2016年漳州市中考数学模拟试卷(5月份)含答案解析

合集下载

中考数学填空题专项练习经典测试(含答案解析)(2)

中考数学填空题专项练习经典测试(含答案解析)(2)

一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣13.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.184.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°5.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣56.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 13.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 14.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.17.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.21.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.22.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)23.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 24.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?27.如图,已知二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.28.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.29.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴 ;(2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.30.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.B4.C5.A6.C7.A8.B9.C10.C11.A12.C13.B14.D15.B二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要122.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值24.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b225.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .6.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.13.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x )2=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 14.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x ﹣2)(x ﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x 2﹣7x +10=0(x ﹣2)(x ﹣5)=0,解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:OD= 2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.【详解】解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=12OP3=2,P333∴P3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.22.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

北师大版九年级中考数学模拟考试试题(含答案)

北师大版九年级中考数学模拟考试试题(含答案)

九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。

(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

2023年数学中考模拟试卷与解析

2023年数学中考模拟试卷与解析

2023年数学中考模拟试卷及解析一、单选题1.在“自主互助学习型课堂竞赛”中,为奖励表现突出的同学,初一(7)班利用班费100元钱,购买钢笔、相册、笔记本三种奖品,其中钢笔至多买2支,若钢笔每支20元,相册每本10元,笔记本每本5元,在把钱都用尽的条件下,买法共有()A .9种B .10种C .11种D .12种2.已知a b <,下列结论中成立的是()A .11a b -+<-+B .33a b-<-C .112222a b -+>-+D .如果0c <,那么a b c c<3.学校课后延时服务项目为同学们提供了丰富多彩的课程,欢欢从国际象棋、玩转发明、美术欣赏、艺术体操四个社团中任选一个参加,则恰好选到艺术体操社团的概率为()A .1B .12C .13D .144.如图中几何体的正视图是()A .B .C .D .5.如图,是某几何体的三视图,则该几何体是()A .长方体B .正方体C .三棱柱D .圆柱6.下列说法正确的是()A .全等的两个图形成中心对称B .成中心对称的两个图形必须能完全重合C .旋转后能重合的两个图形成中心对称D .成中心对称的两个图形不一定全等7.下列说法正确的是()A .一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是35B .某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C .射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12D .小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,则小李获胜的可能性较大8.若二次函数()2141y k x x =-++的图象与x 轴有一个交点,则k 的取值范围是()A .5k =B .0k =C .5k ≠且0k ≠D .5k =或0k =二、填空题9.a 、b 、c 为同一平面内的三条直线,已知a ⊥b ,a ∥c ,则直线b 与c 的位置关系为_____.10.已知菱形ABCD 的两条对角线AC 、BD 的长分别是8cm 和6cm .则菱形的面积为_____2cm .11.已知一次函数y =kx +b 图像不经过第二象限,那么b 的取值范围是_________.12.“如果a b =,那么a b =”的逆命题是___________.13.请你写出一个函数,使它的图象经过点A (1,2),这个函数的表达式可以是_________.14.如图,在ABC ∆中,用直尺和圆规作图,若BC 10cm =,则DE =____cm .15.将抛物线2(3)2y x =--向右平移________个单位长度后经过点(2,2)A .16.抛物线2y ax bx c =++(0a ≠)的对称轴为=1x -,经过点(1,n ),顶点为P ,下列四个结论:①若a<0,则c n >;②若c 与n 异号,则抛物线与x 轴有两个不同的交点;③方程2()0ax b n x c +-+=一定有两个不相等的实数解;④设抛物线交y 轴于点C ,不论a 为何值,直线PC 始终过定点(3,n ).其中正确的是_________(填写序号).三、解答题17.如图,菱形ABCD 中,E 是对角线BD 上的一点,连接EA 、EC ,求证:∠BAE =∠BCE .18.如图,△ABC .(1)用尺规作图作出A 点关于BC 的对称点D (保留作图痕迹);(2)在(1)的情况下,连接CD 、AD ,若AB=5,AC=AD=8,求BC 的长.19.如图,在ABC 和AEF △中,AE AB =,AC AF =,CAF BAE ∠=∠.求证:BC EF =.20.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?21.已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试问:DE 和DF 相等吗?说明理由.22.如图,AD ⊥CD ,BC ⊥CD ,AD =CE ,,AED EBC ∠=∠求证:AE =EB .23.如图所示,已知点E ,F 在ABCD Y 的对角线BD 上,且BE DF .连接AF ,CE ,求证:四边形AECF 是平行四边形.24.某学校准备购买A 、B 两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两所学校购买A 、B 两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)AB 甲38622乙54402(1)求A 、B 两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A 种型号的篮球最少能采购多少个?25.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球试验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出1个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次摸球试验汇总后统计的数据:摸球的次数15020050090010001200摸到白球的频数5164156275303361摸到白球的频率0.3200.3120.3060.3030.3020.301(1)请估计:当摸球的次数很大时,摸到白球的频率将会接近______;假如你去摸一次,你摸到红球..的概率是______;(精确到0.1)(2)试估计口袋中红球有多少个.参考答案与解析1.D【分析】根据题意设未知数,列出方程,然后分类讨论即可.【详解】解:设购买钢笔x 支,相册y 本,笔记本z 本,根据题意得20x+10y+5z=100,化简,得4x+2y+z=20,∵钢笔最多买2支,∴x 可以取1、2,当x=1时,4+2y+z=20,即2y+z=16,y 可以取的值有1、2、3、4、5、6、7,有7种;当x=2时,8+2y+z=20,即2y+z=12,y 可以取的值有1、2、3、4、5,有5种;∴一共有买法7+5=12(种),故选:D .【点睛】本题考查了三元一次方程组的应用,根据题意列出方程,分类讨论是解题关键.2.C【分析】根据不等式的基本性质对各选项分析进行分析即可.【详解】因为a<b ,A 选项:-a>-b,-a+1>-b+1,故错误;B 选项:-3a>-3b ,故错误;C 选项:1122a b ->-,112222a -+>-+,故正确;D 选项:如果0c <,那么a bc c>,故错误;故选:C.【点睛】考查了不等式的基本性质,解题关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向要改变.3.D【分析】直接利用简单事件的概率公式即可得.【详解】解:欢欢从国际象棋、玩转发明、美术欣赏、艺术体操四个社团中任选一个参加共有4种等可能的结果,其中,恰好选到艺术体操社团的结果只有1种,则恰好选到艺术体操社团的概率为14P=,故选:D.【点睛】本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键.4.C【分析】根据主视图的画法进行判断.【详解】解:此几何体的主视图由四个正方形组成,下面一层三个正方形,且左边有两层.故选C.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.5.A【分析】该几何体的主视图为正方形,俯视图与左视图均为矩形,易得出该几何体的形状.【详解】解:该几何体的主视图为正方形,左视图为矩形,俯视图是一个矩形,则可得出该几何体是长方体.故选:A.【点睛】主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.6.B【分析】根据中心对称图形的概念,即可求解.【详解】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选B.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.7.D【分析】根据概率的意义及计算,逐项分析即可.【详解】A、一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是33 538=+,而不是35,故错误;B 、某彩票的中奖概率是5%,只能说明中奖的可能性大小为5%,买100张彩票并不是一定有5张中奖,故错误;C 、射击运动员射击一次,中靶与不中靶的可能性不相等,所以中靶的概率不是12,故错误;D 、小李与小陈出拳的手指数都有5种可能:分别为1,2,3,4,5,两人总共有25种出拳情况,两人出奇数时,手指数和为偶数共有9种情况;两人出偶数时,手指数和为偶数共有4种情况,总共有9+4=13种情况,所以小李获胜的概率为:1325,则小陈获取的概率为131212525-=,显然小李获胜的可能性大,故正确;故选:D.【点睛】本题考查了概率的意义及概率的计算,理解概率的意义并正确计算概率是关键.8.A【分析】根据二次函数的定义和判别式的意义得到10k -≠且240b ac =-= ,即可求解.【详解】根据题意得10k -≠,且()2244410b ac k =-=--= ,解得k=5.故选:A .【点睛】本题考查了抛物线与x 轴的交点,解题的关键是将抛物线与x 轴的交点问题转化为解关于x 的一元二次方程.9.垂直【详解】∵a 、b 、c 为同一平面内的三条直线,且a ⊥b ,a ∥c ,∴b ⊥c.∴b 与c 的位置关系是互相垂直.10.24【分析】根据菱形的面积公式进行计算即可;【详解】解:由菱形的面积公式:对角线乘积的一半得:11862422S AC BD =⨯=⨯⨯=2cm ;故答案为:24.【点睛】本题考查菱形的面积.熟记菱形的面积公式是解题的关键.11.b≤0【分析】根据一次函数的性质即可求解.【详解】不经过第二象限,可以只经过一,三象限或经过一,三,四象限故b≤0故填:b≤0.【点睛】此题主要考查一次函数的图像,解题的关键是熟知b的性质.12.如果a b=,那么a b=【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b=,那么a b=”的逆命题是:“如果a b=,那么a b=”,故答案为:如果a b=,那么a b=.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义.13.y=2x【分析】设该函数表达式为y=kx(k≠0),根据待定系数法即可求出k值,此题得解.【详解】解:设该函数表达式为y=kx(k≠0),代入点A(1,2)得:2=k,∴该函数表达式为y=2x.故答案为y=2x.【点睛】本题考查了待定系数法求一次函数解析式,根据点A的坐标利用待定系数法求出函数解析式是解题的关键.14.5【分析】由图可得DE是△ABC的中位线,进而得出答案.【详解】解:由图可知,作的是AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=12BC=5cm.故答案为:5.【点睛】此题主要考查了基本作图、线段垂直平分线的性质以及三角形中位线的性质,正确得出DE是△ABC的中位线是解题关键.15.1【分析】直接利用二次函数平移规律结合二次函数图象上点的坐标特点得出答案.【详解】解:∵将抛物线y =(x ﹣3)2﹣2向右平移后经过点A (2,2),∴设向右平移a 个单位,故y =(x ﹣3-a )2﹣2,则2=(2﹣3-a )2﹣2,解得:a 1=1,a 2=﹣3,(不合题意舍去)即将抛物线y =(x ﹣3)2﹣2向右平移1个单位后经过点A (2,2).故答案为:1.【点睛】此题主要考查了二次函数平移规律以及二次函数图象上点的坐标特点,正确掌握平移规律是解题关键.16.①②④【分析】利用抛物线的对称轴为=1x -顶点b =2a ,将(1,n )代入解析式得到a +b +c =n ,即3a +c =n ,n -c =3a ,3n ca -=,由此判断①正确;利用∆判断②正确;求出∆,根据a =c ,a ≠c 判断③错误;求出点P ,点C 坐标,得到直线PC 的解析式,计算当x =3时y =n -c +c =n ,判断④正确.【详解】解:∵抛物线2y ax bx c =++(0a ≠)的对称轴为=1x -,∴12bx a=-=-,即b =2a ,∵抛物线过点(1,n ),∴a +b +c =n ,即3a +c =n ,∴n -c =3a ,3n ca -=,若a <0,则n -c <0,即n <c ,故①正确;∆=24b ac -=244a ac -=4a (a -c )=()433n c n c c -⎛⎫--⎪⎝⎭=()224549n nc c -+,∵c 、n 异号,∴∆>0,则抛物线与x 轴有2个交点,故②正确;方程()20ax b n x c +-+=,∆=()()224b n ac a c --=-,当a =c 时,∆=0,方程只有一个实数根;当a ≠c 时∆>0,方程有2个实数根,故③错误;∵P 为抛物线2y ax bx c =++顶点,∴P 坐标为(-1,-a +c ),∵点C 坐标为(0,c ),直线PC 的解析式为y =ax +c ,又3n c a -=,则y =()3n c -x +c ,点(3,n ),当x =3时y =n -c +c =n ,∴直线PC 始终过(3,n ),故④正确.故答案为①②④.【点睛】此题考查了抛物线的对称轴公式,抛物线与x 轴交点情况,利用一元二次方程根的判别式确定方程的根的情况,二次函数的性质,熟练掌握各知识点是解题的关键.17.详见解析【分析】先根据四边形ABCD 是菱形证出BA =BC ,∠ABE =∠CBE ,又因为BE=BE ,所以△ABE ≌△CBE ,最后全等三角形对应角相等求出∠BAE =∠BCE.【详解】证明:∵四边形ABCD 是菱形,∴BA =BC ,∠ABE =∠CBE ,∵BE =BE ,∴△ABE ≌△CBE (SAS ),∴∠BAE =∠BCE .【点睛】本题考查菱形的性质(1)对角线互相平分对角;(2)菱形四条边都相等.全等三角形的性质:全等三角形对应角相等.18.(1)作图见解析;(2)3+【详解】试题分析:(1)略;(2)由BC 垂直平分AD 可得:ABO ∆、AOC ∆是直角三角形,在Rt AOC ∆中,由AC=8,AO=4得OC =Rt ABO ∆中,由AB=5,AO =4得OB =3,即求BC =OB+OC =3+试题解析:(1)如图所示:(2)如图所示:∵OA =OB ,BC 垂直平分AD ,AD =AC =8,∴AO =3,OC==又∵在Rt ABO ∆中,AB =5,∴OB3=,又∵BC =BO+OC∴BC =3+19.证明见解析.【分析】先根据角的和差可得EAF BAC ∠=∠,再根据三角形全等的判定定理与性质即可得证.【详解】证明:CAF BAE ∠=∠ ,CAF CAE BAE CAE ∴∠+∠=∠+∠,即EAF BAC ∠=∠,在ABC 和AEF △中,AB AE BAC EAF AC AF =⎧⎪∠=∠⎨⎪=⎩,()ABC AEF SAS ∴≅V V ,BC EF ∴=.【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.20.每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元【分析】根据题意列出二元一次方程组解出即可.【详解】解:设每盒羊角春牌绿茶x 元,每盒九孔牌藕粉y 元,依题意可列方程组:649603300x y x y +=⎧⎨+=⎩解得:12060x y =⎧⎨=⎩答:每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元.【点睛】本题考查二元一次方程组的应用,关键在于理解题意找出等量关系.21.相等,理由见解析【分析】连接AD ,证明ACD ≌△ABD ,可得DAE DAF ∠=∠,进而根据角平分线的性质即可证明DE 和DF 相等.【详解】连接AD,如图,在△ACD 和△ABD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴ACD ≌△ABD (SSS ),DAB DAC∴∠=∠即DAE DAF∠=∠∵DE ⊥AE ,DF ⊥AF ,∴DE =DF .【点睛】本题考查了角平分线的性质,三角形全等的性质与判定,掌握角平分线的性质是解题的关键.22.见解析【分析】由“AAS ”可证△ADE ≌△ECB ,可得AE =BE .【详解】证明:∵AD ⊥CD ,BC ⊥CD ,∴∠C =∠D =90°,在△ADE 和△ECB 中,90D C AED EBC AD CE ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADE ≌△ECB (AAS ),∴AE =BE .【点睛】本题考查的是三角形全等的判定与性质,掌握利用角角边定理判断三角形全等是解题的关键.23.证明见解析.【分析】根据四边形ABCD 是平行四边形,可得ABE CDF ∠=∠,可证得△ABE ≌△CDF ;从而得到∠AEB =∠DFC ,AE =CF ,继而得到∠AED =∠BFC ,可得到AE ∥CF ,即可求证.【详解】证明:∵四边形ABCD 是平行四边形,∴AB DC ∥,AB CD =,∴ABE CDF ∠=∠,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF (SAS );∴∠AEB =∠DFC ,AE =CF ,∵∠AEB +∠AED =∠DFC +∠BFC =180°,∴∠AED =∠BFC ,∴AE ∥CF ,∴四边形AECF 是平行四边形.【点睛】本题主要考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质,全等三角形的判定和性质是解题的关键.24.(1)A 种型号的篮球销售单价为26元,B 种型号的篮球销售单价为68元;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A 种型号的篮球最少能采购9个.【分析】(1)设A 型号篮球的价格为x 元、B 型号的篮球的价格为y 元,就有3x+8y=622和5x+4y=402,由这两个方程构成方程组求出其解即可;(2)设最少买A 型号篮球m 个,则买B 型号篮球球(20﹣m )个,根据总费用不超过1000元,建立不等式求出其解即可.【详解】(1)设A 型号篮球的价格为x 元、B 型号的篮球的价格为y 元,由题意得,3862254402x y x y +=⎧⎨+=⎩,解得:2668x y =⎧⎨=⎩.答:A 种型号的篮球销售单价为26元,B 种型号的篮球销售单价为68元.(2)设最少买A 型号篮球m 个,则买B 型号篮球球(20﹣m )个,由题意得,26m+68(20﹣m )≤1000,解得:m≥81221,∵m 为整数,∴m 最小取9.∴最少购买9个A 型号篮球.答:若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A 种型号的篮球最少能采购9个.【点睛】本题考查了1、一元一次不等式的应用,2、二元一次方程组的应用25.(1)0.3,0.7;(2)70【分析】(1)当事件的实验次数越来越多时事件的频率都接近同一个数值,可以根据频数表示概率,由此计算得到红球的概率;(2)设口袋中有红球x 个,根据题意列方程解答即可得到答案.【详解】(1)∵摸球的次数很大,摸到白球的频率都接近0.3,∴摸到白球的概率是0.3,∴摸到红球的概率是1-0.3=0.7,故答案为:0.3,0.7;(2)设口袋中有红球x个,由题意得:300.3 30x=+,解得x=70,经检验,x=70是原方程的解且符合题意,答:口袋中有红球70个.【点睛】此题考查利用事件的频率估计事件的概率,列分式方程解决实际问题,正确理解事件的实验次数越多时得到事件的概率是解题的关键.。

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个....选项是最符合题意的)1.13-的相反数是()A .3B .-3C .13D .13-2.2015年9月14日,通过位于美国的两个LIGO 探测器,人类第一次探测到了引力波的存在,这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差.三百五十万分之一约为0.0000002857.将0.0000002857用科学记数法表示应为()A .72.85710-⨯B .62085710-⨯C .60.285710-⨯D .82.85710-⨯3.在▱ABCD 中,AC AD ⊥,30B ∠=︒,2AC =,则▱ABCD 的周长是()A .4+B .8C .8+D .164.木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A .18张B .16张C .14张D .12张5.下列计算正确的是()A .325x x x +=B .()236x x =C .()336x x =D .236a a a ⋅=6.已知一次函数的图象与直线2y x =-平行,且与函数43y x =-的图象交y 轴于同一点,则这个一次函数的解析式是()A .23y x =--B .23y x =-+C .23y x =-D .23y x =+7.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为()A .15°B .20°C .25°D .30°8.如图,是某几何体的三视图,根据三视图,描述物体的形状是正确的是()A .圆柱体B .长方体C .圆台D .半圆柱和长方体组成的组合体9.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED △,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,6AF =,4BF =,ADG △的面积为8,则点F 到BC 的距离为()A B C D 10.若二次函数223y ax ax a =-+-(a 是不为0的常数)的图象与x 轴交于A ,B 两点.下列结论:①0a >;②当1x >-时,y 随x 的增大而增大;③无论a 取任何不为0的数,该函数的图象必经过定点()1,3-;④若线段AB 上有且只有5个横坐标为整数的点,则a 的取值范围是1334a <<.其中正确的结论是()A .①②B .②④C .①③D .③④二、填空题(本大题共7小题,每小题4分,共28分)11.函数y =________.12.一组数据3,4,6,8,x 的平均数是6,则这组数据的中位数是________.13.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP.由作法得△OCP ≌△ODP 的根据是_________.14.如图,AB ∥CD ,直线l 平分∠AOE ,∠1=40°,则∠2=_____度.15.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有________客房间.16.如图,点(4,)B m 在双曲线20(0)y x x=>上,点D 的双曲线6(0)y x x =->上,点A 在y 轴的正半轴上,若A 、B 、C 、D 构成的四边形为正方形,则对角线AC 的长是_____.17.如图,点F 在平行四边形ABCD 的边AD 上,延长BF 交CD 的延长线于点E ,交AC 于点O ,若19AOB COE S S ∆∆=,则AF DF =__________.三、解答题(本大题共3小题,每小题6分,共18分)18.有理数a ,b ,c在数轴上的位置如图所示.(1)a b -______0(填“>”“<”“=”);(2)试化简下式:a b b c a c ---+-.19.如图,点A ,B ,C ,D 在同一直线上,//AE DF ,//CE BF ,AE FD =.求证:AB CD =20.某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1500名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:球类名称人数乒乓球42羽毛球a 排球15篮球33足球b解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a=________,b=________;(3)试估计上述1500名学生中最喜欢乒乓球运动的人数.四、解答题(本大题共3小题,每小题8分,共24分)21.如图,在145⨯的网格中,每个小正方形的边长都为1.网格线的交点称为格点,以格点为顶点的三角形称为格点三角形.已知直线l 及格点A ,B ,连接AB .(1)请根据以下要求依次画图:①在直线l 的左边画出一个格点ABC ∆(点C 不在直线l 上),且满足格点ABC ∆是直角三角形;②画出ABC ∆关于直线l 的轴对称A B C '''∆.(2)满足(1)的A B C '''∆面积的最大值为多少?22.如图,AB 是⊙O 的直径,点C 是⊙O 上一点(点C 不与点A ,B 重合),点E 是 BC 的中点,连接OE 交弦BC 于点D ,过点B 的直线与OE 的延长线交于点P ,连接AC ,CE ,BE ,∠EBP =∠ECB .(1)求证:BP 是⊙O 的切线;(2)若CE =2,∠EBP =30°,求阴影部分的面积.23.为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a 件(10003000a ≤≤),则4000件板栗的销售总利润为w 元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?五、解答题(本大题共2小题,每小题10分,共20分)24.如图,在等边三角形ABC 右侧作射线CP ,∠ACP=α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)依题意补全图形;(2)求∠DBC 的大小(用含α的代数式表示);(3)直接写出∠AEB 的度数;(4)用等式表示线段AE ,BD ,CE 之间的数量关系,并证明.25.已知:如图,在平面直角坐标系xOy 中,二次函数2()40y ax bx a =++≠与x 轴交于点A 、B ,点A 的坐标为(4,0),点B 的坐标为(2,0)-.(1)求该二次函数的表达式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当CQE ∆的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得ODF ∆是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2023年中考数学全真模拟卷答案第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

漳州市中考数学试卷及答案

漳州市中考数学试卷及答案

2024年漳州市中考数学试卷及答案漳州市中考数学试卷及答案(2024年)漳州市中考数学试卷是一份重要的考试试卷,旨在评估和考察学生的数学知识和能力。

这份试卷包含各种类型的题目,从基础知识到高级应用,全面考察了学生的数学能力。

以下是这份试卷的详细内容及其答案。

一、选择题1、在下列四个数中,最大的数是() A. π B. 3 C. 2π D. 3π答案:C2、若方程x² + 2x + 1 = 0的根为x₁和x₂,则x₁+x₂的值是() A. -2 B. 0 C. 1 D. 2 答案:A二、填空题1、已知一个圆的半径为5,那么这个圆的周长为_________。

答案:31.42、若分式方程2x / (x-1)³ = 3 / (x-1)有增根,则增根为x=_________。

答案:1三、解答题1、计算:cos45°-sin30°+tan60°答案:2.832、解方程:x³ + 6x² + 11x + 6 = 0 答案:x₁=-1,x₂=-2,x₃=-33、解不等式组: (1) 3(x+2) > x+8 (2) x/4 > x/5 答案:(1) x > 2;(2) x < 0四、解答题1、某商店以每件a元的价格出售商品,同时以阶梯式价格进行促销。

已知该商品有两个价位:当购买量低于50件时,按原价出售;当购买量不低于50件时,价格降低20%。

请用含a的代数式表示购买n件该商品的实际支付金额。

答案:$an - n \times a \times 20%$ 2、已知一次函数y=kx+b的图象经过点(0, -2),且与两坐标轴围成的三角形面积为2个单位。

求该一次函数的表达式。

答案:y = 4x/3 - 2或y = -4x/3 - 2五、解答题1、在直角坐标系中,有点A(-1,2),B(3,4),C(5,0)。

求△ABC的面积。

中考模拟检测《数学试卷》含答案解析

中考模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A. B. 3.333 C. π- D. 42. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a3. 一粒米的质量约是0.000021kg ,这个数据用科学记数法表示为( )A 40.1210-⨯ B. 5 2. 110-⨯ C. 42.110-⨯ D. 62110-⨯ 4. 下列命题是假命题的是( )A 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个6. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b 7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A. 17B. 27C. 37D. 478. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5 B. 1<y <2 C. 5<y <10 D. y >109. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43二、填空题(本大题共8小题,每小题4分,满分32分.)11. 若二次根式x 1-有意义,则x 的取值范围是 ▲ .12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.13. 钟表在12时15分时刻的时针与分针所成的角是_______°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.15. 如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.16. 如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_____.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m 2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m 2.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD 中,∠A =∠B=∠C ,则∠A 的取值范围________.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 19. 计算:|1﹣3|﹣3tan30°﹣(35-)°. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.25. 已知正方形ABCD,P为射线AB上一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26. 将抛物线C1:y=﹣2x2+3沿x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由答案与解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A.B. 3.333C. π-D. 【答案】C【解析】A. 是有理数;B. 3.333 是有理数;C. π- 是无理数;D. 2=是有理数;故选C.2. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a【答案】D【解析】【分析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A 、a 2+a 4≠a 6,不符合;B 、a 2•a 3=a 5,不符合;C 、a 12÷a 2=a 10,不符合;D 、(a 2)3=a 6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错. 3. 一粒米质量约是0.000021kg ,这个数据用科学记数法表示为( )A. 40.1210-⨯B. 5 2. 110-⨯C. 42.110-⨯D. 62110-⨯ 【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000021=2.1×10−5;故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 下列命题是假命题的是( )A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径【答案】C【解析】【分析】【详解】选项A,经过两点有且只有一条直线,正确;选项B,三角形的中位线平行且等于第三边的一半,正确;选项C,平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.选项D,圆的切线垂直于经过切点的半径,正确.故答案选C.5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】角只是轴对称图形;平行四边形只是中心对称图形;线段、矩形、圆既是轴对称图形又是中心对称图形,故选B.6. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b【答案】D【解析】 试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确.故选D .考点:实数与数轴7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ) A. 17 B. 27 C. 37 D. 47【答案】D【解析】试题分析:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故选D . 考点:1.概率公式;2.绝对值.8. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5B. 1<y <2C. 5<y <10D. y >10 【答案】C【解析】∵反比例函数y=10x中当x=1时y=10,当x=2时,y=5, ∴当1<x<2时,y 的取值范围是5<y<10,故选C.9. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-【答案】B【解析】【分析】 由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD•sin60°=6×3? 2=33, ∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×32120(33)3? 360π⨯-=183-9π. 故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43【答案】B【解析】【分析】根据给出的图示可得:我们可以将这些星星分成两部分,找出其规律即可得出解. 【详解】根据给出的图示可得:我们可以将这些星星分成两部分,最下面的一横作为一部分,规律为(2n-1),上面的就是等差数列求和,规律为:(1)2n n+,则所有的五角星的数量的和的规律为:(1)2n n++(2n-1),则图形8中的星星的个数=89(281)2⨯+⨯-=36+15=51.故选:B考点:规律题.二、填空题(本大题共8小题,每小题4分,满分32分.)11. 有意义,则x的取值范围是▲ .【答案】x1≥.【解析】【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得x10x1-≥⇒≥.【点睛】本题考查二次根式有意义条件,牢记被开方数必须是非负数.12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.【答案】6,7【解析】∵6出现了3次,出现的次数最多,∴众数是6;∵从小到大排列后7排在中间位置,∴中位数是7;13. 钟表在12时15分时刻的时针与分针所成的角是_______°.【答案】82.5【解析】90°-30°÷4=82.5°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.【答案】3【解析】试题分析:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.考点:圆锥的计算.15. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.【答案】(5,2)【解析】【详解】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,∵∠ACO=∠A′C′O,∠AOC=∠A′OC′,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为(5,2).考点:坐标与图形变化-旋转.16. 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.【答案】2【解析】分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC 即可解决问题.【详解】如图所示,以为直径作圆,圆心为,解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,在中,2222=+=+=,OC OB BC345∴PC=OC-OP=5-3=2.∴PC最小值为2.故答案为2.【点睛】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m2.【答案】150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD中,∠A =∠B=∠C,则∠A的取值范围________.【答案】60°<∠A<120°【解析】由”四边形内角和为“得,,即.因为,所以,即,即.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19. 计算:|13﹣3tan30°﹣35)°.【答案】-2【解析】解:|1﹣3|﹣3tan30°﹣(35-)° =﹣=﹣2. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 【答案】3x+1;3. 【解析】 【分析】首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算. 【详解】原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-] (x+1)(x -1)=221(1)(1)x x x x ++-+- (x+1)(x -1)=3x+1当x=313-时,原式=3x+1=3×313-+1=3-1+1=3. 考点:分式的化简求值.21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)【答案】1.2米 【解析】试题分析:根据锐角三角函数,在Rt △DEB 中,求得DE 的长,在Rt △CEB 中,求得CE 的长,再根据CD=DE-CE 即可求出塑像CD 的高度.试题解析:解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.93米,则CD=DE-CE=2.7-0.93≈1.2米.故塑像CD的高度大约为1.2米.考点:解直角三角形的应用.22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?【答案】(1)40;(2)54°,补全条形图见解析;(3)这次不及格的人数约是1800人.【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(人).(2)54°(3)89000180040⨯=,∴这次不及格的人数约是1800人.23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?【答案】(1)18,26;(2)两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆.【解析】【分析】(1)方程组的应用解题关键是设出未知数,找出等量关系,列出方程组求解.本题设每辆A型车的售价为x 万元,每辆B型车的售价为y万元,等量关系为:售1辆A型车和3辆B型车,销售额为96万元;售2辆A型车和1辆B型车,销售额为62万元.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解.本题不等量关系为:购车费不少于130万元,且不超过140万元.【详解】(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意,得396{262x yx y+=+=,解得18{26xy==.答;每辆A型车的售价为18万元,每辆B型车的售价为26万元.(2)设购买A型车a辆,则购买B型车(6-a)辆,根据题意,得1826(6)130{1826(6)140a aa a+-≥+-≤,解得1234a≤≤.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆考点:二元一次方程组的应用;一元一次不等式的应用.24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.【答案】(1)证明见解析;(2)⊙O的半径为4.【解析】试题分析:(1)、根据题意得出△CAD和△CDE相似,从而得出∠CAD=∠CDE,结合∠CAD=∠CBD得出∠CDB=∠CBD,从而得出答案;(2)、连接OC,根据OC∥AD得出PC=2CD,根据题意得出△PCB和△PAD相似,即PC PBPA PD,从而得出r的值.试题解析:(1)、∵DC2=CE•CA,∴=,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CB D,∴BC=DC;(2)、连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴===2,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴=,即=,∴r=4,即⊙O的半径为4.25. 已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【答案】(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF," ∠P="∠F=90°," AP= CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.26. 将抛物线C1:y=2x23x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2的解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由【答案】(1)233y x =-(2)①2,1/2,②是矩形,m =1 【解析】试题分析:因为二次函数的图像关于x 轴对称时,函数中的a,c,互为相反数,b 值不变,函数向左平移时,纵坐标不变,横坐标均减少平移个单位,可假定成立,由直角三角形性质得到验证.解:(1)抛物线c 2的表达式是; 2分;(2)①点A 的坐标是(1m --,0), 3分; 点E 的坐标是(1m +,0). 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形. 由题意得只能是90AME ∠=. 过点M 作MG ⊥x 轴于点G . 由平移得:点M 的坐标是(m -3, 5分; ∴点G 的坐标是(m -,0), ∴1GA =,3MG =,21EG m =+,在Rt △AGM 中, ∵ tan 3MG MAG AG ∠==,∴60MAG ∠=, 6分;∵ 90AME ∠=,∴30MEA ∠=,∴tan MG MEG EG ∠==,=, 7分; ∴1m =. 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形.考点:二次函数的图像与性质,直角三角形的性质.函数图像翻折时,解析式的系数的变换.点评:要熟练掌握以上各种性质,在解题时要掌握正确的方法,本题由一定的难度有三问需认真的思考一一作答,属于中档题.。

2023年中考数学模拟考试试题含答案解析

2023年中考数学模拟考试试题含答案解析

2023年中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a23.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣16.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为.8.(3分)不等式组的解集是.9.(3分)分解因式:x3﹣x=.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=度.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为人,m=,n=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=,θ4=,θ5=;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.2023年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a2【分析】根据单项式的乘法法则,积的乘方的性质,合并同类项的法则,计算后直接选取答案.【解答】解:(﹣2a)•a﹣(﹣2a)2,=﹣2a2﹣4a2,=﹣6a2.故选:C.【点评】本题考查积的乘方,单项式的乘法,要注意符号的运算,是同学们容易出错的地方.3.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个【分析】根据题意,主视图以及俯视图都是由3个小正方形组成,利用空间想象力可得出该几何体由4或5个小正方形组成.【解答】解:根据本题的题意,由主视图可设计该几何体如图:想得到题意中的俯视图,只需在图(2)中的A位置添加一个或叠放1个或两个小正方形,故组成这个几何体的小正方形的个数为4个或5个.故选:C.【点评】本题考查了由几何体的视图获得几何体的方法.在判断过程中要寻求解答的好思路,不要被几何体的各种可能情况所困绕.5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣1【分析】若x1<0<x2时,则对应的两个点(x1,y1)、(x2,y2)分别位于两个不同的象限,当y1>y2时,反比例系数一定小于0,从而求得k的范围.【解答】解:根据题意得:k+1<0;解得:k<﹣1.故选:D.【点评】本题容易出现的错误是,简单利用y随x的增大而减小,而错误的认为反比例系数是正数,忘记反比例函数的性质,叙述时的前提是:在每个象限内.6.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.【点评】本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为 1.37×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1370万=13700000=1.37×107,故答案为:1.37×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)不等式组的解集是x>.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=90度.【分析】根据三角形的内心的定义知内心是三角形三角平分线的交点,根据三角形内角和定理可以得到题目中的三个角的和.【解答】解:∵点P是△ABC的内心,∴PB平分∠ABC,PA平分∠BAC,PC平分∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠PBC+∠PCA+∠PAB=90°,故答案为:90°【点评】本题考查了三角形的内心的性质,解题的关键是正确的理解三角形的内心的定义,是三角形三内角的平分线的交点.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为(6053,2).【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+12×504=6053,∴P2017(6053,2),故答案为(6053,2).【点评】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是2,3,4.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角、弧、弦间的关系.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:(1)方程两边同乘以(x+2)(x﹣2),得(x﹣2)2+4=x2﹣4,解得:x=3,检验:当x=3时,(x+2)(x﹣2)=5≠0,则x=3是原分式方程的解;(2)原式=3﹣1+2=4.【点评】此题考查了解分式方程,以及实数的运算,解分式方程利用了转化的思想,解分式方程注意要检验.14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.【分析】(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.【解答】解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.【点评】此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.【分析】(1)在图①中作线段BC的中点P即可;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC即可.【解答】解:(1)如解图①所示,点P即为所求;(2)如解图②所示,MN即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是综合运用全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的判定与性质准确画图.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A的坐标为(2,0),∴AO=2,在直角三角形OAB中,AO2+OB2=AB2,即22+OB2=(),∴OB=3,∴B(0,3);(2)∵△ABC的面积为4∴4=BC×OA,即4=BC×2,∴BC=4,∴OC=BC﹣OB=4﹣3=1,∴C(0,﹣1),设l2的解析式为y=kx+b,则,解得,直线L2所对应的函数关系式为y=x﹣1.【点评】本题主要考查了两条直线的交点问题和坐标与图形的性质、三角形的面积,属于基础题,解题的关键是掌握勾股定理以及待定系数法.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为200人,m=20,n=0.15;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有1500人.【分析】(1)根据频数÷频率,求得采访的人数,根据频率×总人数,求得m的值,根据30÷200,求得n的值;(2)根据m的值为20,进行画图;(3)根据0.1×15000进行计算即可.【解答】解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).【点评】本题主要考查了条形统计图以及频数与频率,解决问题的关键是掌握:频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=.解题时注意,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=8×4=32(米),∴AD=CD=16(米),BD=AB•cos30°=16(米),∴BC=CD+BD=(16+16)米,则BH=BC•sin30°=(8+8)米.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值42,3(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3.(2)根据题意得:=,解得:m=2,所以m的值为2.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.【分析】(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE =2,即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA、AF、GB,根据等弧所对的圆周角相等可得∠BAG=∠AFG,然后根据两组角对应相等两三角相似求出△AGE和△FGA相似,根据相似三角形对应边成比例可得=,从而得到GE•GF=AG2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM=2=2=2;(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===2,∵OC=2,PO=2+2=4,∴PC2+OC2=(2)2+22=16=PO2,∴∠PCO=90°,∴PC是⊙O的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH∴△OGE∽△FGH∴=∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.【分析】(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.【解答】解:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);将(0,1)代入抛物线y=x2﹣2x+n中,得n=1.∵抛物线的解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.答:m的值为﹣1,n的值为1.(2)将y=2x﹣4代入到y=中有,2x﹣4=,即2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3.∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).设该“路线”L的解析式为y=m(x+1)2﹣6或y=n(x﹣3)2+2,由题意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,解得:m=2,n=﹣.∴此“路线”L的解析式为y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)令抛物线L:y=ax2+(3k2﹣2k+1)x+k中x=0,则y=k,即该抛物线与y轴的交点为(0,k).抛物线L:y=ax2+(3k2﹣2k+1)x+k的顶点坐标为(﹣,),设“带线”l的解析式为y=px+k,∵点(﹣,)在y=px+k上,∴=﹣p+k,解得:p=.∴“带线”l的解析式为y=x+k.令“带线”l:y=x+k中y=0,则0=x+k,解得:x=﹣.即“带线”l与x轴的交点为(﹣,0),与y轴的交点为(0,k).∴“带线”l与x轴,y轴所围成的三角形面积S=|﹣|×|k|,∵≤k≤2,∴≤≤2,∴S===,当=1时,S有最大值,最大值为;当=2时,S有最小值,最小值为.故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为≤S≤.【点评】本题考查了反比例函数与一次函数的交点问题已经二次函数的应用,解题的关键是:(1)根据“一带一路”关系找出两函数的交点坐标;(2)根据直线与反比例函数的交点设出抛物线的解析式;(3)找出“带线”l与x轴、y轴的交点坐标.本题属于中档题,(1)(2)难度不大;(3)数据稍显繁琐,解决该问时,借用三角形的面积公式找出面积S与k之间的关系式,再利用二次函数的性质找出S的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=60°﹣α,θ4=α,θ5=36°﹣α;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【分析】(1)由正三角形的性质得α+θ3=60°,再由正方形的性质得θ4=45°﹣(45°﹣α)=α,最后由正五边形的性质得θ5=108°﹣36°﹣36°﹣α=36°﹣α;(2)存在,如在图1中直线A0H垂直且平分的线段A2B1,△A0A1A2≌△A0B1B2,推得A2H=B1H,则点H在线段A2B1的垂直平分线上;由A0A2=A0B1,则点A0在线段A2B1的垂直平分线上,从而得出直线A0H垂直且平分的线段A2B1。

中考数学模拟试卷(5)(含解析)(2021年整理)

中考数学模拟试卷(5)(含解析)(2021年整理)

湖南省益阳市2017年中考数学模拟试卷(5)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市2017年中考数学模拟试卷(5)(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市2017年中考数学模拟试卷(5)(含解析)的全部内容。

2017年湖南省益阳市中考数学模拟试卷(5)一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是( )A.﹣B.2﹣C.4﹣D.﹣25.若不等式组的解集是x<2,则a的取值范围是( )A.a<2 B.a≤2 C.a≥2 D.无法确定6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是( )A.0 B.1 C.1008 D.2016二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是.10.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= .11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= .12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为.13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?19.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?20.如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?五、解答题(本题满分12分)21.如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN 是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.六、解答题(本题满分14分)22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.2017年湖南省益阳市中考数学模拟试卷(5)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.【考点】实数大小比较.【分析】先确定2与3的大小关系,再比较﹣2与﹣3的大小,因为这四个数中,正数大于0,0大于负数.【解答】解:∵2=,3=,∵,∴2<3,∴﹣2>﹣3,∴﹣3<0,∴最小的数是﹣3,故选A.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定【考点】比较线段的长短.【分析】由AB=CD,可得,AC=BD,又BC=2AC,所以,BC=2BD,所以,CD=3AC;【解答】解:∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC;故选B.3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差【考点】统计量的选择.【分析】根据平均数、中位数、众数及方差的有关知识判断即可.【解答】解:喜欢红色的学生最多,是这组数据的众数,故选C.4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.2﹣C.4﹣D.﹣2【考点】实数与数轴.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,的对应点分别为C,B,∴CB=﹣2,∵点C是AB的中点,则设点A的坐标是x,则x=4﹣,∴点A表示的数是4﹣.故选C.5.若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【考点】解一元一次不等式组.【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC 绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】根据旋转的性质得出∠ABF=∠C,求出∠ABC=∠C=30°,即可判断①;根据三角形外角性质求出∠ADC=∠BAE,根据相似三角形的判定即可判断②;求出∠EAC大于30°,而∠DAE=30°,即可判断③;求出△AFD是直角三角形,但是不能推出是等腰三角形,即可判断④.【解答】解:∵在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴△AEC≌△AFB,∴∠ABF=∠C=30°,∴∠FBD=30°+30°=60°,∴①正确;∵∠ABC=∠DAE=30°,∴∠ABC+∠BAD=∠DAE+∠BAD,即∠ADC=∠BAE,∵∠ABC=∠C,∴△ABE∽△DCA,∴②正确;∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,∴∠BAD+∠EAC=120°﹣∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,即△AFD是直角三角形,∵在△DAE中,∠ADE=∠BAC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,∴∠ADE和∠AED不相等,∴AD和AE不相等,即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;故选B.7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选:B.8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是()A.0 B.1 C.1008 D.2016【考点】规律型:数字的变化类;有理数的除法.【分析】由(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!知,可将原式两边都加上1!+2!+3!+…+2016!,即可得S=2017!﹣1,从而得出答案.【解答】解:∵(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!,∴S+1!+2!+3!+…+2016!=1×1!+2×2!+3×3!+…+2016×2016!+1!+2!+3!+…+2016!,即S+1!+2!+3!+…+2016!=1!+2!+3!+…+2017!,则S=2017!﹣1,∴==2016!…1,故选:B.二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是36 .【考点】有理数的混合运算.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=12+28﹣4=40﹣4=36,故答案为:3610.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= ﹣1 .【考点】解一元一次方程.【分析】根据规定,得:当n=2时,则(x2)′=2x,解方程即可.【解答】解:根据题意得:2x=﹣2,x=﹣1.故答案为:﹣1.11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= 25或16 .【考点】等腰三角形的性质;一元二次方程的解;根的判别式.【分析】讨论:根据等腰三角形性质当AB=BC=8,把x=8代入方程可得到m=16,此时方程另一根为2,满足三角形三边关系;当AB=AC,根据根与系数得关系得AB+AC=10,所以AB=AC=5,所以m=5×5=25.【解答】解:当AB=BC=8,把x=8代入方程得64﹣80+m=0,解得m=16,此时方程为x2﹣10x+16=0,解得x1=8,x2=2;当AB=AC,则AB+AC=10,所以AB=AC=5,则m=5×5=25.故答案为:25或16.12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为(3,﹣1).【考点】菱形的性质;坐标与图形性质.【分析】首先连接AB交OC于点D,由菱形OACB中,点C的坐标是(6,0),点A的纵坐标是1,即可求得点B的坐标.【解答】解:∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(6,0),点A的纵坐标是1,∴OC=6,BD=AD=1,∴OD=3,∴点B的坐标为:(3,﹣1).故答案为:(3,﹣1).13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【考点】切线的性质.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=6tan30°﹣2=2﹣2时,原式=.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入解得k、b可得解析式;(2)将x=﹣2代入一次函数解析式可判断结果.【解答】解:(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入得,,解得,,∴一次函数解析式为:y=2x+1;(2)把x=﹣2代入y=2x+1,解得y=﹣3,∴点P(﹣2,1)不在一次函数图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.【考点】作图—复杂作图;全等三角形的判定;平行四边形的性质.【分析】(1)作∠CBM=∠ADE,其中BM交CD于F;(2)根据平行四边形的性质可得∠A=∠C,AD=BC,由ASA可证△ADE≌△CBF.【解答】(1)解:如图所示.(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA).四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?【考点】概率公式;用样本估计总体;频数(率)分布直方图;扇形统计图.【分析】(1)根据扇形统计图中公租房所占比例以及条形图中公租房数量即可得出,新开工的住房总数,进而得出经济适用房的套数;(2)根据申请购买经济适用房共有950人符合购买条件,经济适用房总套数为475套,得出老王被摇中的概率即可;(3)根据2016年廉租房共有6250×8%=500套,得出500(1+10%)=550,即可得出答案.【解答】解:(1)根据题意得:住房总数为1500÷24%=6250(套),则经济适用房的数量为6250×7。

漳州市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

漳州市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

漳州市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列语句正确是()A. 无限小数是无理数B. 无理数是无限小数C. 实数分为正实数和负实数D. 两个无理数的和还是无理数【答案】B【考点】实数及其分类,实数的运算,无理数的认识【解析】【解答】解:A.无限不循环小数是无理数,故A不符合题意;B.无理数是无限小数,符合题意;C.实数分为正实数、负实数和0,故C不符合题意;D.互为相反数的两个无理数的和是0,不是无理数,故D不符合题意.故答案为:B.【分析】(1)无理数是指无限不循环小数;(2)无限小数分无限循环和无限不循环小数;(3)实数分为正实数、零、负实数;(4)当两个无理数互为相反数时,和为0.2、(2分)下列各式中是二元一次方程的是()A.x+3y=5B.﹣xy﹣y=1C.2x﹣y+1D.【答案】A【考点】二元一次方程的定义【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;C. 2x﹣y+1,不是方程,不符合题意;D. ,不是整式方程,不符合题意,故答案为:A.【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。

3、(2分)下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个【答案】B【考点】两点间的距离,对顶角、邻补角,点到直线的距离【解析】【解答】解:①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;②如果两个角相等,那么这两个角是对顶角,错误;③连接两点的线段长度叫做两点间的距离,正确;④直线外一点到这条直线的垂线段叫做这点到直线的距离,错误;综上所述:正确的有1个.故答案为:B.【分析】对顶角定义:有一个共同的顶点且一边是另一边的反向延长线,由此可知①和②均错误;两点间的距离:连接两点的线段长度,由此可知③正确;点到直线的距离:直线外一点到这条直线的垂线段的长度叫做这点到直线的距离,由此可知④错误.4、(2分)下列是方程组的解的是()A.B.C.D.【答案】D【考点】解二元一次方程组【解析】【解答】解:根据代入消元法,把2x-y=-5变形为y=2x+5,把其代入方程x+2y=5,解得x=-1,代入y=2x+5=3,所以方程组的解为.故答案为:D.【分析】利用代入消元法,将方程组中的②方程变形为用含x的式子表示y得出③方程,再将③方程代入原方程组中的①方程消去y即可求出x的值,再将x的值代入③方程进而算出y的值,从而得出原方程组的解。

2023年中考数学全真模拟卷(含答案)六

2023年中考数学全真模拟卷(含答案)六

2023年中考数学全真模拟卷第六模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个....选项是最符合题意的)1.﹣2016的相反数是().A .B .12016C .6102D .20162.随着科技不断发展,芯片的集成度越来越高.我国企业中芯国际已经实现14纳米量产,14纳米等于0.000014毫米,将0.000014用科学记数法表示应为().A .61410-⨯B .51.410-⨯C .41.410-⨯D .40.1410-⨯3.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为()A .B .C .D .4.在平面直角坐标系中,点()1,2P -到原点的距离是()A .1B .2C 3D 55.分别从正面、左面和上面三个方向看下面哪个几何体,能得到右图所示的平面图形()A .B .C .D .6.某班男同学身高情况如下表,则其中数据167cm ()身高(cm)170169168167166165164163人数(人)12586332A .是平均数B .是众数但不是中位数.C .是中位数但不是众数D .是众数也是中位数7.老张师傅做m 个零件用了一个小时,则他做20个零件需要的小时数是()A .20m B .20mC .20mD .20+m8.一张小凳子的结构如图所示,AB ∥CD ,∠1=∠2=α,AD =50厘米,则小凳子的高度MN 为()A .50cos α厘米B .50cos α厘米C .50sin α厘米D .50sin α厘米9.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形.如图所示,已知90A ∠=︒,正方形ADOF 的边长是2,6CF =,则BD 的长为()A .6B .C .4D .810.如图是二次函数y =ax 2+bx +c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③4a +2b +c <0;④若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1<y 2,其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题(本大题共7小题,每小题4分,共28分)11.在函数y=1x 5-中,自变量x 的取值范围是_____.12.已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a ,中位数为b ,则a ______b (填“>”“<”或“=”).13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是__________.14.如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm ,则这个扇形的半径是________cm .15.如图.在Rt ABC 中,60BAC ∠= ,以点A 为圆心、任意长为半径作弧分别交,AB AC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径作圆,两弧交于点P .作射线AP 交BC 于点E .若1BE =,则Rt ABC 的周长等于_________.16.如图,将矩形纸片ABCD 沿EF 折叠后,点C 、D 分别落在点C ′、D ′处,若∠AFE=65°,则∠C ′EB =________度.17.如图,分别过x 轴上的点()()()12n A 1,0,A 2,0,,A n,0⋯作x 轴的垂线,与反比例函数6y (x 0)x=>图象的交点分别为12n 12B ,B ,,B ,A B ⋯与21A B 相交于点123P ,A B 与32A B 相交于点2P ,…,n n 1A B +与n 1n A B +相交于点n P ,若111A B P △的面积记为1S ,222A B P △的面积记为2S ,333A B P △的面积记为3S ,…n n n A B P △的面积记为n S ,则n S =____18.化简:2212211x x x x x x+---÷--,并在-1≤x≤3中选取一个合适的整数x 代入求值.19.如图,在Rt ABC △和Rt BAD 中,AB 为斜边,AC BD =,BC 、AD 相交于点E .(1)请说明AE BE =的理由;(2)若45AEC ∠=︒,1AC =,求CE 的长.20.为深化课程改革,我校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A :文学鉴赏,B :科学探究,C :文史天地,D :趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成如图所示的两个不完整的统计图.根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中D 部分的圆心角是度;请补全条形统计图;(2)根据本次调查,我校七年级2600名学生中,估计最喜欢“趣味数学”的学生人数为多少?21.如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数k y x =的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求ABO∆的面积.22.如图,B 、E 为⊙O 上的点,C 是⊙O 的直径AD 的延长线上一点,连接BC ,∠DBC =∠A .(1)求证:BC 是⊙O 的切线;(2)若tan ∠BED =34,CD =5,求⊙O 的半径长.23.某商店销售功能相同的A B 、两种品牌的计算器,A 品牌计算器的成本价为每个20元,B 品牌计算器的成本价为每个25元,且销售3个A 品牌和2个B 品牌的计算器的价格为185元,销售2个A 品牌和1个B 品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按照原价的八折销售;B 品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x 个A 品牌的计算器的利润为1y 元,销售x 各B 品牌的计算器的利润为2y 元.①分别求12,y y 与x 之间的函数表达式;②某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.五、解答题(本大题共2小题,每小题10分,共20分)24.如图1,在△ABC 中,AB AC =,点DE 、分别在边AB 、AC 上,AD AE =,连接DC ,点P 、Q 、M 分别为DE 、BC 、DC 的中点,连接MQ 、PM .(1)求证:PM MQ =;(2)当50A ∠=︒时,求∠PMQ 的度数;(3)将△ADE 绕点A 沿逆时针方向旋转到图2的位置,若120PMQ ∠=︒,判断△ADE 的形状,并说明理由.25.如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =--与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于80,3C ⎛⎫- ⎪⎝⎭,顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的左侧.(1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为37:的两部分时,求直线的函数表达式;(3)当点P 位于第一象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.2023年中考数学全真模拟卷答案第六模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

初中数学 中考数学试卷(含答案)

初中数学 中考数学试卷(含答案)

一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 【答案】B. 【解析】试题分析:由点到直线的距离定义,即垂线段的长度可得结果故选B. 考点:点到直线的距离定义 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 【答案】D.考点:分式有意义的条件3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱 【答案】A. 【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 【答案】C.考点:实数与数轴5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .【答案】A. 【解析】试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误.故选A 。

考点:轴对称图形和中心对称图形的识别6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12.故选B. 考点:多边形的内角与外角7. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A . -3B . -1 C. 1 D .3 【答案】C.考点:代数式求值8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》) 根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元 D .2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 【答案】A.考点:折线统计图9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【答案】D.考点:函数图象10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620. 其中合理的是()A.①B.② C. ①②D.①③【答案】B.【解析】试题分析:①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误.故选B.考点;频率估计概率二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________. 【答案】π (答案不唯一). 【解析】试题分析:π∵3<x<4, ∴916x << , ∴9<x<16,故答案不唯一 π,10,11,12,13,14,15考点:无理数的估算.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 【答案】454353x y x y +=⎧⎨-=⎩ .考点:二元一次方程组的应用.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3. 【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC 的中点,∴12CM CN AC AB == , ∴2211()()24CMN ABC S CM S AC ∆∆=== ,∵1,44CMN ABC CMN S S S ∆∆∆=== ,413ABNMABC CMN SS S ∆∆=-=-=.考点:相似三角形的性质. 14.如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .【答案】25°.考点:圆周角定理15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .【答案】将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB (答案不唯一). 【解析】试题分析:观察图形即可,将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB ,注意是顺时针还是逆时针旋转. 考点:几何变换的类型16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:()4cos3012122+--+-【答案】3. 【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可. 试题解析:原式=4×32+1-23+2=23+1-23+2=3 . 考点:实数的运算18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩【答案】x<2.考点:解一元一次不等式组19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.【答案】见解析. 【解析】试题分析: 由等腰三角形性质及三角形内角和定理,可求出∠ABD=∠C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC, ∠A=36°∴∠ABC=∠C=12(180°-∠A)= 12×(180°-36°)=72°,又∵BD 平分∠ABC, ∴∠ABD=∠DBC=12∠ABC=12×72°=36°, ∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC, ∠A=AB ∴AD=BD=BC.考点:等腰三角形性质.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________).易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S .考点:矩形的性质,三角形面积计算.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围. 【答案】.(1)见解析,(2)k<0考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(23【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.试题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,AC= 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N .①当1n=时,判断线段PM与PN的数量关系,并说明理由;②若PN PM≥,结合函数的图象,直接写出n的取值范围.【答案】(1)见解析.(2)0<n≤1或n≥3.【解析】试题分析:(1)先求A 点坐标,在代入kyx=,即可求出结果;(2)①令y=1,求出PM的值,令x=1求出PN的值即可;(3)过点P作平行于x轴的直线,利用图象可得出结果.试题解析:(1)∵函数kyx=(x>0)的图象与直线y=x-2交于点A(3,m)∴m=3-2=1,把A(3,1)代入kyx=得,k=3×1=3.即k的值为3,m的值为1.考点:直线、双曲线的函数图象24.如图,AB是O的一条弦,E是AB的中点,过点E作EC OA⊥于点C,过点B作O的切线交CE 的延长线于点D .(1)求证:DB DE =; (2)若12,5AB BD ==,求O 的半径.【答案】(1)见解析;(2)152【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC ⊥OA, ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【答案】a.240,b.乙;见解析.按如下分数段整理 按如下分数段整理数据: 成绩x人数 部门 4049x ≤≤ 5059x ≤≤ 6069x ≤≤ 7079x ≤≤ 8089x ≤≤ 90100x ≤≤甲 0 0 1 11 7 1 乙1710 2a.估计乙部门生产技能优秀的员工人数为400×1240=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高; ②甲部门生产技能测试中,没有生产技能不合格的员工. 可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高. 考点:众数,中位数.26.如图,P 是AB 所对弦AB 上一动点,过点P 作PM AB ⊥交AB 于点M ,连接MB ,过点P 作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:/x cm0 1 2 3 4 5 6/y cm0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.为等腰三角形时,AP的长度约为(3)结合画出的函数图象,解决问题:当PAN____________cm.【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一)【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)见解析,(3)2.2(答案不唯一)试题解析:(1)1.6 (2)如图所示:(3)作y=x 与函数图象交点即为所求.2.2(答案不唯一)考点:函数图象,估算,近似数27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C . (1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.【答案】(1)y=-x+3;(2)7<123x x x ++<8. 【解析】试题分析:(1)先求A 、B 、C 的坐标,用待定系数法即可求解;(2)由于垂直于y 轴的直线l与抛物线243y x x =-+要保证123x x x <<,则P 、Q 两点必位于x 轴下方,作出二次函数与一次函数图象,找出两条临界直线,为x 轴和过顶点的直线,继而求解.(2).由2243(2)1y x x x =-+=--,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ∵12y y = ,∴1x +2x =4.令y=-1,y=-x+3,x=4. ∵ 123x x x <<,∴3<3x <4, 即7<123x x x ++<8, ∴ 123x x x ++的取值范围为:7<123x x x ++<8.考点:二次函数与x 轴的交点问题,待定系数法求函数解析式,二次函数的对称性. 28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)试题解析:(1)∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠PAB=45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM=45°+α.(2)线段MB与PQ之间的数量关系:PQ=2MB.理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ,∴AP=AQ=QM,在RT△APC和RT △QME 中,MQE PAC ACP QEM AP QM ∠=⎧⎪∠=∠⎨⎪=⎩∴RT △APC ≌RT △QME, ∴PC=ME, ∴△MEB 是等腰直角三角形,∴1222PQ MB =, ∴PQ=2 MB.考点:全等三角形判定,等腰三角形性质 . 29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.【答案】(1)①23,P P ,②-322≤x≤-22 或22 ≤x≤322,(2)-2≤x≤1或2≤x≤22试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12,∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±,∴ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322如图2,当圆与小圆相切时,切点为D,∴CD=1 ,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt △OCB 中,由勾股定理得OC=23122-= , C 点坐标为 (22,0).∴ C 点的横坐标的取值范围为2≤c x ≤22 ;∴综上所述点C 32 ≤c x ≤-22 或22 ≤c x ≤322. 考点:切线,同心圆,一次函数,新定义.。

2023-2024学年福建省漳州市八年级上册10月期中数学质量检测模拟试卷(含答案)

2023-2024学年福建省漳州市八年级上册10月期中数学质量检测模拟试卷(含答案)

2023-2024学年福建省漳州市八年级上学期10月期中数学质量检测模拟试题一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的答案,请把正确的选项涂在答题卡的相应位置)1.下列实数25,,π1,0,17-+-中,无理数有()A .1个B .2个C .3个D .4个2.9的算术平方根是()A .B .3C .3±D .3±3.下列各题的计算,正确的是()A .(a 7)2=a 9B .a 7•a 2=a 14C .2a 2+3a 2=6a 5D .(﹣0.5)100×2101=24.若多项式()219x a x +-+是一个完全平方式,则的值为()A .3B .7或5-C .5-D .7-或55.下列命题是真命题的是()A .若22a b =,则a b=B .同位角相等,两直线平行C .若a ,b 是有理数,则+=+a b a b D .如果A B ∠=∠,那么A ∠与B ∠是对顶角6.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定AOC BOC ≌△△的是()A .3=4∠∠B .A B∠=∠C .AO BO=D .AC BC=第6题第9题7.设a,b,c 是三角形的三边,则多项式a 2−b 2−c 2−2bc 的值()A .等于0B .大于0C .小于0D .无法确定8.规定:把不超过实数x 的最大整数记作[x],例如:[2.6]=2,[5]=5,[-3.1]=-4,[π−4]-[-3]的值等于()A .1B .0C .−1D .−29.如图,在∆ABC 中,M ,N 分别是边AB ,BC 上的点,将∆BMN 沿MN 折叠;使点B 落在点B '处,若35B ∠=︒,28BNM ∠=︒,则AMB ∠'的度数为()A .30︒B .37︒C .54︒D .63︒10.已知正方形ABCD 的边长为b ,正方形EFGH 的边长为()a b a >.如图1,点H 与点A 重合,点E 在边上,点G 在边上,记阴影部分的面积为1S ;如图2,在图1正方形位置摆放的基础上,在正方形ABCD 的右下角又放了一个和正方形EFGH 一样的正方形,使一个顶点和点C 重合,两条边分别落在BC 和DC 上,记阴影部分面积为2S 和3S .若116S =,24S =,则3S 的值是()A .1B .2C .3D .4二、填空题(每小题4分,共24分)11.计算:()()6263a a -÷-=.12.已知2+2+1+−3=0,则x y +=.13.说明命题“若a b >,则ac bc >”是假命题的一个反例的的值可以是.14.如图,在Rt∆ABC 中,∠C =90°,E 是AB 上一点,且BE=BC ,DE ⊥AB 于点E ,若AC =8,则AD+DE 的值为.15.若89a b ab ==-,-,则22a b +=.16按如图方式排列.若规定(x ,y )表示第x 排从左向右第y 个数,若2023在(x ,y ),则(2x ﹣y )3的值为.ab图2第14题第16题三、解答题(86分)17.计算(每小题5分,共15分)(1)3−8−3+(5)2+1−32)4+33−4−(4+3p 2(3)223∙(−3B 2)218.将下列各式分解因式(每小题4分,共15分)(1)2−52+22−5+1(2)22−8B +8(3)利用因式分解进行简便计算:5352×4−4652×419.(8分)先化简,再求值:22+−1−+1(22−p ,其中.=−2320.(8分)已知:如图,AD ,BC 相交于点O ,OC OB =,AB CD ∥.求证:AB CD =.21.(8分)先阅读材料,再解答问题:我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术平方根都是整数,则称这三个数为“完美组合数”.例如:9-,4-,1-这三个数,()()946-⨯-=,()()913-⨯-=,()()412-⨯-=,其结果6,3,2都是整数,所以9-,4-,1-这三个数为“完美组合数”.(1)18-,8-,2-这三个数是“完美组合数”吗?请说明理由.(2)若三个数3-,m ,12-是“完美组合数”,其中有两个数乘积的算术平方根为12,求m 的值.22.(8分)如图,在∆ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE GF ⊥交AB 于点E ,连接EG EF ,.(1)求证:∆BDG ≅∆CDF ;(2)请你判断BE CF +与EF 的大小关系,并说明理由.23.(10分)(1)如图1是一个长为4a ,宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用这四块小长方形拼成一个“回形”正方形(如图2)请你直接写出()2a b +,()2a b -,ab 之间的等量关系是.(2)根据(1)题中的等量关系,解决下列问题:11a b +=,214ab =,求()2a b -的值;(3)如图3,点C 是线段AB 上的一点,以AC ,BC 为边向两边作正方形,设8AB =,两正方形的面积和1234S S +=,求图中阴影部分面积.24.(14分)(1)如图1,已知在正方形ABCD 中(四边相等,四个内角均为90°),点E 、F 分别在边BC 、DC 上运动,当45EAF ∠=︒时,探究DF 、BE 和EF 的数量关系,并加以说明;(2)如图2,若将直角三角形ABC 沿斜边翻折得到ADC △,且90B D ∠=∠=︒,点E 、F 分别在边BC 、DC 上运动,且12EAF BAD ∠=∠,试猜想(1)中的结论还成立吗?请加以说明;(3)如图3,已知∆ABC 是边长为8的等边三角形(三边相等,三个内角均为60°),BD CD =,120BDC ∠=︒,30DBC BCD ∠=∠=︒,以D 为顶点作一个60°角,使其角的两边分别交边AB 、AC于点E 、F ,连接EF ,求AEF △的周长.八年级数学答案及评分标准一、选择题二、填空题:11.42a ;12.2;13.0(答案不唯一,c ≤0均可);14.8;15.46;16.27三、解答题:17.(1)解:原式=−2−3+5+3−1............................................................................3分=−2+5−1.............................................................................................4分=2.............................................................................................................................5分(2)解:原式2222916(16249)y x x xy y =--++...............................................................2分222291616249y x x xy y =----...................................................................4分23224x xy =--..........................................................................................5分(3)解:原式632489m n m n =⋅.................................................................................................3分8772m n =........................................................................................................5分18.(1)解:原式2251)m -+=(.................................................................................................2分224)m -=(....................................................................................................3分22(2)2)m m +-=(....................................................................................5分(2)解:原式2244()y x x =-+..............................................................................................3分22(2)y x =-;..................................................................................................5分(3)解:原式=4×(5352−4622)....................................................................................1分=4×535+465(535−465)...................................................................3分=4×1000×70..........................................................................................4分=280000..............................................................................................5分题号12345678910答案BBDBBDCACA19.解:()()()222112a a a a a a +--+-()()32322222a a a a a a -++--=...................................................................................3分32322222a a a a a a =+---+......................................................................................5分2a a =-.........................................................................................................................6分当23a =-时,原式22233⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭...............................................................................7分109=.............................................................................................8分20.证明:∵AB CD ∥,∴A D ∠=∠,........................................................................................................3分在∆AOB 和∆DOC 中,A D AOB DOC OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AOB DOC △≌△,.................................................................................6分∴AB CD =..........................................................................................................8分21.(1)解:18-,8-,2-这三个数是“完美组合数”,理由如下:12=6=4=,..........................................2分∵12,6,4都是整数∴18-,8-,2-这三个数是“完美组合数”;...................................................................3分(26=,...........................................................................................4分∴分两种情况讨论:12=时,3144m -=,∴48m =-;............................................................................................................................5分12=时,12144m -=,∴12=-m (不符合题意,舍);..........................................................................................7分综上,48m =-.................................................................................................................8分22.(1)证明:∵AC BG ∥,DBG DCF ∴∠=∠...................................................................................................................1分∵D 为BC 的中点,∴BD CD =..........................................................................................................................2分在∆BDG 和∆CDF 中,DBG DCF BD CDBDG CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∆BDG ≅∆CDF(SAS)..............................................................................................................3分(2)解:BE CF EF +>....................................................................................................4分证明:∆BDG ≅∆CDFGD FD BG CF ∴==,.........................................................................................................5分又DE FG ⊥ ,90EDG EDF ∴∠=∠=︒.....................................................................................................6分在∆EGD 与EFD △中,GD FD EDG EDF ED ED =⎧⎪∠=∠⎨⎪=⎩,∆EGD ≅∆EFD(SAS)..........................................................................................................7分EG EF ∴=,∵在∆EBG 中,BE BG EG +>,BE CF EF ∴+>.............................................................................................................8分23.(1)()()224a b a b ab +=-+;.................................................................................2分(2)∵()()224a b a b ab +=-+,∴()()224a b a b ab -=+-,.....................................................................................................3分∵11a b +=,214ab =,∴()()222214114121211004a b a b ab -=+-=-⨯=-=......................................................5分(3)设AC x =,BC y =,..............................................................................................6分由题意得:8x y +=,221234x y S S +=+=......................................................................7分∵()2222x y x y xy +=++.∴64342xy =+,.............................................................................................................9分∴15xy =.∴117.522S AC CF xy =⋅==阴影......................................................................................10分24.(1)DF BE EF +=.....................................................................................................1分证明:如图,把ADF △绕点A 顺时针旋转90°至∆ABG ,使AB 与AD 重合由旋转得:∆ADF ≅∆ABG∴∠D =∠ABG ,AG =AF ,BG =DF 在正方形ABCD 中∵∠ABC =∠D =∠DAB =90°∴∠EBG =∠ABE +∠ABG =∠ABE +∠D =180°,∴点E 、B 、G 共线∴∠EAG =∠EAB +∠BAG =∠EAB +∠DAF =∠DAB −∠EAF =90°−45°=45°即EAF EAG ∠=∠...........................................................................................................2分在AEF △和AEG △中,AG AFGAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴∆AEG ≅∆AEF(SAS)......................................................................................................3分∴GE =FE∴DF +BE =BG +BE =GE =EF ,∴DF BE EF +=;............................................................................................................4分(2)成立,如图,DF BE EF += (5)分证明:将ADF △绕A 顺时针旋转BAD ∠的度数,此时,AD 与AB 重合,由旋转得:∆ADF ≅∆ABG∴BG DF =,12∠=∠,AF AG =,90ABG D ∠=∠=︒,同理得:点G ,B ,E 在同一条直线上,........................................................................6分∵12EAF BAD ∠=∠,∴12BAE FAD BAD ∠+∠=∠,∴12BAE GAB BAD ∠+∠=∠,∴∠=∠EAG EAF ,........................................................................................................7分∵AF AG =,AE AE =,∴∆GAE ≅∆FAE(SAS),..................................................................................................8分∴EF EG =,∴EF BG BE DF BE =+=+,...........................................................................................9分∴(1)中的结论还成立,DF BE EF +=;(3)∵∆ABC 是边长为8的等边三角形,∴8,60AB AC ABC ACB ==∠=∠=︒,...............................................................................10分∵30DBC BCD ∠=∠=︒,∴90ABD ACD ∠=∠=︒,.................................................................................................11分将∆DCF 绕点D 逆时针旋转∠BDC 的度数得到DBG △由旋转得:∆DCF ≅DBG∴90DBG DCF ∠=∠=︒,BG CF =,DG DF =,∠BDG =∠CDF ...............................12分∴180EBG EBD GBD ∠=∠+∠=︒,∴,,E B G 三点共线,∵∠BDC =120°,∠EDF =60°∴∠EDG =∠EDB +∠BDG=∠EDB +∠CDF =60°∴∠EDG =∠EDF∵DG =DF ,ED =ED∴∆GDE ≅∆FDE ,................................................................................................13分∴EF EG BE BG ==+,∴AEF △的周长=++=+++=+++=+=................14分AE AF EF AE AF BE BG AE AF BE CF AB AC16。

2021年中考一模考试《数学卷》含答案解析

2021年中考一模考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。

2023年初中数学中考模拟试卷(含解析)

2023年初中数学中考模拟试卷(含解析)

2023年初中数学中考模拟试卷(含解析)一、单选题1.从3名男生和2名女生共5名候选人中随机选取两人参加演讲比赛,则两人恰好是一男一女的概率是()A .25B .12C .35D .452.计算(﹣3)﹣9的结果等于()A .6B .﹣12C .12D .﹣63.下列说法正确的是()A .若|a |=a ,则a >0B .若sinA =,则锐角∠A =60°C .矩形的对角线互相垂直平分D .菱形的面积等于对角线的乘积4.改革开放四十年以来,中国每天都在发生新的变化.目前,我省重大新兴产业基地、工程和专项在建及储备项目共1656个,总投资9364亿元.数据9364亿用科学记数法可表示为()A .9364×108B .9364×109C .9.364×1011D .9.364×10125.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:x…2-1-012…2y ax bx c=++…tm 2-2-n…且当12x =-时,其对应的函数值0y >.有下列结论:①0abc >;②对称轴为12x =-;③2-和3是关于x 的方程21ax bx c ++=的两个根;④2003m n <+<其中,正确结论的个数是()A .0B .1C .2D .36.将△ABC 平移得到△A B C ''',若80A AC '∠=︒,则A C C ''∠的度数是()A .10°B .80°C .100°D .160°7.如图,△ABC 是等腰直角三角形,AC=BC ,AB=4,D 为AB 上的动点,DP ⊥AB 交折线A ﹣C ﹣B 于点P ,设AD=x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是()A.B.C.D .8.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE ,分别交AC 、AD 于点F 、G ,连接OG ,则下列结论:①OG =12AB ;②图中与△EGD 全等的三角形共有5个;③以点A 、B 、D 、E 为项点的四边形是菱形;④S 四边形ODGF =S △ABF .其中正确的结论是()A .①③B .①③④C .①②③D .①②④9.如图,在⊙O 中,将劣弧BC 沿弦BC 翻折恰好经过圆心O ,A 是劣弧BC 上一点,分别延长CA ,BA 交圆O 于E ,D 两点,连接BE ,CD.若tan ECB ∠=ABE 的面积为1S ,ADC △的面积为2S .则12S S =()A .25B .425C .37D .94910.如图,正方形ABCD 中,4=AD ,点E 是对角线AC 上一点,连接DE ,过点E 作EF ED ⊥,交AB 于点F ,连接DF ,交AC 于点G ,将EFG ∆沿EF 翻折,得到EFM △,连接DM ,交EF 于点N ,若点F 是AB 的中点,则EMN 的周长是()A .2B .2C D 二、填空题11.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,它的运行轨道距地球最近点439000米.将439000用科学记数法表示应为___.12.不等式组2213x x -<⎧⎨+<⎩的解集为_______________.13.如图,有一个正三角形图片高为1米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,工人将图片沿数轴正方向滚动一周,点A 恰好与数轴上点A '重合,则点A '对应的实数是______.14.如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是__________15.如图,在Rt ABC △中,90C ∠=︒,6CA =,8CB =,点P 为此三角形内部(包含三角形的边)的一点且P 到三角形三边的距离和为7,则CP 的最小值为______.三、解答题16.计算:6tan30°+(3.14-π)012.17.计算:2133|2sin 602-︒⎛⎫-++ ⎪⎝⎭18.一个不透明的袋子中装有三个大小、质地都相同的小球,球面上分别标有数字123-、、,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的小球中任意摸出一个小球,记下数字作为A 点的纵坐标.(1)“A 点坐标为()0,0”的事件是事件(填“随机”或“不可能”或“必然”);(2)用列表法或画树状图法列出所有可能出现的结果,并求点A 落在第四象限的概率.19.如图,在□ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .求证:(1)ABE CDF ≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.20.如图,AD 是ABC 的角平分线.(1)作线段AD 的垂直平分线EF ,分别交AB 、AC 于点E 、F ;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE 、DF ,四边形AEDF 是________形.(直接写出答案)21.如图,在Rt ABC △中,90A ∠=︒,4AB =,3AC =,D ,E 分别是AB ,BC 边上的动点,以BD 为直径的O 交BC 于点F .(1)当AD DF =时,求证:CAD CFD ≅ ;(2)当CED △是等腰三角形且DEB 是直角三角形时,求AD 的长.22.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,P 为BA 延长线上一点,连接CA 、CD 、AD ,且∠PCA =∠ADC ,CE ⊥AB 于E ,并延长交AD 于F .(1)求证:PC 为⊙O 的切线;(2)求证:2PC PA PB =⋅;(3)若3tan 4ADC ∠=,36AF AD ⋅=,求PA 的长.23.已知在扇形AOB 中,点C 、D 是 AB 上的两点,且 2,130,10AC AO C B OA D =∠=︒=.(1)如图1,当OD OA ⊥时,求弦CD 的长;(2)如图2,联结AD,交半径OC于点E,当OD//AC时,求AEED的值;内接正多边形的边?如果能,(3)当四边形BOCD是梯形时,试判断线段AC能否成为O请求出这个正多边形的边数;如果不能,请说明理由.参考答案与解析1.C【分析】画出树状图表示出所有可能的情况,再找出符合题意的情况,最后根据概率公式计算即可.【详解】解:根据题意可画树状图如下:共有20种等可能的情况,其中两人恰好是一男一女的有12种,则两人恰好是一男一女的概率是123 205=;故选:C.【点睛】本题考查用列表或画树状图法求概率.正确的列出表格或画出树状图是解题关键.2.B【分析】原式利用减法法则变形,计算即可得到结果.【详解】解:原式=﹣3+(﹣9)=﹣12,故选B.【点睛】此题考查有理数的减法,解题关键在于掌握运算法则.3.B【分析】A.根据绝对值的性质判断即可;B.根据特殊角的三角函数值判断即可;C.根据矩形的性质判断即可;D.根据菱形的面积的计算方法判定即可.【详解】A、当|a|=a时,a≥0,故选项A错误,不符合题意;B、∵sinA2=,∴锐角∠A=60°,故选项B正确,符合题意;C、矩形的对角线相等且互相平分,但不一定垂直,故选项C错误,不符合题意;D、菱形的面积等于对角线的乘积的一半,故选项D错误,不符合题意.故选:B .【点睛】本题主要考查了绝对值的性质,特殊角的三角函数值,矩形的性质,菱形面积的计算方法.熟练掌握以上知识是解题的关键.4.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将9364亿用科学记数法表示为:9.364×1011.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.C【分析】①根据表中数据判断,,a b c 的正负即可;②根据(0,2)-,(1,2)-,可得对称轴为直线12x =-;③根据对称轴为直线12x =-,再根据二次函数的对称性得出结论;④把1x =-和2x =代入抛物线解析式求出m n +的值,再根据a 的取值范围得出结论.【详解】解:①当0x =时,2c =-,当1x =时,22a b +-=-,0a b ∴+=,22y ax ax ∴=--,0abc ∴>,故①正确;②根据(0,2)-,(1,2)-,可得对称轴为直线12x =-;故②错误;③ 对称轴为直线12x =-2x ∴=-时,y t =则3x =时,,y t =2∴-和3是关于x 的方程2ax bx c t ++=的两个根;故③正确④2m a a =+-,422n a a =--,22m n a ∴==-,44m n a ∴+=-,当12x =-时,其对应的函数值0y >∴83a >∴203m n +>,故④错误;故选:C .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.6.B【分析】利用平移的性质证明四边形''AA C C 为平行四边形,根据对角相等即可解答.【详解】解:由题意作下图:由平移的性质知,//'',''AC A C AC A C =,∴四边形''AA C C 为平行四边形,''A AC A C C '∴∠=∠,80A AC '∠=︒ ,80A C C ''∴∠=︒,故选:B .【点睛】本题考查了平移的性质、平行四边形的判定及性质,解题的关键是掌握平移的性质.7.B【分析】根据题意可以列出y 与x 的函数解析式,从而可以确定y 与x 的函数图象,从而可以得到正确的选项,本题得以解决.【详解】由题意可得,当0≤x≤2时,y=2x x ⋅=22x ,当2≤x≤4时,y=222(4)4112(2)22222x x x x x x x --+==-+=--+,∴当0≤x≤2时,函数图象为y=212x 的右半部分,当2≤x≤4时,函数图象为y=21(2)22x --+的右半部分,故选B .【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,可以列出相应的函数解析式、确定函数的图象.8.B【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DE AB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴= 在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确;∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确.∵OB=OD ,AG=DG ,∴OG 是△ABD 的中位线,∴OG ∥AB ,OG=12AB ,∴△GOD ∽△ABD ,△ABF ∽△OGF ,∴△GOD 的面积=14△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF:OF=2:1,∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;④正确;故答案为:B.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.9.B【分析】分别作△ABC 、点O 关于线段BC 的对称,交 BC于点F 、H ,OH 与BC 交于点M ,连接OH 、OB ,过点B 作BG ⊥CE 于点G ,根据轴对称的性质可得 BC的度数为120°,则有∠BFC =∠BAC =120°,进而可得△ABE 和△ADC 都为等边三角形,然后根据三角函数可得25AE AC =,最后根据相似三角形的性质可求解.【详解】解:分别作△ABC 、点O 关于线段BC 的对称,交 BC于点F 、H ,OH 与BC 交于点M ,连接OH 、OB ,过点B 作BG ⊥CE 于点G ,如图所示:∵劣弧BC 沿弦BC 翻折恰好经过圆心O ,∴由折叠的性质可得1,,2OM MH OH OH BC BAC BFC ==⊥∠=∠,∴12OM OB =, BH CH =,∴30OBC ∠=︒,∴60BOH ∠=︒,∴ BC的度数为120°,∴ BDC的度数为240°,∠D =∠E =60°,∴∠BFC =∠BAC =120°,∴∠EAB =∠DAC =60°,∴△ABE 和△ADC 都为等边三角形,且ABE ACD ∽△△,∵BG ⊥CE ,∴,30EG AG EBG ABG =∠=∠=︒,∴3tan EG BG EG EBG==∠,∵3tan 6ECB ∠=,设3,6BG x CG x ==,则EG AG x ==,∴2,5AE x AC x ==,∴25AE AC =,∴212425S AE S AC ⎛⎫== ⎪⎝⎭;故选B .【点睛】本题主要考查折叠的性质、圆的基本性质、相似三角形的性质与判定及三角函数,熟练掌握折叠的性质、圆的基本性质、相似三角形的性质与判定及三角函数是解题的关键.10.C【分析】如图:过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE .先通过等腰三角形和全等三角形的判定和性质得到FQ=BQ=PE=1;再说明△DEF 是等腰直角三角形,然后再利用勾股定理计算得到;如图2,由DC//AB 可得△DGC ∽△FGA ,列比例式可求FG 和CG 的长,从而得EG 的长;然后再根据AGHF 是等腰直角三角形,求得GH 和FH 的长;利用DE ∥GM 证明△DEN ∽△MNH ,则DE EN MH NH 可得3,然后计算出△EMN 各边的长,最后求周长即可.【详解】解:如图1:过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE .∵DC ∥AB∴PQ ⊥AB ,∴四边形ABCD 是正方形∴∠ACD=450∴△PEC 是等腰直角三角形∴PE=PC.设PC=x ,则PE=x ,PD=4-x ,EQ=4-x.∴PD=EQ ,∴∠DPE=∠EQF=90°,∠PED=∠EFQ.∴△DPE ≌△EQF∴DE=EF∵DE ⊥EF∴△DEF 是等腰直角三角形易证△DEC ≌△BEC∴DE=BE∴EF=BE∵EQ ⊥FB∴FQ=BQ=12BF∵AB=4,F 是AB 的中点∴BF=2∴FQ=BQ=PE=1∴CE=2,PD=4-1=3Rt △DAF 中,224225DF =+=∴DE=EF=10如图2:∵DC//AB.∴△DGC ∽△FGA∴422CGDCDG AG AF FG ====∴AG=2AG,DG=2FG ∴15533FG =⨯∵224442AC =+=∴22233CG =⨯∴8252233EG ==连接GM 、GN ,交EF 于H.∵∠GFE=45°∴△GHF 是等腰直角三角形∴2510332GH FH ==由折叠得:GM ⊥EF ,103∴∠EHM=∠DEF=90°∴DE ∥HM∴△DEN ∽△MNH ∴DE EN MH NH=3EN NH==∴EN=3NH∵EN+NH=EH=3∴EN=3∴NH=EH-EN=326-=在Rt △GNH 中,6GN ===由折叠得:MN=GN ,EM=EG∴△EMN 的周长为2632EN MN EM ++=+=.故选:C .【点睛】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数等知识,灵活应用所学知识并求出PE 的长是解答本题的关键.11.4.39×105【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于439000有6位,所以可以确定n =6−1=5.【详解】解:439000=4.39×105.故答案为:4.39×105【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.12.﹣2<x <1【详解】解:2{213x x -<+<①②,解①得x >﹣2,解②得x <1,所以不等式组的解集为﹣2<x <1.故答案为﹣2<x <1.13.【详解】考点:等边三角形的性质;实数与数轴.分析:首先理解题意:求点A′对应的实数是正三角形的周长,已知此正三角形的高,利用三角函数的性质,求得边长即可.解:∵△ABC 是正三角形,∴∠B=60°,∵CD 是高,∴∠CDB=90°,∴sin ∠B=sin60°=CD BC =2,∵CD=1,∴BC=3,∴△ABC 的周长为∴点A′对应的实数是故答案为14.2.4【详解】过P 点作PE ⊥AC ,PF ⊥BD ,∵矩形ABCD ,∴AD ⊥CD ,∴△PEA ∽△CDA ,∴PE PA CD CA =,∵,∴35PE PA =…①,同理:△PFD ∽△BAD ,∴PF PD AB BD =,∴35PF PD =…②,∴①+②得:43555PE PF PA PD AD ++===,∴PE+PF=125,即点P 到矩形的两条对角线AC 和BD 的距离之和是:125.15【分析】以点C 为原点,CB 为x 轴正半轴,CA 为y 轴正半轴建立平面直角坐标系,设P 为(),x y 根据已知和等面积法得到x 、y 的关系式,则可知点P 在直线211y x =-+上运动,当CP 垂直该直线时,CP 最小,求出CP 所在的直线方程,联立方程组求点P 坐标,再利用两点间距离公式即可求解.【详解】如图所示,以点C 为原点,CB 为x 轴正半轴,CA 为y 轴正半轴建立平面直角坐标系,设P 为(),x y ,过P 作PE x ⊥轴,PF y ⊥轴,PD AB ⊥,∴PE y =,PF x =,连接PA ,PC ,PB ,∴ABC ACP BCP ABP S S S S =++△△△△,∴11116868102222x y PD ⨯⨯=⨯⨯+⨯⨯+⨯⨯,解得:24345x y PD --=,∵P 到三角形ABC 三边的距离和为7,∴7PE PF PD ++=,即:243475x y x y --++=,整理得:211y x =-+,∴点P 在直线211y x =-+上运动,设直线211y x =-+为l ,∴当1CP l ⊥交l 于点1P 时,1CP最小,∴11CP l k k ⋅=-,∴112CP k =,又∵直线1CP 过原点()0,0C ,∴直线1CP 为:12y x =,联立12211y x y x ⎧=⎪⎨⎪=-+⎩,解得:225115x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点1P 为2211,55⎛⎫ ⎪⎝⎭,∴最小值CP 为1CP ,=【点睛】本题是将几何图形问题转化为平面直角坐标系中的问题,涉及三角形的等面积法、求直线方程、直线方程的动点和最值问题、解二元一次方程组、两点间的距离公式等知识,解答的关键是找到相关知识的关联点,利用代数知识解决几何问题,是有一定难度的填空压轴题.16.1【详解】试题分析:首先根据三角函数、0次幂和二次根式的计算法则求出各式的值,然后进行求和得出答案.试题解析:原式=6117.7【分析】先根据负整数指数幂、绝对值的意义、特殊角的三角函数值逐项化简,再合并同类项或同类二次根式即可.【详解】213|2sin 602-︒⎛⎫-++ ⎪⎝⎭=432=++=7=7.【点睛】本题考查了实数的混合运算,熟练掌握负整数指数幂的意义及特殊角的三角函数值是解答本题的关键.18.(1)不可能(2)13【分析】(1)首先根据题意画树状图,然后根据点A 的坐标即可求解;(2)从表格中找到点A 落在第四象限的结果数,利用概率公式计算可得.【详解】(1)解:不可能.画树状图点A 的坐标为()()()()()()121321233132----,,,,,,,,,,,∴“A 点坐标为()0,0”的事件是不可能事件.(2)解:画树状图点A 的坐标为()()()()()()121321233132----,,,,,,,,,,,∵由树状图知共有6种等可能的结果,点A 恰好落在第四象限的情况有2种,即()()1,2,3,2--∴P (点A 落在第四象限)=2163=.【点睛】本题考查了列表法或树状图法求概率的知识.注意列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)见解析;(2)菱形,理由见解析.【分析】(1)由平行四边形ABCD 可得出的条件有:①AB=CD ,②∠A=∠C ,③∠ABC=∠CDA ;已知BE 、CD 分别是等角∠ABD 、∠CDA 的平分线,易证得∠ABE=∠CDF ④;联立①②④,即可由ASA 判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF ,那么DE 和BF 平行且相等,由此可判定四边形BEDF 是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD 的形状.【详解】(1)∵四边形ABCD 是平行四边,∴A C AB CD ABC ADC∠=∠=∠=∠,,∵BE 平分ABC ∠,DF 平分ADC ∠,∴ABE CDF∠=∠∴()ABE CDF ASA ≌(2)由ABE CDF ≌,得AE CF=在平行四边形ABCD 中,AD BC AD BC=,∥∴DE BF DE BF= ,∴四边形EBFD 是平行四边形若BD EF ⊥,则四边形EBFD 是菱形20.(1)见解析;(2)菱形.【分析】(1)线段的垂直平分线过线段的中点,且垂直于该线段.(2)根据AD 是ABC 的角平分线,且EF 是AD 的垂直平分线,可知四边形AEDF 满足菱形的条件.【详解】(1)如图,直线EF 即为所求作的垂直平分线.(2)根据AD 是ABC 的角平分线,且EF 是AD 的垂直平分线,可知四边形AEDF 的对角线互相垂直,因此为菱形.【点睛】本题考查垂直平分线的概念和作法,以及菱形的判定定理.21.(1)证明见解析;(2)32或37【分析】(1)根据BD 是圆的直径,可以得到∠BFD =90°,即∠DFC =90°,然后利用“HL ”证明△CAD ≌△CFD 即可;(2)因为三角形CED 为等腰三角形,故每一条边都可能是底边,可以分三类讨论,由于三角形DEB 是直角三角形,所以D 和F 都可以为直角的顶点,需要分两类讨论;当∠EDB =90°时,∠DEB <90°,∠CED 是钝角,所以此时只能构造EC =ED 的等腰三角形,故取D 点使CD 平分∠ACB ,作DE ⊥AB 交BC 于E ,可以证明DE =DC ,且DE ∥DC ,得到△BDE ∽△BAC 即可求解;当∠AED =90°时,若三角形CED 为等腰三角形,则∠ECD =∠EDC =45°,即EC =DE ,利用三角函数或相似即可求出AD .【详解】解:(1)∵BD 是圆的直径,∴∠DFB =90°,∴∠DFC =90°,在Rt △CAD 和Rt △FCD 中,CD CD AD FD=⎧⎨=⎩,∴△CAD ≌△CFD (HL );(2)∵三角形DEB 是直角三角形,且∠B <90°,∴直角顶点只能是D 点和E 点,若∠EDB =90°,如图在AB 上取D 点使CD 平分∠ACB ,作DE ⊥AB 交BC 于E ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,∵∠CAB =∠EDB =90°,∴AC ∥DE ,∴∠ACD =∠CDE ,∴∠ECD =∠CDE ,∴CE =DE ,此时三角形ECD 为E 为顶角顶点的等腰三角形,三角形DEB 是E 为直角顶点的直角三角形,设CE =DE =x ,在直角三角形ABC 中5BC =,∴BE =5-x ,∵DE ∥AC ,∴△BDE ∽△BAC ,∴DEBEAC BC =,∴535x x-=,解得158x =,∴158CE =,∵DE ∥AC ,∴ADCEAB BC =,∴15845AD =,∴32AD =;若∠DEB =90°,如图所示,∠CED =90°,∵△CED 为等腰三角形,∴∠ECD =∠EDC =45°,即EC =DC ,设EC =DC =y ,∵3tan =4ACB AB =∠,∴3tan =4DEB BE =∠,∴43BE y =,∵5BC CE BE =+=,∴453y y +=∴157y =,∴157CE CD ==,∵3sin 5AC B BC ==∠,∴15257==3sin 75DE BD B =∠,∴37AD AB BD =-=∴AD 的长为32或37.【点睛】本题主要考查了全等三角形的性质与判定,相似三角形的性质与判定,三角函数,解题的关键在于能够利用数形结合的思想进行分类讨论求解.22.(1)证明见解析;(2)证明见解析;(3)907.【分析】(1)如图(见解析),先根据圆周角定理可得12AOC ADC ∠=∠,再根据等腰三角形的性质、三角形的内角和定理可得1902A A C OC O =︒-∠∠,然后根据角的和差可得90OCP ∠=︒,最后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得PBC ADC ∠=∠,从而可得PBC PCA ∠=∠,再根据相似三角形的判定与性质即可得证;(3)先根据圆周角定理、直角三角形的性质可得ACF ADC ∠=∠,再根据相似三角形的判定与性质可得AF AC AC AD=,从而可得6AC =,又根据圆周角定理、正切三角函数可得8,10BC AB ==,然后设PA x =,由题(2)的结论可得PC =形的性质可得PC BC PA AC=,由此即可得出答案.【详解】(1)如图,连接OC由圆周角定理得:2AOC ADC ∠=∠,即12AOC ADC ∠=∠OA OC= 1)909(2180102AOC OCA OAC AD AO C C ∠=︒-∠=︒-∴∠=∠=︒-∠PCA ADC∠=∠ 9090OCP OCA PCA ADC ADC ∴∠=∠+∠=∠+∠=︒-︒,即OC PC⊥又OC 是⊙O 的半径∴PC 是⊙O 的切线;(2)如图,连接BC由圆周角定理得:PBC ADC∠=∠PCA ADC∠=∠ PBC PCA∴∠=∠在BCP 和CAP 中,PBC PCAP P∠=∠⎧⎨∠=∠⎩BCP CAP∴~ PC PBPA PC∴=即2PC PA PB =⋅;(3)CE AB ⊥ ,即90AEC ∠=︒90ACF BAC ∴∠+∠=︒由圆周角定理得:90BCA ∠=︒90ABC BAC ∴∠+∠=︒ACF ABC∴∠=∠又ABC ADC∠=∠ ACF ADC∴∠=∠在ACF △和ADC △中,ACF ADCCAF DAC∠=∠⎧⎨∠=∠⎩ACF ADC∴~ AFACAC AD ∴=,即2AC AF AD=⋅36AF AD ⋅=6AC ∴=或6AC =-(不符题意,舍去),3tan 4AB A C DC C AD ∠∠==∠ tan tan AC ADC ABC BC ∠=∠=∴,即634BC =解得8BC =10AB ∴=,152OA OC AB ===设PA x =,则10PB PA AB x =+=+由(2)可知,2(10)PC PA PB x x =⋅=+,即PC 又由(2)可知,BCP CAP~ PC BCPA AC ∴=86=解得907x =或0x =经检验,907x =是所列方程的根,0x =是所列方程的增根故PA 的长为907.【点睛】本题考查了圆周角定理、圆的切线的判定与性质、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(3),利用圆周角定理找出两个相似三角形,从而求出AC 的长是解题关键.23.(1)10CD =(2)AE DE =(3)线段AC 能成为O 的内接正多边形的边,边数为18【分析】(1)取 CD 的中点E ,连接OE ,根据圆的有关性质可得COE EOD AOC α∠=∠=∠=,然后由余角的性质及等边三角形的判定与性质可得答案;(2)由平行线的性质及三角形内角和定理可得108AOD ∠=︒.然后根据相似三角形的判定与性质可得答案;(3)根据圆内接多边形的性质及三角形的内角和定理分两种情况进行解答:①//BD OC ;②//CD OB .【详解】(1)解:设AOC α∠=,取 CD的中点E ,连接OE ,∴ 22CD CE DE ==,又∵ 2CD AC =,∴ CE A DE C ==,∴COE EOD AOC α∠=∠=∠=,∵OD OA ⊥,∴90AOD ∠=︒,∴90AOC COE EOD ∠+∠+∠=︒,∴90ααα++=︒,∴30α=︒,∴60COD ∠=︒,∵OC OD =,∴COD △是等边三角形,∴CD OC OA ==,又10OA =,∴10CD =;(2)解:∵OD AC ∥,∴2OCA COD α∠=∠=,∵OA OC =,∴2OCA OAC α∠=∠=,在AOC 中,∵180OAC OCA AOC ∠+∠+∠=︒,∴22180ααα++=︒,∴36α=︒,∴36,72AOC COD ∠=︒∠=︒,∴108AOD ∠=︒,在AOD △中,∵OA OD =,∴OAD ODA ∠=∠,∵180OAD ODA AOD ∠+∠+∠=︒,∴36OAD ODA ∠=∠=︒,∴363672OED OAD AOC ∠=∠+∠=︒+︒=︒,∴OED COD ∠=∠,∴10ED OD ==,∵,OAE OAD AOE ADO ∠=∠∠=∠,∴AOE ADO △∽△,∴OA AE AD OA=,设AE x =,则10AD x =+,∴101010x x =+.解之得5x =,∴AE DE ==(3)解:当四边形BOCD 是梯形时,①∥BD OC ,∴2ODB COD α∠=∠=,∵OB OD =,∴2OBD ODB α∠=∠=,∵130AOB AOC COD DOB ∠=∠+∠+∠=︒,∴1303BOD α∠︒=-,在BOD 中,∵180OBD ODB BOD ∠+∠+∠=︒,∴221303180ααα++︒-=︒,∴50α=︒.当50α=︒时,13030BOD α∠=︒-<,不合题意,舍去.②CD OB ∥,∴1303ODC BOD α∠=∠=︒-,∵OC OD =,∴1303OCD ODC α∠=∠=︒-,在COD △中,∵180OCD ODC COD ∠+∠+∠=︒,∴130313032180ααα-+︒-+=︒,∴20α=︒,∴3601820n =︒︒=.∴线段AC 能成为O 的内接正多边形的边,边数为18.【点睛】本题考查的是圆的弧、弦、角之间的关系、三角形的内角和定理、圆内接多边形的性质等知识,正确作出辅助线是解决此题的关键.。

2022年9月福建省漳州市小升初数学分班思维应用题模拟试卷三含答案解析

2022年9月福建省漳州市小升初数学分班思维应用题模拟试卷三含答案解析

2022年9月福建省漳州市小升初分班数学思维应用题模拟试卷三含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。

一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。

)1.某机器零件厂6月份生产某种型号的机器零件比5月份少10%,7月份又比6月份的产量多生产了8%,此型号的机器零件7月份的产量是5月份的百分之多少?2.一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行驶46千米,货车每小时行驶48千米,3.5小时两车相遇.甲、乙两个城市的路程是多少千米?3.一辆汽车前2小时行驶130千米,后3小时行驶220千米.这辆汽车平均每小时行驶多少千米?4.张师傅每天加工42个零件,比徒弟每天多加工2/5.师徒二人一天一共能加工零件多少个?5.一辆货车以每小时80千米的速度在高速公路上从甲地开往乙地,行了全程的40%,又行了2小时,这时,未行路程是已行路程的1/2,求甲乙两地相距多少千米?6.修一段路,第一天修了全程的2/5,第一天修的是第二天的3/4,第二天比第一天多修36米,这段路长多少米?7.一台拖拉机耕两块地,第一块地是长方形,面积是9600平方米,用2.4小时耕完,第二块地是直角三角形,两条直角边分别是180米和140米,用了3.6小时耕完,这台拖拉机耕这两块地平均每小时耕多少平方米?8.甲乙两车从两地相对开出,甲车每小时行48千米,每小时比乙车多行6千米,几小时后在距离中点24千米处相遇,求两地的路程.9.一堆水稻底面积周长12.56cm,高3m.每立方米稻谷重0.65吨.(1)这堆稻谷重多少千克?(2)如果稻谷的出米率是70%,这堆稻谷磨出多少大米?10.小明看一本750页的书,第一天看了1/5,第二天看了40%,第三天应该从第多少页看起.11.一货场有76吨货物需租车托运,有两种供选择,大车每次运5吨,每次运费85元,小车每次运3吨,每次运费是60元.请你设计一种租车方案,使得运费最少?12.一块梯形试验田,它的上底是18米,下底是27米,面积是360平方米,高是多少米?13.一辆汽车0.8小时行驶49.6千米,如果用同样的速度行驶170.5千米需要多少分钟?14.有96吨货物,要一次从甲地运往乙地.已知一辆大卡车每次可运10吨,运费200元,一辆小卡车每次可运4吨,运费90元.(1)如果大卡车一次运80吨,小卡车一次运16吨,需要大卡车、小卡车各几辆?总运费应是多少?(2)如果大卡车一次运60吨,小卡车一次运36吨,需要大卡车、小卡车各几辆?总运费又是多少?(3)观察上面计算结果,你认为怎样安排车辆较便宜?15.甲乙两地相距1500米,小红与小明从两地同时相向而行,10分钟后相遇.小红每分钟走70米,小明每分钟走多少米?16.师徒两人26天共做了988个零件,比原计划每天多做15个,原计划每天做多少个?17.甲乙两车同时从A、B两地相向开出,第一次相遇点离A地90千米,第一次相遇后各自按原速继续前进,分别到达对方出发点后立即沿原路返回,第二次相遇点离B地的距离占A、B两地间全场的35%.A、B 两地间的距离是多少千米.18.师、徒两人合作加工机器零件,师傅比徒弟多加工450个,且师傅加工零件的个数是徒弟的2.5倍,徒弟加工了多少个零件?19.一个长方形长8厘米,宽6厘米,一个和它周长相等的正方形的面积是多少平方厘米?20.六年级学生参加语文、数学课外活动小组,参加数学组的占总人数的3/4,参加语文组的占总人数的40%,两组都参加的有12人,求:数学组、语文组各多少人?21.甲、乙、丙三人中,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米.甲乙两人从东镇、丙一人从西镇同时相向出发,丙遇到乙后2分钟再遇到甲,两镇距离的1/4是多少米.22.学校买来的630本科技书,按5:4的比例分给六年级和五年级,这两个年级各分得多少本?23.甲乙两车共同担负运送163吨水泥的任务.甲车单独运送28吨后乙车才赶来,如果甲车每小时运送12吨,乙车每小时运送15吨,两车还要合作几小时才能完成了任务?24.兴农农机厂某车间共有61个工人,已知每个工人平均每天可加工甲种部件5个,或者乙种部件4个,或者丙种部件3个,但加工4个甲种部件,1个乙种部件和6个丙种部件才能配成一套.为了使加工出来的甲、乙、丙三种部件恰好都能配成套,那么,安排加工甲种部件的人数应是几人?25.师徒二人加工同样多个机器零件,师傅每天加工30个,徒弟每天加工25个,师傅比徒弟提前2天完成.师傅加工了多少天?26.两地相距81千米,甲、乙两人同时从两地骑车相向而行,甲每小时行9.4千米,4.5小时后两人相遇.甲每小时行的速度比乙快多少百分数?27.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?28.小红有不同的上衣5件,裤子4件,鞋子3双,算一算,小红能有多少种不同的穿戴装束?29.食品店用奶糖和巧克力配制一种礼品糖,每盒中奶糖与巧克力的质量比是5:3.现有奶糖和巧克力各60千克.(1)奶糖用完时,巧克力还剩多少千克?(2)再有多少千克奶糖,就可以把巧克力全部用完?30.张明、李华、赵强的期中考试平均成绩是93.7分,王刚、姜云的平均成绩比他们三人的平均成绩高1.8分.他们5人的平均成绩是多少?31.甲乙两地相距274千米,一辆客车从甲地开出,每小时行驶95千米,一段时间后,离乙地还有84千米.这辆客车已经行驶了几小时?32.养鸡场公鸡只数与母鸡只数之比是6:5,当公鸡卖出660只后,公鸡只数与母鸡只数之比是5:6,现在养鸡场还有多少只鸡?33.从甲地到乙地全程共968公里,坐火车大约需要8小时到达,火车平均每小时行驶多少公里?34.六年级原有学生126人,其中女生占总人数的4/9,后来又转进了几个女生,这时男生和女生的人数比是7:6.现在女生有多少人?35.一只轮船从甲地顺水去乙地,每小时行25千米,16小时到达乙地.然后逆水返回甲地,用了20小时,船逆水每小时行多少千米?36.王刚的平均步长约64厘米,他沿着正方形活动场地走了一圈共200步.请你算出活动场地约多少平方米?37.两队合铺一条公路,甲队每天铺6.2km,乙队每天铺5.6km,两队合铺23天完成.这条公路长多少千米?38.一个修路队修一段公路,8天修了720米,照这样计算,15天一共可以修多少米?39.小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?40.甲数的1/6与乙数的1/5相等,如果甲数是108,则乙数是多少?41.看一本故事书,第一周看了这本书的25%,第二周看了这本书的35%,还剩下200页没看,这本故事书有多少页?42.植树节四年级栽树345棵,五年级栽的棵数比四年级的3倍少25棵,五年级栽了多少棵树?43.一个正方形,面积是100平方厘米.如果边长增加10%,这个正方形的面积是多少平方厘米?44.一艘轮船以每小时63千米的速度从甲港开往乙港,行了全程的1/4后,又行驶了1小时,这时未行路程与已行路程的比为2:3,甲乙两港相距多少千米?45.做一个长5厘米,宽3厘米,高2厘米的长方体纸盒,至少要用多少平方厘米硬纸板?46.饲养小组养白兔3只,黑兔4只.灰兔5只,灰兔只数是总数的几分之几?47.光明小学组织1200名学生看电影,电影院每排座位有28个座位,共有53排,够坐吗?48.某种商品11月比10月降了20%,12月的价格比11月又涨了20%.12月的价格和10月比是涨了还是降了?变化幅度是多少?49.大、小两汽车同时从甲站开往乙站,小汽车每小时比大汽车多行12千米,小汽车行驶6.5小时到达乙站后,没有停止,即从原路返回,在距离乙站43.5千米的地方和大汽车相遇,甲、乙两站相距多少千米?50.甲、乙两辆汽车同时从相距225千米的两城相对开出,2.5小时后相遇.已知甲、乙两车速度的比是8:9,求两车速度各是多少?51.一个三角形和一个长方形的面积相等,长方形的长为3厘米,宽是2.4厘米,三角形的底为1.8厘米,高是多少厘米.52.小明看一本430页的书,第一天看了147页,第二天看了108页.这本书小明还有多少页没看?53.一辆汽车从甲地开往乙地,行驶了全程的3/8,正好是102千米.问此时该车距乙地还有多少千米?54.商店卖出8箱香皂,6箱药皂,每箱都是120块,香皂和药皂共卖出多少块?(两种方法解)55.一件商品打8折,可便宜30元,这件商品原价是多少元?56.一块梯形稻田,上底48米,下底62米,高20米,这块地共收小麦660千克,平均每平方米收小麦多少千克?57.一批货物,第一天运走100吨,第二天运走150吨,还剩下这批货物的40%没有运走,这批货物有多少吨(用方程解)58.一件衣服比原来便宜3/10,正好便宜了21元.这件衣服的原价是多少元?59.现在国际市场上原油价格约78美元一桶,比一年前涨了约1/5,一年前一桶原油价格是多少美元?60.修一段路,甲队单独修要10天完成,乙队单独修要15天完成.如果两队共同修,要多少天才能完成这段路的1/2?61.一个长方形菜地,周长是156米,已知它的长与宽的比是8:5。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

(最新)部编人教版数学《中考模拟检测试题》(含答案解析)

(最新)部编人教版数学《中考模拟检测试题》(含答案解析)

中考数学模拟试卷(4月)一.选择题(共10小题,满分30分,每小题3分)1.3的相反数是()A.﹣3B.3C .D .﹣2.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b23.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为()A .B .C .D .4.如图,点A 是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为()A.1B.2C.4D.不能确定5.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A .B .C .D .6.如图,已知一商场自动扶梯的长l为13米,高度h为5米,自动扶梯与地面所成的夹角为θ,则tanθ的值等于()A .B .C .D .7.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于()A.4B.9C.12D.168.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=1829.如图图形中,把△ABC平移后能得到△DEF的是()A .B .C .D .10.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t =或t =.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二.填空题(共10小题,满分30分,每小题3分)11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.12.函数y=中,自变量x的取值范围是.13.计算:()2015()2016=.14.分解因式:4m2﹣16n2=.15.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.16.若不等式组无解,则m的取值范围是.17.一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为元.18.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.19.如图,在△ABC中,AB=AC,点D是BC的中点,点E是△ABC内一点,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于.20.如图,△ABC中,点E是BC上的一点,CE=2BE,点D是AC中点,若S△ABC=12,则S△ADF﹣S△BEF=.三.解答题(共7小题,满分60分)21.(7分)先化简,再求值:,其中a=2cos30°﹣tan45°.22.(7分)阅读下列材料:题目:如图1,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sin A、cos A 表示sin2A.解:如图2,作AB边上的中线CE,CD⊥AB于D,则CE =AB =,∠CED=2A,CD=AC sin A,AC=AB cos A=cos A在Rt△CED中,sin2A=sin∠CED ==2AC sin A=2cos A sin A根据以上阅读,请解决下列问题:(1)如图3,在△ABC中,∠C=90°,BC=1,AB=3,求sin A,sin2A的值;(2)上面阅读材料中,题目条件不变,请用sin A或cos A表示cos2A.23.(8分)中考体育体测试前,雁塔区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生,并将测试得到的成绩绘成了下面两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)写出扇形图中a=,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个;(3)该区体育中考选报引体向上的男生共有2400人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?24.(8分)如图,△ABC中,点D,E分别是边AB,AC的中点,过点C作CF∥AB交DE 的延长线于点F,连结BE.(1)求证:四边形BCFD是平行四边形.(2)当AB=BC时,若BD=2,BE=3,求AC的长.25.(10分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?26.(10分)如图,在⊙O中,CD为⊙O的直径,点A为弧BC的中点,AF⊥CD,垂足为F,射线AF交CB于点E.(1)如图(1),求证:EA=EC.(2)如图(2),连接EO并延长交AC于点G,求证:2FG=AC;(3)如图(3).在(2)的条件下,若sin∠FGE=,DF=2,求四边形FECG的面积.27.(10分)如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E(1)求点D的坐标及直线OP的解析式;(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD 于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由答案解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】依据相反数的定义回答即可.【解答】解:3的相反数是﹣3.故选:A.【直击中考】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.【直击中考】本题考查了整式的混合运算,熟记法则是解题的关键.3.【分析】根据轴对称图形与中心对称图形的概念结合四种标志的特点求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、既是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:B.【直击中考】考查中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【分析】可以设出A的坐标,△ABC的面积即可利用A的坐标表示,据此即可求解.【解答】解:设A的坐标是(m,n),则mn=2.则AB=m,△ABC的AB边上的高等于n.则△ABC 的面积=mn=1.故选:A.【直击中考】本题主要考查了反比例函数的系数k的几何意义,△ABC 的面积=|k|,本知识点是中考的重要考点,同学们应高度关注.5.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【直击中考】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【分析】在由自动扶梯构成的直角三角形中,已知了坡面l和铅直高度h的长,可用勾股定理求出坡面的水平宽度,进而求出θ的正切值.【解答】解:∵商场自动扶梯的长l=13米,高度h=5米,∴m ===12米,∴tanθ=;故选:A.【直击中考】本题考查了解直角三角形的应用,用到的知识点是勾股定理,正确理解三角函数的定义求出m的长是关键.7.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵ED∥BC,∴=,即=,∴AE=9,故选:B.【直击中考】本题考查了平行线分线段成比例定理的运用,注意:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.8.【分析】设该厂八、九月份平均每月生产零件的增长率均为x,根据该机械厂七月份及整个第三季度生产零件的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.【直击中考】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、△DEF由△ABC平移而成,故本选项正确;B、△DEF由△ABC对称而成,故本选项错误;C、△DEF由△ABC旋转而成,故本选项错误;D、△DEF由△ABC对称而成,故本选项错误.故选:A.【直击中考】本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.10.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y乙=100t﹣100,令y甲=y乙,可得:60t=100t﹣100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t =,当100﹣40t=﹣50时,可解得t =,又当t =时,y甲=50,此时乙还没出发,当t =时,乙到达B城,y甲=250;综上可知当t 的值为或或或时,两车相距50千米,∴④不正确;故选:C.【直击中考】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.二.填空题(共10小题,满分30分,每小题3分)11.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n 为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【直击中考】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.【分析】根据函数关系式中有分母,则分母不能为0进行解答.【解答】解:函数y =中,自变量x的取值范围是x﹣1≠0,即x≠1,故答案为:x≠1.【直击中考】本题考查了函数自变量的取值范围;如果函数关系式中有分母,则分母不能为0.13.【分析】直接利用积的乘方运算法则将原式变形,进而求出答案.【解答】解:()2015()2016=[()2015()2015](﹣2)=[()×()]2015(﹣2)=2﹣.故答案为:2﹣.【直击中考】此题主要考查了二次根式的混合运算,正确应用积的乘方运算法则是解题关键.14.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【直击中考】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.【直击中考】本题用到的知识点为:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长.16.【分析】先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.【解答】解:解不等式组可得,因为不等式组无解,所以m <.【直击中考】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.【分析】设这种商品的成本价是x元,则商品的标价为x(1+20%),等量关系为:标价×90%=成本+利润,把相关数值代入求解即可.【解答】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),由题意可得:x×(1+20%)×90%=x+16,解得x=200,即这种商品的成本价是200元.故答案为:200.【直击中考】此题考查一元一次方程的应用,得到售价的等量关系是解决本题的关键,难度一般,注意细心审题.18.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P (白球)==,解得:n=8,故答案为:8.【直击中考】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A )=.19.【分析】作GD⊥BE于G,作CF⊥AE于F,可证△DEG≌△CEF可得DG=CF,则S△BDE=S△AEC,由D是BC中点可求S△BED=2,即可求阴影部分面积.【解答】解:如图作GD⊥BE于G,作CF⊥AE于F,∵∠AEB=∠DEC=90°,∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,∴∠DEG=∠CEF且DE=EC,∠DGE=∠CFE=90°,∴△GDE≌△FCE(AAS),∴DG=CF;∵S△BED=BE×DG,S△ACE=AE×CF且AE=BE,DG=CF,∴S△BED=S△AEC;∵D是BC中点,∴S△BDE=S△DEC=×2×2=2,∴S阴影部分=2+2=4.故答案为:4.【直击中考】本题考查了全等三角形的性质和判定,关键是添加辅助线构造全等三角形.20.【分析】本题需先分别求出S△ABD,S△ABE再根据S△ADF﹣S△BEF=S△ABD﹣S△ABE即可求出结果.【解答】解:∵点D是AC的中点,∴AD =AC,∵S△ABC=12,∴S△ABD=S△ABC=×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=S△ABC=×12=4,∵S△ABD﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,即S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.故答案为:2.【直击中考】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.三.解答题(共7小题,满分60分)21.【分析】首先把括号内的分式通分相减,然后把除法转化为乘法,进行乘法运算即可化简,最后化简a的值,代入求解即可.【解答】解:原式=÷()=×=﹣,∵a=2cos30°﹣tan45°=2×﹣1=﹣1.∴原式=﹣=﹣=﹣.【直击中考】本题考查了分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.【分析】(1)解直角三角形求出cos A,利用结论中的公式计算即可;(2)利用图2,根据cos2A=cos∠CED =,计算即可;【解答】解:(1)如图3中,在Rt△ABC中,∵AB=3,BC=1,∠C=90°,∴AC ==2,∴sin A ==,cos A =,∴sin2A=2cos A•sin A =(2)如图2中,cos2A=cos∠CED ===2AC•cos A﹣1=2(cos A)2﹣1.【直击中考】本题考查解直角三角形的应用、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要用转化的思想思考问题,属于中考常考题型.23.【分析】(1)根据扇形统计图可以求得a的值,根据扇形统计图和条形统计图可以得到做6个的学生数,从而可以将条形图;(2)根据(1)中补全的条形图可以得到众数和中位数;(3)根据统计图可以估计该区体育中考中选报引体向上的男生能获得满分的人数.【解答】解:(1)由题意可得,a=1﹣30%﹣15%﹣10%﹣20%=25%,做6 个的学生数是60÷30%×25%=50,补全的条形图,如图所示,故答案为:25%;(2)由补全的条形图可知,这次抽测中,测试成绩的众数和中位数分别是5个,5个,故答案为:5,5;(3)该区体育中考中选报引体向上的男生能获得满分的有:2400×(25%+20%)=1080(名),即该区体育中考中选报引体向上的男生能获得满分的有1080名.【直击中考】本题考查条形统计图、扇形统计图、众数、中位数、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.24.【分析】(1)根据三角形的中位线的性质和平行四边形的判定定理即可得到结论;(2)根据等腰三角形的性质和勾股定理即可得到结论.【解答】(1)证明:∵点D,E分别是边AB,AC的中点,∴DE∥BC.∵CF∥AB,∴四边形BCFD是平行四边形;(2)解:∵AB=BC,E为AC的中点,∴BE⊥AC.∵AB=2DB=4,BE=3,∴AE ==,∴AC=2AE=2.【直击中考】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.【分析】(1)设B种零件的单价为x元,则A零件的单价为(x+30)元,根据用900元购买A种零件的数量和用600元购买B种零件的数量相等,列方程求解;(2)设购进A种零件m件,则购进B种零件(200﹣m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m的取值范围,然后求出工厂最多购买A种零件多少件.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.【直击中考】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.【分析】(1)要证EA=EC即需证∠EAC=∠ECA,∠EAC有互余的∠OCA,连接OA 得∠OAC=∠OCA,构造∠OAC的余角.由点A为弧BC中点和半径OA,根据垂径定理推论,平分弧的直径(半径)垂直于弧所对的弦,故延长AO交BC于H有∠AHC=90°,∠OAC的余角即为∠ECA.根据等角的余角相等,得证.(2)由2FG=AC可知需证G为Rt△ACF斜边AC上的中点,因为EA=EC,OA=OC,所以E、O都在AC的垂直平分线上即直线EO垂直平分AC,得证.(3)通过证明相似,把∠FGE转化到∠ECO,得到CE=3EF,设EF=x,则EA、EC、CD、CF都能用x表示,在Rt△OAF里用勾股定理列方程求得x.四边形FECG面积可由△ACE面积减去△AFG面积,又△AFG面积等于△AFC面积一半,即求得答案.【解答】(1)证明:连接OA并延长,交BC于点H∵点A为弧BC的中点∴AH⊥BC∴∠AHC=90°∴∠CAO+∠ACH=90°∵AF⊥CD∴∠AFC=90°∴∠CAF+∠ACO=90°∵OA=OC∴∠CAO=∠ACO∴∠CAF=∠ACH∴EA=EC(2)证明:连接OA∵EA=EC,OA=OC∴直线EO垂直平分AC∴AG=CG∵∠AFC=90°∴FG =即2FG=AC(3)解:连接OA∵EG⊥AC∴∠CGE=90°∴∠ECG+∠CEG=90°∵FG =AC=AG∴∠AFG=∠FAG∵∠ECG=∠FAG=∠AFG ∴∠AFG+∠CEG=90°∵∠AFG+∠OFG=90°∴∠CEG=∠OFG∵∠COE=∠GOF∴△COE∽△GOF∴∠OCE=∠OGF∴sin∠OCE=sin∠OGF =∴sin∠OCE =设EF=x,则AE=CE=3x∴AF=AE﹣EF=3x﹣x=2xCF =∵DF=2∴直径CD=CF+DF =x+2∴OC=OA =x+1∴OF=CF﹣OC =x ﹣(x+1)=x﹣1∵OA2=OF2+AF2∴解得:x1=0(舍去),x2=∴AE =,AF =,CF=4∴S四边形FECG=S△ACE﹣S△AFG=S△ACE﹣S△AFC=AE•CF ﹣AF•CF==【直击中考】本题考查了垂径定理推论、等角的余角相等、等腰三角形判定、垂直平分线的判定、直接三角形斜边上的中线等于斜边一半、相似三角形的判定和性质、勾股定理.其中第(1)题垂径定理推论及第(2)题垂直平分线的判定的运用可快速证得结论,第(3)题给出一个角的三角函数值等价于给出两条线段的比,一般做法是设未知数再利用勾股定理为等量关系列方程求得.27.【分析】(1)根据长方形的性质可得出点A的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,再由点P是AD的中点可得出点P的坐标,进而可得出正比例函数OP的解析式;(2)利用三角形面积的公式可求出S△ODP的值,由直线OP的解析式,利用一次函数图象上点的坐标特征可得出点E的坐标,设点N的坐标为(m,﹣m+8),由△AEN的面积等于△ODP的面积,可得出关于m的含绝对值符号的一元一次方程,解之即可得出m的值,再将其代入点N的坐标中即可得出结论;(3)由点T的坐标可得出点F,G的坐标,分∠FGQ=90°、∠GFQ=90°及∠FQG=90°三种情况考虑:①当∠FGQ=90°时,根据等腰直角三角形两直角边相等可得出关于t的一元一次方程,解之可得出t值,再利用等腰直角三角形的性质可得出点Q的坐标;②当∠GFQ=90°时,根据等腰直角三角形两直角边相等可得出关于t的一元一次方程,解之可得出t值,再利用等腰直角三角形的性质可得出点Q的坐标;③当∠FQG=90°时,过点Q作QS⊥FG于点S,根据等腰直角三角形斜边等于斜边上高的二倍可得出关于t的一元一次方程,解之可得出t值,再利用等腰直角三角形的性质可得出点Q的坐标.综上,此题得解.【解答】解:(1)∵四边形OABC为长方形,点B的坐标为(8,6),∴点A的坐标为(8,0),BC∥x轴.∵直线y=﹣x+b经过点A,∴0=﹣8+b,∴b=8,∴直线AD的解析式为y=﹣x+8.当y=6时,有﹣x+8=6,解得:x=2,∴点D的坐标为(2,6).∵点P是AD的中点,∴点P 的坐标为(,),即(5,3),∴直线OP的解析式为y =x.(2)S△ODP=S△ODA﹣S△OPA,=×8×6﹣×8×3,=12.当x=8时,y =x =,∴点E的坐标为(8,).设点N的坐标为(m,﹣m+8).∵S△AEN=S△ODP,∴××|8﹣m|=12,解得:m=3或m=13,∴点N的坐标为(3,5)或(13,﹣5).(3)∵点T的坐标为(t,0)(5<t<8),∴点F的坐标为(t ,t),点G的坐标为(t,﹣t+8).分三种情况考虑:①当∠FGQ=90°时,如图1所示.∵△FGQ为等腰直角三角形,∴FG=GQ ,即t﹣(﹣t+8)=8﹣t,解得:t =,此时点Q的坐标为(8,);②当∠GFQ=90°时,如图2所示.∵△FGQ为等腰直角三角形,∴FG=FQ ,即t﹣(﹣t+8)=8﹣t,解得:t =,此时点Q的坐标为(8,);③当∠FQG=90°时,过点Q作QS⊥FG于点S,如图3所示.∵△FGQ为等腰直角三角形,∴FG=2QS ,即t﹣(﹣t+8)=2(8﹣t),解得:t =,此时点F 的坐标为(,4),点G 的坐标为(,)此时点Q的坐标为(8,),即(8,).综上所述:在线段AE上存在一点Q,使得△FGQ为等腰直角三角形,当t =时点Q的坐标为(8,)或(8,),当t =时点Q的坐标为(8,).【直击中考】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、中点坐标公式、三角形的面积以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)利用三角形的面积公式结合两三角形面积相等,找出关于m的含绝对值符号的一元一次方程;(3)分∠FGQ=90°、∠GFQ=90°及∠FQG=90°三种情况求出t值.。

最新2022独家原创中考数学模拟试卷(5月份) (解析版)

最新2022独家原创中考数学模拟试卷(5月份) (解析版)

一、选择题1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或52.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×1073.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5 4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.105.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.47.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和299.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3二、填空题(每小题3分,共15分)11.化简:2﹣=.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.13.不等式组的解集为.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有人.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=°时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:;性质二:.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b=时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是;②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为.【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.参考答案一、选择题(每小题3分,共30分)1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或5【分析】当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a;所以若一个数的绝对值是5,则这个数是±5,据此判定即可.解:若一个数的绝对值是5,则这个数是±5.故选:C.2.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1300000用科学记数法表示为:1.3×106.故选:C.3.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5【分析】根据整式的运算法则即可求出答案.解:(A)a4+a4=2a4,故A错误;(B)a5•a4=a9,故B错误;(C)a4÷a=a3,故B正确;(D)(﹣a3)2=a6,故D错误;故选:C.4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.解:如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB=BE=AF,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴OA=OE,OB=OF=3,在Rt△AOB中,∵∠AOB=90°,∴OA==4,∴AE=2OA=8.故选:C.5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.7.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°【分析】由平行四边形的性质得出∠DCB=180°﹣∠D=110°,∠B =∠D=70°,由圆内接四边形的性质得到∠AEB=∠D=70°,由三角形的内角和定理即可得到结论.解:∵四边形ABCD是平行四边形,∠D=70°,∴∠DCB=180°﹣∠D=110°,∠B=∠D=70°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=70°,∴∠BAE=180°﹣70°﹣70°=40°,故选:C.8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和29【分析】根据中位数、平均数的计算方法进行计算即可.解:6名同学的体育成绩从小到大排列处在第3、4位的数都是26分,因此中位数是26分,平均数为=26(分),故选:A.9.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)【分析】连接ED交BC于H,根据正方形的性质得到OC=BC=2,根据菱形的性质求出EH,根据坐标与图形的性质解答即可.解:连接ED交BC于H,∵四边形ABCO是正方形,∴OC=BC=2,∵四边形BDCE是菱形,∴∠EBC=∠EBD=60°,EB=EC,CE=BH=BC=1,∴EH=BH×tan∠EBC=,∴点E的坐标是(2﹣,﹣1),故选:B.10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3【分析】首先由y=2x2﹣4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2﹣4x+8,得到y=14,所以CD=14﹣6=8,又DE=3,所以可知杯子高度.解:∵y=2x2﹣4x+8=2(x﹣1)2+6,∴抛物线顶点D的坐标为(1,6),∵AB=4,∴B点的横坐标为x=3,把x=3代入y=2x2﹣4x+8,得到y=14,∴CD=14﹣6=8,∴CE=CD+DE=8+3=11.故选:B.二、填空题(每小题3分,共15分)11.化简:2﹣=5.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.解:原式=6﹣=5.故答案为5.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.解:画树状图如下:由树状图知,共有12种等可能结果,其中两个球上的汉字能组成“文明”的有2种结果,∴两个球上的汉字能组成“文明”的概率为=,故答案为:.13.不等式组的解集为2<x<6 .【分析】分别求出各不等式的解集,再求出其公共解集即可.解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是8﹣π.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF 的面积、利用扇形面积公式计算即可.解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故答案为:8﹣π.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为2或.【分析】本题分两种情况:第一种情况,如图(1),当D为AB 的中点时,此时△DBE是等边三角形,腰长也是边长是AB的一半2;第二种情况,如图(2),当边CE与CB重合时,此时△DBE是等腰三角形,腰长BE=BD=,问题得解.解:(1)第一种情况,如图(1),当D为AB的中点时,∵∠ACB=90°,∠A=30°,AB=4,∴AD=BD=CD=AB=2,∴∠DCA=∠A=30°,∴∠BDC=60°,∵把△ADC沿CD翻折得到△DCE,∴∠DEC=∠A=30°,AD=DE=CD,∴∠ECD=∠A=30°,∴∠EDC=120°,∴∠BDE=60°,∴△BED是等边三角形,∴BD=DE=BE=2;(2)第二种情况,如图(2),当边CE与CB重合时,此时△DBE 是等腰三角形,∵把△ADC沿CD翻折得到△DCE,∴CE=AC,∵CB=2,AB=4,∴AC==2,∴CE=2,∴腰长BE=BD=CE﹣BC=.故答案为:2或.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解:原式=•=•=,当a=1+,b=1﹣时,原式==.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了120 名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为108°;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150 人.【分析】(1)根据一般的人数和所占的百分比求出抽取的总人数;(2)用总人数乘以较强的人数所占的百分比,求出较强的人数,从而补全统计图;(3)用360°乘以“很强”的人数所占的百分比即可得出答案;(4)用该社区的人数乘以“淡薄”层次的人数所占的百分比即可得出答案.解:(1)18÷15%=120(名),即本次调查一共随机抽取了120名居民;故答案为:120;(2)“较强”层次的有:120×45%=54(名),补全统计图如下:(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),答:估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150人;故答案为:150.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=72 °时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是 3 .【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得,则AB=BC,即可得出结论;(2)①由题意得出∠AOF=∠EOF=m,证出∠ABE=∠ADE=m,则∠OAF=∠OFA=∠EOF+∠ADE=2m,由三角形内角和定理得出方程,解方程即可;②先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程求出x的值,证△AOF是等边三角形,得出OF=AF=3即可.【解答】(1)证明:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)解:如图所示:①F为弧AE的中点,则∠AOF=∠EOF,设∠AOF=∠EOF=m,∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADE,∵∠AOD=2∠ABE,∴∠ABE=∠ADE=m,∴∠OAF=∠OFA=∠EOF+∠ADE=2m,∵∠AOF+∠OAF+∠OFA=180°,∴2m+2m+m=180°,∴m=36°,∴∠ABE=72°,即∠ABC=72°时,点F为弧AE的中点,故答案为:72;②∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180°﹣3x),∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180°﹣3x)=180°,解得:x=20°,∴∠AOF=3x=60°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,即⊙O的半径是3;故答案为:3.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意列方程组解答即可;(2)设购买N95罩z个,购买口罩的花费为W元,根据题意列不等式求出z的取值范围,并求出W与z之间的函数关系式,再根据一次函数的性质解答即可.解:(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意,得:,∴,∴N95口罩单价为6元,一次性医用口罩单价2.5元;(2)设购买N95罩z个,则购买一次性医用口罩为(50﹣z)个,购买口罩的花费为W元,由题意可知,z≥(50﹣z),∴z≥12.5,W=6z+2.5(50﹣z)=3.5z+125,∵3.5>0,∴W随z的增大而增大,∴当z=13时,W有最小值为170.5元,即购买N95口罩13个,购买一次性医用口罩37个,花费最少.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b= 2 时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是(1,1);②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.【分析】(1)描点即可绘制完整图象;(2)指出函数的性质即可,答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,由△=b2﹣4=0,求得b=2;②由①知,当b=2时,两个函数有两个交点;故当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;解:(1)绘制完整图象如下图:(2)性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;故答案为:图象有两个分支,分别在第一、第二象限;图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;说明:答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,∵两个函数只有一个交点,故△=b2﹣4=0,解得:b=±2(舍去负值),故b=2,则,解得:,故当b=2时,点A的坐标为(1,1),答案为:2,(1,1);②由①知,当b=2时,两个函数有两个交点;∴当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为 2 .【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.【分析】【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.设BM=a,求出DM,GD即可解决问题.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.证明△BGD∽△BFM,可得结论.【问题解决】分两种情形:如图(3)﹣1中,当点G在线段AF 上时,如图(3)﹣2中.当点G在线段AF的延长线上时,分别求解即可.解:【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.理由:设BM=a.∵AE=EC,AD=DB,∴DE∥BC,∴∠BDM=∠ABC=30°,∵BM⊥EM,∴∠BMD=90°,∴BD=2BM=2a,DM=BM=a,在Rt△GDB中,∵∠GDB=90°,∠G=30°,∴GD=BD=2a,∴==2.故答案为2.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.理由:延长GD交BF的延长线于P.在Rt△BDM中,设BM=a,则BD=2a,DM=a,在Rt△BGF中,设BF=b,则BG=2b,FG=,在△BGD与△BFM中,∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°﹣∠FBD=∠FBM,∴△BGD∽△BFM,∴DG:FM=BD:BM=2a:a=2:1,即的值为2,∵△BGD∽△BFM,∴∠PFD=∠MFB=∠BGD,则在△PDF与△PBG中,∠PDF=∠PBG=60°.故的值为2,两直线GD、ED夹角锐角的度数为60°.【问题解决】结论:的值为4+或4﹣.如图(3)﹣1中,当点G在线段AF上时,∵△BDG∽△BMF,∴∠BDG=∠BMF=90°,∴GD⊥AB,∵AD=BD,∴GD垂直平分线段AB,∴GA=GB,设BF=x,则BG=2x=AG,FG=,∴BG:AF=2x:=4﹣.如图(3)﹣2中,当点G在线段AF的延长线上时,设BF=x,同法可得:BG=AG=2x,GF=x,∴AF=2x﹣x,∴BG:AF=2x:(2x﹣x)=4+.∴的值为4+或4﹣.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.【分析】(1)由题意得:,即可求解;(2)①当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值,进而求出直线m的表达式,即可求解;②分点M在CB的上方和下方两种情况,分别求解即可.解:(1)由题意得:,解得:,故抛物线的解析式是:①;(2)①设直线BC的解析式为y=kx+.∵直线BC过点B(3,0),∴0=3k+,则k=,故直线BC解析式为y=x+.设直线m解析式为,且直线m∥直线BC,当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令,∴,△=(﹣3)2﹣4××(3b﹣3)=0时,直线m与抛物线有唯一交点,解之得:,则直线m的表达式为:y=﹣x+②,联立①②并解得,∴D;②存在,点M的横坐标为或;符合条件的直线有两条:CM1和CM2(分别在CB的上方和下方),(Ⅰ)∵在Rt△ACO中,∠ACO=30°,在Rt△COB中,∠CBO=30°,∴∠BCM1=∠BCM2=15°,∵在△BCE中,∠BCE=∠BEC2=15°,∴BC=BE=,则E(,0),设直线CE解析式为:,∴,解之得:k=,∴直线CE解析式为:,∴,解得:x1=0,x2=2﹣1;(Ⅱ)∵在Rt△OCF中,∠CBO=30°,∠BCF=15°,∴在Rt△COF中,∠CFO=45°,∴OC=OF=,∴F(,0),∴直线CF的解析式为③,联立①③并解得:x3=0(舍去),,即点M的横坐标为:或.。

2023年江苏省苏州中学伟长实验部中考数学调研试卷(5月份)(含解析)

2023年江苏省苏州中学伟长实验部中考数学调研试卷(5月份)(含解析)

2023年江苏省苏州中学伟长实验部中考数学调研试卷(5月份)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在实数−4,7,−18,π3,0.131131113…中,有理数的个数是( )A. 1B. 2C. 3D. 42.在下列四个图案中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.下列计算正确的是( )A. 2+ 3=5B.(−3)2=±3C. a ⋅a −1=1(a ≠0)D. (−3a 2b 2)2=−6a 4b 44.已知第一组数据如下:72,73,76,76,77,78,78,78,第二组数据恰好是第一组数据中每个都加2,则两组数据的下列统计量对应相同的是( )A. 平均数B. 方差C. 中位数D. 众数5.已知二次函数y =−(x +m−1)(x−m )+1,点A (x 1,y 1),B (x 2,y 2)(x 1<x 2)是图象上两点,下列说法正确的是( )A. 若x 1+x 2>1,则y 1>y 2B. 若x 1+x 2<1,则y 1>y 2C. 若x 1+x 2>−1,则y 1>y 2D. 若x 1+x 2<−1,则y 1>y 26.如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan ∠ADC =( )A. 43B. 32C. 1D. 327.如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是( )A. 2B. 1C. 32D. 228.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道.图中阴影部分的面积,则一定能求出( )A. 直角三角形的面积B. 较小两个正方形重叠部分的面积C. 最大正方形的面积D. 最大正方形与直角三角形的面积和二、填空题:本题共8小题,每小题3分,共24分。

漳州市漳浦县2024届小升初复习数学模拟试卷含解析

漳州市漳浦县2024届小升初复习数学模拟试卷含解析

漳州市漳浦县2024届小升初复习数学模拟试卷一、仔细填空。

(每小题2分,共20分)1.在一个比例中内项和外项都是整数,第一个比的比值是3,两个外项的积是12,这个比例是________。

2.如图中两个正方形面积之差为400平方厘米,那么两圆的面积之差为____平方厘米.(圆周率取3.14)3.某餐厅3月份营业额是2万元,税率是5%,应缴纳营业税(______)元。

4.0.8=20()=():()=()%=()折5.有红、绿、黑、白四种颜色的球各6个,把它们放在一个不透明的袋子里,至少摸出________个球,可以保证摸到两个颜色相同的球。

6.()÷5==():30=0.6=()%7.3.6×+×+×=(____________)8.写出下列每组数的最小公倍数。

(1)6和9______(2)4和6______9.用一根铁丝围成一个正方形,边长是4.71m,如果用这根铁丝围成一个圆,面积是________ .10.圆柱的底面半径变为原来的2倍,高变为原来的12,则它的体积变为原来的______倍.二、准确判断。

(对的画“√ ”,错的画“×”。

每小题2分,共12分)11.如果M×N=1,M和N都是倒数.(____)12.用10厘米、4厘米和3厘米的三根小棒首尾相连,一定能摆出一个三角形.(_____)13.a是一个整数,它的倒数一定是。

(______)14.任何两个等底等高的梯形都能拼成一个平行四边形.(______)15.两个大小不同的圆,大圆周长与直径的比值和小圆周长与直径的比值相等.(_____)16.在乘法中,一个乘数乘10,另一个乘数也乘10,得到的积就等于原来的积乘20。

(_____)三、谨慎选择。

(将正确答案的标号填在括号里,每小题2分,共10分)17.30名学生参加实践活动,分成人数相等的若干个小组(组数和人数都不小于3)。

最多有()种分法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年福建省漳州市中考数学模拟试卷(5月份)一、选择题(共10小题,每小题4分,满分40分)1.(﹣)0的值是( )A .1B .﹣1C .0D .﹣2.如图是将正方体切去一个角后形成的几何体,则其主(正)视图为( )A .B .C .D .3.不透明袋子装有4个红球,2个白球,它们除颜色不同外其余都相同,从中任取3个,则下列事件为必然事件的是( )A .至少有1个球是红球B .至少有1个球是白球C .至少有2个球是红球D .至少有2个球是白球4.下列各式运算结果为a 5的是( )A .(a 2)3B .a 2+a 3C .a 2•a 3D .a 10÷a 25.已知命题:“三角形外心一定不在三角形内部”,下列选项中,可以作为该命题是假命题的反例是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形6.小明在五天投掷铅球训练中,每天训练的最好成绩(单位:m )分别为10.1,10.4,10.6,10.5,10.4,关于这组数据,下列说法错误的是( )A .平均数是10.4B .中位数是10.6C .众数是10.4D .方差是0.028 7.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC=BC ,则下列选项正确的是( )A.B.C.D.8.若﹣2a<﹣2b,则a>b,则根据是()A.不等式的基本性质1 B.不等式的基本性质2C.不等式的基本性质3 D.等式的基本性质29.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3) C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)10.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:=AC•BD.①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD其中正确的序号是()A.①②B.③④C.②④D.②③二、填空题(共6小题,每小题4分,满分24分)11.到2015年底,漳州市户籍人口数量首次突破5000000人,则数据5000000用科学记数法表示为.12.一个正方形的面积是a2+2a+1(a>0),则其边长为.13.如图,A(0,2),B(2,0),双曲线y=经过线段AB的中点P,则k的值是.14.如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=度.15.如图,有红、黄、蓝粗细均匀的木棍各一根分别穿过木板,甲乙两人在木板的两侧同时随机抓住一根木棍,则他们抓住的木棍颜色相同的概率是.16.如图,在边长为6的等边△ABC中,AD⊥BC于D,点E,F分别在AD,AB 上,则BE+EF的最小值是.三、解答题(共9小题,满分86分)17.计算:|﹣6|﹣﹣()﹣1.18.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x 与y 有什么数量关系?(不必说理) (2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.19.数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P 在∠AOB 的角平分线OC 上,PD ⊥OA 于D ,PE ⊥OB 于E ,求证:PD=PE . 20.国家在对某校八年级学生进行质量监测(满分100分)后,从中随机抽查若干名学生的成绩,根据成绩等级(A 级:85﹣100;B 级:70﹣84,C 级:60﹣69;D 级:0﹣59),绘制成两幅不完整的统计图,请回答问题:(1)此次抽查到的学生数为 人;(2)补充两幅统计图;(3)若该年级学生共500人,估计其中成绩为A 级的人数是 人.21.如图,⊙O 直径AB 与弦AC 的夹角∠A=30°,过C 点的切线与AB 的延长线交于点P .(1)求证:CA=CP ;(2)已知⊙O 的半径r=,求图中阴影部分的面积S .22.如图是某校体育场内一看台的截面图,看台CD与水平线的夹角为30°,最低处C与地面的距离BC为2.5米,在C,D正前方有垂直于地面的旗杆EF,在C,D两处测得旗杆顶端F的仰角分别为60°和30°,CD长为10米,升旗仪式中,当国歌开始播放时,国旗也在离地面1.5米的P处同时冉冉升起,国歌播放结束时,国旗刚好上升到旗杆顶端F,已知国歌播放时间为46秒,求国旗上升的平均速度.(结果精确到0.01米/秒)23.某校在去年购买A,B两种足球,费用分别为2400元和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元/个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?24.如图1,抛物线l1:y=﹣x2+2x+3与x轴的正半轴和y轴分别交于点A,B,顶点为C,直线BC交x轴于点D.(1)直接写出点A和C的坐标;(2)把抛物线l1沿直线BC方向平移,使平移后的抛物线l2经过点A,点E为其顶点.求抛物线l2的解析式,并在图1中画出其大致图象,标出点E的位置;在x轴上是否存在点P,使△CEP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(注:该步若要用到备用图,则不要求再画出抛物线l2的大致图象)25.在四边形ABCD中,M是AB边上的动点,点F在AD的延长线上,且DF=DC,N为MD的中点.连接BN,CN,作NE⊥BN交直线CF于点E.(1)如图1,若四边形ABCD为正方形,当点M与A重合时,求证;NB=NC=NE;(2)如图2,若四边形ABCD为正方形,当点M与A不重合时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若四边形ABCD为矩形,当点M与A不重合,点E在FC的延长线上时,请你就线段NB,NC,NE提出一个正确的结论.(不必说理)2016年福建省漳州市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(﹣)0的值是()A.1 B.﹣1 C.0 D.﹣【考点】零指数幂.【分析】根据零指数幂的运算方法:a0=1(a≠0),求出(﹣)0的值是多少即可.【解答】解:∵﹣≠0,∴(﹣)0=1.故选:A.2.如图是将正方体切去一个角后形成的几何体,则其主(正)视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从正面看所得到的图形是正方形,切去部分的棱用虚线表示,故选:B.3.不透明袋子装有4个红球,2个白球,它们除颜色不同外其余都相同,从中任取3个,则下列事件为必然事件的是()A.至少有1个球是红球B.至少有1个球是白球C.至少有2个球是红球D.至少有2个球是白球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:至少有1个球是红球是必然事件,A正确;至少有1个球是白球是随机事件,B错误;至少有2个球是红球是随机事件,C错误;至少有2个球是白球是随机事件,D错误,故选:A.4.下列各式运算结果为a5的是()A.(a2)3B.a2+a3C.a2•a3D.a10÷a2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不合题意;B、原式不能合并,不合题意;C、原式=a5,符合题意;D、原式=a8,不合题意,故选C5.已知命题:“三角形外心一定不在三角形内部”,下列选项中,可以作为该命题是假命题的反例是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【考点】命题与定理.【分析】根据证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论解答即可.【解答】解:如图所示:△ABC是锐角三角形,则它的外心在三角形内部,所以可以作为该命题是假命题的反例,故选C.6.小明在五天投掷铅球训练中,每天训练的最好成绩(单位:m)分别为10.1,10.4,10.6,10.5,10.4,关于这组数据,下列说法错误的是()A.平均数是10.4 B.中位数是10.6 C.众数是10.4 D.方差是0.028【考点】方差;算术平均数;中位数;众数.【分析】根据方差,中位数,平均数和众数的定义分别计算即可解答.【解答】解:平均数=,中位数是10.4,众数是10.4,方差==0.028,故选B7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【考点】作图—复杂作图.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.8.若﹣2a<﹣2b,则a>b,则根据是()A.不等式的基本性质1 B.不等式的基本性质2C.不等式的基本性质3 D.等式的基本性质2【考点】不等式的性质.【分析】两边都除以﹣2可得,其依据是不等式基本性质3.【解答】解:将不等式﹣2a<﹣2b两边都除以﹣2,得:a>b,其依据是不等式基本性质3,故选:C.9.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3) C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)【考点】中心对称图形;坐标确定位置;轴对称图形.【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【解答】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.10.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:=AC•BD.①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD其中正确的序号是()A.①②B.③④C.②④D.②③【考点】菱形的性质.【分析】直接利用菱形的性质对角线对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半.【解答】解:∵四边形ABCD是菱形,∴①OA=OC,故此选项错误;②AC⊥BD,正确;③∠1=∠2,正确;=AC•BD,故此选项错误.④S菱形ABCD故选:D.二、填空题(共6小题,每小题4分,满分24分)11.到2015年底,漳州市户籍人口数量首次突破5000000人,则数据5000000用科学记数法表示为5×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:5000000=5×106.故答案为:5×106.12.一个正方形的面积是a2+2a+1(a>0),则其边长为a+1.【考点】完全平方式.【分析】根据完全平方公式,可得答案.【解答】解:是a2+2a+1=(a+1)2,边长是a+1,故答案为:a+1.13.如图,A(0,2),B(2,0),双曲线y=经过线段AB的中点P,则k的值是1.【考点】反比例函数图象上点的坐标特征.【分析】先根据中点坐标的特点求出P点坐标,再代入反比例函数求出k的值即可.【解答】解:∵A(0,2),B(2,0),点P是线段AB的中点,∴P(1,1),∴k=1×1=1.故答案为:1.14.如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95度.【考点】多边形内角与外角.【分析】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.15.如图,有红、黄、蓝粗细均匀的木棍各一根分别穿过木板,甲乙两人在木板的两侧同时随机抓住一根木棍,则他们抓住的木棍颜色相同的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有9种等可能的结果数,再找出他们抓住的木棍颜色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中他们抓住的木棍颜色相同的结果数为3,所以他们抓住的木棍颜色相同的概率==.故答案为.16.如图,在边长为6的等边△ABC中,AD⊥BC于D,点E,F分别在AD,AB上,则BE+EF的最小值是3.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】过C作CF⊥AB于F,交AD于E,连接BE,根据两点之间线段最短和垂线段最短得出此时BE+EF最小,由于C和B关于AD对称,则BE+EF=CF,根据勾股定理求出CF,即可求出答案.【解答】解:过C作CF⊥AB于F,交AD于E,连接BE,则BE+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BE+EF=CF,∵等边△ABC中,AD平分∠CAB,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CE=BE,即BE+EF=CE+EF=CF,∵CF⊥AB,∴∠CNB=90°,CF是∠ACB的平分线,AF=BF(三线合一),∵∠ACB=60°,∴∠BCF=30°,∵AB=6,∴BF=AB=3,在△BCF中,由勾股定理得:CF===3,即BE+EF的最小值是3.故答案为3.三、解答题(共9小题,满分86分)17.计算:|﹣6|﹣﹣()﹣1.【考点】实数的运算;负整数指数幂.【分析】原式利用绝对值的代数意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果.【解答】解:原式=6﹣3﹣3=0.18.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.【考点】二元一次方程组的解.【分析】(1)观察已知方程组,得到x与y的数量关系即可;(2)归纳总结得到第④个方程组,求出方程组的解,验证即可.【解答】解:(1)在以上3个方程组的解中,发现x+y=0;(2)第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,则x+y=4﹣4=0.19.数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.【考点】角平分线的性质.【分析】结合已知条件,根据全等三角形的判定定理,推出△POD≌△POE即可.【解答】证明:∵OC是∠AOB的平分线,∴∠POD=∠POE,∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD与△POE中,,∴△POD≌△POE,∴PD=PE.20.国家在对某校八年级学生进行质量监测(满分100分)后,从中随机抽查若干名学生的成绩,根据成绩等级(A级:85﹣100;B级:70﹣84,C级:60﹣69;D级:0﹣59),绘制成两幅不完整的统计图,请回答问题:(1)此次抽查到的学生数为150人;(2)补充两幅统计图;(3)若该年级学生共500人,估计其中成绩为A级的人数是150人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据D组有15人,所占的百分比是10%,据此即可求得调查的总人数;(2)利用百分比的意义求得B和C对应的百分比,补全统计图;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)调查的总人数是15÷10%=150(人),故答案是:150;(2)B组的人数是150×40%=60(人),A组的百分比是×100%=30%,C组的百分比是×100%=20%.;(3)成绩为A级的人数是500×30%=150(人).答:成绩为A组的人数是150人.21.如图,⊙O直径AB与弦AC的夹角∠A=30°,过C点的切线与AB的延长线交于点P.(1)求证:CA=CP;(2)已知⊙O的半径r=,求图中阴影部分的面积S.【考点】切线的性质;扇形面积的计算.【分析】(1)求出∠ACO=∠A=30°,根据三角形外角性质求出∠COB=60°,求出∠P,即可得出答案;(2)解直角三角形求出PC,求出△OCP和扇形COB的面积,即可得出答案.【解答】(1)证明:连接OC,∵OA=OC,∠A=30°,∴∠ACO=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC为⊙O的切线,∴∠OCP=90°,∴∠P=30°,∴∠A=∠P,∴AC=PC;(2)解:在Rt△OCP中,CP=OC×tan60°=×=3,所以图中阴影部分的面积是:S=S△OCP﹣S扇形COB=﹣=3﹣π.22.如图是某校体育场内一看台的截面图,看台CD与水平线的夹角为30°,最低处C与地面的距离BC为2.5米,在C,D正前方有垂直于地面的旗杆EF,在C,D两处测得旗杆顶端F的仰角分别为60°和30°,CD长为10米,升旗仪式中,当国歌开始播放时,国旗也在离地面1.5米的P处同时冉冉升起,国歌播放结束时,国旗刚好上升到旗杆顶端F,已知国歌播放时间为46秒,求国旗上升的平均速度.(结果精确到0.01米/秒)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的概念求出FC的长,根据正弦的概念求出FG的长,结合图形计算即可.【解答】解:由题意得,∠FCD=90°,∠FDC=60°,∴FC=CD•tan∠FDC=10,在Rt△CGF中,FG=FC•sin∠FCG=10×=15,∴PF=FG+GE﹣PE=15+2.5﹣1.5=16,16÷46≈0.35,答:国旗上升的平均速度约为0.35米/秒.23.某校在去年购买A,B两种足球,费用分别为2400元和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元/个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?【考点】一次函数的应用;分式方程的应用.【分析】(1)设A种足球单价为x元/个,则B足球单价为(x+80)元/个,根据:A种足球个数=2×B种足球个数,列分式方程求解可得;(2)设再次购买A种足球x个,则B种足球为(18﹣x)个,购买总费用为W,根据:总费用=A种足球单价×A种足球数量+B种足球单价×B种足球数量,列出W关于x的函数关系式,由B种足球的数量不少于A种足球数量的2倍可得x的范围,继而根据一次函数性质可得最值情况.【解答】解:(1)设A种足球单价为x元/个,则B足球单价为(x+80)元/个,根据题意,得:=2×,解得:x=120,经检验:x=120是方程的解,答:A种足球单价为120元/个,B足球单价为200元/个.(2)设再次购买A种足球x个,则B种足球为(18﹣x)个;根据题意,得:W=120x+200(18﹣x)=﹣80x+3600,∵18﹣x≥2x,∴x≤6,∵﹣80<0,∴W随x的增大而减小,∴当x=6时,W最小,此时18﹣x=12,答:本次购买A种足球6个,B种足球12个,才能使购买费用W最少.24.如图1,抛物线l1:y=﹣x2+2x+3与x轴的正半轴和y轴分别交于点A,B,顶点为C,直线BC交x轴于点D.(1)直接写出点A和C的坐标;(2)把抛物线l1沿直线BC方向平移,使平移后的抛物线l2经过点A,点E为其顶点.求抛物线l2的解析式,并在图1中画出其大致图象,标出点E的位置;在x轴上是否存在点P,使△CEP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(注:该步若要用到备用图,则不要求再画出抛物线l2的大致图象)【考点】二次函数综合题.【分析】(1)令y=0可求得点A的坐标,然后依据配方法和顶点坐标公式可求得抛物线的顶点C的坐标;(2)先求得点B的坐标,然后再利用待定系数法求得BC的解析式,直线BC的解析式可设E(a,a+3),则l2的解析式为y=﹣(x﹣a)2+a+3,接下来,将点A 的坐标代入抛物线的解析式可求得a的值,从而得到抛物线l2的解析式;将∠P1CE=90°时,先求得CP1的解析式,从而可求得点P1的坐标,同理可求得P2的坐标;如图3所示:以CE为直径作圆G,过点G作GF⊥x轴,垂足为F.先求得FG与CE的长,然后根据d和r的关系可求得圆G与x轴的位置关系,可判断△CP3E不为直角三角形.【解答】解:(1)∵令y=0得:x2﹣2x﹣3=0,即(x﹣3)(x+1)=0,解得:x1=﹣1,x2=3,∴点A的坐标为(3,0).∵y=﹣x2+2x+3=﹣(x2﹣2x)+3=﹣(x2﹣2x+1﹣1)+3=﹣(x﹣1)2+4,∴点C(1,4).(2)设直线CD的解析式为y=kx+b.∵CD经过点C(1,4)、B(0,3),∴,解得;.∴直线CD解析式为y=x+3.∵抛物线l2由抛物线l1沿直线BC方向平移得到,∴顶点E在直线BC上.设E(a,a+3),则抛物线l2的解析式为y=﹣(x﹣a)2+a+3.∵抛物线l2过点A(3,0),∴﹣(3﹣a)2+a+3=0.解得:a1=6,a2=1(舍去).∴抛物线l2的解析式为y=﹣(x﹣6)2+9=﹣x2+12x﹣27.抛物线l2的大致图象如图1所示.如图2所示:将∠P1CE=90°时,设直线CP1的解析式为y=kx+b.∵CP1⊥BC,∴k=﹣1.∴y=﹣x+b.∵将点C(1,4)代入得:﹣1+b=4.解得b=5,∴直线CP1的解析式为y=﹣x+5.令y=0得;﹣x+5=0,解得x=5,∴点P1的坐标为(5,0).设直线EP2的解析式为y=﹣x+b.∵将点E(6,9)代入得:﹣6+b=9,解得:b=15,∴直线EP2的解析式为y=﹣x+15.∵令y=0得:﹣x+15=0,解得:x=15,∴点P2的坐标为(15,0).如图3所示:以CE为直径作圆G,过点G作GF⊥x轴,垂足为F.∵C(1,4),E(6,9),∴G(3.5,6.5).∴GF=6.5.∵由两点间的距离公式可知CE==5.∴r=.∵d>r,∴圆G与x轴相离.∴∠CP3E<90°,此时不能构成直角三角形.综上所述,点P的坐标为(5,0)或(15,0).25.在四边形ABCD中,M是AB边上的动点,点F在AD的延长线上,且DF=DC,N为MD的中点.连接BN,CN,作NE⊥BN交直线CF于点E.(1)如图1,若四边形ABCD为正方形,当点M与A重合时,求证;NB=NC=NE;(2)如图2,若四边形ABCD为正方形,当点M与A不重合时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若四边形ABCD为矩形,当点M与A不重合,点E在FC的延长线上时,请你就线段NB,NC,NE提出一个正确的结论.(不必说理)【考点】四边形综合题.【分析】(1)先证明△MBN≌△DCN,得NB=NC,再证明∠NCE=∠NEC,由等角对等边可知NC=NE,所以NB=NC=NE;(2)结论仍然成立,作辅助线,构建全等三角形,先根据直角三角形斜边上的中线得出AN=DN,证明△ABN≌△DCN,得NB=NC,再根据角的关系求出∠NCE=∠DCN+45°,∠CEN=∠EGD+45°,所以∠NCE=∠CEN,则NC=NE,结论成立;(3)NB=NC=NE,如图3,延长EN交AD于G,连接AN,同理得出NB=NC,再根据∠NEF=∠ECN,得NC=NE,所以NB=NC=NE.【解答】解:(1)如图1,在正方形ABCD 中,∵AB=CD,∠A=∠ADC,MN=DN,∴△MBN≌△DCN,∴NB=NC,∵NE⊥BN∴∠BNE=90°∴∠BNA+∠ENF=90°,∵∠ABN+∠ANB=90°,∴∠ABN=∠ENF,∵∠ABN=∠NCD,∴∠NCD=∠ENF,∵CD=DF,∠CDF=90°,∴∠F=∠DCF=45°,∵∠NCE=∠DCN+∠DCF=∠DCN+45°,∠CEN=∠ENF+∠F=∠ENF+45°,∴∠NCE=∠NEC,∴NC=NE,∴NB=NC=NE;(2)成立,如图2,延长EN交AD于G,连接AN,在Rt△ADM中,∵N是MD的中点,∴AN=DN,∴∠NAD=∠NDA,∴∠BAN=∠MDC,∵AB=CD,∴△ABN≌△DCN,∴NB=NC,∵NE⊥BN,∴∠ABN+∠AGN=180°,∵∠EGD+∠AGN=180°,∴∠ABN=∠EGD,∵∠ABN=∠DCN,∴∠EGD=∠DCN,∵CD=DF,∠CDF=90°,∴∠F=∠DCF=45°∵∠NCE=∠DCN+∠DCF=∠DCN+45°,∠CEN=∠EGD+∠F=∠EGD+45°,∴∠NCE=∠CEN,∴NC=NE,∴NB=NC=NE;(3)NB=NC=NE,理由是:如图3,延长EN交AD于G,连接AN,同理得AN=DN,∴∠NAD=∠NDA,∴∠BAN=∠NDC,∵四边形ABCD为矩形,∴AB=CD,∴△ABN≌△DCN,∴NB=NC,∵NE⊥BN,∴∠ABN+∠AGN=180°,∵∠EGD+∠AGN=180°,∴∠ABN=∠EGD,∵∠ABN=∠DCN,∴∠EGD=∠DCN,∵∠F=∠DCF=45°,在△EGF中,∠NEF=180°﹣∠EGD﹣∠F=135°﹣∠EGD,∠ECN=180°﹣∠DCN﹣∠DCF=135°﹣∠DCN,∴∠NEF=∠ECN,∴NC=NE,∴NB=NC=NE.2017年2月11日。

相关文档
最新文档