第三章 运输问题

合集下载

运筹学(第四版):第3章 运输问题

运筹学(第四版):第3章 运输问题

x11 x12 x1n x21 x22 x2n xm1 xm2 xmn
u1 1 1 1
u2
um
1
1
1
1
1
1
m行
v1 1
1
1
v2 1
vn
1
1
1
1
1
n行
5
第1节 运输问题的数学模型
该系数矩阵中对应于变量xij的系数向量Pij,其分量中除第i个和 第m+j个为1以外,其余的都为零。即
21
2.2 最优解的判别
判别的方法是计算空格(非基变量)的检验数cij−CBB-1Pij, i,j∈N。因运输问题的目标函数是要求实现最小化,故当 所有的cij−CBB-1Pij≥0时,为最优解。下面介绍两种求空格 检验数的方法。 1.闭回路法; 2.位势法
22
2.2 最优解的判别
1.闭回路法
2.1 确定初始基可行解
第二步:从行或列差额中选出最大者,选择它所在行或列 中的最小元素。在表3-10中B2列是最大差额所在列。B2列 中最小元素为4,可确定A3的产品先供应B2的需要。得表311
销 地 B1 B2 B3 B4 产
加工厂

A1
7
A2
4
A3
6
9
销量 3 6 5 6
18
2.1 确定初始基可行解
销 地 B1 B2 B3 B4 产
加工厂

A1
A2
3
43 7
1
4
A3
6
39
销量
36 56
12
2.1 确定初始基可行解
用最小元素法给出的初始解是运输问题的基可行解,其理由为: (1) 用最小元素法给出的初始解,是从单位运价表中逐次地

ch3运输问题.ppt

ch3运输问题.ppt

三.运输问题的解法
运输问题仍然是线性规划问题,可以用 线性规划法中的单纯形法来解决。但是: 1.运输问题所涉及的变量多,造成单纯 形表太大; 2.若把技术系数矩阵A中的0迭代成非0, 会使问题更加复杂。 以上两个原因使得我们不得不利用运输 问题的特点设计出它的特殊解法——表 上作业法。
表上作业法
2.m+n个约束中有一个是多余的(因为其间含
有一个平衡关系式
ai bj )
所以R(A)=m+n-1,即解的mn个变量中基变量
为m+n-1个。
3.m+n-1个变量组构成基变量的充要条件是它不
包含任何闭回路。一条回路中的顶点数一定是偶数。
【定理1】设有m个产地n个销地且产销平衡的运输问题,则基变 量数为m+n-1。
求检验数的方法有两种,闭回路法和位势法。
1.闭回路法求检验数 求某一非基变量的检验数的方法是:在基 本可行解矩阵中,以该非基变量为起点,以基变量为其它顶点, 找一条闭回路,由起点开始,分别在顶点上交替标上代数符号+、 -、+、-、…,以这些符号分别乘以相应的运价,其代数和就是 这个非基变量的检验数。
第三步:调整运量,即换基。选一个变量出基,对原运量进行 调整得到新的基可行解,转入第二步。
初始基础可行解—西北角法
1
2
3
4
6
7
5
3
1
14
14
左上角法(亦称西北角法)是优先从运价表的左上角的变量赋值,当行或列分
配完毕后,8再在表中余下4部分的左上角2赋值,依次类7推,直到右下角元素分
配个完变2毕量. 作当基出变现量同,8时以分保配 证完最一后1行的3和基一变列量时数,等仍于6然m+应n在-打1“×”的位2置7上选一

第三章--运输问题

第三章--运输问题

A1 A2 A3 销量
B1 B2 B3 B4 产量
3 11 3 10
7
1928
4
7 4 10 5
9
3
6
5
6
20
A1 A2 A3 A1 0 1 3 A2 1 0 M A3 3 M 0
B1
B2
B3
B4
B1
0142
B2
1021
B3
4203
B4
2130
A1 A2 A3 T1 T2 T3 T4 B1 B2 B3 B4 T1 2 3 1 0 1 3 2 2 8 4 6 T2 1 5 M 1 0 1 1 4 5 2 7 T3 4 M 2 3 1 0 2 1 8 2 4 T4 3 2 3 2 1 2 0 1 M 2 6
A1 A2 A3 T1 T2 T3 T4 B1 B2 B3 B4 产量 A1 0 1 3 2 1 4 3 3 1 3 10 27
1
A2 1 0 M 3 5 M 2 1 9 2 8 24 A3 3 M 0 1 M 2 3 7 4 10 5 29 T1 2 3 1 0 1 3 2 2 8 4 6 20 T2 1 5 M 1 0 1 1 4 5 2 7 20 T3 4 M 2 3 1 0 2 1 8 2 4 20 T4 3 2 3 2 1 2 0 1 M 2 6 20 B1 3 1 7 2 4 1 1 0 1 4 2 20 B2 11 9 4 8 5 8 M 1 0 2 1 20 B3 3 2 10 4 2 2 2 4 2 0 3 20 B4 10 8 5 6 7 4 6 2 1 3 0 20 销量 20 20 20 20 20 20 20 23 2 25 26
– 产地和销地之间虽有直达路线,但直达运输的费用或 运输距离分别比经过某些中转站还要高或远。

广工管理运筹学第三章运输问题

广工管理运筹学第三章运输问题

闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。

运筹学教学课件 第三章 运输问题

运筹学教学课件 第三章 运输问题

7 4 9 3 6 5 6
2.1 确定初始基可行解
• 这与一般线性规划问题不同,产 销平衡的运输问题总是存在可行解。 因有
b a
i 1 j i 1
m
m
i
d
必存在 0≤ xij,i=1,…,m,j=1,…,n 是可行解。又因 0≤xij≤min(a1,bj) • 故运输问题的可行解和最优解必存在。 • 确定初始可行解的方法有很多,一般 希望的方法即简便又尽可能接近最优解。 下面介绍两种方法:最小元素法和伏格 尔(Vogel)法。(其它如西北角法等)
例1
• 某公司经销甲产品,它下设三个加工厂。每 日的产量分别为: • A1——7吨,A2——4吨,A3——9吨。该公 司把这些产品分别运往四个销售点。各销售 点每日的销量为:B1——3吨,B2——6吨, • B3——5吨,B4——6吨。已知从各工厂到各 销售点的单位产品的运价为表3-3所示,问该 公司应如何调运产品,在满足各销点的需要 量的前提下,使总运费为最少。
运价表与行差和 列差的计算
表3-10 伏格尔法
伏格尔法基可行解, 总运费为85,恰好得 到最优解
销地 B1 B2 B3 B4 行 产 差 量 产地
销地 B1 B2 B3 B4 产地 A1 A2
A1
A2 A3
3
1 7
11 3
9 4 5 6 2 1 5
10 0
8 3 6 1 1
7
4 9
10 5
列差 2 销量 3
A3
表3-13
B1 销地 加工厂 A1 A2 A3 销量 ห้องสมุดไป่ตู้2 B3 B4 产量
5 3 6 3 6 5
2 1 3 6
7 4 9

运筹学-3运输问题

运筹学-3运输问题
产销平衡问题 产销不平衡问题
产大于销 销大于供
当产销平衡时,其模型如下:
当产大于销时,其模型是:
mn
min Z
cij xij
i1 j1
xij ai xij bj
xij
0
( ai bj)
当销大于产时,其模型是:
min Z
cij xij
xij ai xij bj
可行解的方法
Review
二、表上作业法的步骤
Step1.找出初始基本可行解(在m*n产销平衡 表上寻找初始调运方案,一般m+n-1个数字 格),用最小元素法、西北角法、伏格尔法;
Step2.求出各非基变量的检验数,判别是否达 到最优解。如果是停止计算,否则转入下一步, 用闭回路或位势法计算;
Step3.改进当前的基本可行解(确定换入、 换出变量),用闭合回路法调整; Step4.重复2. 3,直到找到最优解为止。
(3)运输问题的解
定义1. 闭回路
x x x x x x 闭回路是能折成 i1 j1, i1 j2 , i2 j2 , i2 j3 ,..., isjs , isj1
形式的变量组集合。其中 i1 , i2 , …, is 互不相同,j1 , j2 , …, js 互不相 同。每个变量称为闭回路的顶点,连接闭回路相邻两顶点的直线段叫做闭
统计学院
运筹学-第三章 运输问题
张红历
本章内容
1.运输问题及其数学模型 2.表上作业法 3.运输问题的进一步讨论
4.应用问题举例
第一节 运输问题及其数学模型
一、运输问题的提出
例:某运输问题的资料如下:
单位 销地 运价
产地
A1 A2 A3
销量

运筹学第三章 运输问题

运筹学第三章 运输问题

销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 3
3 1
4
4
2
A3
销量 2
4 7
1 3
4
4 6
3
7 5
3
5
6
8
4 3 13
σ11=-3, σ12=-2,σ23=-4, σ31=-1,σ33=1, σ34=-1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 0
3 4
4
4
2
A3
销量 2
4 7
4
4 6
3
4 3
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x11检验数为 6-4+8-6+4-4=4
销地 产地 A1
A2
B1
B2
B3
B4
产量
6 4 2 4
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x12检验数为 5-4+8-6=3
销地 产地 A1
A2
B1
B2
B3
B4
产量
2、位势法 当运输问题变量的格数较多时,用闭 回路法计算检验数比较麻烦,而位势法比 较简便。 对于运输问题 minf=CX AX=b X≥0 设B为其一个可行基,则xij的检验数为 σ ij=CBB-1Pij-Cij

运筹学 第3章运输问题

运筹学 第3章运输问题

检 验 数 表
最 优 方 案 判 别 准 则
B1 3 A1 A2 7 A3 vj
B2 11
B3 3 2
B4 10 8
ui
1
1Байду номын сангаас
2
9
0
1
4 10
-1
5
-1 -5
10
2 9
12
3 10
24=-1<0,当前方案 不是最优方案。
26
2.3
闭回路调整法改进方案
min ij 0 pq
xpq 为换入变量
min
z cij xij
i 1 j 1
s.t.
n xij ai 1 jm xij b j i 1 xij 0
i 1,, m j 1,, n
4
运输问题的约束方程组系数矩阵及特征
x11 x12 .... x1n 1 1.......1 A 1 1 1 x21 x22 .... x2 n ...... xm1 xm 2 .... xmn 1 1.......1 ......... 1 1.......1 1 1 1 .......... 1 1 1
10
1. 最小元素法 (思想:就近供应) 不 能 同 时 划 去 行 和 列
销 产 A1 1 A2 A3 销量 3 9 B1 3 B2 11 B3 3 B4
表3-4
产量 10 7 8 5
4
2
3
3
7 4
1
10
6
6 5
3
6
保证填 4 有运量 的格子 9 为m+n1
该方案总运费: Z=4×3+3×10+3×1+1×2+6×4+3×5=86

运筹学第三章TP

运筹学第三章TP

收点 B1 发点 A1 6 A2 42 A3 7 收量 2
kj 2
B2 B3 B4 发量 hi
5 33 4 4 11 4 7 5 6 11 6 58 32 4 3 4 13 1 21
Operations Research
收 点 B1 B2 B3 B4 发 量 hi 发点 A 1 6 5 3 3 4 4 11 A 2 4 2 4 7 5 6 11 A 3 7 63 5 8 3 2 收 量 2 4 3 4 13
收 点 B1 B2 B3 B4 发 量 发点
A1 6 2 5
34
4
A2 4
4
75
6
A3 7
6
58
3
收 量 2 4 3 4 13
Operations Research
(2)向a1,b1较大方向移动一格(或向 右,或向下)此时向右移动一格(A1,B2) B2需要4吨,而A1只有2吨,A1已发完,划 去A1行,并把b2改成(4-2)=2。
A 2 42 41 7 53 6
A 3 7 63 5 8 3 收 量 2 4 3 4 13
kj
Operations Research
西北角法得到初始方案:x11=2,x12=2, x22=2,x23=3,x24=1,x34=3,总运费 =6*2+5*2+4*2+7*3+5*1+8*3=80(元)
最小元素法得到初始方案:x13=3,x14=1, x21=2,x22=4,x34=3,总运费 =3*3+4*1+4*2+4*4+8*3=61(元)
Operations Research
运输问题的图表形式
Ai Bj

运筹学 第三章 运输问题

运筹学 第三章 运输问题
(或者在同时划去Ai行与Bj列时,在该行或该列的任意空格处填加一 个0。)
这样可以保证填过数或零的格为m+n-1个,即保证基变量的个数为 m+n-1个。
2021/3/14
14
2.Vogel法
Vogel法的思想是:一地的产品如果不能按照最小运
费就近供应,就考虑次小运费,这就有差额,差额越大, 说明不能按最小运费调运时,运费增加得越多。因而差 额越大处,就应当采用最小运费调运。
同理可以求得 v4=10,u2= -1,等等见上表。
检验数的求法,即用公式 ijciju,i vj
如 1 1 c 1 1 u 1 v 1 3 0 2 1 。
2021/3/14
23
位势法计算检验数:
检验数: ijcijCBB1Pij
cijYiP jcij(u1,..u.m , ,v1,.v.n.)Pij
3
B4
ui
3 10
0
-1 8
-1
35
-5
10
B1
3
31
7
2
B2
11 9
64
9
B3
4(+1) 3 1 (-1) 2
10
3
B4
ui
3(-1) 10
0
+1 8
-1
35
-5
10
2021/3/14
26
调整运量后的新方案:
销地
产地
B1
A1
A2
3
A3
B2
B3
5
6
销量
3
6
5
B4
产量
2
7
1
4
3
9

第3章 运输问题

第3章  运输问题

第3章 运输问题判断下列说法是否正确:03100011运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,无穷多最优解,无界解,无可行解; 03100021在运输问题中,只要给出一组含(m +N -1)个非零的ij x ,且满足1niji j xa ==∑,1mij j i x b ==∑,就可以作为一个初始基可行解;03100031表上作业法实质就是求解运输问题的单纯形法;03100041按最小元素法(或伏格尔法)给出的初始基可行解,从每一个空格出发可以找出而且仅能找出唯一的闭合回路;03100051运输问题就是指商品的调运问题;03100061产地数与销地数相等的运输问题时产销平衡运输问题; 03100071运输问题的数学模型是线性规划模型。

03100081运输问题中的产地产量之和与销地之和一定相等 03100091运输问题约束方程中独立方程个数少于m+n 个。

简答题03200011试述运输问题数学模型的特征,为什么模型(m +n )个约束中最多只能有(m +n -1)个是独立的?03200021、如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题?03200031.简述运输问题的特点03200041.试述表上作业法在运输问题的求解中的应用 03200051.“最小元素法”和“伏格尔”法的基本思想及基本操作。

03200061.闭合回路的构成以及利用闭合回路法求检验数的基本操作。

03200071.利用位势法求检验数以及利用闭合回路进行方案调整的基本操03301011 用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。

03301021用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。

03301041 求解下列运输问题的最优解:03301071 应用最小元素法求解初始解的方法解下面的产销不平衡运输模型。

销地1的需求量必须03302011 考虑下列运输问题:(1(2)把问题化为线形规划问题,用单纯形法求解。

运筹学 第三章 运输问题

运筹学 第三章  运输问题
• 设xij表示产地 i 运往销地 j 的物资量, cij表示对应的单位运费, 则我们有运输问题的数学模型如下:
mn
Min Z = cij xij i1 j1 m xij =ai (i=1, ..., m)产量约束 i 1 n xij =bj(j=1, ..., n)销量约束 j1
xij ≥ 0(i=1, ..., m;j=1, ..., n)
15
2. 伏格尔法(Vogel)
例5
销地 产地
A1
B1 3

B2
B3
11
3

B4
ai
10 7 0 0 0 0
1
A2

9
2③ 8 4 1 1 1 1
A3
7
4

10

5 9 12 - -
bj
3
6
5
6 20
2513
2 - 13
2 - 12
2-1-
Z=2×3 +1×1+6×4+5×3+3×8+3×5=85 16
0
2.决策变量xij的系数列向量为:
1
i位 置
aij
1
m
j位 置
3. 线性无关的行数为m+n-1.
0
5
四、闭回路
1. 概念
例3
销地 产地
A1
A2
A3 bj
B1
B2
B3
B4
ai
3
11 ④
3 ③
10 7
1 ③
9
2

84
7
4

10 ③
59
3
6
5
6 20
1) 数字格 2) 空格

《运筹学》第三章 运输问题

《运筹学》第三章 运输问题

二、表上作业法
计算步骤:
(1) 找出初始调运方案。即在(m×n)产销平衡表 上给出m+n-1个数字格。(最小元素法、西北角法 或伏格尔法) 确定m+n-1个基变量 (2) 求检验数。(闭回路法或位势法) 判别是 否达到最优解。如已是最优解,则停止计算,否 则转到下一步。 空格 (3)对方案进行改善,找出新的调运方案。 (表上闭回路法调整) (4) 重复(2)、(3),直到求得最优调运方案。
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4
3
6 6
1
3 5 6
9
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4 9
3
6 6
1
-1
3
5
6
B1 A1 A2 A3 销量 3 1 3
B2 2 1 6 6
B3 4 1
B4 3 -1 3
产量 7 4 9
(ui+vj)
- B2 9 8 4 B3 3 2 -2 B4 10 9 5
A3 -3
σij
B1 = A1 A2 A3 1 0 10 B2 2 1 0 B3 B4 0 0 0 -1 12 0
表中还有负数,说明 还未得到最优解,应 继续调整。 用位势法与用闭回路法 算出的检验数? 相同
3、解的改进
——闭合回路调整法(原理同单纯形法一样) 上例: min( σ ij 0 ) pq
m
n
系数列向量的结构: A ij ( 0, 0, 0 ,, 0, 0 ) 1, 0 1,
第 i个
第 ( m j )个

运筹学第三章 运输问题

运筹学第三章 运输问题
则称该运输问题为产销平衡问题;否则,称 产销不平衡。首先讨论产销平衡问题。
8
1.运输问题模型及有关概念
表4-3 运输问题数据表
销地
产地
A1 A2

Am
销量
B1 B2 … Bn
c11
c12 … c1n
c21
c22 … c2n
┇ ┇ ┇┇
cm1
cm2 … cmn
b1
b2 … bn
产量
a1 a2

am
设 xij 为从产地 Ai 运往销地 Bj 的运
式(4-8)中的变量称为这个闭回路的顶点。
22
1.运输问题模型及有关概念
例如,x13, x16, x36, x34, x24, x23 ; x23, x53, x55, x45, x41, x21 ; x11, x14, x34, x31等都是闭回路。
若把闭回路的各变量格看作节点, 在表中可以画出如下形式的闭回路:
得到下列运输量表:
4
1.运输问题模型及有关概念
Min Z s.t.
= 6x11+4x12+6x13+6x21+5x22+5x23 x11+ x12 + x13 = 200
x21 + x22+ x23 = 300
x11 + x21 = 150
x12 + x22 = 150
x13 + x23 = 200
2.每列只有两个 1,其余为 0,分别 表示只有一个产地和一个销地被使用。
7
1.运输问题模型及有关概念
一般运输问题的线性规划模型及求解思路
一般运输问题的提法:
假设 A1, A2,…,Am 表示某物资的m个 产地;B1,B2,…,Bn 表示某物资的n个销地; ai表示产地 Ai 的产量;bj 表示销地 Bj 的 销量;cij 表示把物资从产地 Ai 运往销地 Bj 的单位运价(表4-3)。如果 a1 + a2 + … + am = b1 + b2 + … + bn

第三章运输问题

第三章运输问题

5
设 xij 为 从 产 地 Ai 运 往 销 地 Bj 的 物 资 数 量 (i=1,…m;j=1,…n),由于从Ai运出的物资 总量应等于Ai的产量ai,因此xij应满足:
x
j 1
n
ij
ai
i 1,2, , m
6
运到Bj的物资总量应该等于Bj的销量bj,所以xij还 应满足:
m
第三章 运输问题
本章包含三部分的内容 运输问题及其数学模型 运输问题的表上作业法 运输问题的进一步研究
1
§1 运输问题及其数学模型
日常生活中,人们经常需要将某些物品由一个空间 位置移动到另一个空间位置,这就产生了运输,如 何判定科学的运输方案,使运输所需的总费用最少, 就是运输问题的模型需要解决的问题。
25
调 运
销地 量 B1
B2 90 150
X12
B3 70 100
X13
产量 200 250
产地
50
A1
X11
A2
销 量
50 80 X21
65
X22
200 75
X23
100
150
200
450
26
注:
能够作为表上作业法的基可行解的必要条件是
1. 基变量的个数为m+n-1个; 2. 在基可行解中不存在以非零元素为顶点的闭回 路。
5. 所有约束条件都是等式约束;
6. 各产地产量之和等于各销地销量之足所有约束条件
2. 基变量对应的约束方程组的系数列向量线性 无关。
3. 解中非零变量的个数≤m+n-1个 4. 为使迭代顺利进行,基变量的个数在进行迭 代过程中保持为m+n-1个 5. 将基可行解中基变量的值填入运输表中,非 基变量对应的格不填入数字,称为空格。

运筹学(胡运权第三版)第三章 运输问题

运筹学(胡运权第三版)第三章 运输问题

§1 运 输 问 题 及 其 数 学 模 型
二、运输问题数学模型的特点:
1. 运输问题一定有最优解;基变量的个数 =m+n-1
2. 运输问题约束条件的系数矩阵:
x11 x12
1 1 1


x1m x21 x22
1 1 1


x2m
1
… xm1
1
解 的 最 优 性 检 验
1.闭回路法 闭回路:从空格出发,遇到数 字格可以旋转90度,最后回到空 格所构成的回路; 原理:利用检验数的经济含义; 检验数:非基变量增加一个单 位引起的成本变化量。 当所有非基变量的检验数均大 于或等于零时,现行的调运方案 就是最优方案,因为此时对现行 方案作任何调整都将导致总的运 输费用增加。 闭回路法的主要缺点是:当变 量个数较多时,寻找闭回路以及 计算两方面都会产生困难。
B4
11
-1
产量
16
10 22 48
ui
A1 A2
A3 销量 vj
2
10
1 10
9 6
1 0
-4
8 14
5 12
8
14
2
检验数σ
9
3
10
13=8-(-4)-2=10;
2.对偶变量法(位势法)
解 的 最 优 性 检 验
m in Z = c 1 1 x 1 1 + c 1 2 x 1 2 + ... + c 1 n x 1 n + ... + c m 1 x m 1 + c m 2 x m 2 + ... + c m n x m n

运筹学 第三章 运输问题

运筹学  第三章  运输问题
判别的方法是计算空格(非基变量)的检 验数,若所有的检验数都大于等于0,为最优 解。
1)闭环回路法: 在给出的初始调运方案表上,从每一空格 出发找一条闭环回路,它是以某空格为起点 ,用水平或垂直线向前划,每碰到一数字格 转90°后(回路的转角点必须是一个基变量 ) ,继续前进,直到回到起始空格为止。 从每一空格出发一定存在且只有唯一的闭 环回路。 从空格开始加减闭环各个顶点的运输单价 ,可得每个空格对应的检验数。
《运筹学》
第三章 运输问题
Slide 16
销地
B1
产地
A1
A2
3
A3
销量 3
B2 B3
4 1 6
65
B4 产量
37
4
39
6
销地
产地
B1 B2 B3 B4
A1
3 11 3 10
A2
19 2 8
A3
7 4 10 5
空格 (11) (12) (22) (24) (31) (33)
闭环回路 (11)-(21)-(23)-(13)-(11) (12)-(32)-(34)-(14)-(12) (22)-(32)-(34)-(14)-(13) -(23)-(22) (24)-(14)-(13)-(23)-(24) (31)-(34)-(14)-(13)-(23) -(21)-(31) (33)-(34)-(14)-(13)-(33)
基变量:
X13 U1+V3=C13=3
X14 U1+V4=C14=10
X21 U2+V1=C21=1
1
3 10 U1=0
2
U2=-1
X23 U2+V3=C23=2
4

《运筹学》第三章运输问题

《运筹学》第三章运输问题

Vogel近似法
考虑运输成本差异, 进行逼近最优解。
运输问题的扩展和变体
1
生产产能约束
考虑生产能力限制,同时优化货物的运输方案。
2
供需不平衡
存在供需不平衡时如何有效分配货物,避免浪费和延误。
3
多目标运输问题
同时考虑多个目标,如最小化成本和最大化利润。
运输问题的应用实例和案例分析
物流领域的应用
通过运输问题的优化,提升物流效率,降低成本。
运输问题的基本模型
运输方案的表示
常用的表示方法包括运输矩阵和网络图。
目标函数和约束条件
目标函数通常是最小化运输成本,约束条件包 括供需平衡和容量限制。
运输问题的解决方法
最小成本法
逐步分配货物,直至 达到最小总成本。
北北角法
按照最小单位运输成 本进行分配,直至l's Approximation Method)法为基础, 逐步分配货物。
《运筹学》第三章运输问 题
运输问题是运筹学中重要的问题之一,涉及到各种场景下的货物运输优化。 本章将介绍运输问题的定义、基本模型、解决方法,以及其在物流和生产调 度中的应用实例。
运输问题的概念和应用领域
• 运输问题是一种优化问题,旨在找到使运输成本最小的货物运输方案。 • 运输问题广泛应用于物流管理、供应链优化以及交通规划等领域。
生产调度中的应用
合理安排生产计划,提高生产线的利用率。
总结和展望
运输问题是优化领域的重要研究方向,未来随着物流技术的发展将有更多的应用场景和解决方法出现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四个地区的门市部销售,各地区每天的销售量为: B1-3t,B2-6t,B3-5t,B4-6t。已知从每个加工厂 到各销售门市部每吨糖果的运价如表3-2所示,问该 食品公司应如何调运,在满足各门市部销售需要的
情况下,使总的运费支出为最少?
运输问题
一、运输问题的实例和数学模型 例3-2 表3-2
门市部 加工厂
1、运输问题的实例(一般描述)
人们在从事生产活动中,不可避免地要进行物资调
运工作。如某时期内将生产基地的煤、钢铁、粮食
等各类物资,分别运到需要这些物资的地区,根据 各地的生产量和需要量及各地之间的运输费用,如 何制定一个运输方案,使总的运输费用最小。这样 的问题称为运输问题。
例3-1 现有A1,A2,A3三个产粮区,可供应粮食分别
一、运输问题的实例和数学模型
2、运输问题的数学模型
从单纯形法中,我们了解到:寻找初始基及基本解,
要从约束条件的系数矩阵出发,确定系数矩阵的秩, 并在系数矩阵中确定满秩的单位子矩阵,从而确定
初始基本解。
运输问题也是线性规划问题,我们根据以往的经验
来看看它的系数矩阵、系数矩阵的秩等有什么特点。
min z cij xij
8 2 8
3
2 9 3
10
8 5 23
运输问题网络图
产地
A1
10
3 5
销地 B1
5
4
2
A2 8
3 1
B2
7
A3
5
8 2
6 B3
8
2 9
3
B4
3
例3-1【解】
设xij(i=1,2,3;j=1,2,3,4)为i个产粮地运往第j个 需求地的运量,这样得到下列运输问题的数学模型: (1)使总的运输费用最小,则目标函数为:
B1
B2
B3
B4
供给量
A1
A2 A3 销售量
3
1 7 3
11
9 4 6
3
2 10 5
10
8 5 6
7
4 9 20
练习:请大家自行列出例3-2描述的运输问题的线性
规划模型。
min Z 3x11 11x12 3x13 10 x14 x21 9 x22 2 x23 8 x24 7 x31 4 x32 10 x33 5 x34 x11 x12 x13 x14 7 x x x x 4 21 22 23 24 x31 x32 x33 x34 9 x11 x21 x31 3 s.t. x12 x22 x32 6 x x x 5 x13 x23 x33 6 14 24 34 xij 0, i 1,2,3;j 1,2,3,4
m行
n行
中任意m+n阶子式等于零,取第一行到m+n-1行与
x1n,x 2 n, ,x mn , x11 , x12 ,, x1,n 1
x21 x22 ... x2n ... xm1 xm 2 ... xmn
x11 x12 ... x1n
1
1 …
1
1 m行 1 n行 1
1
… 1 … 1 … 1 1 … 1
1
1
1
… 1
… 1
… 1
运输问题模型的系数矩阵有m+n行、m×n列,那么
系数矩阵的秩=? 因为m+n<m×n,所以系数矩阵的秩应≤m+n 同时,因为有
确定行数=?列数=?
通过实例概括问题: 在线性规划中我们研究的运输问题是:有某种物资需要调运, 这种物资的计量单位可以是重量、包装单位或其他。 已知有
m个地点可以供应该种物资(以后统称产地,用i=1,…,m表
示);这m个产地的可供量(称为产量)为a1,a2,…,am (通写为ai);
有n个地点需要该种物资(以后统称销地,用j=1,…,n表
1 1 2 3 4
3
2
6
3
x11
5 3
x12
8
x13
2
x14 x24
9
10
2
x21
4 1
x22
2
x23 x33
8 3
8
3
x31
5 7
x32
x34
5
运输问题
一、运输问题的实例和数学模型
例3-2 某食品公司经销的主要产品之一是糖果。它
下面设有三个加工厂,每天的糖果生产量分别为:
A1-7t,A2-4t,A3-9t。该公司把这些糖果分别运往
这两种情形都可以化为 ai b j的形式来 求解
运输问题的表格表示
1 1 2 3 4
3
2
6
3
x11
5 3
x12
8
x13
2
x14 x24
9
10
2
x21
4 1
x22
2
x23 x33
8 3
8
3
x31
5 7
x32
x34
5
一、运输问题的实例和数学模型 2、运输问题的数学模型 如果用xij代表从第i个产地调运给第j个销地的物资 的单位数量,那么在产销平衡的条件下,使总的运 所有销地的某物资的运输量之和=该物资在 费支出最小,可以表示为数学形式:
min z cij xij
i 1 j 1 m n
某产地的供给量(产量)
xij ai j 1 m s.t. xij b j i 1 xij 0
n
这就是运输问题的数学模 某销地的所有物资的运输量之和 =该物资在
型,包含 某销地的需求量(销售量) m×n个变量 ( j 1,...,n) m+n个约束条件 约束条件的系数矩阵A有 m+n行m×n列
(2)各产地粮的供应 量与运出量要平衡:
min Z 3x11 2 x12 6 x13 3x14 5x21 3x22 8x23 2 x24 4 x31 x32 2 x33 9 x34
x11 x12 x13 x14 10 x21 x22 x23 x24 8 x x x x 5 31 32 33 34
i 1 j 1
m
n
n xij ai j 1 m s.t. xij b j i 1 xij 0
(i 1,...,m) ( j 1,...,n)
这就是运输问题的数学模 型,包含: m×n个变量 m+n个约束条件 约束条件的系数矩阵A有 m+n行m×n列:
min Z 3x11 2 x12 6 x13 3x14 5x21 3x22 8x23 2 x24 4 x31 x32 2 x33 9 x34
(3)供给各需求地的 供给量与需求量的平衡: x11 x21 x31 5 x11 x12 x13 x14 10 x x x 7 12 22 32 x21 x22 x23 x24 8 x x x x 5 x x x 8 13 23 33 31 32 33 34 x14 x24 x34 3 (4)运量应大于或等于零(非 负要求),即 xij 0, i 1,2,3;j 1,2,3,4
x11 x12 x1n x21 x22
x2 n xm1 xm 2 xmn 1 1 1 1 1 1
1 1 1 1 1 1 A= 1 1 1 1 1 1
示);这n个销地的需要量(通称为销量)分别为b1,b2,…, bn(通写为bj);
从第i个产地到第j个销地的单位物资运价为cij。
怎样调运这些物品才能使总运费最小? 上面这些数据通常用产销表3-3和单位运价表3-4来表示。
表3-3 产销表
销地
1
2

n
产量 a1 a2 … am
产地
1 2 … m 销量 b1 b2 … bn
约束方程式中共mn个变量,m+n个约束。
一、运输问题的实例和数学模型
2、运输问题的数学模型
建立了运输问题的数学模型,我们发现运输
问题的数学模型仍然是线性规划模型,但是
与我们以前所学习的模型相比,又有它独有
的一些特点。
自己总结一下。
运输问题
系数矩阵的特点: (1)约束条件的系数矩阵的元素只有两个:0,1. (2)元素 xij 对应于每一个变量在前m个约束方程中(第i
运筹学
重庆师范大学经济与管理学院 熊膺
第三章
运输问题
引入
我们已经讨论了线性规划的一般形式以及求解的 方法。 但是在实际工作中,常常碰到很多线性规划问题,
由于它们的约束条件变量的系数矩阵具有特殊的
结构,有可能找到比单纯形法更为简便的方法求 解,从而可大量节约计算的时间和费用。
运输问题
一、运输问题的实例和数学模型
为10,8,5(万吨),现将粮食运往B1,B2,B3,B4
四个地区,其需要量分别为5,7,8,3(万吨)。产
粮地到需求地的运价(元/吨)如表3-1所示,问如何
安排一个运输计划,使总的运输费用最少。
表3-1
运价表(元/T)
地区 产粮区
B1
B2
B3
B4
产量
A1
A2 A3 需要量
3
5 4 5
2
3 1 7
6
平衡?
表3-4 单位运价表
销地
产地
1
1 c11
2 c12
… …
n c1n
2
相关文档
最新文档