二元一次不等式(组)所表示的平面区域(人教B版必修5)

合集下载

课程资料:二元一次不等式(组)表示的平面区域

课程资料:二元一次不等式(组)表示的平面区域
图)分别为65xx++32yy≥≥4300,, x,y∈N.
3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y

a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O

x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

高中数学新人教B版必修5课件:第三章不等式3.5.1二元一次不等式(组)所表示的平面区域

高中数学新人教B版必修5课件:第三章不等式3.5.1二元一次不等式(组)所表示的平面区域

反思感悟 在画二元一次不等式组表示的平面区域时,应先画出每个不等 式表示的区域,再取它们的公共部分即可.其步骤:①画线;②定侧;③求 “交”;④表示.但要注意是否包含边界.
跟踪训练3 画出|x|+|y|≤1表示的平面区域.
解 当x≥0且y≥0时,|x|+|y|≤1,即x+y≤1.
x≥0, 由y≥0,
3 达标检测
PART THREE
1.不在不等式3x+2y<6表示的平面区域内的一个点是
A.(0,0) C.(0,2)
B.(1,1)
√D.(2,0)
解析 将四个点的坐标分别代入不等式中,其中点(2,0)代入后不等式不成立, 故此点不在不等式3x+2y<6表示的平面区域内,故选D.
1234
2.已知点(-1,2)和点(3,-3)在直线3x+y-a=0的两侧,则a的取值范围是
解析 在平面直角坐标系中画出直线x-2y+6=0, 视察图象(图略)知原点在直线的右下方, 将原点(0,0)代入x-2y+6,得0-0+6=6>0, 所以原点(0,0)在不等式x-2y+6>0表示的平面区域内,故选B.
命题角度2 给不等式组画平面区域
例3 画出下列不等式组所表示的平面区域.
x-2y≤3,
核心素养之直观想象
HEXINSUYANGZHIZHIGUANXIANGXIANG
数形结合的魅力
典例 我们可以验证点(1,2)是不等式x-y<6的一个解.怎么证明直线
x-y=6左上方半平面(不包括边界)上所有点均是x-y<6的解?
证明 设点A(x0,y0)位于直线x-y=6左上方区域,
则过点A作直线AB∥y轴,交直线x-y=6于点 B. 设B(x0,y1),则有y0>y1. ∵B在直线x-y=6上,

高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域

高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域

数学 必修5
第三章 不等式
(3)若直线 l:Ax+By+C=0,记 f(x,y)=Ax+By+C,M(x1, y1),N(x2,y2),则
点M,N在l的同侧 ⇔ fx1,y1·fx2,y2>0 点M,N在l的异侧 ⇔ fx1,y1·fx2,y2<0
数学 必修5
第三章 不等式
1.不等式x-2y≥0表示的平面区域是( )
() A.32 4 C.3
B.23 D.34
数学 必修5
第三章 不等式
解析: 如图所示为不等式表示的平 面区域,平面区域为一三角形,三个顶点 坐标分别为(4,0),43,0,(1,1),所以三角 形的面积为 S=12×4-43×1=43.
答案: C
数学 必修5
第三章 不等式
用二元一次不等式(组)表示实际问题
数学 必修5
第三章 不等式
答案:
4x+3y≤480, 2x+5y≤500, x≥0, y≥0, x,y∈N*
数学 必修5
第三章 不等式
4.画出不等式组x0-≤yx≤+1y0≤,20, 0≤y≤15,
表示的平面区域.
解析: 根据题意画出不等式组表示的平面区域,如图所
示.
数学 必修5
第三章 不等式
数学 必修5
第三章 不等式
3.一工厂生产甲、乙两种产品,生产每种1 t产品的资源 需求如下表:
品种 电力/kW·h 煤/t 工人/人

2
3
5
乙ቤተ መጻሕፍቲ ባይዱ
8
5
2
该厂有工人200人,每天只能保证160 kW·h的用电额度, 每天用煤不得超过150 t,请在直角坐标系中画出每天甲、乙两 种产品允许的产量的范围.

数学:3.5.1《二元一次不等式(组)所表示的平面区域》素材(新人教B版必修5).ppt

数学:3.5.1《二元一次不等式(组)所表示的平面区域》素材(新人教B版必修5).ppt
3.5.1二元一次不等式(组)所表示的平面区域 素材
地位与重要性
教材分析 教法与学法 教学过程
教学目标 教学重难点
“ 本节内容是高中数学新教材新 增内容之一。这一节内容是安排 在不等式、直线方程之后,它是 这两部分内容的延续,也是知识 的交汇点;是解决线性规划问题 的基础;在探索问题过程中有效 的训练了数形结合、等价转化等 数学思想。
l:x+y-1=0
P0 (x0, y0) 1
y
P(x,y) x 1
分两个命题证明:
在 直 线 x+y-1=0 右 上 方 的 平 面 区 域 内 则 x+y1>0 在 直 线 x+y-1=0 左 下 方 的 平 面 区 域 内 则 x+y1<0
o
集合{﹙x,y﹚|︱x+y-1>0} 表示直线右上方的平面区域。 类似地,在平面直角坐标系中, 以二元一次不等式x+y-1<0的解为 坐标的点集合{﹙x,y﹚︱x+y-1<0} 是在直线x+y-1=0左下方的平面区 域.
Ax+By+C=0 y
小诀窍
x
如果C≠0,可取(0,0); 如果C=0,可取(1,0) 或(0,1).
o
例1.画出不等式 2x+y-6<0 表示的平面区域。
y
画出二元一次 不等式表示平面 区域方法:直线定 界,特殊点定域
6
o
3
x
2x+y-6=0
x y 5 0 例2.画出不等式组 表示的平面区域。 x y 0 x 3
y
给学生创设一个思考 空间引导学生分组讨论探求 o
x+y-1=0

寻求二元一次不等式(组)所表示的平面区域的方法

寻求二元一次不等式(组)所表示的平面区域的方法

寻求二元一次不等式(组)所表示的平面区域的方法东北师范大学 熊明军 大连理工大学 曾玲莉简单线性规划问题是高考必考知识点,而其基础在于研究二元一次不等式(组)所对应的平面区域.下面介绍一些方法来快速准确地确定二元一次不等式(组)所表示的平面区域.方法一:直线定界,特殊点定域找出一个二元一次不等式(组)在平面直角坐标系内所表示的平面区域的基本方法是:①画直线②取特殊点③代值定域④求公共部分①画直线──作出各不等式对应方程表示的直线(原不等式带等号的作实线,否则作虚线);②取特殊点──平面直角坐标系内的直线要么过原点,要么不过原点;当直线过原点时我们选取特殊点或(坐标轴上的点),当直线不过原点时我们选取原点做特殊点;③代值定域──将选取的特殊点代入所给不等式:如果不等式成立,则不等式所表示的平面区域就是该特殊点所在的区域;如果不等式不成立,则不等式所表示的平面区域就是该特殊点所在区域的另一边.④求公共部分──不等式组所确定的平面区域,是各个二元一次不等式所表示平面区域的公共部分.例1 画出不等式组所表示的平面区域.解析:①画直线:不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②取特殊点:直线过原点,可取特殊点;直线不过原点,可取特殊点.③将代入,即,不等式不成立,直线另一侧区域就是不等式所表示的平面区域;将代入,即,不等式成立,则原点所在区域就是不等式所表示的平面区域.(图一)④求公共部分:如图二所示公共部分就是不等式组所表示的平面区域.方法二:法向量判定法由平面解析几何知识知道直线(不同时为0)的一个法向量为.以坐标原点作为法向量的始点,可以利用向量内积证明如下结论:(1)不等式(),不等式表示的平面区域就是法向量指向的区域;(大于同向)(2)不等式(),不等式表示的平面区域就是法向量反向的区域;(小于反向)例2画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是,法向量;不等式对应的直线方程是,法向量;在平面直角坐标系中作出直线与及其相应的法向量(如图).②由于不等式(),平面区域是法向量指向的区域(图一);不等式(),平面区域是法向量反向的区域(图二).③然后求的公共部分就是不等式组所表示的平面区域.方法三:未知数系数化正法直线(不同时为0)含有两个未知数,于是我们可以将未知数的系数分为两类:项系数与项系数来研究.(1)项系数化正法:顾名思义就是利用不等式性质,不等号两边同时(移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的上方;反之为下方)有结论:项系数正值化:上;下.例3画出不等式组所表示的平面区域.解析:①不等式对应的直线方程是;不等式对应的直线方程是;在平面直角坐标系中作出直线与(如图).②将不等式组中每个不等式项系数正值化,得或(移项).③关于的不等式()即(或者),直线上方的区域就是该不等式所表示的平面区域(图一);关于的不等式()即,直线下方的区域就是该不等式所表示的平面区域(图二).④然后求的公共部分就是不等式组所表示的平面区域.(2)项系数化正法:同(1)一样,不等号两边同时(或移项)将项系数化为正值,然后根据变形后关于的不等式中的不等号来确定区域位置(规定:轴正方向所指的区域为直线的右方;反之为左方)有结论:项系数正值化:右;左.可结合例3来对项系数化正法进行理解.上述方法中,方法一是寻找二元一次不等式所表示的平面区域的常规方法,思维回路较长,适合对理论的学习,但要快速准确地解决简单的线性规划问题就必须掌握方法二或方法三中之一.2011-05-04 人教网。

高二数学 二元一次不等式(组)与平面区域 知识讲解

高二数学 二元一次不等式(组)与平面区域 知识讲解

二元一次不等式(组)与平面区域【要点梳理】要点一:二元一次不等式(组)的定义1.二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式.2.二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(,)x y ,所有这样的有序实数对(,)x y 构成的集合称为二元一次不等式(组)的解集.要点诠释:注意不等式(组)未知数的最高次数. 要点二:二元一次不等式(组)表示平面区域二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,因此,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线l 上的点(x ,y )的坐标满足:0=++C By Ax ;②直线l 一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ; ③直线l 另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).要点三:二元一次不等式表示哪个平面区域的确定 二元一次不等式表示的平面区域由于对在直线0Ax By C ++=同一侧的所有点(,)x y ,把它的坐标(,)x y 代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊点)以上判定方法简称为“直线定界、特殊点定域”法. 不等式组所表示的平面区域由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域.要点诠释: “直线定界,特殊点定域”二元一次不等式(组)表示平面区域的重要方法. 【典型例题】类型一:二元一次不等式表示的平面区域 例1. 画出不等式240x y +->表示的平面区域. 【解析】先画直线240x y +-=(画成虚线). 取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:【总结升华】1. 画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.2. 虚线表示区域不包括边界直线,实线表示区域包括边界直线 举一反三:【变式1】画出下列不等式所表示的平面区域 (1)4312x y +≤; (2)1≥x 【答案】(1)(2)【变式2】图中阴影(包括直线)表示的区域满足的不等式是()A.x-y-1≥0 B.x-y+1≥0 C.x-y-1≤0 D.x-y+1≤0【答案】直线对应的方程为x-y-1=0,对应的区域,在直线的下方,当x=0,y=0时,0-0-1<0,即原点在不等式x-y-1<0对应的区域内,则阴影(包括直线)表示的区域满足的不等式是x-y-1≥0,故选:A.【变式3】不等式3x+2y-6≤0表示的区域是()【答案】可判原点适合不等式3x+2y-6≤0,故不等式3x+2y-6≤0所表示的平面区域为直线3x+2y-6=0的左下方,故选D。

数学讲义:第3章 3.5 3.5.1 二元一次不等式(组)所表示的平面区域 Word版含答案(1)

数学讲义:第3章 3.5 3.5.1 二元一次不等式(组)所表示的平面区域 Word版含答案(1)

3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域1.二元一次不等式的概念我们把含有两个未知数,并且未知数的最高次数是1的不等式,称为二元一次不等式.2.二元一次不等式组的概念我们把由几个二元一次不等式组成的不等式组,称为二元一次不等式组.3.二元一次不等式(组)的解集概念满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.4.二元一次不等式表示的平面区域及确定(1)直线l:ax+by+c=0把直角坐标平面分成了三个部分:①直线l上的点(x,y)的坐标满足ax+by+c=0.②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0,另一侧平面区域内的点(x ,y )的坐标满足ax +by +c <0.(2)在直角坐标平面内,把直线l :ax +by +c =0画成实线,表示平面区域包括这一边界直线;画成虚线表示平面区域不包括这一边界直线.(3)①对于直线ax +by +c =0同一侧的所有点,把它的坐标(x ,y )代入ax +by +c 所得的符号都相同.②在直线ax +by +c =0的一侧取某个特殊点(x 0,y 0),由ax 0+by 0+c 的符号可以断定ax +by +c >0表示的是直线ax +by +c =0哪一侧的平面区域.5.二元一次不等式组表示的平面区域二元一次不等式组表示的平面区域是各个不等式表示的平面区域的公共部分.1.由不等式3x +2y +6≤0表示的平面区域(阴影部分)是( )D [把(0,0)点代入3x +2y +6≤0中可知6≤0不成立,即(0,0)不在3x +2y +6≤0所表示的平面区域内,结合直线过点(0,-3)和(-2,0)可知D 正确.]2.以下各点在3x +2y <6表示的平面区域内的是____________. ①(0,0);②(1,1);③(0,2);④(2,0).①②③ [将点的坐标代入,只有①②③满足上述不等式.3.已知点A (1,0),B (-2,m ),若A ,B 两点在直线x +2y +3=0的同侧,则m 的取值集合是________.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m >-12 [因为A ,B 两点在直线x +2y +3=0的同侧,所以把点A (1,0),B (-2,m )代入可得x +2y +3的符号相同,即(1+2×0+3)(-2+2m +3)>0,解得m >-12.](1)x-2y+4≥0;(2)y>2x.[解](1)画出直线x-2y+4=0,∵0-2×0+4=4>0,∴x-2y+4>0表示的区域为含(0,0)的一侧,因此所求为如图所示的区域,包括边界.(2)画出直线y-2x=0,∵0-2×1=-2<0,∴y-2x>0(即y>2x)表示的区域为不含(1,0)的一侧,因此所求为如图所示的区域,不包括边界.应用“以直线定界,以特殊点定域”的方法画平面区域,先画直线Ax+By+C=0,取点代入Ax+By+C验证.在取点时,若直线不过原点,一般用“原点定域”;若直线过原点,则可取点(1,0)或(0,1),这样可以简化运算.画出所求区域,若包括边界,则把边界画成实线;若不包括边界,则把边界画成虚线.1.(1)如图所示的平面区域(阴影部分)用不等式表示为________. (2)画出不等式2x +y -4>0表示的平面区域.[解] (1)由截距式得直线方程为x 2+y1=1, 即x +2y -2=0.因为0+2×0-2<0,且原点在阴影部分中,故阴影部分可用不等式x +2y -2<0表示.(2)先画直线2x +y -4=0(画成虚线).取原点(0,0)代入,得2x +y -4=2×0+0-4=-4<0,所以不等式2x +y -4>0表示的区域是直线2x +y -4=0右上方的平面区域,如图中的阴影部分所示.(1)⎩⎨⎧x -2y ≤3,x +y ≤3,x ≥0,y ≥0;(2)⎩⎨⎧x -y <2,2x +y ≥1,x +y <2.[解] (1)x -2y ≤3,即x -2y -3≤0,表示直线x -2y -3=0上及左上方的区域;x+y≤3,即x+y-3≤0,表示直线x+y-3=0上及左下方区域;x≥0表示y轴及其右边区域;y≥0表示x轴及其上方区域.综上可知,不等式组(1)表示的区域如图所示.(2)x-y<2,即x-y-2<0,表示直线x-y-2=0左上方的区域;2x+y≥1,即2x+y-1≥0,表示直线2x+y-1=0上及右上方区域;x+y<2表示直线x+y=2左下方区域.综上可知,不等式组(2)表示的区域如图所示.1.不等式组的解集是各个不等式解集的交集,所以不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.2.在画二元一次不等式组表示的平面区域时,应先画出每个不等式表示的区域,再取它们的公共部分即可.其步骤为:(1)画线;(2)定侧;(3)求“交”;(4)表示.2.画出不等式(x +2y +1)(x -y +4)≤0表示的平面区域. [解] 此不等式可转化为⎩⎪⎨⎪⎧ x +2y +1≥0,x -y +4≤0或⎩⎪⎨⎪⎧x +2y +1≤0,x -y +4≥0.分别画出这两个不等式组所表示的平面区域,这两个平面区域的并集即为所求的平面区域,如图所示(阴影部分).1.若点P (1,2),Q (1,1)在直线x -3y +m =0的同侧,如何求m 的取值范围? [提示] 直线x -3y +m =0将坐标平面内的点分成三类:在直线x -3y +m =0上的点和在直线x -3y +m =0两侧的点,而在直线x -3y +m =0同侧点的坐标,使x -3y +m 的值同号,异侧点的坐标使x -3y +m 的值异号.故有(1-3×2+m )(1-3×1+m )>0,即(m -5)(m -2)>0,所以m >5或m <2.2.不等式组⎩⎨⎧x +y >2,x -y >0,x <4表示的区域是什么图形?你能求出它的面积吗?该图形若是不规则图形,如何求其面积?[提示] 不等式组表示的平面区域如图阴影部分△ABC ,该三角形的面积为S △ABC=12×6×3=9.若该图形不是规则的图形,我们可以采取“割补”的方法,将平面区域分为几个规则图形求解.3.点(0,0),(1,0),(2,1),(3,4)在不等式组⎩⎨⎧x +y >2,x -y >0,x <4表示的平面区域内吗?该平面区域内有多少个纵、横坐标均为整数的点?[提示] 若所给点在不等式组所表示的平面区域内,则该点的坐标一定适合不等式组,否则,该点不在这个不等式组表示的平面区域内.经代入检验可知,在(0,0),(1,0),(2,1),(3,4)中只有点(2,1)在不等式组表示的平面区域内.在寻求平面区域内整数点时,可根据不等式组表示的平面区域(探究2提示中的图形)边界的顶点,先给其中的一个未知数赋值,如x =1,则不等式组可化为⎩⎪⎨⎪⎧y >1,y <1,1<4,显然该不等式组无解;再令x =2,则原不等式组化为⎩⎪⎨⎪⎧y >0,y <2,2<4,则0<y <2,又因为y ∈Z ,故y =1,所以x=2时只有一个整点.同样方法x =3时,有(3,0),(3,1),(3,2)三个整点在该区域内;x =4时在该区域内没有整点.总之在不等式组⎩⎪⎨⎪⎧x +y >2,x -y >0,x <4表示的平面区域内,共有4个整点.当然,也可在作图时,利用打网格线的方法寻求.【例3】已知不等式组⎩⎨⎧x >0,y >0,4x +3y ≤12.(1)画出不等式组表示的平面区域; (2)求不等式组所表示的平面区域的面积; (3)求不等式组所表示的平面区域内的整点坐标.[思路探究] (1)怎样画出不等式组表示的平面区域?(2)该平面区域是什么图形?如何求其面积?(3)整点是什么样的点?怎样求其坐标?[解] (1)不等式4x +3y ≤12表示直线4x +3y =12上及其左下方的点的集合;x >0表示直线x =0右方的所有点的集合;y >0表示直线y =0上方的所有点的集合,故不等式组表示的平面区域如图①所示.(2)如图①所示,不等式组表示的平面区域为直角三角形,其面积S =12×4×3=6.(3)当x=1时,代入4x+3y≤12,得y≤8 3,∴整点为(1,2),(1,1).当x=2时,代入4x+3y≤12,得y≤4 3,∴整点为(2,1).∴区域内整点共有3个,其坐标分别为(1,1),(1,2),(2,1).如图②.1.在应用平面区域时,准确画出不等式组表示的平面区域是解题的关键.2.画出不等式表示的平面区域后,常常要求区域面积或区域内整点的坐标.(1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形.(2)整点是横、纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠近直线的点,以免出现错误.3.投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,用数学关系式和图形表示上述要求.[解]设生产A产品x百吨,生产B产品y百吨,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0.用图形表示以上限制条件,得其表示的平面区域如图所示(阴影部分).1.本节课的重点是二元一次不等式表示的平面区域的判定,难点是二元一次不等式组所表示的平面区域的确定.2.本节课要掌握的规律方法(1)二元一次不等式(组)表示平面区域的确定方法. (2)求二元一次不等式组所表示的平面区域面积的方法.3.本节课的易错点为:画平面区域时,注意边界线的虚实问题.1.判断(正确的打“√”,错误的打“×”) (1)二元一次不等式x +y >2的解有无数多个.( )(2)二元一次不等式(组)的解集可以看成直角坐标系内的点构成的集合.( ) (3)二元一次不等式组中的每个不等式都必须是二元一次不等式.( ) [解析] (1)√.因为满足x +y >2的实数x ,y 有无数多组,故该说法正确. (2)√.因为二元一次不等式(组)的解为有序数对(x ,y ),有序数对可以看成直角坐标平面内点的坐标.故该说法正确.(3)×.因为在二元一次不等式组中可以含有一元一次不等式,如⎩⎪⎨⎪⎧ 2x +y -1≥0,3x +2<0也称为二元一次不等式组. [答案] (1)√ (2)√ (3)×2.下面给出的四个点中,位于⎩⎨⎧x +y -1<0,x -y +1>0表示的平面区域内的点是 ( )A .(0,2)B .(-2,0)C .(0,-2)D .(2,0) C [依次将A ,B ,C ,D 四个选项代入验证即可,只有C 符合条件. ]3.下列说法正确的是________.(填序号)①由于不等式2x -1>0不是二元一次不等式,故不能表示平面的某一区域; ②点(1,2)在不等式2x +y -1>0表示的平面区域内;③不等式Ax +By +C >0与Ax +By +C ≥0表示的平面区域是相同的; ④第二、四象限表示的平面区域可以用不等式xy <0表示.②④ [①错误.因为不等式2x -1>0虽然不是二元一次不等式,但它表示直线x =12右侧的区域.②正确.因为(1,2)是不等式2x +y -1>0的解.③错误.因为不等式Ax +By +C >0表示的平面区域不包括边界Ax +By +C =0,而不等式Ax +By +C ≥0表示的平面区域包括边界Ax +By +C =0.④正确.因为第二、四象限区域内的点(x ,y )中x ,y 异号,故xy <0.该说法正确.]4.在平面直角坐标系中,求不等式组⎩⎨⎧ x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积. [解] 在平面直角坐标系中,作出x +y -2=0,x -y +2=0和x =2三条直线,利用特殊点(0,0)可知可行域如图阴影部分所示,其面积S=4×2×12=4.。

二元一次不等式(组)表示的平面区域

二元一次不等式(组)表示的平面区域

二元一次不等式(组)表示的平面区域(1)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则实数a 的取值范围是( D )A .⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1]C .⎣⎢⎡⎦⎥⎤1,43D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞解析:不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x ,2x +y =2,得A ⎝ ⎛⎭⎪⎫23,23,由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0). 若原不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a≥43.(2)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积被直线y=kx +43分为2∶1两部分,则k 的值是1或5.解析:不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 的三等分点时,直线y =kx +43能把平面区域分为2∶1两部分.因为A (1,1),B (0,4),所以AB 靠近A 的三等分点为⎝ ⎛⎭⎪⎫23,2,靠近B 的三等分点为⎝ ⎛⎭⎪⎫13,3,当y =kx +43过点⎝ ⎛⎭⎪⎫23,2时,k =1,当y =kx +43过点⎝ ⎛⎭⎪⎫13,3时,k =5.1.二元一次不等式(组)表示平面区域的判断方法直线定界,测试点定域. 2.求平面区域的面积(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( B ) A .4 B .1 C .5D .无穷大解析:不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即所求,求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S=12×(2-1)×2=1.(2)若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( B )A .12 B .1 C .32D .2解析:在同一直角坐标系中作出函数y =2x 的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.。

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)表示平面区域主备人:审核:使用人:班级:【课题】:二元一次不等式(组)表示平面区域【学习目标】1、了解二元一次不等式(组)的概念,理解其解集的几何意义;2、会画二元一次不等式(组)所表示的平面区域。

【学习重难点】会画二元一次不等式(组)所表示的平面区域。

【课前预习案】1、二元一次不等式表示平面区域:一般的,二元一次不等式Ax By C++>在平面直角坐标系中表示直线0Ax By C++=某一侧所有点组成的________________.我们把直线画成_________以表示区域不包括边界直线.当我们在坐标系中画出不等式0Ax By C++≥所表示的平面区域时,此区域应包括边界直线,则把边界直线画成___________.2、如何确定二元一次不等式0Ax By C++>(或<0)表示的平面区域?【预习检测】画出不等式组10230x yx y--<⎧⎨--≥⎩表示的平面区域.【课内探究案】一、二元一次不等式表示平面区域例1、画出下列不等式表示的平面区域(1)230x y-->;(2)3260x y+-≤【变式训练】画出二元一次不等式320ax y++≥表示的平面区域,已知点(-1,0)在区域边界上.二、二元一次不等式组表示平面区域例2、画出不等式组表示的平面区域(1)21010x yx y-+≥⎧⎨+-≥⎩(2)232021030x yyx-+>⎧⎪+≥⎨⎪-≤⎩【变式训练】已知直线ax=2与x-by+1=0的交点为(1,2),试分别画出2a x<与10x by-+≥所表示的平面区域.三、用二元一次不等式组表示实际问题例3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需用的主要原料是磷酸盐4吨,硝酸盐18吨,生产1车皮乙种肥料需用的主要原料是磷酸盐1吨,硝酸盐15吨,现有库存磷酸盐10吨,硝酸盐66吨。

如果在此基础上进行生产,设x,y分别是计划生产甲、乙两种混合肥料的车皮数,请列出满足生产条件的数学关系式,并画出相应的平面区域。

必修5课件3.3.1二元一次不等式(组)与平面区域

必修5课件3.3.1二元一次不等式(组)与平面区域

二、新知探究:
(2)探究
特殊:二元一次不等式 x – y < 6 的解集所表示的图形。
作出x – y = 6的图像——一条直线,
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点 b)在直线x – y = 6左上方区域内 c)在直线x – y = 6右下方区域内
y
6
O
左上方区域
-6
x
x–y=6
右下方区域
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
(2)探究
验证:设点P(x,y 1)是直线x – y =
y
x–y=6 x
6上的点,选取点A(x,y 2),使它
的坐标满足不等式x – y < 6,请完成 下面的表格,
O
横坐标 x
–3
–2 -8
–1 -73 -3
3.3.1 二元一次不等 式(组)与平面区域
一、引入:
一家银行的信贷部计划年初投入25 000 000
元用于企业和个人贷款,希望这笔资金至少可带来
30000元的收益,其中从企业贷款中获益12%,从个
人贷款中获益10%.那么,信贷部应刻如何分配资
金呢?
问题:应该用什么不等式模型来刻画呢?
二、新知探究:
4 x x+4y―4=0
课堂练习1:
(1)画出不等式 4x―3y≤12 表示的平面区域
y
4x―3y-12=0 x x
(2)画出不等式x≥1 表示的平面区域
y
x=1
三、例题示范:
例2、用平面区域表示不等式组 y < -3x+12 的解集。 x<2y
y
0 x-2y=0

【数学】3.5.1《二元一次不等式(组)所表示的平面区域》课件(新人教B版必修5)

【数学】3.5.1《二元一次不等式(组)所表示的平面区域》课件(新人教B版必修5)

否则应画成实线。
2、画图时应非常准确,否则将得不到正确结果。 3、熟记“直线定界、特殊点定域”方法的内涵。
x+y-1≥0 在平面直角坐标系中,若不等式组x-1≤0 ax-y+1≥0 常数)所表示的平面区域内的面积等于 2,求 a 的值.
[解题过程] 如图可得阴影区域为不等式组
x+y-1≥0 x-1≤0
解:设开设初中班x个,高中班y个。因办学规模 以20~30个班为宜,所以, 20≤x+y≤30 而由于资金限制,26x+54y+2×2x+2×3y≤1200 另外,开设的班级不能为负,则x≥0,y≥0。
把上面四个不等式合在一起,得限制条件用数学关系式表示为
y
20 x+y 30 30 x+2y 40 20 x0 y 0
y
左上方 x-y+1<0
1
x-y+1=0
-1
o
x
(x。,y。) x0>x,y=y0 x0-y0+1> x-y+1
(x,y)
右下方 x-y+1>0
问题:一般地,如何画不等式 AX+BY+C>0表示的平面区域?
(1)二元一次不等式Ax+By+C>0在平面 直角坐标系中表示直线Ax+By+C=0某一侧 所有点组成的平面区域。
(2)由于对直线同一侧的所有点(x,y),把 它代入Ax+By+C,所得实数的符号都相同, 所以只需在此直线的某一侧取一个特殊点 (x0,y0) ,从Ax0+By0+C的正负可以判断出 Ax+By+C>0表示哪一侧的区域。 一般在C≠0时,取原点作为特殊点。

“二元一次不等式(组)表示的平面区域”教学实录与反思

“二元一次不等式(组)表示的平面区域”教学实录与反思

探 究特殊二元一次不等式表示 的平 面区域.
3 .教 学难 点
生 :直角坐标系 内点的集合. 师 :我们这节课 要研究 的就是二元一次 不等式 ( 组)表示
≠0 ,B≠0 )
的平 面 区域 .
探 究 一般 二元 一次 不等 式 A +研 +C>0
收 稿 日期 :2 1- 1 2 0 1 l— 5
验班.

生。 :设 和 Y分别表示购买熏鸡 和猪蹄的数量 ,根据题 意 பைடு நூலகம்

教 学 目标 、 教 学 难点 及 教 学 方 法
列 出二元一次方程组 :
Y 一6>0 ) , 4 x+2 y 0 0 O 一2 0≤ 0 ② .
1 教 学 目标 .
( )掌握不等式 区域 的判断方 法 ;能作 出二元 一次 不等式 1

个猪蹄售价 2 0元 ,如果希望所带 的特产 ( 熏鸡或猪蹄二选 一
( 第一课 时).研究 的主题是 通过学生 的 自主探究培 养解 决数学 即可)至 少送 给 6个 以上 的朋友 ,试 问应该 如何 确 定购 买方 ” 问题 的能力 ,授课班 级为锦州市 北宁第一 高级 中学高二 理科试 案 ?
( 师板 书 “ 号 同侧 ? ) 教 同 ”
( 学生在愉快而又紧张的探索之后 ,各小组代表纷纷要求发 言. ) 生 ( 方法 1 :先 画出直线 +Y一6=0 ) ,直线上 的点满足 + Y一6=0 ,直线上方就应该满足大 于 0 ,下方小于 0 .
( 组)表示的平面区域 . () 2 经历 自主探究提高分析 问题和解决问题的能力 ;理解数 学 的转化 、数形结合 以及分类讨论 的思想. () 3 通过主动参与和合作交流 ,培养 团结协作 和勇于探究 的

人教新课标版数学高二B必修5课件 3.5.1 二元一次不等式(组)所表示的平面区域

人教新课标版数学高二B必修5课件 3.5.1 二元一次不等式(组)所表示的平面区域

明目标、知重点
探要点·究所然 情境导学 在前面我们学习了等差数列,其特点是从第2项起,每一 项与它前一项的差等于同一常数,在生活中也常见从第2 项起,每一项与它前一项的比等于同一常数的数列,本节 我们就来研究这类数列.
探究点一 二元一次不等式(组)的有关概念 思考1 不等式x+y>700,10x+12y≤8 000有什么特点? 答 都含有两个未知数,且未知数的最高次数为1.
2x+y≥15,
x+2y≥18,
x+3y≥27,
x≥0, y≥0.
用图形表示以上限制条件,
得到如下图的平面区域(阴影部分).
当堂测·查疑缺
1234
1.不在不等式3x+2y<6表示的平面区域内的一个点是( D )
A.(0,0)
B.(1,1) C.(0,2)
D.(2,0)
解析 将四个点的坐标分别代入不等式中, 其中点(2,0)代入后不等式不成立, 故此点不在不等式3x+2y<6表示的平面区域内,故选D.
(2)y≥-2x+3. 解 先画出直线2x+y-3=0(画成实线).取原点(0,0), 代入2x+y-3,∵2×0+0-3<0, ∴原点不在2x+y-3≥0表示的平面区域内, 不等式y≥-2x+3所表示的平面区域如图所示.
例2 画出下列不等式组所表示的平面区域:
2x-y+1>0
(1)

x+y-1≥0
(3)不等式表示的区域(也称不等式的 图象 ) 以不等式解(x,y)为坐标的所有点构成的 集合 叫做不等式 表示的区域(或不等式的图象). (4)二元一次不等式组所表示的平面区域是每一个不等式所 表示的平面区域的交集,就是二元一次不等式组所表示的 平面区域.
2.平面区域内的点 直线l:Ax+By+C=0把在坐标平面内不在直线l上的点分 为两部分,直线l的同一侧的点的坐标使式子Ax+By+C的 值具有 相同 的符号,并且两侧的点的坐标使Ax+By+C的 值的符号 相反,一侧都大于0,另一侧都小于0.

巧解二元一次不等式(组)表示的平面区域

巧解二元一次不等式(组)表示的平面区域
化为 : y < 一 + 1 , 画 出 直线


图 5
v一

两个 点 的 上 下 左右 的概 念

x + l ( 虚线 ) , 原不 等式表示 的平面 区域在直线
1 阴影 部 分 。
在平面直角坐标系 中,两个点在横坐标相同的 条件下 ,纵坐标大 的点在上方 ,纵 坐标小 的点在下

图 1
● ..
。 ) 8 ( x 2 , Y 】 ) 如 图2 : 设 点 A( Y 。 ) , 点 B( x , A( Y
Y 1 ) , x l < x ,则说 点A在点 的左边 , 点 在点A的右边 。
二、 二 元 一 次 不 等 式 表 示 的平 面 区 域
不等式组的解表示 的平面 区域为它们 的公 共部分 , 如图8 阴影部分 。 这样 ,二元一次不等式表示的平面 区域就不难 画出了,它位于相应 的二元一次方程表示的直线的 侧, 至于在哪一侧 , 一般要把不等式画成相应的斜

不等式y > 2 x + l 表 示的平 面 区域 位 于这条直线的上方 , 如图 中阴影部
方。
例3 画出下列不等式表示的平面 区域。
( 1 ) y + 3 < 0 ( 2 ) x + 3 ≤0
( 1 ) 解: 原 不等 式化 为 : y < 一 3 , 画 出 直线 y = - 3 ,
・ 4 ( l , y

如 图1 : 设 点 ( Y ) , 点 B( y 2 ) , Y l > y 2 , 则 说 点A 在点B 的 上方 。
2 . 两个 点 左 右 的概 念

在平 面直 角坐标系 中, 两 个点 在纵 坐标 相同 的条件下 , 横坐标大 的点在 右边 ,横 坐标小 的点 在左

高中数学 第三章 不等式 3.5.1 二元一次不等式(组)所表示的平面区域课件 新人教B版必修5

高中数学 第三章 不等式 3.5.1 二元一次不等式(组)所表示的平面区域课件 新人教B版必修5

界),且 A(1,1),B(0,4),C0,43,直线 y=a(x+1)恒过点 P(-1,0),且斜率为 a,
由斜率公式可知 kAP=12,
kBP=4. 若直线 y=a(x+1)与区域 D 有公共点,
数形结合可得12≤a≤4. 【答案】 (1)(-∞,2)∪(5,+∞)
(2)12,4
1.若点 P(a2,a)不在不等式 x+2y+1≤0 表示的 平面区域内,则 a 的取值范围是________. 解析:因为点 P(a2,a)不在不等式 x+2y+1≤0 表示的平面区 域内, 所以 a2+2a+1>0,即(a+1)2>0,解得 a≠-1. 所以 a 的取值范围是{a∈R|a≠-1}. 答案:{a∈R|a≠-1}
2.不等式(x-y)(x+2y-2)≥0 表示的平面区域的大致图形是 ()
解析:选 B.原不等式等价于xx- +y2≥y-0, 2≥0 或xx- +y2≤y-0, 2≤0. 故原不等式表示的区域由这两个不等式组表示的区域组成.
3.平面直角坐标系中,不等式组23xx+ -23yy- +14≥ ≥00, ,表示的平面区 x≤2
(1)画二元一次不等式组表示平面区域的一般步骤
(2)求平面区域面积的方法 求平面区域的面积,先画出不等式组表示的平面区域,然后根 据区域的形状求面积. ①若画出的平面区域是规则的,则直接利用面积公式求解. ②若平面区域是不规则的,可采用分割的方法,将平面区域分 成几个规则图形求解.
1.不等式组xx- +yy≤ ≤00,表示的平面区域是(
1.二元一次不等式的概念 (1)二元一次不等式是指含有_两__个___未知数,且未知数的最高次 数为一次的不等式. (2)一般形式为 Ax+By+C>0 或 Ax+By+C<0.其中 A2+B2≠ 0.

高二数学学案——二元一次不等式(组)表示的区域

高二数学学案——二元一次不等式(组)表示的区域

高二数学课时学案班级小组姓名________ 使用时间______年______月______日编号30课题二元一次不等式(组)所表示的平面区域编制人审核人学习目标与评价设计目标及要求识记理解应用了解二元一次不等式表示的平面区域的定义例1 例2 6掌握二元一次不等式表示的平面区域的画法:例3 7重点难点重点:二元一次不等式表示的平面区域的画法难点:数形结合思想的灵活应用课堂学案学生笔记(教师点拨)学案内容【新知学习】一、复习:请在直角坐标系中画出直线x+y-1=0的图像二、预习:根据下面问题,阅读课本p85—p86,进行预习问题1:什么是二元一次不等式(组)?写出二元一次不等式的一般形式学 案 内 容学生笔记(教师点拨)问题2:用图形表示x+y-1=0的开半平面与闭半平面问题3:点A (1,0)B(2,0)C (1,1)D (0,0)E (-1,-2)与直线x+y-1=0有何位置关系?通过作图观察,点B 、C 、D 、E 分别在直线x+y-1=0的哪个方向的区域内?问题4:点B 、C 、D 、E 的坐标分别满足下列哪个不等式? (1)x+y-1<0 (2) x+y-1>0二、新知自学1、二元一次不等式表示的平面区域的定义:2、二元一次不等式表示的平面区域的确定方法:三、典例剖析例1.画出下面二元一次不等式表示的平面区域:(1)2x y 20-->; (2)3x y 60+-≤第 2 页第 4 页巩 固 学 案学生笔记(教师点拨) 学 案 内 容【训练时间】 min 。

1.不等式x+3y-1<0表示的平面区域在直线x+3y-1=0的( ) A .右上方 B .右下方 C . 左下方 D .左上方2.点P (a ,3)到直线4x-3y+1=0的距离为4,且在不等式2x+y<3表示的平面区域内,则a 的值是( )A.-3 B.3 C.7 D.-73.如右图所示的阴影部分﹙包括边界﹚对应的二元一次不等式组为 ( )A .⎪⎩⎪⎨⎧≥+-≤≤≤022010y x x y B .⎪⎩⎪⎨⎧≤+-≤≤02201y x x yC .⎩⎨⎧≤+-≤≤02210y x y D .⎩⎨⎧≤+-≤0221y x y 4、若点(1,3)和(-4,-2)在直线2x+y+m=0的两侧,则m 的取值范围是( )A .m<-5或m>10B .m=-5或m=10C .-5<m<10D .-5≤m ≤10 5、不等式0)3)(12(<-++-y x y x 表示的平面区域为: ( )6.在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为()A .2B .23C.223 D.27.求满足不等式组⎪⎩⎪⎨⎧>++<++<016340440y x y x x 的整数解(x,y )自 我 反 思。

二元一次不等式(组)所表示的平面区域教案人教版

二元一次不等式(组)所表示的平面区域教案人教版
5.二元一次不等式(组)的实际应用:
-能够将实际问题转化为二元一次不等式(组)问题。
-学会运用二元一次不等式(组)解决实际问题,如线性规划、区域限制等。
6.二元一次不等式(组)的性质:
-了解二元一次不等式(组)的性质,如传递性、互补性等。
-掌握不等式(组)的解集的性质,如闭合性、连续性等。
作业布置与反馈
1.逻辑推理:通过学习二元一次不等式(组)的表示方法,培养学生运用逻辑推理能力,理解不等式(组)之间的逻辑关系,能够准确判断平面区域内各点是否满足不等式(组)的条件。
2.直观想象:通过在平面直角坐标系中表示二元一次不等式(组)所表示的平面区域,培养学生的直观想象能力,使学生能够直观地认识和理解不等式(组)所表示的区域的形状和位置。
解决方法:通过大量练习,让学生在坐标系中绘制不同类型的不等式(组)所表示的区域,加深对“交集”和“并集”的理解。
(2)将实际问题转化为二元一次不等式(组)问题,并求解。
解决方法:引导学生分析实际问题中的约束条件,将其转化为不等式(组)形式,然后运用所学知识求解。可以结合生活实例进行讲解,让学生感受到数学与生活的联系。
(二)存在主要问题
1.课堂管理:在教学过程中,部分学生在课堂上注意力不集中,影响教学效果。
2.教学方法:在讲解知识点时,有时过于侧重理论,忽视了学生的实际操作能力的培养。
3.作业布置:作业布置有时过于繁琐,导致学生花费大量时间完成,影响学习效果。
(三)改进措施
1.改进课堂管理:通过设置课堂规则,加强课堂管理,提高学生的课堂注意力。
教学难点与重点
1.教学重点:
(1)理解二元一次不等式在平面直角坐标系中的表示方法,掌握“交集”和“并集”的概念。
举例:在坐标系中,不等式x+y<2表示的是直线x+y=2下方的区域,不包括直线上的点。

高中数学二元一次不等式(组)所表示的平面区域

高中数学二元一次不等式(组)所表示的平面区域

实际问题 数学模型 数学模型的解 实际问题的解二元一次不等式〔组〕所表示的平面区域 [教学目标]1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。

[教学重点]用二元一次不等式〔组〕表示平面区域;[教学过程]Jack 准备在2006年德国世界杯期间,一边看球,一边去卖点纪念品。

现在他有本钱1000美元,准备投入去购买单价50美元球衣和单价20元足球纪念品,希望使足球纪念品,球衣的总数尽可能多,但足球纪念品数量不多于球衣数量1.5倍,那么Jack 买足球纪念品和球衣各多少才行?一般实际问题的求解步骤如下表:你有..遇到什么难题了吗?.........设:..球衣x 件,足球纪念品y 只,总和为S 1.5502010000,0,y x x y x y x y N≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩ S=x+y 学生此时应该到第三步,无法解决数学模型的解!二元一次不等式所表示的平面区域对于像上面这样有两个参量控制的取值X 围问题,我们都可以用下面的几何方法来求解。

第一步:研究出问题的约束条件,确定数对〔x,y 〕的X 围第二步:在第一步所得到的数对〔x,y 〕的X 围中,通过图形的方法,找出所求问题达到最大数对的〔x,y 〕我们不妨来画出其中一个32y x ≤练一练〔113x + 〔3〕260y +< 小结:一般地,直线y=kx+b 把平面分成两个部分: __________________________________________________________想一想请根据上面所画的图象时所得到的规律,完成下表B>0 表示的区域是直线0Ax By C ++= B<0 表示的区域是 直线0Ax By C ++= 0Ax By C ++> 0Ax By C ++>0Ax By C ++< 0Ax By C ++<请体会你在研究上面新的问题的过程中,用到了什么样的思想?〔化归〕大家有没有发现判断二元一次不等式所表示的平面区域问题,我们可以有新的方法了???〔由上面规律的总结,发现特殊点法〕如果有这样一个二元一次不等式组变化 1.550201000y x x y ≤⎧⎨+≤⎩如何表示出它的几何意义?我们在必修2中,学过曲线与方程的思想,它有这样两句话 〔1〕以方程0Ax By C ++=的解x,y 为横、纵坐标的点(x,y)都在直线0Ax By C ++=上 〔2〕直线0Ax By C ++=上的任一点〔x,y 〕的横、纵坐标值都是方程0Ax By C ++=的解 那么请你试描述一个关于不等式与曲线的关系 见必修5的教学参考书再变化1.5502010000,0y xx yx y≤⎧⎪+≤⎨⎪≥≥⎩,那么又有什么变化??再再变化1.5502010000,0,y xx yx yx y N≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩那么又有什么变化???如果问题现在倒过来怎么办呢?倒过来:如果给出阴影,如何用不等式表示!小结:我们今天学习了:______________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ ____作业:书P78页练习4,5 80页1,2,3,4!并阅读P88页上的第7题的阅读题,并写下你的感受!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.5.1 二元一次不等式(组)所表示的平面区域
1.(2009年高考安徽卷)不等式组⎩⎪⎨⎪

x ≥0x +3y ≥4
3x +y ≤4
所表示的平面区域的面积等于( )
A.3
2 B.2
3 C.43
D.34
解析:选C.不等式组表示的平面区域如图,为三角形,
又直线x +3y -4=0与3x +y -4=0的交点为(1,1),所以S △=12×(4-43)×1=4
3.
2.不等式组⎩⎪⎨⎪

x -y +1≥0x +y -4≤0,
x ≥0,y ≥0
表示的平面区域为A ,不等式组⎩⎪⎨⎪

0≤x ≤40≤y ≤52
,表示的平面
区域为B ,则A 与B 的关系为( )
A .A =
B B .A ∩B =∅
C .B A
D .A
B
解析:选C.分别画出两个不等式组表示的区域后即可求解.
3.如果直线y =kx +1与圆x 2
+y 2
+kx +my -4=0交于M ,N 两点,且M ,N 关于直线
x +y =0对称,则不等式组⎩⎪⎨⎪

kx -y +1≥0
kx -my ≤0,
y ≥0
所表示的平面区域的面积是( )
A.1
4 B.12 C .1
D .2
解析:选A.∵k MN ·(-1)=-1,∴k MN =1,∴k =1, ∴圆心坐标为(-12,-m 2),∴-12-m
2
=0,∴m =-1,
∴不等式组为⎩⎪⎨⎪

x -y +1≥0,x +y ≤0,
y ≥0.
画出不等式组所表示的平面区域,可求得面积是1
4
.
4.如图,四条直线x +y -2=0,x -y -1=0,x +2y +2=0,3x -y +3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组________表示.
解析:(0,0)点在平面区域内,(0,0)点和平面区域在直线x +y -2=0的同侧,把(0,0)代入到x +y -2,得0+0-2<0,所以直线x +y -2=0对应的不等式为x +y -2<0.
同理可得到其他三个相应的不等式为x +2y +2>0,3x -y +3>0,x -y -1<0,则可得所求不等式组为
⎩⎪⎨⎪⎧
3x -y +3>0,x +y -2<0,x +2y +2>0,x -y -1<0.
答案:⎩⎪⎨⎪⎧
3x -y +3>0,
x +y -2<0,
x +2y +2>0,
x -y -1<0.
5.画出不等式组⎩⎪⎨⎪

2x -y +5≥0x +y ≥0
x -y ≤3
表示的平面区域.
解:在直角坐标系中分别画出不等式2x -y +5≥0,x +y ≥0,x -y ≤3表示的平面区域,如图所示,其中阴影部分就是不等式组表示的平面区域.
1.不在3x +2y <6表示的平面区域内的点是( ) A .(0,0) B .(1,1)
C .(0,2)
D .(2,0)
解析:选D.代入检验:只有(2,0)不在平面区域内. 2.不等式组⎩
⎪⎨
⎪⎧
x -y +5x +y ≥0
0≤x ≤3表示的平面区域是一个( )
A .三角形
B .直角梯形
C .等腰梯形
D .矩形
解析:选C.原不等式组可化为⎩⎪⎨⎪

x -y +5≥0,x +y ≥0,
0≤x ≤3,
或⎩⎪⎨⎪

x -y +5≤0,x +y ≤0,0≤x ≤3,画出各不等式组表示的公共区域,即可看出图形的形状为等腰梯
形.
3.在平面直角坐标系xOy 中,满足不等式组⎩
⎪⎨⎪⎧
|x |≤|y |,|x |<1,的点(x ,y )的集合用阴影表示为
图中的( )
解析:选C.法一:可以作出不等式组⎩
⎪⎨⎪⎧
|x |≤|y |,
|x |<1,表示的平面区域与选项对照,选C.
法二:可以用排除法针对每一个选项,将一些特殊值代入验证.故选C. 4.下列二元一次不等式组可用来表示图中阴影部分表示的平面区域的是( )
A.⎩⎪⎨⎪⎧ x +y -1>02x +3y -6<0x -y -1≥0x -2y +2≤0
B.⎩⎪⎨⎪⎧ x +y -1<02x +3y -6≥0x -y -1≥0
x -2y +2<0
C.⎩⎪⎨⎪⎧
x +y -1>02x +3y -6≤0x -y -1≤0x -2y +2>0 D.⎩⎪⎨⎪⎧
x +y -1≥02x +3y -6<0x -y -1<0
x -2y +2≥0
答案:C
5.设集合A ={(x ,y )|x ,y,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是(
)
解析:选 A.由于x ,y,1-x -y 是三角形的三边长,那么由三角形边长的性质得
⎩⎪⎨⎪⎧ x +y >1-x -y
x +1-x -y >y y +1-x -y >x
x >0y >0

整理得⎩⎪⎨⎪⎧
x +y >
1
2
0<x <
1
2
0<y <12
.
其表示的平面区域为A 选项.
6.在平面直角坐标系中,若不等式组⎩⎪⎨⎪

x +y -1≥0x -1≤0,
ax -y +1≥0
(a 为常数)所表示的平面区域的面
积等于2,则a 的值为( )
A .-5
B .1
C .2
D .3
解析:选D.如图得出的区域即为满足x -1≤0与x +y -1≥0的平面区域,而直线ax -y +1=0恒过点(0,1),故可看作直线绕点(0,1)旋转,当a =-5时,则可行域不是一个封闭区域,当a =1时,面积为1,当a =2时,面积为3
2
,当a =3时,面积为2.
7.点(1,2)与点(-3,4)在直线x +y +a =0的两侧,则实数a 的取值范围是________. 解析:由题意(1+2+a )(-3+4+a )<0,解不等式得-3<a <-1. 答案:(-3,-1)
8.若A 为不等式组⎩⎪⎨⎪

x ≤0y ≥0
y -x ≤2
表示的平面区域,则当a 从-2连续变化到1时,动直
线x +y =a 扫过A 中的那部分区域的面积为________.
解析:直线x +y =a 扫过A 中的区域为四边形AOBC . ∴S 四边形AOBC =S △AOD -S △CBD =12×2×2-12×22×22=7
4.
答案:7
4
9.设a ,b 都是自然数,关于x 的二次方程x 2+ax +b =0与x 2+bx +a =0都没有实数根,那么以(a ,b )为坐标的点为________.
解析:Δ1<0,a 2
-4b <0,
Δ2<0,b 2
-4a <0.
如图阴影内整点有三个,(1,1),(2,2),(3,3) 答案:(1,1),(2,2),(3,3)
10.用不等式组表示以点(0,0)、(2,0)、(0,-2)为顶点的三角形内部,求该不等式组. 解:首先根据三个点的坐标在坐标系内画出相应的三角形,再根据三个点写出三边对应的直线方程,根据直线的位置即可写出对应的不等式组.
∴该不等式组为⎩⎪⎨⎪

x >0y <0
x -y -2<0.
11.画出不等式|x |+|y |≤1所表示的平面区域,并求区域面积. 解:先考虑第一象限(含x ,y 轴正向),等价于 ⎩⎪⎨⎪

x ≥0,y ≥0,x +y ≤1,
易作出其表示的平面区域.由关系式的特征知该不等式所表示的平面区域如图所示,该区域是边长为2的正方形,面积为2.
12.画出不等式组⎩⎪⎨⎪

y -2x ≤0x +2y +3>0
5x +3y -5<0表示的平面区域,并求平面区域内有多少个整点.
解:不等式y -2x ≤0表示直线y -2x =0的右下方区域(含边界),x +2y +3>0表示直线x +2y +3=0右上方区域(不含边界),5x +3y -5<0表示直线5x +3y -5=0左下方区域(不含边界),所以不等式组表示的平面区域是上述三区域的公共部分,如图所示的△ABC 区域.
可求得A (-35,-65),B (511,1011),C (197,-20
7),
所以△ABC 区域内的点(x ,y )满足
-3
5
≤x<
19
7
,-
20
7
<y≤
10
11
.
∵x,y∈Z,∴0≤x≤2,-2≤y≤0,且x,y∈Z. 经检验,共有四个整点
(0,0),(0,-1),(1,-1),(2,-2).。

相关文档
最新文档