m<6答案解析:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.B.C.D.答案解析:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )A.40°B.50°C.60°D.80°答案解析:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根答案解析:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、填空题11.计算:()0﹣1= 0 .答案解析:原式=1﹣1=0,故答案为:0.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 120 .答案解析:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .答案解析:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3. 14.不等式组的解集为 x>2 .答案解析:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .答案解析:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .答案解析:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、解答题本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.解方程组:.答案解析:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.答案解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.先化简,再求值:(﹣1)÷,其中m=+1.答案解析:(﹣1)÷===,当m=+1时,原式=.20.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.答案解析:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.答案解析:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.答案解析:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.答案解析:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE 的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.答案解析:(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.25.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N (x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C 的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.答案解析:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,∵x12=2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,由①得:﹣1<y1≤2,∴﹣<y0≤0,则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.。

〖中考零距离-新课标〗2018年福建省初中毕业生学业质量测查数学试题及答案解析

〖中考零距离-新课标〗2018年福建省初中毕业生学业质量测查数学试题及答案解析

2018年福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±22.下列计算错误..的是( ) A .6a + 2a =8a B .a – (a – 3) =3 C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 则该班学生捐款金额的中位数是( )A .13B .12C .10D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136E B D O CA (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是 度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22= . 11.分解因式:xy 2 – 9x = .12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 .13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE = . 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+-(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式y x yyx xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标; (2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2= ;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG 与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C 二、填空题(每小题4分,共40分)8. 20; 9. 46.810⨯; 10. 1; 11. (3)(y 3)x y +-; 12. 54°; 13. 1:3;14. 2; 15. 3π; 16. 12; 17.(1)(3,0); (2)303k -≤<. 三、解答题(共89分) 18.(本小题9分)解:原式23431=--+- ……………………(8分) 3=- ……………………(9分)19.(本小题9分)解:原式=2x 2+2x +x 2﹣2x +1,……………………(6分)=3x 2+1……………………(7分)当x =2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD 是菱形, ∴AD =CD ;∠A =∠C ,……………………(6分) 又∵DE ⊥AB 于E ,DF ⊥BC 于F,∴∠AED =∠CFD =90°; ……………………(8分) 在△ADE 和△CDF 中,∠A =∠C ,∠AED =∠CFD , AD =CD ; ∴△ADE ≌△CDF .……………………(9分) 21.(本小题9分) 解:(1)200,36.……………………(4分) 画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元)答:开展本次活动共需9608元经费. ……………………(9分)22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分) ∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵ -2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分)(2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分) 连结AB ,则∠ABC =∠BCD =135 º,且AB =2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BCAB CD =∙;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1), 在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD =2HD =21(m )-∴22=2×21(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)(解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,(图2)可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BFAC AG = ∴2213BD +=21 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4, 解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) =-11120x 2+75x +240……………………8分 (图3)∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分) 25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==- 在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分)∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠ ∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得: AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD += ; 在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分)整理得:32216320,a a a ---= ∴ (2)(4)(4)0a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.……………………(1分)∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.……………………(2分)∴四边形EFCG是矩形.……………………(3分)(2)由(1)知四边形EFCG是矩形.∴CF∥EG,∴∠CEG=∠ECF,∵∠ECF=∠EDF,∴∠CEG=∠EDF,……………………(4分)在Rt△ABD中,AB=3,AD=4,∴tan34ABBDAAD∠==,……………………(5分)∴tan∠CEG= 34;……………………(6分)(3)∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∴tan∠FCE=tan∠CEG=3 4∵∠CFE=90°,∴EF=34CF, ……………………(7分)∴S矩形EFCG=234CF;……………………(8分)连结OD,如图2①,∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°……………………(9分)(Ⅰ)当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′)处,如图2①所示.此时,CF=CB=4.……………(10分)(Ⅱ)当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.……………(11分)(Ⅲ)当CF⊥BD时,CF最小,如图2③所示.S△BCD=12BC×CD=12BD×CF,∴4×3=5×CF∴CF=125.……………(12分)∴125≤CF≤4.……………(13分)∵S矩形EFCG=234CF,∴34×(125)2≤S矩形EFCG≤34×42.∴10825≤S矩形EFCG≤12.……………(14分)。

最新-2018年福建省泉州市初中毕业、升学考试数学试题(含参考答案) 精品

最新-2018年福建省泉州市初中毕业、升学考试数学试题(含参考答案) 精品

2018年福建省泉州市初中毕业、升学考试数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题4分,共24分)每题有四个答案,其中有且只有一个答案是正确的,请在答题卡相应题目的答题区域内作答,答对的得4分,答错、不答或答案超过一个的一律得0分。

1.计算2-3=( )A .-1B .1C .-5D .52.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差=2甲S 4,乙同学成绩的方差=2乙S 3.1,则对他们测试成绩的稳定性判断正确的是( )A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙成绩的稳定性相同D .甲、乙成绩的稳定性无法比较 3.观察下列图形,其中不是..正方体的展开图的为( )4.如图,A 、B 、C 三点都在⊙O 上,若∠BOC=80°,则∠A 的度数等于(A .20°B .40°C .60°D .80° 5.不等式组⎩⎨⎧-<<1x x 的解集的情况为( )A .x <-1B .x <0C .-1<x <0D .无解6.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ',则点A '的坐标是( ) A .)2,32( B .(4,-2) C .)2,32(- D .)32,2(- 二、填空题(每小题3分,共36分)在答题卡上相应题目的答题区域内作答。

7.计算:=23)10(8.分解因式:=+xy x 2ABCD (第4题图)9.据泉州统计信息网公布的数据显示,2018年泉州市全年旅游总收入约为14 600 000 000,用科学记数法表示约为 元10.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元11.某水果店1至6月份的销售情况(单位:千克)为450、440、420、480、580、550,则这组数据的极差是 千克12.计算:=⋅abb a 213.五边形的内角和等于 度14.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为15.反比例函数xy 3=的图象在第一象限与第 象限16.已知圆锥的底面半径为10,侧面积是300π,则这个圆锥的母线长为17.口袋中放有黄、白、红三种颜色的小球各1个,这3个球除颜色外没有任何区别,随机从口袋中任取1个球,写出这个实验中一个可能发生的事件: 18.图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。

晋江市初中毕业班数学试题及答案

晋江市初中毕业班数学试题及答案

2010年福建省晋江市初中毕业班学业质量检查数学试题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分. 1.51-的相反数是( ).A. 51B. 51- C. 5 D.5-2. 下列计算正确的是( ). A.632a a a =⋅ B.()832a a = C.326a a a =÷ D.()6223b a ab =3.下列事件中,是确定事件的是( ) .A.打雷后会下雨B. 明天是睛天C. 1小时等于60分钟D.下雨后有彩虹4. 分式方程0242=+-xx 的根是( ) . A.2-=x B. 0=x C.2=x D.无实根5.如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).A. 4B. 6C. 7D.86.如图, A 、B 、C 是⊙O 上的三点,且A 是优弧BAC 上与点B 、点C 不同的一点,若BOC ∆是直角三角形,则BAC∆必是() . A.等腰三角形B.锐角三角形C.有一个角是︒30的三角形D.有一个角是︒45的三角形 7.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) . A. 669 B. 670 C.671 D. 672二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8. 计算:.______32=-9.分解因式:26_________.x x +=10. 2010年4月14日青海玉树发生的7.1级地震震源深度约为14000米,震源深度用科学记数法表示约为_____________米.1 42 53 6 第5题图 第7题图第6题图11.已知一组数据2, 1,-1,0, 3,则这组数据的极差是______.12.不等式组3,4x x ≥-⎧⎨⎩<的解集是___________.13.如图,BAC ∠位于66⨯的方格纸中,则tan BAC ∠= . 14,母线长是cm 50,则圆锥的15.b 的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个..解析式...: . 16.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD ,则BAD ∠的大小是_______度. 17.已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(8分)计算:()0220103134-÷---. 19.(8分)先化简,再求值:x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x 20.(8分)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . 已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.21.(9分)设y x A +=,其中x 可取1-、2,y 可取1-、2-、3.(1)求出A 的所有等可能结果(用树状图或列表法求解); (2)试求A 是正值的概率.22.(10分)2010年春季我国西南大旱,导致大量农田减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?A B C ①②第16题图第13题图 今年,第一块田的产量比去年减产80%,23.(10分)某校为了了解九年级女生的体能情况,随机抽查了部分女生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图和不完整的统计表(每个分组包括左端点,不包括右端点). 请你根据图中提供的信息,解答以下问题: (1) 分别把统计图与统计表补充完整;仰卧起坐次数的范围(单位:次)15~20 20~25 25~30 30~35频数 3 10 12 频率(2)被抽查的女生小敏说:“我的仰卧起坐次数是被抽查的所有同学的仰卧起坐次数的中位数”,请你写出小敏仰卧起坐次数所在的范围.(3)若年段的奋斗目标成绩是每个女生每分钟23次,问被抽查的所有女生的平均成绩是否达到奋斗目标成绩?,24.(10分)已知:如图,有一块含︒30的直角三角板OAB 的直角边长BO 的长恰与另一块等腰直角三角板ODC 的斜边OC 的长相等,把该套三角板放置在平面直角坐标系中,且3=AB .(1)若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2)若把含︒30的直角三角板绕点O 按顺时针方向旋转后,斜边OA 恰好与x 轴重叠,点A 落在点A ',试求图中阴影部分的面积(结果保留π25.(13分)已知:如图,把矩形OCBA 放置于直角坐标系中,中点M ,连结MC ,把MBC ∆沿x 轴的负方向平移OC (1)试直接写出点D 的坐标;(2)已知点B 与点D 在经过原点的抛物线上,点P 过点P 作x PQ ⊥轴于点Q ,连结OP .①若以O 、P 、Q 为顶点的三角形与DAO ∆相似,试求出点P 的坐标; ②试问在抛物线的对称轴上是否存在一点T ,使得TB TO -的值最大.26.(13分)如图,在等边ABC ∆中,线段AM为BC 边上的中线. 动点D 在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE . (1) 填空:______ACB ∠=度; (2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BEAD的值; (3)若8=AB ,以点C 为圆心,以5为(次)半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长..友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如,则本题的得分将计入全卷总分,但计入后全卷总分90分,则本题的得分不计入全卷总分.1A . 2年福建省晋江市初中毕业班学业质量检查说明:神(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1. A ;2. D ;3. C ;4. C ;5. B ;6. D ;7. B ; 二、填空题(每小题4分,共40分)8. 91; 9. (6)x x +; 10. 4104.1⨯; 11. 4; 12. 43<≤-x ; 13.32;14. 2000πcm 2; 15. 如32+-=x y ,(答案不惟一,0<k 且0>b 即可); 16.72; 17. (1)3-;(2)1-.(注:答1±可得1分)三、解答题(共89分)18.(本小题8分)解:原式13194-÷-=……………………………………………………(6分)1394-⨯-=……………………………………………………(7分)24-=……………………………………………………………(8分)19.(本小题8分)解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ ………………………(2分) B C 备用图(1)A B C 备用图(2)= ()()xx x x x x x x 11133222-⋅+-+-+= ()()xx x x x x 1114222-⋅+-+……………………………………………(4分)=()()()()()xx x x x x x 111122-+⋅+-+ =()22+x …………………………………………………………(5分)当22-=x 时,原式=()2222+-………………………………(6分)=22………………………………………(8分)解二:原式=xx x x x x x x 1111322-⋅+--⋅- …………………………………(2分) =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-……………………(3分) = ()()113--+x x ………………………………………………(4分) = 133+-+x x=42+x …………………………………………………………(5分)当22-=x 时,原式=224+)………………………………(6分) =22…………………………………………(8分)20.(本小题8分)已知:①③,①④,②④,③④均可,其余均不可以. (解法一)已知:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………(2分) 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ………………………………………(5分) ∵C A ∠=∠,∴D B ∠=∠∴四边形ABCD 是平行四边形…………………………………………………(8分)(解法二)2 x 值3y 值 3 已知:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(5分) 又∵AD ∥BC∴四边形ABCD 是平行四边形.…………………………………………………(8分)(解法三)已知:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B .………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(5分) 又∵CD AB =∴四边形ABCD 是平行四边形.…………………………………………………(8分)(解法四)已知:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B .……………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(4分) ∴︒=∠+∠180D A ………………………………………………………………(6分) 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形.…………………………………………………(8分) 21. (本小题9分) 解:(解法一)(1)列举所有等可能结果,画出树状图如下:…………………………………………………………………………………(4分) 由上图可知, A 的所有等可能结果为:2-,3-,2,1,0,5,共有6种. ……………………………………………(5分) (2) 由(1)知,A 是正值的的结果有3种.∴2163)A (==是正值P ………………………………………………………(9分)(解法二) (1)列表如下…………………………………………………………………………………(4分)由上表可知,A 的所有等可能结果为:2-,3-,2,1,0,5,共有6种. ………………………………………………………………(5分) (2) 由(1)知,A 是正值的结果有3种.∴2163)A (==是正值P ………………………………………………………(9分)22.(本小题10分) 解一:设去年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克,根据题意,得………………………………(1分) ………………………………(5分)解得 100370x y =⎧⎨=⎩ ………………………………(7分)100(180%)20⨯-=,370(190%)37⨯-=………………………………(9分)答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克。

2018年晋江市初中毕业班数学试题及答案

2018年晋江市初中毕业班数学试题及答案

2018年晋江市初中毕业班数学试题及答案D式.: . 16.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD ,则BAD ∠的大小是_______度. 17.已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223xy +=,1xy =,则x y -= .三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(8分)计算:()0220103134-÷---.19.(8分)先化简,再求值: x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x20.(8分)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . 已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.21.(9分)设y x A +=,其中x 可取1-、2,y 可取1-、2-、3.(1)求出A 的所有等可能结果(用树状图或列表法求解);(2)试求A 是正值的概率.A BD22.(10分)2018年春季我国西南大旱,导致大量农田减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?23.(10分)某校为了了解九年级女生的体15 20 25 30 35次数(次)人数(人)0 1012 5 3 今年,第一块田的产量比咱家两块农田去年花生产量能情况,随机抽查了部分女生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图和不完整的统计表(每个分组包括左端点,不包括右端点). 请你根据图中提供的信息,解答以下问题:(1) 分别把统计图与统计表补充完整; 仰卧起坐次数的范围(单位:次)15~20 20~25 25~30 30~35频数3 1012频率 101 3161 (2)被抽查的女生小敏说:“我的仰卧起坐次数是被抽查的所有同学的仰卧起坐次数的中位数”,请你写出小敏仰卧起坐次数所在的范围.(3)若年段的奋斗目标成绩是每个女生每分钟23次,问被抽查的所有女生的平均成绩是否达到奋斗目标成绩?,24.(10分)已知:如图,有一块含 30的直角三角板OAB的直角边长BO 的长恰与另一块等腰直角三角板ODC的斜边OC 的长相等,把该套三角板放置在平面直角坐标系中,且3=AB .(1)若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2)若把含︒30的直角三角板绕点O 按顺时针方向旋转后,斜边OA 恰好与x 轴重叠,点A 落在点A ',试求图中阴影部分的面积(结果保留π).25.(13分)已知:如图,把矩形OCBA 放置于直角坐标系A OB C D A xy中,3=OC ,2=BC ,取AB 的中点M ,连结MC ,把MBC ∆沿x轴的负方向平移OC 的长度后得到DAO ∆.(1)试直接写出点D 的坐标;(2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作x PQ ⊥轴于点Q ,连结OP .①若以O 、P 、Q 为顶点的三角形与DAO ∆相似,试求出点P 的坐标;②试问在抛物线的对称轴上是否存在一点T ,使得TB TO -的值最大.AO xBC My26.(13分)如图,在等边ABC中,线段AM为BC边上的中线. 动点D在直线..AM上时,以CD为一边且在CD的下方作等边CDE∆,连结BE.(1) 填空:______ACB∠=度;(2) 当点D在线段..AM上(点D不运动到点A)时,试求出BEAD的值;(3)若8=AB,以点C为圆心,以5为半径作⊙C与直线BE相交于点P、Q两点,在点D运动的过程中(点D与点A重合除外),试求PQ的长.E MCDAB备用图(1)AB备用图(2)四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.1.若︒A,则A∠的余角等于度.=∠352.不等式2+x的解是_____.2->12018年福建省晋江市初中毕业班学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1. A ;2. D ;3. C ;4. C ;5. B ;6. D ;7. B ;二、填空题(每小题4分,共40分)8. 91; 9. (6)x x +; 10. 4104.1⨯; 11. 4; 12. 43<≤-x ; 13.32; 14. 2000πcm 2; 15. 如32+-=x y ,(答案不惟一,0<k 且>b 即可); 16.72; 17. (1)3-;(2)1-.(注:答1±可得1分)三、解答题(共89分) 18.(本小题8分)解:原式13194-÷-=……………………………………………………(6分)1394-⨯-=……………………………………………………(7分)24-=……………………………………………………………(8分) 19.(本小题8分) 解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ ………………………(2分)= ()()xx x x x x x x 11133222-⋅+-+-+=()()xx x x x x 1114222-⋅+-+……………………………………………(4分)= ()()()()()xx x x x x x 111122-+⋅+-+ =()22+x …………………………………………………………(5分) 当22-=x 时,原式=()2222+-………………………………(6分)=22………………………………………(8分) 解二:原式=xx x x x x x x 1111322-⋅+--⋅- …………………………………(2分)= ()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-……………………(3分)=()()113--+x x ………………………………………………(4分)= 133+-+x x=42+x …………………………………………………………(5分) 当22-=x 时,原式=2224+()………………………………(6分)=22…………………………………………(8分) 20.(本小题8分)已知:①③,①④,②④,③④均可,其余均不可以. (解法一)已知:在四边形ABCD中,①AD∥BC,③C A ∠=∠.……………………(2分)求证:四边形ABCD 是平行四边形.证明:∵ AD ∥BC ∴︒=∠+∠180B A ,︒=∠+∠180D C ………………………………………(5分) ∵C A ∠=∠,∴D B ∠=∠ ∴四边形ABCD是平行四边形…………………………………………………(8分)(解法二) 已知:在四边形ABCD中,①AD∥BC,④︒=∠+∠180C B .………………(2分)求证:四边形ABCD 是平行四边形. 证明:∵︒=∠+∠180C B , ∴AB ∥CD……………………………………………………………………(5分) 又∵AD ∥BC∴四边形ABCD 是平行四边形.…………………………………………………(8分)(解法三)已知:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B .………………(2分)求证:四边形ABCD 是平行四边形. 证明:∵︒=∠+∠180C B , ∴AB ∥2 x 值1- 1- 2- 3 y 值1- 2-3 CD……………………………………………………………………(5分) 又∵CD AB =∴四边形ABCD 是平行四边形.…………………………………………………(8分)(解法四)已知:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B .……………………(2分)求证:四边形ABCD 是平行四边形. 证明:∵︒=∠+∠180C B , ∴AB ∥CD……………………………………………………………………(4分) ∴︒=∠+∠180D A ………………………………………………………………(6分) 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形.…………………………………………………(8分) 21. (本小题9分) 解:(解法一)(1)列举所有等可能结果,画出树状图如下:…………………………………………………………………………………(4分)由上图可知, A 的所有等可能结果为:2-,3-,2,1,0,5,共有6种. ……………………………………………(5分)(2) 由(1)知,A 是正值的的结果有3种.∴2163)A (==是正值P ………………………………………………………(9分) (解法二) (1)列表如下1- 2- 3 1- 2-3-2 2 1 05…………………………………………………………………………………(4分)由上表可知,A 的所有等可能结果为:2-,3-,2,1,0,5,共有6种. ………………………………………………………………(5分)(2) 由(1)知,A 是正值的结果有3种.y 值结 果x 值2∴2163)A (==是正值P ………………………………………………………(9分) 22.(本小题10分)解一:设去年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克,根据题意,得………………………………(1分)470(180%)(190%)57x y x y +=⎧⎨-+-=⎩………………………………(5分) 解得100370x y =⎧⎨=⎩ ………………………………(7分)100(180%)20⨯-=,370(190%)37⨯-=………………………………(9分)答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克。

晋江市初中学业质量检查数学试题

晋江市初中学业质量检查数学试题

晋江市2018年初中学业质量检查数学试题一、选择题 (共 分).20181-的相反数是☎ ✆ .✌.20181 .20181- .  .2018-.用科学记数表示   ,其结果是☎ ✆ . ✌.410108.0-⨯ .51008.1-⨯ .61008.1-⨯ .6108.10-⨯ .不等式⎩⎨⎧<-≥23x x 的解集在数轴上表示正确的是☎ ✆ ..下列图形中中,正体的表面展开图正确的是☎ ✆ . .现有一数据: , , , , , , ,☎ ✆ .✌.众数是 和 .欢数是  .中位数是  .中位数是.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有☎ ✆ .✌. 块 . 块 . 块 . 块.如图,直线● ∥● ∥● ,直线✌分别交● 、● 、● 于点✌、 、 ,直线 ☞分别交● 、● 、● 于点 、☜、☞,✌与 ☞相交于点☟,若✌☟,☟, , ☜,则☜☞等于☎ ✆ .✌.524 .526 .528 .以上不对.如图,在等腰 ✌中,✌✌, , 点✋是 ✌的重心,则点✌与✋的距离为☎ ✆ .✌.34 .35 .37  .38.若 ♋ ♍ .则关于⌧的一元次方程02=++c bx ax )0(≠a 的根的情况是☎ ✆ . ✌.方程有两个相等的实数根; .方程有用个不相等的实根;.方程必有一根是 ; .方程没有实数根..在形✌中,动 从点✌出发,沿着“✌→ → → →✌”的路径运动一周,线段✌长度⍓☎♍❍✆与点 运动的路程⌧☎♍❍✆之间的函数图象如图所示,则矩形的面积是☎ ✆ . ✌.  ♍❍   ♍❍ . 5 ♍❍ . 5 ♍❍二、填空题(共 分) .121--- ♉♉♉♉♉♉♉♉.No.:0000000000000614(第 题)(第 题)♍ ⌧☎⍓☎♍❍♋ ♌5✋.若甲组数据:⌧ ,⌧ ,…,⌧⏹的方差为2甲S ,乙组数据:⍓ ,⍓ ,…,⍓⏹的方差为2乙S , 且2甲S 2乙S ,则上述两组数据中比较稳定的是♉♉♉♉♉♉♉♉..若点✌☎❍ , ✆与点A '☎❍, ✆关于⍓轴对称,则 ❍ ❍♉♉♉♉♉♉♉♉. .如图,在 ♦✌中, ✌,点☜、✈,☞分别是边 ✌ 、✌、 的中点、若☜☞✈,则☜☞♉♉♉♉♉♉♉♉. .在菱形✌中,两条对角线✌与 的和是 .菱形的边✌, 则菱形✌的面积是♉♉♉♉♉♉♉♉..如图,✌是半径为 半圆 的直径. 是圆中可移动 的弦,且 ,连接 ✌、 相交于点 ,弦  从 与✌重合的位置开始,绕着点 顺时针旋转 ☐, 则交点 运动的路径长是♉♉♉♉♉♉♉♉. 三、解答题(共 分).☎分✆先化简,再求值:93932-÷⎪⎭⎫ ⎝⎛++-a aa a ,其中♋ 3.☎分✆如图,在□✌中于,点☜、☞分别是边 、✌的中点, 求证 ✌☜≌ ☞.☎分✆如图,已知线段✌与 的夹角为锐角 ✌,✌,且 ✌☐.( )在线段✌上,求作一点✈,使得✈✌✈(请用尺规作图,保留作图痕迹,不写作法与证明✆; ( )连接✌、✈, ✈比 ✈多 ☐,求 ✌的度数..☎分✆已知直线⍓ ⌧ ⏹与直线⍓ ☎ ✆ ⌧ ⏹相交于点 . 的坐标⌧满足 ⌧,求整数⏹的值.✌(第 题) ✌☜ ☞ (第 题)✌☞✌( )事件 :现从布袋中随机摸出一个球☎球不放回布袋中✆,再随机摸出一个球,分别记录两次摸出球的颜色;事件 :现从布袋中随机摸出一个球☎球放回布袋中✆,再随机摸出一个球,分别记录两次摸出球的颜色.“事件 中两次摸出球的颜色相同”与“事件 中两次出球的颜色相同”的概率相等吗?试用列表 或画树状图说明理由..☎分现有一工程由甲工程队单独完成这工程,刚好如期完成,若由乙工程队单独完成此项工程,则要比规定工期多用 天,现先由甲乙两队合做 天,余下的工程再由乙队单独完成,也正好如期完成.( )求该工程规定的工期天数;( )若甲工程队每天的费用为 万元,乙工程队每天的费用为 万元,该工程总预算不超过 万元, 问甲工程认至少要工作几天?.☎分✆如图,在平面直角坐标系中,直线●:⍓ ⌧ ☎ ✆与⌧轴、⍓轴分别相交于点✌、 ,♦♋⏹ ✌3. ( )求 的值;( )若直线●:⍓ ⌧ 与双曲线⍓xm☎m 的一个交点✈在一象限内,以 ✈为直径的 ✋与⌧轴相明于点❆,求❍的值..☎分✆如图,在平面直角坐标系中,点✌⎪⎭⎫⎝⎛-0,29、点 ☎, ✆,✌⊥ . ☎✆直接写出 与 的长;☎✆若将 ✌绕着点 逆时针旋转 得到 ☜☞点✌、 的对应点分别是点☜、☞,求点☞的坐标; ☎✆在线段✌上是否存在点❆,使得以 ❆为直径的 与边 相交于点✈☎点✈异于点 ✆,且 ✈是以✈为腰的等腰三角形若存在,求出点❆的坐标;若不存在,说明理由..☎分✆已知经过原点的 抛物线⍓bx ax +2与⌧轴正半轴交于点✌,点 是抛物线在第一象限上的一个动点.☎✆如图 ,若♋ ,点 的坐标为⎪⎭⎫⎝⎛45,25. ①求♌的值;②若点✈是⍓轴上的一点,且满足 ✈ ✌,求点✈的坐标;☎✆如图 ,过点 的直线 分别交⍓轴的正半轴、⌧轴的正半轴于点 、 .过点 作 ⌧轴交射线于点 .设点 的纵坐标为⍓ ,若CD OB ⋅ ,试求⍓ 的最大值.晋江市 年初中学业质量检查数学试题参考答案及评分标准一、选择题(每小题 分,共 分).✌ . . . .  .✌ ... .✌二、填空题(每小题 分,共 分) .21-.乙.1- .25.  .334π三、解答题(共 分) ( )(本小题 分)解:原式 ()()()()a a a a a a a 3339333+-⋅⎥⎦⎤⎢⎣⎡++++- …………………………………………………… 分 ()()2339933a a a a a a -+⎡⎤-+⋅⎢⎥++⎣⎦…………………………………………………………… 分()()aa a a a 3332+-⋅+ …………………………………………………………………………… 分a a 32- ………………………………………………………………………………………… 分当3-=a 时,原式 ()()3332--- …………………………………………………………………分333+= …………………………………………………………………………… 分( )(本小题 分)证明:∵四边形ABCD 是平行四边形,∴CD AB =,BC AD =,D B ∠=∠ …………………………………………………………………… 分 ∵点E 、F 分别是边BC 、AD 的中点,∴BC BE 21=AD DF 21=,又BC AD =, ∴DF BE =,………………………………………………………………………………………………… 分 在ABE ∆与CDF ∆中,CD AB =,D B ∠=∠,DF BE =,∴ABE ∆☹CDF ∆.………………………………………………………………………………………… 分( )(本小题 分)☎✋✋✆由☎✆得:QBQA =,∴A QBA ∠=∠,……………………………………………………………… 分设︒=∠=∠x A QBA ,则︒=∠x BQC 2,()︒-=∠22x QBC , 在QBC ∆中,180BQC QBC C ∠+∠+∠=︒, ∴()18040222=+-+x x ,解得:5.35=x ,∴︒=∠5.35A ……………………………………… 分( )(本小题 分)解:依题意得:由 21y y =,得:()21132kx n k x n +-=+-+,解得:35-=n x ,…………… 分∵73<<-x ,∴7353<-<-n ,解得:20<<n , ……………………………………………… 分又n 是整数,∴1=n ………………………………………………………………………………………… 分☎✆ (本小题 分)☎✋✆31;……………………………………………………………………………………………………………… 分☎✋✋✆不相等………………………………………………………………………………………………………… 分 方法一:事件 的树状图如下:由树状图可知,共有 种等可能结果,其中“两球的颜色相同”有 种结果∴1P ☎两球颜色相同✆3162= ………………………………………………………………………… 分 事件 的树状图如下:由树状图可知,共有 种等可能结果,其中“两球的颜色相同”有 种结果∴2P ☎两球颜色相同✆95…………………………………………………………………………黑黑 白 黑 黑白 白 黑 黑 黑 黑 白 黑 黑 黑 白 黑 白黑 白 黑∵1P ☎两球颜色相同✆32P ☎两球颜色相同✆9 ∴21P P <∴两事件的概率不相等………………………………………………………………………………… 分☎✆ (本小题 分)解:☎✋✆设这项工程规定的工期天数为x 天,依题意得:…………………………………………… 分163=++x x x …………………………………………………………………………………………… 分 解得:6=x ,经检验,6=x 是原方程的根,且符合题意 …………………………………… 分答:工程规定的工期天数为 天 …………………………………………………………………… 分 ☎✋✋✆ 设甲工程队工作y 天,则乙工程队工作()y 212-天,依题意得: ……………………………… 分()9.32124.05.0≤-+y y …………………………………………………………………………… 分解得:3≥y …………………………………………………………………………………………… 分 答:甲工程队至少要工作 天 ……………………………………………………………………… 分☎✆ (本小题 分) 解:☎✋✆在()10y kx k =+>中,令0=x ,则1=y , ∴1=OB ………………………………………………… 分在AOB Rt ∆中,31tan ===∠AOBO AO ABO , ∴3=AO ,()0,3-A ……………………………… 分把点(),3-A 代入1+=kx y 中得:130+-=k ,解得:33=k ………………………………… 分 ☎✋✋✆∵3tan =∠ABO ,∴︒=∠60ABO ,︒=∠30BAO ……………………………………………… 分 连接IT ,∵⊙I 与x 轴相切于点T ,∴AT IT ⊥,︒=∠90ITA , 在AOB Rt ∆中,︒=∠30BAO ,1=OB ,∴2=AB ,…………………………………………………………………………………………………… 分 在ATI Rt ∆中,︒=∠30IAT ,设r IT =,则2+=r AI ,TI AI 2=,∴r r 22=+,解得:2=r ,6=AQ ,…………………………………………………… 分☎第 题图✆在ACQ ∆中,︒=∠30QAC ,3622=⨯==AQ QC …………………………………………………分3330cos =︒⋅=AQ AC ,∴32333=-=-=AO AC OC ,…………………………………………………………………… 分∴()3Q ,把点()3Q 代入xmy =得:36=m ……………………………………………………………… 分☎✆ (本小题 分)解:☎✋✆ 6=OC ,10=BC ;……………………………………………………………………………… 分 ☎✋✋✆当ACB ∆绕着点C 按逆时针方向旋转︒90由旋转的性质可得:10FC BC ==,CAB CEF ∠=∠, ︒=∠=∠90ACB FCB ,∴︒=∠180ACF ,即A 、C 、F 在同一条直线上,作y FH ⊥轴于点H ,则︒=∠90FHC ,∴︒=∠+∠90HFC HCF又︒=∠+∠90OCB HCF ,∴OCB HFC ∠=∠在FHC ∆与COB ∆中,90FHC COB ∠=∠=︒,OCB HFC ∠=∠,CF CB =,∴FHC ∆≌COB ∆,………………………………………………………………………………………… 分 ∴6==OC FH ,8==OB CH , ∴1468=+=+=CO HC HO ,∴点F 的坐标为()14,6 ……………………………………………………………………………………… 分☎✋✋✋✆ ∵90TOC ∠=︒∴点O 在⊙D 上 下面分两种情况讨论:(♓)当BO BQ =时,则BOQ BQO ∠=∠,如图∵四边形TOQC 内接于点⊙D ∴BTC BQO ∠=∠,BCT BOQ ∠=∠, ∴BTC BCT ∠=∠,∴10==BT BC ,∴2810=-=-=BO BT OT ,∴点T 的坐标为()0,2- ……………………………………………… 分☎第 题图①✆☎第 题图②✆(♓♓)当QB QO =时,则QBO QOB ∠=∠,如图③, 又∵QOB TCQ ∠=∠,∴QBO TCQ ∠=∠,∴TB TC =, 连接TQ ,∵CT 是⊙D 的直径,∴︒=∠90CQT ,即CB TQ ⊥, ∴5==QB CQ在COB Rt ∆中,54108cos ===∠BC OB CBO , 在QTB Rt ∆中,5=QB ,545cos ===∠TB TB QB CBO ,∴425=TB , ∴474258=-=-=TB OB OT ,∴点T 的坐标为⎪⎭⎫⎝⎛0,47 综上,满足题意的点T 的坐标是()0,2-或⎪⎭⎫⎝⎛0,47 …………………………………………………… 分☎✆ (本小题 分)☎✋✆ ☎♓✆∵点P ⎪⎭⎫ ⎝⎛4525,是抛物线上的一个动点,且1a =,∴2525452⨯+⎪⎭⎫ ⎝⎛=b ,解得:2-=b , …………………………………………………………………… 分☎♓♓✆如图①, ①当点Q 在y 轴的正半轴时,∵POA QPO ∠=∠,∴PQ ∥OA ,∴⎪⎭⎫ ⎝⎛450,Q②当点Q 在y 轴的负半轴时,设PQ 交x 轴于点E , ∵POA QPO ∠=∠,∴PE OE =设x PE OE ==,作x PT ⊥轴于点T ,则x ET -=25,45=PT ,☎第 题图①✆在PET Rt ∆中,由勾股定理得:222ET PT PE +=,2222545⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=x x ,解得:1625=x ,∴点⎪⎭⎫⎝⎛01625,E ,……………………………………………………………………………………………… 分 由⎪⎭⎫⎝⎛01625,E 、⎪⎭⎫ ⎝⎛4525,P 可求得直线PE 的解析式122534-=x y ,令0=x ,则1225-=y∴点⎪⎭⎫⎝⎛-12250,Q , 综上,点Q 的坐标为⎪⎭⎫ ⎝⎛4501,Q 或⎪⎭⎫⎝⎛-122502,Q …………………………… 分☎✋✋✆如图②,法一:作x PT ⊥轴,∵x CD ⊥轴,x OB ⊥轴, ∴OB ∥PT ∥CD∴OC TC OB PT =,OCOTCD PT =………………………………………………… 分 ∴OCOT OC TC CD PT OB PT +=+ 1TC OT OC OC OC +==∴111=⎪⎭⎫⎝⎛+CD OB PT ,PT CD OB 111=+,即Py CD OB 111=+ ∴CDOB CDOB y P +⋅=,………………………………………………………………………………………… 分设c OB =,d CD =()0,0>>d c ,则dc cdCD OB CD OB y P +=+⋅=∵()cd cd dc d c 222≥+-=+,∴2622==≤+=cd cd cd d c cd y P 当且仅当6==d c 时,P y 的最大值为26…………………………………………………………… 分法二:设点()bm am m P +2,、()0,t C ,则t OC =,m t TC -=,∵x PT ⊥轴, ∴OB ∥PT∴OCTCOB PT =,()m t t bm am TC OC PT OB -⋅+=⋅=2, ∵x CD ⊥轴, ∴CD ∥PT☎第 题图②✆∴OC OT CD PT =,()m t bm am OT OC PT CD ⋅+=⋅=2,……………………………………………………… 分 ∵()()()()P y bm am t bm am t t bm am m m t t bm am m t bm am m t CD OB 11-1122222=+=⋅+=⋅++=⋅++⋅+-=+ ∴P y CD OB 111=+ 即CDOB CD OB y P +⋅=,………………………………………………………………… 分 设c OB =,d CD =()0,0>>d c ,则dc cd CD OB CD OB y P +=+⋅= ∵()cd cd d c d c 222≥+-=+,∴2622==≤+=cd cd cd d c cd y P 当且仅当6==d c 时,P y 的最大值为26 ……………………………………………………………… 分。

晋江市2018年初中学业质量检查数学试题(优选.)

晋江市2018年初中学业质量检查数学试题(优选.)

晋江市2018年初中学业质量检查数学试题一、选择题:(共40分) 1.20181-的相反数是( ) . A .20181 B .20181- C .2018 D .2018-2.用科学记数表示0.00 001 08,其结果是( ) .A .410108.0-⨯ B .51008.1-⨯ C .61008.1-⨯ D .6108.10-⨯3.不等式⎩⎨⎧<-≥23x x 的解集在数轴上表示正确的是( ) .4.下列图形中中,正体的表面展开图正确的是( ) .5.现有一数据:3,4,5,5,6,6,6,7,则下列说法正确的足是( ) . A .众数是5和6 B .欢数是5.5 C .中位数是5.5 D .中位数是66.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有( ) . A .3块 B .4块 C .5块 D .6块7.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1、l 2、l 3于点A 、B 、C ,直线DF 分别交l 1、l 2、l 3于点D 、E 、F ,AC 与DF 相交于点H ,若AH=2,HB=3,BC=7,DE=4,则EF 等于( ) . A .524 B .526 C .528D .以上不对 8.如图,在等腰△ABC 中,AB=AC=5,BC=6, 点I 是△ABC 的重心,则点A 与I 的距离为( ) . A .34 B .35 C .37 D .38B D(第7题)(第8题)BI9.若2a +3c =0.则关于x 的一元次方程02=++c bx ax )0(≠a 的根的情况是( ) . A .方程有两个相等的实数根;B .方程有用个不相等的实根; C .方程必有一根是0;D .方程没有实数根.10.在形ABCD 中,动P 从点A 出发,沿着“A →B →C →D →A ”的路径运动一周,线段AP 长度y(cm)与点P 运动的路程x (cm)之间的函数图象如图所示,则矩形的面积是( ) .A .32 cm 2B 48 cm 2C .165 cm 2D .325 cm 2二、填空题(共24分) 11.121---=________.12.若甲组数据:x 1,x 2,…,x n 的方差为2甲S ,乙组数据:y 1,y 2,…,y n 的方差为2乙S ,且2甲S >2乙S ,则上述两组数据中比较稳定的是________. 13.若点A(2m 2-1,3)与点A '(-5m+2,3)关于y 轴对称,则2m 2-5m=________.14.如图,在Rt △ABC 中,∠ACB=90°,点E 、Q ,F分别是边 AC 、AB 、BC 的中点、若EF+CQ=5,则EF=________. 15.在菱形ABCD 中,两条对角线AC 与BD 的和是14.菱形的边AB=5,则菱形ABCD 的面积是________.16.如图,AB 是半径为3半圆O 的直径.CD 是圆中可移动的弦,且CD=3,连接 AD 、 BC 相交于点P ,弦CD 从C 与A 重合的位置开始,绕着点O 顺时针旋转120o , 则交点P 运动的路径长是________. 三、解答题(共86分)17.(8分)先化简,再求值:93932-÷⎪⎭⎫ ⎝⎛++-a aa a ,其中a =3 c x (cm)y (cm)ab4 8 45A BC DP(第10题)AOBCD P(第16题)CEF(第14题)18.(8分)如图,在□ABCD 中于,点E 、F 分别是边BC 、AD 的中点,求证:△ABE ≌△CDF19.(8分)如图,已知线段AC 与BC 的夹角为锐角∠ACB ,AC>BC ,且∠ACB=40o .(1)在线段AC 上,求作一点Q ,使得QA=QB (请用尺规作图,保留作图痕迹,不写作法与证明); (2)连接AB 、QB ,∠BQC 比∠QBC 多2 o ,求∠A 的度数.20.(8分)已知直线y 1=kx +2n-1与直线y 2=(k +1) x -3n+2相交于点M .M 的坐标x 满足-3<x<7, 求整数n 的值.21.(8分)在一个不明的布袋中放有2个黑球与1个白球,这些球除了颜色不同外其余都相同. (1)从布袋中摸出一个球恰好是白球的概率是________;(2)事件1:现从布袋中随机摸出一个球(球不放回布袋中),再随机摸出一个球,分别记录两次摸出球的颜色;事件2:现从布袋中随机摸出一个球(球放回布袋中),再随机摸出一个球,分别记录两次摸出球的颜色.A BC“事件1中两次摸出球的颜色相同”与“事件2中两次出球的颜色相同”的概率相等吗?试用列表 或画树状图说明理由.22.(10分现有一工程由甲工程队单独完成这工程,刚好如期完成,若由乙工程队单独完成此项工程,则要比规定工期多用6天,现先由甲乙两队合做3天,余下的工程再由乙队单独完成,也正好如期完成. (1)求该工程规定的工期天数;(2)若甲工程队每天的费用为0.5万元,乙工程队每天的费用为0.4万元,该工程总预算不超过3.9万元,问甲工程认至少要工作几天?23.(10分)如图,在平面直角坐标系中,直线l :y=kx +1(k >0)与x 轴、y 轴分别相交于点A 、B ,tan ∠ABO=3. (1)求k 的值;(2)若直线l :y=kx +1与双曲线y=xm(0 m ) 的一个交点Q 在一象限内,以BQ 为直径的 ⊙I 与x 轴相明于点T ,求m 的值.24.(12分)如图,在平面直角坐标系中,点A ⎪⎭⎫⎝⎛-0,29、点B(8,0),AC ⊥BC . (1)直接写出OC 与BC 的长;(2)若将△ACB 绕着点C 逆时针旋转90°得到△EFC ,其中 点A 、B 的对应点分别是点E 、F ,求点F 的坐标; (3)在线段AB 上是否存在点T ,使得以CT 为直径的⊙D 与边BC 相交于点Q(点Q 异于点C),且△BQO 是以QB 为腰的等腰三角形? 若存在,求出点T 的坐标;若不存在,说明理由.25.(14分)已知经过原点的 抛物线y=bx ax +2与x 轴正半轴交于点A ,点P 是抛物线在第一象限上的 一个动点.(1)如图1,若a =1,点P 的坐标为⎪⎭⎫⎝⎛45,25. ①求b 的值;②若点Q 是y 轴上的一点,且满足∠QPO=∠POA ,求点Q 的坐标;(3)如图2,过点P 的直线BC 分别交y 轴的正半轴、x 轴的正半轴于点B 、C .过点C 作CD ⊥x 轴交射线 OP 于点D .设点P 的纵坐标为y P ,若CD OB ⋅=6,试求y P 的最大值.晋江市2018年初中学业质量检查数学试题参考答案及评分标准一、选择题(每小题4分,共40分)1.A 2.B 3.C 4.D 5. C 6.A 7.C 8. D 9.B 10.A 二、填空题(每小题4分,共24分) 11.21-12.乙 13.1- 14.2515.24 16.334π.三、解答题(共86分)(17)(本小题8分) 解:原式=()()()()a a a a a a a 3339333+-⋅⎥⎦⎤⎢⎣⎡++++- ……………………………………………………2分=()()2339933a a a a a a -+⎡⎤-+⋅⎢⎥++⎣⎦……………………………………………………………4分 =()()aa a a a 3332+-⋅+ ……………………………………………………………………………5分=a a 32- …………………………………………………………………………………………6分当3-=a 时,原式=()()3332--- …………………………………………………………………7分333+= ……………………………………………………………………………8分 (18)(本小题8分)证明:∵四边形ABCD 是平行四边形,(第19题图)∴CD AB =,BC AD =,D B ∠=∠.……………………………………………………………………3分 ∵点E 、F 分别是边BC 、AD 的中点,∴BC BE 21=,AD DF 21=,又BC AD =, ∴DF BE =,…………………………………………………………………………………………………5分 在ABE ∆与CDF ∆中,CD AB =,D B ∠=∠,DF BE =,∴ABE ∆≌CDF ∆.…………………………………………………………………………………………8分(19)(本小题8分)解:(I)点Q 是所求作的点;(正确作图得2分,标出字母及下结论各1分,共4分)…………………4分 (II)由(1)得:QB QA =,∴A QBA ∠=∠设︒=∠=∠x A QBA ,则︒=∠x BQC 2,()︒-=∠22x QBC , 在QBC ∆中,180BQC QBC C ∠+∠+∠=︒, ∴()18040222=+-+x x ,解得:5.35=x ,∴︒=∠5.35A ………………………………………8分 (20)(本小题8分)解:依题意得:由 21y y =,得:()21132kx n k x n +-=+-+,解得:35-=n x ,……………4分 ∵73<<-x ,∴7353<-<-n ,解得:20<<n , ………………………………………………7分 又n 是整数,∴1=n .…………………………………………………………………………………………8分(21) (本小题8分) (I)31;………………………………………………………………………………………………………………2分 (II)不相等. …………………………………………………………………………………………………………3分方法一:事件1的树状图如下:由树状图可知,共有6种等可能结果,其中“两球的颜色相同”有2种结果.∴1P (两球颜色相同)=3162=. …………………………………………………………………………5分 事件2的树状图如下:黑1 黑2 白 黑2 黑1 白 白 黑1黑2 黑1 黑2白 黑1 黑2 黑2 白黑1 白黑2白黑1由树状图可知,共有9种等可能结果,其中“两球的颜色相同”有5种结果.∴2P (两球颜色相同)=95. …………………………………………………………………………7分 ∵1P (两球颜色相同)=13, 2P (两球颜色相同)=95, ∴21P P <.∴两事件的概率不相等…………………………………………………………………………………8分(22) (本小题10分)解:(I)设这项工程规定的工期天数为x 天,依题意得:……………………………………………1分163=++x x x ……………………………………………………………………………………………3分 解得:6=x ,经检验,6=x 是原方程的根,且符合题意. ……………………………………4分答:工程规定的工期天数为6天. ……………………………………………………………………5分 (II) 设甲工程队工作y 天,则乙工程队工作()y 212-天,依题意得: ………………………………6分()9.32124.05.0≤-+y y ……………………………………………………………………………8分解得:3≥y ……………………………………………………………………………………………9分 答:甲工程队至少要工作3天. ………………………………………………………………………10分(23) (本小题10分) 解:(I)在()10y kx k =+>中,令0=x ,则1=y ,∴1=OB …………………………………………………1分 在AOB Rt ∆中,31tan ===∠AOBO AO ABO , ∴3=AO ,()0,3-A .………………………………2分把点()0,3-A 代入1+=kx y 中得:130+-=k ,解得:33=k .…………………………………3分 (II)∵3tan =∠ABO ,∴︒=∠60ABO ,︒=∠30BAO .………………………………………………4分 连接IT ,∵⊙I 与x 轴相切于点T ,∴AT IT ⊥,︒=∠90ITA , 在AOB Rt ∆中,︒=∠30BAO ,1=OB ,∴2=AB ,……………………………………………………………………………………………………5分 在ATI Rt ∆中,︒=∠30IAT ,设r IT =,则2+=r AI ,TI AI 2=,∴r r 22=+,解得:2=r ,6=AQ ,……………………………………………………7分作x QC ⊥轴于点C,(第23题图)在ACQ ∆中,︒=∠30QAC ,362121=⨯==AQ QC ,…………………………………………………8分 3330cos =︒⋅=AQ AC ,∴32333=-=-=AO AC OC ,……………………………………………………………………9分∴()3Q ,把点()3Q 代入xmy =得:36=m .………………………………………………………………10分 (24) (本小题12分)解:(I) 6=OC ,10=BC(II)当ACB ∆绕着点C 按逆时针方向旋转︒90时,如图①所示,由旋转的性质可得:10FC BC ==,CAB CEF ∠=∠, ︒=∠=∠90ACB FCB ,∴︒=∠180ACF ,即A 、C 、F 在同一条直线上,作y FH ⊥轴于点H ,则︒=∠90FHC ,∴︒=∠+∠90HFC HCF又︒=∠+∠90OCB HCF ,∴OCB HFC ∠=∠ (3)在FHC ∆与COB ∆中,90FHC COB ∠=∠=︒,OCB HFC ∠=∠,CF CB =,∴FHC ∆≌COB ∆,…………………………………………………………………………………………5分 ∴6==OC FH ,8==OB CH , ∴1468=+=+=CO HC HO ,∴点F 的坐标为()14,6.………………………………………………………………………………………6分 (III) ∵90TOC ∠=︒∴点O 在⊙D 上, 下面分两种情况讨论:(i )当BO BQ =时,则BOQ BQO ∠=∠,如图②,∵四边形TOQC 内接于点⊙D ,∴BTC BQO ∠=∠,BCT BOQ ∠=∠, ∴BTC BCT ∠=∠,∴10==BT BC ,∴2810=-=-=BO BT OT ,∴点T 的坐标为()0,2-.………………………………………………9分(ii )当QB QO =时,则QBO QOB ∠=∠,如图③, 又∵QOB TCQ ∠=∠,(第24题图①)(第24题图②)∴QBO TCQ ∠=∠,∴TB TC =, 连接TQ ,∵CT 是⊙D 的直径,∴︒=∠90CQT ,即CB TQ ⊥, ∴5==QB CQ ,在COB Rt ∆中,54108cos ===∠BC OB CBO , 在QTB Rt ∆中,5=QB ,545cos ===∠TB TB QB CBO ,∴425=TB , ∴474258=-=-=TB OB OT ,∴点T 的坐标为⎪⎭⎫⎝⎛0,47. 综上,满足题意的点T 的坐标是()0,2-或⎪⎭⎫⎝⎛0,47.……………………………………………………12分(25) (本小题12分)(I) (i)∵点P ⎪⎭⎫ ⎝⎛4525,是抛物线上的一个动点,且1a =,∴2525452⨯+⎪⎭⎫ ⎝⎛=b ,解得:2-=b ,.……………………………………………………………………2分(ii)如图①,①当点Q 在y 轴的正半轴时,∵POA QPO ∠=∠,∴PQ ∥OA ,∴⎪⎭⎫ ⎝⎛450,Q (4)②当点Q 在y 轴的负半轴时,设PQ 交x 轴于点E , ∵POA QPO ∠=∠,∴PE OE =,设x PE OE ==,作x PT ⊥轴于点T ,则x ET -=25,45=PT ,在PET Rt ∆中,由勾股定理得:222ET PT PE +=,2222545⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=x x ,解得:1625=x ,∴点⎪⎭⎫⎝⎛01625,E ,………………………………………………………………………………………………6分 (第25题图①)由⎪⎭⎫ ⎝⎛01625,E 、⎪⎭⎫ ⎝⎛4525,P 可求得直线PE 的解析式122534-=x y ,令0=x ,则1225-=y ∴点⎪⎭⎫ ⎝⎛-12250,Q , 综上,点Q 的坐标为⎪⎭⎫ ⎝⎛4501,Q 或⎪⎭⎫ ⎝⎛-122502,Q .……………………………7分 (II)如图②,法一: 作x PT ⊥轴,∵x CD ⊥轴,x OB ⊥轴, ∴OB ∥PT ∥CD . ∴OC TC OB PT =,OCOT CD PT =…………………………………………………9分 ∴OC OT OC TC CD PT OB PT +=+=1TC OT OC OC OC +== ∴111=⎪⎭⎫ ⎝⎛+CD OB PT ,PT CD OB 111=+,即Py CD OB 111=+. ∴CDOB CD OB y P +⋅=,…………………………………………………………………………………………11分 设c OB =,d CD =()0,0>>d c ,则d c cd CD OB CD OB y P +=+⋅= ∵()cd cd d c d c 222≥+-=+,∴2622==≤+=cd cd cd d c cd y P 当且仅当6==d c 时,P y 的最大值为26.……………………………………………………………14分 法二:设点()bm am m P +2,、()0,t C ,则t OC =,m t TC -=,∵x PT ⊥轴, ∴OB ∥PT ∴OCTC OB PT =,()m t t bm am TC OC PT OB -⋅+=⋅=2, ∵x CD ⊥轴, ∴CD ∥PT ∴OCOT CD PT =,()m t bm am OT OC PT CD ⋅+=⋅=2,………………………………………………………9分 ∵()()()()P y bm am t bm am t t bm am m m t t bm am m t bm am m t CD OB 11-1122222=+=⋅+=⋅++=⋅++⋅+-=+ ∴P y CD OB 111=+,即CDOB CD OB y P +⋅=,…………………………………………………………………11分 (第25题图②)设c OB =,d CD =()0,0>>d c ,则dc cd CD OB CD OB y P +=+⋅= ∵()cd cd d c d c 222≥+-=+,∴2622==≤+=cd cd cd d c cd y P 当且仅当6==d c 时,P y 的最大值为26.………………………………………………………………14分最新文件---------------- 仅供参考--------------------已改成word 文本 --------------------- 方便更改。

晋江市初中2018-2019学年初中七年级上学期数学第一次月考试卷

晋江市初中2018-2019学年初中七年级上学期数学第一次月考试卷

晋江市初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•河池)﹣3的绝对值是()A. -3B.C.D. 32.(2分)(2015•淮安)2的相反数是()A. B. - C. 2 D. -23.(2分)(2015•郴州)2的相反数是()A. B. C. -2 D. 24.(2分)(2015•南平)﹣6的绝对值等于()A. -6B. 6C. -D.5.(2分)(2015•漳州)如图是一个长方体包装盒,则它的平面展开图是()A. B.C. D.6.(2分)(2015•桂林)桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A. ﹣8℃ B. 6℃ C. 7℃ D. 8℃7.(2分)(2015•柳州)在下列单项式中,与2xy是同类项的是()A. 2x2y2B. 3yC. xyD. 4x8.(2分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A. 147.40元B. 143.17元C. 144.23元D. 136.83元9.(2分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A. 14×104B. 1.4×105C. 1.4×106D. 14×10610.(2分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A. 2.78×106B. 27.8×106C. 2.78×105D. 27.8×105二、填空题11.(1分)(2015•湘西州)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________ .12.(1分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒________ 根.13.(1分)(2015•湘潭)计算:23﹣(﹣2)=________ .14.(1分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=________ .15.(1分)(2015•遂宁)把96000用科学记数法表示为________ .16.(1分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是________ .三、解答题17.(10分)化简:(1)3a−2b−5a+2b(2),其中x= ,y=﹣218.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.(1)a=________,b=________,c=________.(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=________,AC=________,BC=________.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.19.(10分)燕尾槽的截面如图所示(1)用代数式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积20.(6分)小明拿扑克牌若千张变魔术,将这些扑克牌平均分成三份,分别放在左边,中间,右边,第一次从左边一堆中拿出两张放在中间一堆中,第二次从右边一堆中拿出一张放在中间一堆中,第三次从中间一堆中拿出一些放在左边一堆中,使左边的扑克牌张数是最初的2倍.(1)如一开始每份放的牌都是8张,按这个规则魔术,你认为最后中间一堆剩________张牌?(2)此时,小慧立即对小明说:“你不要再变这个魔术了,只要一开始每份放任意相同张数的牌(每堆牌不少于两张),我就知道最后中间一堆剩几张牌了,我想到了其中的奥秘!”请你帮小慧揭开这个奥秘.(要求:用所学的知识写出揭秘的过程)21.(13分)阅读下面的材料:如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B点,然后向右移动6cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A、B、C三点的位置:(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.22.(11分)如图,已知A、B是数轴上的两个点,点A表示的数为13,点B表示的数为,动点P 从点B出发,以每秒4个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)点P表示的数为________(用含t的代数式表示);(2)点P运动多少秒时,PB=2PA?(3)若M为BP的中点,N为PA的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请直接写出线段MN的长.23.(10分)有20筐鸡蛋,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下:单位:千克(2)若鸡蛋每千克售价5元,则出售这20筐鸡蛋可卖多少元?24.(7分)观察算式:(1)请根据你发现的规律填空:7×9+1=________2;(2)用含的等式表示上面的规律:________;(3)用找到的规律解决下面的问题:计算:25.(10分)当,,时,求下列代数式的值:(1)(2)晋江市初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】D【考点】绝对值及有理数的绝对值【解析】【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.【分析】根据绝对值的定义直接解答即可.2.【答案】D【考点】相反数及有理数的相反数【解析】【解答】2的相反数是2,故选:D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.3.【答案】C【考点】相反数【解析】【解答】解:2的相反数是﹣2,故选:C.【分析】根据相反数的概念解答即可.4.【答案】B【考点】绝对值【解析】【解答】解:|﹣6|=6,故选:B.【分析】根据一个负数的绝对值是它的相反数进行解答即可.5.【答案】A【考点】几何体的展开图【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选A.【分析】由平面图形的折叠及长方体的展开图解题.6.【答案】D【考点】有理数的减法【解析】【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【分析】根据“温差”=最高气温﹣最低气温计算即可.7.【答案】C【解析】【解答】解:与2xy是同类项的是xy.故选:C.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.8.【答案】A【考点】有理数大小比较,有理数的加减混合运算【解析】【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【分析】根据存折中的数据进行解答.9.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】将140000用科学记数法表示即可.140000=1.4×105,故选B.【分析】此题考查了科学记数法——表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将27.8万用科学记数法表示为2.78×105.故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.二、填空题11.【答案】5.4×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将5400000用科学记数法表示为:5.4×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.12.【答案】29【考点】探索图形规律【解析】【解答】解:如图所示:第1个图形有3+2=5根火柴棒,第2个图形有3×2+2=8根火柴棒,第3个图形有3×3+2=11根火柴棒,故第n个图形有3n+2根火柴棒,则第9个“H”需用火柴棒:3×9+2=29(根).故答案为:29.【分析】根据已知图形得出数字变化规律,进而求出答案.13.【答案】10【考点】有理数的减法,有理数的乘方【解析】【解答】解:23﹣(﹣2)=8+2=10.故答案为:10.【分析】根据有理数的混合计算解答即可.14.【答案】1.6×105或160000【考点】探索数与式的规律【解析】【解答】解:∵;;;…∴;∴.故答案为:1.6×105或160000.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.15.【答案】9.6×104【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:把96000用科学记数法表示为9.6×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.16.【答案】-2【考点】有理数大小比较【解析】【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0,所以在﹣1,0,﹣2这三个数中,最小的数是﹣2.故答案为:﹣2.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.三、解答题17.【答案】(1)解:3a−2b−5a+2b =-2a;(2)解:=2x2y-(3xy2-2xy2-4x2y)=2x2y-(xy2-4x2y)=2x2y-xy2+4x2y=6x2y-xy2,当x=,y=﹣2 时,原式=6x2y-xy2=【考点】整式的加减运算,合并同类项法则及应用【解析】【分析】(1)观察各项是否有同类项,若有则需要合并;(2)有小括号和中括号时,先去小括号,再去中括号,观察各项是否有同类项,若有则需要合并、18.【答案】(1)-2;1;7(2)4(3)AB=3t+3;AC=5t+9;BC=2t+6(4)解:不变.3BC-2AB=3(2t+6)-2(3t+3)=12【考点】数轴及有理数在数轴上的表示,探索图形规律【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,∴a+2=0,c-7=0,解得a=-2,c=7,∵b是最小的正整数,∴b=1;(2)(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;(3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;【分析】(1)由绝对值和平方的非负性可求得a、c的值,再根据b是最小的正整数可求得b的值;(2)由折叠的性质可求得点A与点C的中点的值,根据轴对称的性质即可求得点B 的对称点;(3)根据平移规律“左减右加”即可求解。

2018-2019学年福建省泉州市晋江市七下期末数学试卷

2018-2019学年福建省泉州市晋江市七下期末数学试卷

2018-2019学年福建省泉州市晋江市七下期末数学试卷1.不等式x3>1的解集是()A.x >3B.x <3C.x >13D.x <132.已知x =2,y =−1是方程x +ay =1的解,则a 的值为()A.2B.−1C.1D.−23.正六边形的对称轴有()A.1条B.3条C.6条D.12条4.一个n 边形的内角和是外角和2倍,则n 的值为()A.3B.4C.5D.65.如图,为了估计池塘岸边两点A ,B 的距离,小明在池塘的一侧选取一点O ,测得OA =6m ,OB =4m ,则点A ,B 间的距离不可能是()A.3cmB.4cmC.6cmD.10cm6.如图,将△AOB 绕点O 按顺时针方向旋转a 度后得到△COD ,若AO =13,OD =7,AB =18,则CD 等于()A.7B.12C.18D.以上都不对7.在手工制作模型折铁丝活动中,同学们设计出模型如图所示,则所用铁丝长度为()A.a +bB.a +2bC.2a +bD.2a +2b8.若ab >0,a +b <0,则()A.a ,b 都为负数B.a ,b 都为正数C.a ,b 中一正一负D.以上都不对9.小明在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.10.如图,在学习了轴对称后,小明在课外研究三角板时发现“两块完全相同的含有30◦的三角板可以拼成一个等边三角形”,请你帮他解决以下问题:在直角△ABC中,∠ACB=90◦,∠A=30◦,AC=6,BC≈3.5,点E,P分别在斜边AB和直角边AC上,则EP+BP的最小值是()A.3.5B.4C.6D.9.511.“a的值不小于3”用不等式表示为12.若3x+2y=5,则y=(试用含x的代数式表示y).13.十二边形的内角和度数为14.明代数学家程大位的《算法统宗》中有这样一个问题,其大意为;有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.15.如图,把△ABC绕点C顺时针旋转a度,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90◦,∠A=55◦.则a=◦16.由不同生产商提供10套校服参加比选,甲、乙、丙三个同学分别参加比选,比选后结果是:每套校服至少有一人选中,且每人都选中了其中的6套校服.如果将其中只有1人选中的校服称作“不受欢迎校服,2人选中的校服称作“颇受欢迎校服”,3人都选中的校服称作“最受欢迎校服”,则“不受欢迎校服”比“最受欢迎校服”多套.17.解方程:4(x+1)−5(x−3)=1118.解方程组:3x+2y=−1,6x−y=8.19.解不等式x+35−x−13>815,并把解集在数轴上表示出来.20.如图,网格中每个小正方形的边长均为1,△ABC的顶点都在格点上,将△ABC向左平移1格,再向上平3移格,得到△A′B′C′(1)请在图中画出平移后的△A′B′C′(2)若连接BB′,CC′,则这两条线段的位置关系和大小关系分别是(3)此次平移也可看作△A′B′C′如何平移得到△ABC?21.我们用[a]表示不大于a的最大整数,如:[1.3]=1,[2]=2,[−2.4]=−3.已知x,y满足方程组2[x]+3[y]=4,2[x]−[y]=−4,求y的取值范围.22.如图,在等边三角形ABC中,D,E分别是边AB,AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若F C=BF+2,问:△F EC比△DF B的周长大多少?23.在等式y=kx+b(k,b为常数)中,当x=1,y=−1;当x=2时,y=−3(1)求k与b的值;(2)若关于x的不等式3−4x>n+2x的最大整数解是b,求n的最小值.24.在△ABC中,∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合),P H⊥BC 于点H(1)若∠C=2∠B=60◦,如图1,当点P与点A重合时,求∠QP H的度数;(2)当△ABC是锐角三角形时,如图2,试探索∠QP H,∠C,∠B之间的数量关系,并说明理由.25.五一节前夕,某商店从厂家购进A,B两种礼盒,已知A,B两种礼盒的单价比为2:3,单价和为200元.(1)求A,B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去8800元,且购进A种礼盒最多32个,B种礼盒的数量不超过A种礼盒数量的2倍,共有哪几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利16元.为奉献爱心,该商店决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m 的值是多少?此时该商店可获利多少元?答案1.【答案】A【解析】两边都乘以3,得:x>3故选:A.【知识点】不等式的性质;2.【答案】C 【解析】把x=2,y=−1代入方程得:2−a=1,解得a=1【知识点】二元一次方程的解;3.【答案】C【解析】如图所示:正六边形的对称轴有6条.故选:C.【知识点】画对称轴及轴对称图形;4.【答案】D【解析】由题意得:180◦(n−2)=360◦×2,解得:n=6【知识点】多边形的内角和;5.【答案】D【解析】∵6−4<AB<6+4,∴2<AB<10∴不可能是10cm【知识点】三角形的三边关系;6.【答案】C【解析】∵将△AOB绕点O按顺时针方向旋转a度后得到△COD,∴CD=AB=18【知识点】旋转及其性质;7.【答案】D【解析】根据平移的性质,这个模型可以平移为长是a,宽是b的矩形,故所用铁丝长度为:2a+2b【知识点】平移性质应用;8.【答案】A【解析】由ab>0得a,b同号,又a+b<0,a,b同为负.【知识点】有理数的加法法则及计算;有理数的乘法;9.【答案】B【解析】A:设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;B:设最小的数是x,则x+(x+8)+(x+14)=39,解得x=173,故本选项符合题意;C:设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D:设最小的数是x,则x+(x+1)+(x+2)=39,解得x=12,故本选项不符合题意.【知识点】和差倍分;10.【答案】C【解析】作点B关于AC的对称点B′,过B′作B′E上AB交AC于点P,则EP+BP的最小值为B′E;由题意可得两块完全相同的含有30◦的三角板可以拼成一个等边三角形,又B′E⊥AB,AC⊥BB′,故B′E=AC=6【知识点】等边三角形的性质;轴对称之最短路径;11.【答案】a⩾3;【解析】“a的值不小于3”用不等式表示为:a⩾3故答案为:a⩾3【知识点】不等式的概念;12.【答案】5−3x2;【解析】方程3x+2y=5,解得:y=5−3x2【知识点】等式的性质;13.【答案】1800◦;【解析】十二边形的内角和为:(n−2)·180◦=(12−2)×180◦= 1800◦【知识点】多边形的内角和;14.【答案】46;【解析】设有x人,依题意有7x+4=9x−8,解得x=6,7x+4=42+4=46答:所分的银子共有46两.【知识点】和差倍分;15.【答案】35;【解析】∵∠A′DC=90◦,∠A=55◦,∴∠A′CD=35◦,∵把△ABC绕点C顺时针旋转a度,得到△A′B′C,∴∠A′CD=a=35◦故答案为:35◦【知识点】旋转及其性质;三角形的内角和;16.【答案】2;【解析】设“最受欢迎校服”的套数为x,“颇受欢迎校服”的套数为y,“不受欢迎校服”的套数为z,根据题意可得x+y+z=10,······1⃝3x+2y+z=6×3.······2⃝2⃝−1⃝得2x+y=8,······3⃝1⃝−3⃝得z−x=2,即“不受欢迎校服”比“最受欢迎校服”多2套.【知识点】三元一次方程(组)的应用;17.【答案】4(x+1)−5(x−3)=11.4x+4−5x+15=11.4x−5x=11−4−15.−x=−8.x=8.【知识点】去括号;18.【答案】3x+2y=−1,······1⃝6x−y=8.······2⃝解法一:由1⃝+2⃝×2得:15x=15.x=1.把x=1代入1⃝,得:3×1+2y=−1.y=−2.所以x=1,y=−2.【解析】解法二:由2⃝得:y=6x−8.······3⃝把3⃝代入1⃝得:3x+2(6x−8)=−1,解得:x=1把x=1代入3⃝,得:y=−2所以x=1,y=−2.【知识点】加减消元;19.【答案】x+35−x−13>8153(x+3)−5(x−1)>83x+9−5x+5>83x−5x>8−9−5−2x>−6x<3.它在数轴上的表示如图所示:【知识点】常规一元一次不等式组的解法;20.【答案】(1)如图,△A ′B ′C ′是所要画的图形.(2)BB ′∥CC ′,BB ′=CC ′(3)此次平移也可看作△A ′B ′C ′先向右平移1格,再向下平移3格,得到△ABC 【解析】1.略2.如图,BB ′∥CC ′,BB ′=CC ′3.略【知识点】平移变换;平移性质应用;21.【答案】2[x ]+3[y ]=4,······1⃝2[x ]−[y ]=−4,······2⃝由1⃝−2⃝得:4[y ]=8,解得:[y ]=2,∴y 的取值为2⩽y <3【知识点】加减消元;22.【答案】∵△ABC 是等边三角形,∴AB =BC =AC ,∵△F DE 是由△ADE 折叠得到的,∴AD =F D ,AE =F E ,∵C △BDF =BD +DF +BF ,C △F EC =EF +EC +F C ,∴C △BDF =BD +DF +BF =BD +AD +BF =AB +BF ,C △F EC =EF +EC +F C =AE +EC +F C =AC +F C ,又F C =BF +2,即F C −BF =2,∴C △F EC −C △BDF =(AC +F C )−(AB +BF )=AC +F C −AB −BF =F C −BF =2【知识点】折叠问题;等边三角形的性质;23.【答案】(1)依题意得:k +b =−1,2k +b =−3,解得:k =−2,b =1.(2)原不等式3−4x >1+2x ,得:x <3−n6,∵该不等式的最大整数解是b =1,∴1<3−n6⩽2,解得:−9⩽n <−3,∴n 的最小值为−9【解析】1.略2.略【知识点】含参一元一次不等式;加减消元;24.【答案】(1)∵∠C =2∠B =60◦,∴∠B =30◦,∠BAC =180◦−60◦−30◦=90◦∵AQ 平分∠BAC ,∴∠BAQ =∠QAC =12∠BAC =45◦,∴∠AQH =∠B +∠BAQ =30◦+45◦=75◦,∵P H ⊥BC ,∴∠P HQ =90◦,∴∠QP H =∠QAH =90◦−75◦=15◦(2)如图,过点A 作AG ⊥BC 于点G,则∠P HQ =∠AGQ =90◦,∴P H ∥AG ,∴∠QP H =∠QAG ,设∠QP H =∠QAG =x ,∵AQ 平分∠BAC ,∴∠BAQ =∠QAC =x +∠GAC ,∵∠AQH =∠B +∠BAQ ,又∠AQH =90◦−x ,∴∠BAQ =90◦−x −∠B ∴x +∠GAC =90◦−x −∠B ,∵AG ⊥BC ,∴∠GAC =90◦−∠C ,∴x +90◦−∠C =90◦−x −∠B ,∴x =12(∠C −∠B ),即∠QP H =12(∠C −∠B )【解析】1.略2.略【知识点】三角形的外角及外角性质;三角形的内角和;25.【答案】(1)设A 种礼盒单价为2x 元,B 种礼盒单价为3x 元,依题意得:2x +3x =200,解得:x =40,经检验,符合题意.则2x =80,3x =120答:A 种礼盒单价为80元,B 种礼盒单价为120元.(2)设A 种礼盒购进a 个,B 礼盒购进b 个,则80a +120b =8800,依题意得: a ⩽32,8800−80a 120⩽2a,解得:27.5⩽a ⩽32,因为礼盒个数为整数,所以符合的方案有2种,分别是:第一种:A 种礼盒29个,B 种礼盒54个;第二种:A 种礼盒32个,B 种礼盒52个.(3)设该商店获利W元,由(2)可知:W=10a+(16−m)b,a=110−32b,则W=(1−m)b+1100,若使所有获利相同,则1−m=0,m=1,此时,该商店可获利1100元.【解析】1.略2.略3.略【知识点】和差倍分;一元一次不等式组的应用;一次函数的应用;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年福建省晋江市初中毕业班学业质量检查数学试题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分. 1.51-的相反数是( ). A. 51 B. 51- C. 5 D.5-2. 下列计算正确的是( ).A.632a a a =⋅B.()832a a = C.326a a a =÷ D.()6223b a ab =3.下列事件中,是确定事件的是( ) .A.打雷后会下雨B. 明天是睛天C. 1小时等于60分钟D.下雨后有彩虹 4. 分式方程0242=+-xx 的根是( ) . A.2-=x B. 0=x C.2=x D.无实根5.如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).A. 4B. 6C. 7D.86.如图, A 、B 、C 是⊙O 上的三点,且A 是优弧BAC 上与点B 、点C 不同的一点,若BOC ∆是直角三角形,则BAC ∆必是( ) .A.等腰三角形B.锐角三角形C.有一个角是︒30的三角形D.有一个角是︒45的三角形7.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2018个小正方形,则需要操作的次数是( ) .A. 669B. 670C.671D. 672 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8. 计算:.______32=-9.分解因式:26_________.x x +=10. 2018年4月14日青海玉树发生的7.1级地震震源深度约为14000米,震源深度用科学记数法表示约为_____________米.11.已知一组数据2, 1,-1,0, 3,则这组数据的极差是______.1 42 5 36 第5题图 第7题图 第6题图12.不等式组3,4x x ≥-⎧⎨⎩<的解集是___________.13.如图,BAC ∠位于66⨯的方格纸中,则tan BAC ∠= .14.已知圆锥的高是cm 30,母线长是cm 50,则圆锥的侧面积是 .15.已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一.个解析式....: . 16.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD ,则BAD ∠的大小是_______度. 17.已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(8分)计算:()0220103134-÷---.19.(8分)先化简,再求值:x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x20.(8分)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . 已知:在四边形ABCD 中, , ;ABCD①②第16题图C 第13题图A BC求证:四边形ABCD 是平行四边形.21.(9分)设y x A +=,其中x 可取1-、2,y 可取1-、2-、3.(1)求出A 的所有等可能结果(用树状图或列表法求解); (2)试求A 是正值的概率. 22.(10分)2018年春季我国西南大旱,导致大量农田减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?23.(10分)某校为了了解九年级女生的体能情况,随机抽查了部分女生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图和不完整的统计表(每个分组包括左端点,不包括右端点). 请你根据图中提供的信息,解答以下问题:(1) 分别把统计图与统计表补充完整;(次)今年,第一块田的产量比去年减产80%,第二块出小敏仰卧起坐次数所在的范围.(3)若年段的奋斗目标成绩是每个女生每分钟23次,问被抽查的所有女生的平均成绩是否达到奋斗目标成绩?,24.(10分)已知:如图,有一块含︒30的直角三角板OAB 的直角边长BO 的长恰与另一块等腰直角三角板ODC 的斜边OC 的长相等,把该套三角板放置在平面直角坐标系中,且3=AB . (1)若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2)若把含︒30的直角三角板绕点O 按顺时针方向旋转后,斜边OA 恰好与x 轴重叠,点A 落在点A ',试求图中阴影部分的面积(结果保留π).25.(13分)已知:如图,把矩形OCBA 放置于直角坐标系中,3=OC ,2=BC ,取AB 的中点M ,连结MC ,把MBC ∆沿x 轴的负方向平移OC 的长度后得到DAO ∆. (1)试直接写出点D 的坐标;(2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作x PQ ⊥轴于点Q ,连结OP .①若以O 、P 、Q 为顶点的三角形与DAO ∆相似,试求出点P 的坐标; ②试问在抛物线的对称轴上是否存在一点T ,使得TB TO -的值最大.26.(13分)如图,在等边ABC ∆中,线段AM 为BC 边上的中线. 动点D 在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE . (1) 填空:______ACB ∠=度;(2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BEAD的值; (3)若8=AB ,以点C 为圆心,以5为半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.AA四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.1.若︒=∠35A , 则A ∠的余角等于 度. 2.不等式212->+x 的解是_____.2018年福建省晋江市初中毕业班学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神 进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1. A ;2. D ;3. C ;4. C ;5. B ;6. D ;7. B ;二、填空题(每小题4分,共40分) 8.91; 9. (6)x x +; 10. 4104.1⨯; 11. 4; 12. 43<≤-x ; 13.32; 14. 2000πcm 2; 15. 如32+-=x y ,(答案不惟一,0<k 且0>b 即可); 16.72; 17. (1)3-;(2)1-.(注:答1±可得1分) 三、解答题(共89分) 18.(本小题8分) 解:原式13194-÷-=……………………………………………………(6分) 1394-⨯-=……………………………………………………(7分)24-=……………………………………………………………(8分)19.(本小题8分)解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ ………………………(2分) = ()()xx x x x x x x 11133222-⋅+-+-+= ()()xx x x x x 1114222-⋅+-+……………………………………………(4分)=()()()()()xx x x x x x 111122-+⋅+-+ =()22+x …………………………………………………………(5分)当22-=x 时,原式=()2222+-………………………………(6分)=22………………………………………(8分)解二:原式=xx x x x x x x 1111322-⋅+--⋅- …………………………………(2分) =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-……………………(3分) = ()()113--+x x ………………………………………………(4分) = 133+-+x x=42+x …………………………………………………………(5分)当22-=x 时,原式=224+)………………………………(6分)=22…………………………………………(8分)2 x 值 1- 1- 2- 3y 值 1- 2- 320.(本小题8分)已知:①③,①④,②④,③④均可,其余均不可以. (解法一)已知:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………(2分) 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ………………………………………(5分) ∵C A ∠=∠,∴D B ∠=∠∴四边形ABCD 是平行四边形…………………………………………………(8分)(解法二)已知:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(5分) 又∵AD ∥BC∴四边形ABCD 是平行四边形.…………………………………………………(8分)(解法三)已知:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B .………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(5分) 又∵CD AB =∴四边形ABCD 是平行四边形.…………………………………………………(8分)(解法四)已知:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B .……………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(4分) ∴︒=∠+∠180D A ………………………………………………………………(6分) 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形.…………………………………………………(8分) 21. (本小题9分) 解:(解法一)(1)列举所有等可能结果,画出树状图如下:…………………………………………………………………………………(4分)由上图可知, A 的所有等可能结果为:2-,3-,2,1,0,5,共有6种. ……………………………………………(5分) (2) 由(1)知,A 是正值的的结果有3种.∴2163)A (==是正值P ………………………………………………………(9分)(解法二) (1)列表如下…………………………………………………………………………………(4分)由上表可知,A 的所有等可能结果为:2-,3-,2,1,0,5,共有6种. ………………………………………………………………(5分) (2) 由(1)知,A 是正值的结果有3种.∴2163)A (==是正值P ………………………………………………………(9分)22.(本小题10分)解一:设去年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克,根据题意,得 ………………………………(1分)470(180%)(190%)57x y x y +=⎧⎨-+-=⎩ ………………………………(5分) 解得 100370x y =⎧⎨=⎩ ………………………………(7分)100(180%)20⨯-=,370(190%)37⨯-=………………………………(9分)答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克。

相关文档
最新文档