2012学年第二学期七年级数学竞赛试题卷

合集下载

江西省赣州市2023-2024学年七年级下学期期末数学试题(含答案)

江西省赣州市2023-2024学年七年级下学期期末数学试题(含答案)

2023-2024学年第二学期期末考试七年级数学试题卷说明:1.本试题卷共有六个大题,23个小题,满分120分,考试时间为120分钟。

2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。

一、单项选择题(本大题6小题,每小题3分,共18分)1.皮影戏是中国民间古老的传统艺术,如图是孙悟空的皮影造型,在下面的四个图形中,能由该图经过平移得到的图形是()A .B .C .D .2.下列坐标中,在第四象限的点的坐标是( )A .B .C .D .3.为了解某校学生视力情况,下列收集数据的方式合理的是( )A .对该校男生进行调查B .抽取一个班的同学进行调查C .抽取该校各班学号为5的整数倍的同学进行调查D .对该校学生戴眼镜的同学进行调查4.杆秤是中国古老的称量工具,在我国已经使用了数千年.如图,是杆秤在称物时的状态,G 其中辞纽AB 和拴秤砣的细线CD 都是铅垂线.若,则的度数为()A .B .C .D .5.如图是两位同学在讨论一个一元一次不等式,根据对话中提供的信息,判断他们讨论的不等式可能是()A .B .C .D .6.如图,约定:上方相邻的左数与右数之差等于这两数下方箭头共同指向的数.有以下两个结论,结论I:(1,0)(1,1)(1,1)-(1,1)-1108∠=︒2∠72︒108︒62︒82︒26x <26x ->-3x -≤26x -≥-若m 的值为3,则y 的值为4;结论Ⅱ:不论m ,n 取何值,的值一定为3.下列说法正确的是()A .I ,Ⅱ都对B .I 对,Ⅱ不对C .I 不对,Ⅱ对D .I ,Ⅱ都不对二、填空题(本大题6小题,每小题3分,共18分)7.要说明命题“若,则”是假命题,可以举的反例是___________(写出一个值).8.如图,把面积为6的正方形ABCD 放到数轴上,使得正方形的一个顶点A 与重合,那么顶点B 在数轴上表示的数是___________.9.某样本的样本容量为48,样本中最大值是108,最小值是5.取组距为10,则该样本可以分为___________组.10.已知是二元一次方程的一个解,则代数式的值为___________.11.如图,动点P 按图中箭头所示方向依次运动,第1次从点运动到点,第2次运动到点,第3次运动到点,…,若在x 轴上方时,每运动一次需要1秒,在x 轴下方时,每运动一次需要2秒,按这样的运动规律,动点P 第50秒时运动到点___________.12.已知平面直角坐标系下,点A ,C 的坐标为,点B 在坐标轴上.若的面积为3,则点B 的坐标为___________.三、解答题(本大题共5小题,每小题6分,共30分)13.(本题满分6分,每小题3分)x y -21a >1a >a =1-2x a y b =⎧⎨=⎩2570x y -+=9810a b -+(1,0)-(0,1)(1,0)(2,2)-(1,2),(3,0)A C -ABC △(1;(2)解方程组:.14.解不等式组,并将解集在数轴上表示出来.15.如图,,点E 在AC 上,连接DE ,请仅用无刻度直尺按要求完成以下作图(保留作图痕迹).(1)在图1中.以点A 为顶点作一个与相等的角.(2)在图2中,在CD 的上方,作一个与相等的角.16.根据下表回答问题:x1616.116.216.316.416.516.616.716.8256259.21262.44265.69268.96272.25275.56278.89282.24(1)275.56的平方根是_________________________________;(2的整数部分为a ,求的立方根.17.如图,在平面直角坐标系中,已知点,点是内一点,经过平移后得到,P 的对应点为.(1)在图中画出,并写出点的坐标;|2|+-3,21x y x x y -=⎧⎨-=-⎩2332423x xx x <+⎧⎪--⎨≤⎪⎩AB CD ∥C ∠D ∠2x ==42a -(3,3),(5,1),(2,0)A B C ---(,)P a b ABC △ABC △111,A B C △1(4,3)P a b +-111A B C △111,,A B C(2)己知D 是上一点,,直接写出CD 的最小值是___________.四、解答题(本大题共3小题,每小题8分,共24分)18.某中学为了了解学生放假期间运动锻炼的情况,从本校学生中随机抽取了部分学生调查了他们寒假期间平均一周运动时长1(单位:小时),将收集到的数据进行整理分成四组:A .,B .,C .,D ,,并绘制了如下两幅不完整的统计图.若假期平均每周运动时间不少于8小时为达标.根据以上信息,解答下列问题:(1)本次调查共抽取了___________名学生?扇形统计图中A 组所对应的圆心角为___________度;(2)将条形统计图补充完整;(3)若该校有学生2400人,试估计该校寒假平均一周运动时长不达标的学生人数;(4)暑假将至,根据以上调查结果,请对该校学生的暑假运动锻炼提出合理化建议.19.如图,直线CD ,EF 交于点O ,OA ,O B 分别平分和,且.(1)求证:;(2)若,求的度数.20.阅读理解:请阅读下面求含绝对值的不等式和的解集过程.对于含绝对值的不等式,从图1的数轴上看:大于而小于3的数的绝对值小于3,所以的解集;对于含绝对值的不等式,从图2的数轴上看:小于或大于3的数的绝对值大于3,所以的解集为或.1AA 15AA =0t 4≤<48t ≤<812t ≤<1216t ≤<COE ∠DOE ∠3OGB ∠=∠1290∠+∠=︒332∠=∠1∠||3x <||3x >||3x <3-||3x <33x -<<||3x >3-||3x >3x <-3x >图1图2问题解决:(1)含绝对值的不等式的解集为___________;(2)己知关于x ,y 的二元一次方程的解满足,其中m 是正数,求m 的取值范围.五、解答题(本大题共2小题,每小题9分,共18分)21.根据以下素材,请完成任务.养成健康饮水的习惯素材1:健康饮水知识一1.人体每天所需水分为1500-2000毫升.如果等到渴了再喝水,身体可能已经处于缺水状态.建议大家应养成主动饮水的习惯,把每天所需的水分安排在一天内喝完.2.推荐喝温开水或茶水,少喝或不喝含糖饮料,不能用饮料代替白水.3.饮水不足、过多均不利益身体健康,缺水后可能会引起供血量减少,血液粘性增加:喝的过量也会增加心、肾的患病风险.素材2:健康饮水知识二科学证明,健康饮水的适宜温度大约在.喝水的时候要注意避免喝过冷或过热的水,如果患者长期喝冷水,可能会刺激胃肠道,从而引起腹泻、腹痛等胃肠道不适症状.如果喝过热的水,容易造成食道口腔黏膜的损伤以及胃部损伤,引起炎症反应,出现溃疡等情况.素材3如上图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.已知温水的温度为,流速为;开水的温度为,流速.小贴士:若接水过程中不计热量损失,温度热量可以用下列公式转化:温水体积×温水温度+开水体积×开水温度=混合后体积×混合后温度问题解决任务一小健同学先接了一会儿温水,又接了一会儿开水,得到一杯温度为的水(不计热量损失),求小健同学分别接温水和开水的时间;任务二如果小康同学先用水杯接了开水,为了身体的健康,小康同学至少要接多长时间温水才能达到饮用的适宜温度?22.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为,点C 的坐标为,且a ,b 满足,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着折线线路运动一周停止.||2x >1x y m +=--||2x y +≤35C ~40C ︒︒30C ︒20ml /s 100C ︒15ml /s 280ml 35C ︒3s (,0)a (0,)b 2(6)|8|0a b -+-=O C B A O ----(1)求点B 的坐标;(2)在移动过程中,当点P 到y 轴的距离为4个单位长度时,求点P 移动的时间;(3)当点P 在的线路上移动时,是否存在点P 使的面积是12,若存在,直接写出点P 的坐标;若不存在,请说明理由.六、解答题(本大题共12分)23.我们定义:如图1,直线a ,b 被直线c 所战(a ,b ,c 不交于同一点),若直线a ,c 所成的四个角中有一个角与直线b ,c 所成的四个角中的一个角相等,如,则称直线c 是直线a ,b 的等角线.【初步感知】(1)如图2,在图①,②,③中,直线c 是直线a ,b 的等角线的是___________(填序号);【探究应用】(2)如图3,点E ,F 分别为长方形ABCD 的边AD ,BC 的点,且点E 不与点A ,D 重合,点F 不与点B ,C 重合,将长方形ABCD 沿EF 折叠后,点D ,C 分别落在点的位置,的延长线交直线BC 于点G .图3 备用图①直线AB ,EF ,中,直线___________是直线与直线BC 的等角线,并请说明理由;②直线与直线BC 交于点G ,随着折痕EF 的变动,当直线EG 是直线AB ,BC 的等角线时,求的度数(提示:三角形的内角和为).C B A --OBP △12∠=∠,D C ''ED 'C D ''ED 'ED 'AED '∠180︒2023-2024学年第二学期期末考试七年级数学参考答案及评分标准一、选择题(本大题6小题,每小题3分,共18分)1.B 2.C 3.C 4.A 5.D 6.C二、填空题(本大题6小题,每小题3分,共18分)7.(答案不唯一);8;9.11;10.23;11.; 12.或或三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解:原式3分(2)解:把①代入②得:.解得:.将代入①得.解得:.原方程组的解为3分14.解:解不等式①得:. 1分解不等式②得:. 2分在数轴上表示不等式①、②的解集4分不等式组的鲜集为.6分15.解:(1)如图,或即为所求.3分2-1(330),(00),(60),(0,6)-232=+-+3=- 3.21.x y x x y -=⎧⎨-=-⎩①②213x -=2x =2x =23y -=1y =-∴2,1.x y =⎧⎨=-⎩23,32423x x x x <+⎧⎪⎨--≤⎪⎩①②3x <1x ≥-∴13x -≤<FAB ∠FAC ∠或(2)如图,即为所求.(或为所求)6分或16.解:(1),16.1,1.67; 3分(2)由.故.则,125的立方根为:5.6分17.解:(1)如图,三角形为所求. 1分A ,B ,C 的对应点的坐标为; 4分(2). 6分四、解答题(本大题共3小题,每小题8分,共24分)F ∠GFH ∠16.6±16.716.8<<167168∴<<167a =4216742125a -=-=111,,A B C 111(1,0),(1,2),(2,3)A B C ---9518.解:(1)120,18; 2分(2)补全条形统计图如图:4分(3)(人),答:该校2400名学生中一周在家运动时长不达标的学生人数为840人; 6分(4)在家加长运动时间,努力提高身体素质.(言之有理即可) 8分19.解:(1)OA ,OB 分别平分和,...2分,. 3分..4分(2)解:平分,,.设,则.,即,解得6分.8分20.解:(1)根据绝对值的定义得:或.故答案为:或; 3分(2),, 5分,6362400840120+⨯= COE ∠DOE ∠11,22AOC COE BOE DOE ∴∠-∠∠=∠180COE DOE ∠+∠=︒ ()1111180902222AOC BOE COE DOE COE DOE ∴∠+∠=∠+∠=∠+∠=⨯︒=3OGB ∠=∠ AB CD ∴∥12AOC BOD ∴∠=∠∠=∠,1290∴∠+∠=︒OB DOE ∠AB CD ∥122BOD BOG DOG ∴∠=∠=∠=∠2x ∠=3323x ∠=∠=3180DOG ∠+∠=︒ 32180x x +=︒36x =︒236∴∠=︒1903654∴∠=︒-︒=︒2x >2x <-2x >2x <-||2x y +≤ 22x y ∴-≤+≤1,x y m +=--,解得,又m 是正数,.8分五、解答题(本大题共2小题,每小题9分,共18分)21.解:任务一:设小健同学分别接温水和开水的时间分别为,由愿意得.3分解得答:小健同学生接温水的时间为,接开水的时间为, 5分(2)任务二:设小康同学接温水为,由题意得7分解得.答:小康同学接温水的时间至少为13.55,才能达到饮用的适宜温度. 9分22.解:(1),,,四边形OABC 是长方形.,轴,轴,;3分(2)设点P 移动的时间为t 秒,点P 到y 轴的距离为4个单位长度,点P 在OA 边上或BC 边上,当点P 在BC 边上,则,解得;5分当点P 在OA 边上,则,212m ∴-≤--≤31m -≤≤01m ∴<≤s s x y ,201528030201001528035x y x y +=⎧⎨⨯+⨯=⨯⎩1343x y =⎧⎪⎨=⎪⎩13s 4s 3s a 3020100153(4520)40a a ⨯+⨯⨯≤+⨯135a ≥.2(6)|8|0a b -+-= 60,80a b ∴-=-=6,8a b ∴==(6,0),(0,8)A C ∴ 90OAB OCB ∴∠=∠=︒BA x ∴⊥BC y ⊥(6,8)B ∴ ∴284t -=6t =242(68)t +-+解得.综上所述,点P 移动的时间为6秒或12秒.7分(3)存在:P 点的坐标为或.9分六、解答题(本大题共12分)23.解:(1)①③;2分(2)①EF ,理由:3分由折叠性质可:,四边形是ABCD 长方形.,直线EF 是直线ED 与BC 的等角线. 7分②如图,设直线AB 与EG 的延长线得交点为H ,当直线EG 是直线AB 、BC 的等角线时,山折叠性质可知:,四边形是ABCD 长方形,.,直线EG 是直线AB 、BC 的等角线,..10分如图,设直线AB 与GE 的延长线得交点为H.12t =(3,8)(6,4)DEF D EF '∠=∠ AD BC ∴∥DEF EFG∴∠=∠DEF EFG∴∠=∠∴DEF D EF '∠=∠ 90AD BC A ABC HBG ∴∠=∠=∠=︒∥,AEG BGH EGF ∴∠=∠=∠ 45BGH BHG ∴∠=∠=︒45AED BGH '∴∠=∠-︒当直线EG 是直线AB 、BC 的等角线时.由折叠性质可知:,四边形是ABCD 长方形.,,直线EG 是直线AB 、BC 的等角线,,.的度数为:,. 12分DEF D EF '∠=∠ 90AD BC BAD ABC ∠-∠=︒∥,AEH BGE ∠=∠ 45BGH BHG ∴∠=∠=︒180135AED BGH '∴∠=︒-∠=︒AED '∴∠45︒135︒。

安徽省合肥市2023-2024学年七年级下学期期末数学试题(原卷+答案解析)

安徽省合肥市2023-2024学年七年级下学期期末数学试题(原卷+答案解析)

2023-2024学年度第二学期期末教学质量检测七年数学试题卷一、选择题(本题共10小题,每小题3分,共30分)1.下列四个实数中,是无理数的是()A.3.14B.πC.227D.2.下列各式中,计算正确的是()A.2= B.3252a a a +=C.32a a a÷= D.()2222a b a b =3.关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为()A.2- B.1- C.1 D.24.如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C .同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行5.已知3m n +=,1mn =,则()()1212m n --的值为()A.l -B.2- C.1D.26.把公式U V VR S -=变形为用U ,S ,R 表示V .下列变形正确的是()A.R S V US += V R =C.UV R S=+ V R S=+7.若20.2a =-,212b -⎛⎫=- ⎪⎝⎭,()02c =-,则它们的大小关系是()A.c b a <<B.a b c <<C.a c b <<D.b a c<<8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是()A.28︒B.34︒C.46︒D.56︒9.分式方程22312111x x x x --=-+-的解为()A.4x = B.5x =- C.6x =- D.4x =-10.对于实数x ,我们规定[]x 表示不大于x 的最大整数,如[]22=,1=,[]1.52-=-.现对50进行如下操作:12350721−−−→=−−−→=−−−→=第次第次第次,这样对50只需进行3次操作后变为1,类似地,对1000最少进行()次操作后变为1.A.2B.3C.4D.5二、填空题(本题共6小题,每小题4分,共24分)11.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003用科学记数法表示为______.12.分解因式:3123x x -=______.13.若()()223x x m x x n -+=+-,则m n -=______.14.如图,把一张长方形的纸条ABCD 沿EF 折叠,若∠BFC ′比∠1多9°,则∠AEF 为_____.15.已知2210x x --=,则32231065x x xx x -+--的值等于______.16.已知关于x 的不等式组21,519.22x x a x x +>+⎧⎪⎨+≥-⎪⎩(1)若不等式组的最小整数解为1x =,则整数a 的值为______;(2)若不等式组所有整数解的和为14,则a 的取值范围为______.三、解答题(本题共6小题,共46分)17.计算:()012 3.14π-+-.18.解不等式321132x x ++-<,并将其解集在数轴上表示出来.19.先化简,再求值:21(1)11aa a +÷--,其中2a =-.20.如图,AB //CD .∠1=∠2,∠3=∠4,试说明AD //BE,请你将下面解答过程填写完整.解:∵AB //CD ,∴∠4=()∵∠3=∠4∴∠3=()∵∠1=∠2∴∠1+∠CAF =∠2+∠CAE 即∠BAE =.∴∠3=)∴AD //BE ()21.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗.我市某食品加工厂,拥有A 、B 两条粽子加工生产线.原计划A 生产线每小时加工粽子个数是B 生产线每小时加工粽子个数的45.(1)若A 生产线加工4000个粽子所用时间与B 生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A 、B 生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A 、B 生产线每天均加工a 小时,由于受其他原因影响,在实际加工过程中,A 生产线每小时比原计划少加工100个,B 生产线每小时比原计划少加工50个.为了尽快将粽子投放到市场,A 生产线每天比原计划多加工3小时,B 生产线每天比原计划多加工13a 小时.这样每天加工的粽子不少于6300个,求a 的最小值.22.阅读材料:若满足()()321x x --=-,求()()2232x x -+-的值.解:设3x a -=,2x b -=,则()()321ab x x =--=-,()()321a b x x +=-+-=,所以()()()222223223x x a b a b ab -+-=+=+-=.请仿照上例解决下面的问题:(1)问题发现:若x 满足()()3510x x --=-,求()()2235x x -+-的值;(2)类比探究:若x 满足()()22202320242025x x -+-=.求()()20232024x x --的值;(3)拓展延伸:如图,正方形ABCD 和正方形MFNP 重叠,其重叠部分是一个长方形,分别延长AD ,CD ,交NP 和MP 于H 、Q 两点,构成的四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形.若10AE =,20CG =,长方形EFGD 的面积为200.求正方形MFNP 的面积.附加题(本题5分,计入总分,但总分不超过100分)23.有一组数据:记13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,…,()()2112n n a n n n +=++.123n n S a a a a =+++⋅⋅⋅+,则10S =______.答案解析一、选择题(本题共10小题,每小题3分,共30分)1.下列四个实数中,是无理数的是()A.3.14B.πC.227D.【答案】B 【解析】【分析】本题考查无理数,根据无限不循环小数叫做无理数,进行判断即可.【详解】解:在3.14,π,22711=中,π是无理数,故选B .2.下列各式中,计算正确的是()A.2=B.3252a a a +=C.32a a a ÷= D.()2222a b a b =【答案】C 【解析】【分析】利用最简二次根式,合并同类项,同底数幂的除法,幂的乘方,掌握相关定义是解题的关键.【详解】解:A.=,选项错误,不符合题意;B.3a 与2a 不是同类项,,选项错误,不符合题意;C.32a a a ÷=,选项正确,符合题意;D.()2242a ba b =,选项错误,不符合题意.故选:C .3.关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为()A.2-B.1-C.1D.2【答案】D 【解析】【分析】本题考查了解一元一次不等式,先求得1x m ≤+,再根据数轴得13m +=,进而可求解,熟练掌握一元一次不等式的解法是解题的关键.【详解】解:1x m -≤,解得:1x m ≤+,由数轴得:13m +=,解得:2m =,故选D .4.如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行【答案】A 【解析】【分析】由平行线的画法可知,∠2与∠1相等,根据图形判断出∠2与∠1的位置关系,由此可得答案.【详解】解:由平行线的画法可知,∠2与∠1相等,且∠2与∠1是一对同位角,所以画法的依据是:同位角相等,两直线平行.故选A .【点睛】本题考查的是平行线的原理,熟练掌握平行线的判定方法是解答本题的关键.5.已知3m n +=,1mn =,则()()1212m n --的值为()A.l- B.2- C.1D.2【分析】本题考查了多项式乘以多项式.由多项式乘以多项式进行化简,然后代入计算,即可得到答案.【详解】解:∵3m n +=,1mn =,∴()()21212421n m mnm n =--+--()124m n mn =-++,12341=-⨯+⨯1=-;故选:A .6.把公式U V VR S -=变形为用U ,S ,R 表示V .下列变形正确的是()A.R S V US += V R =C.UV R S=+ V R S=+【答案】D 【解析】【分析】本题考查解一元一次方程,将V 作为未知数,解方程即可.【详解】解:U V VR S-=,∴SU SV RV -=,∴()SU R S V =+,∴US V R S=+,故选D .7.若20.2a =-,212b -⎛⎫=- ⎪⎝⎭,()02c =-,则它们的大小关系是()A.c b a <<B.a b c <<C.a c b<< D.b a c<<【答案】C 【解析】【分析】本题考查有理数的乘方运算,负整数指数幂,零指数幂,根据有理数的乘方,负整数指数幂,零指数幂将a 、b 、c 算出结果,再比较大小.解题的关键是掌握有理数乘方的运算法则.【详解】解:2040.2.0a =-=-,4b =,1c =,∵0.0414-<<,8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是()A.28︒B.34︒C.46︒D.56︒【答案】B 【解析】【分析】延长DC 交AE 于F ,依据//AB CD ,87BAE ∠=︒,可得87CFE ∠=︒,再根据三角形外角性质,即可得到E DCE CFE ∠=∠-∠.【详解】解:如图,延长DC 交AE 于F ,//AB CD ,87BAE ∠=︒,87CFE ∴∠=︒,又121DCE ∠=︒ ,1218734E DCE CFE ∴∠=∠-∠=︒-︒=︒,故选B .【点睛】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.分式方程22312111x x x x --=-+-的解为()A.4x =B.5x =- C.6x =- D.4x =-【答案】D 【解析】【分析】本题考查解分式方程,将分式方程转化为整式方程,求解后,进行检验求出分式方程的解,即可.【详解】解:22312111x x x x --=-+-,去分母得:()()23121x x x ---=+,解得:4x =-;经检验,4x =-是原方程的解;故选D .10.对于实数x ,我们规定[]x 表示不大于x 的最大整数,如[]22=,1=,[]1.52-=-.现对50进行如下操作:12350721−−−→=−−−→=−−−→=第次第次第次,这样对50只需进行3次操作后变为1,类似地,对1000最少进行()次操作后变为1.A.2B.3C.4D.5【答案】C 【解析】【分析】本题考查了估算无理数的大小,解决本题的关键是明确[]x 表示不大于x 的最大整数.[]x 表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.【详解】解:1234100030521→=→=→=→=第次第次第次第次,∴对1000最少进行4次操作后变为1,故选:C .二、填空题(本题共6小题,每小题4分,共24分)11.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003用科学记数法表示为______.【答案】7310-⨯【解析】【分析】本题考查用科学记数法表示较小的数.绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000003用科学记数法表示为7310-⨯.故答案为:7310-⨯.12.分解因式:3123x x -=______.【答案】()()322x x x +-【解析】【分析】本题考查因式分解,先提公因式,再利用平方差公式法因式分解即可.【详解】解:()()()3231322342x x x x x x x ==+---;故答案为:()()322x x x +-.13.若()()223x x m x x n -+=+-,则m n -=______.【答案】5-【解析】【分析】本题考查多项式乘多项式,根据多项式乘以多项式的法则,将等式左边展开,根据恒等式,求出,m n 的值,代入代数式进行计算即可.【详解】解:()()()222222223x x m x mx x m x m x m x x n -+=+--=+--=+-,∴232m n m -==,,∴510m n ==,,∴5-=-m n ;故答案为:5-14.如图,把一张长方形的纸条ABCD 沿EF 折叠,若∠BFC ′比∠1多9°,则∠AEF 为_____.【答案】123°.【解析】【分析】∠EFC =x ,∠1=y ,则∠BFC ′=x ﹣y ,根据“∠BFC ′比∠1多9°、∠1与∠EFC 互补”得出关于x 、y 的方程组,解之求得x 的值,再根据AD ∥BC 可得∠AEF =∠EFC .【详解】设∠EFC =x ,∠1=y ,则∠BFC ′=x ﹣y ,∵∠BFC ′比∠1多9°,∴x ﹣2y =9,∵x+y =180°,可得x =123°,即∠EFC =123°,∵AD ∥BC ,∴∠AEF =∠EFC =123°,故答案为123°.【点睛】本题考查了平行线的性质及折叠问题,解题的关键是学会利用参数,构建方程组解决问题.15.已知2210x x --=,则32231065x x x x x -+--的值等于______.【答案】1【解析】【分析】本题考查已知式子的值,求代数式的值,根据2210x x --=,得到221x x =+,整体代入代数式进行求值即可.【详解】解:∵2210x x --=,∴221x x =+,∴()3223106321106x x x x x x x -+=+-+2263106x x x x=+-+249x x=-+()4219x x=-++849x x=--+4x =-,252154x x x x x --=+--=-,∴32231064154x x x x x x x -+-==---;故答案为:1.16.已知关于x 的不等式组21,519.22x x a x x +>+⎧⎪⎨+≥-⎪⎩(1)若不等式组的最小整数解为1x =,则整数a 的值为______;(2)若不等式组所有整数解的和为14,则a 的取值范围为______.【答案】①.1②.23a ≤<或10a -≤<【解析】【分析】本题考查一元一次不等式组的整数解问题,根据题意判断出1a -的取值范围是解题关键.根据题意可求不等式组的解集为1,5x a x >-⎧⎨≤⎩,再分情况判断出的取值范围,即可求解.【详解】解:解不等式组21,51922x x a x x +>+⎧⎪⎨+≥-⎪⎩得1,5x a x >-⎧⎨≤⎩,(1)∵不等式组的最小整数解为1x =,∴011a ≤-<,∴12a ≤<,则整数a 的值为1,故答案为:1;(2)∵不等式组所有整数解的和为14,若整数解为: 2345、、、,112,a ∴≤-<解得:23a ≤<,若整数解为:1012345-、、、、、、,211,a ∴-≤-<-解得:10a -≤<,综上,整数a 的值为23a ≤<或10a -≤<,故答案为:23a ≤<或10a -≤<.三、解答题(本题共6小题,共46分)17.计算:()012 3.14π-+-.【答案】0【解析】【分析】本题考查实数的混合运算,先计算零指数幂,负整数指数幂和开方运算,再进行加减即可.【详解】解:原式11122=+-0=.18.解不等式321132x x ++-<,并将其解集在数轴上表示出来.【答案】34x >-,数轴见解析【解析】【分析】本题考查了解一元一次不等式及在数轴上表示解集,先根据一元一次不等式的一般解法求得解集,再根据解集在数轴上表示的方法即可求解,熟练掌握一元一次不等式解法的一般步骤是解题的关键.【详解】解:去分母,得:()()236321x x +-<+,去括号,得:26663x x +-<+,移项得:263x x -<,合并得:43x -<,解得:34x >-,把34x >-在数轴上表示为:19.先化简,再求值:21(1)11a a a +÷--,其中2a =-.【答案】a +1,﹣1【解析】【分析】先把分式进行化简,然后把2a =-代入计算,即可求出答案.【详解】解:21(1)11a a a +÷--21111a a a a+--=⨯-(1)(1)1a a a a a-+=⨯-1a =+;当2a =-时,原式211=-+=-.【点睛】本题考查了分式的加减乘除运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.20.如图,AB //CD .∠1=∠2,∠3=∠4,试说明AD //BE ,请你将下面解答过程填写完整.解:∵AB //CD ,∴∠4=()∵∠3=∠4∴∠3=()∵∠1=∠2∴∠1+∠CAF =∠2+∠CAE即∠BAE =.∴∠3=)∴AD //BE ()【答案】∠BAE ;两直线平行,同位角相等;∠BAE ;等量代换;∠CAD ;∠CAD ;等量代换;内错角相等,两直线平行【解析】【分析】根据平行线的性质得出∠4=∠BAE ,求出∠3=∠BAE ,求出∠3=∠CAD ,根据平行线的判定得出即可.【详解】∵AB ∥CD ,∴∠4=∠BAE (两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE (等量代换),∵∠1=∠2,∴∠1+∠CAF =∠2+∠CAE ,即∠BAE =∠CAD ,∴∠3=∠CAD (等量代换),∴AD∥BE(内错角相等,两直线平行),故答案为:∠BAE;两直线平行,同位角相等;∠BAE;等量代换;∠CAD;∠CAD;等量代换;内错角相等,两直线平行【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.21.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗.我市某食品加工厂,拥有A、B两条粽子加工生产线.原计划A生产线每小时加工粽子个数是B生产线每小时加工粽子个数的4 5.(1)若A生产线加工4000个粽子所用时间与B生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A、B生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A、B生产线每天均加工a小时,由于受其他原因影响,在实际加工过程中,A生产线每小时比原计划少加工100个,B生产线每小时比原计划少加工50个.为了尽快将粽子投放到市场,A生产线每天比原计划多加工3小时,B生产线每天比原计划多加工13a小时.这样每天加工的粽子不少于6300个,求a的最小值.【答案】(1)A、B生产线每小时加工粽子各是400、500个;(2)a的最小值为6.【解析】【分析】(1)首先根据“原计划A生产线每小时加工粽子个数是B生产线每小时加工粽子个数的45”设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x个,再根据“A生产线加工4000个粽子所用时间与B生产线加工4000个粽子所用时间之和恰好为18小时”列出方程,再解即可;(2)根据题意可得A加工速度为每小时300个,B的加工速度为每小时450个,根据题意可得A的加工时间为(a+3)小时,B的加工时间为(a+13a)小时,再根据每天加工的粽子不少于6300个可得不等式(400-100)(a+3)+(500-50)(a+13a)≥6300,再解不等式可得a的取值范围,然后可确定答案.【详解】(1)设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x个,根据题意得4000400018 45x x+=,∴x=100,经检验x=100为原分式方程的解∴4x=4×100=400,5x=5×100=500,答:原计划A、B生产线每小时加工粽子各是400、500个;(2)由题意得:(400﹣100)(a+3)+(500﹣50)(a+13a)≥6300,解得:a≥6,∴a 的最小值为6.【点睛】此题主要考查了分式方程和一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系和等量关系,列出方程和不等式.22.阅读材料:若满足()()321x x --=-,求()()2232x x -+-的值.解:设3x a -=,2x b -=,则()()321ab x x =--=-,()()321a b x x +=-+-=,所以()()()222223223x x a b a b ab -+-=+=+-=.请仿照上例解决下面的问题:(1)问题发现:若x 满足()()3510x x --=-,求()()2235x x -+-的值;(2)类比探究:若x 满足()()22202320242025x x -+-=.求()()20232024x x --的值;(3)拓展延伸:如图,正方形ABCD 和正方形MFNP 重叠,其重叠部分是一个长方形,分别延长AD ,CD ,交NP 和MP 于H 、Q 两点,构成的四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形.若10AE =,20CG =,长方形EFGD 的面积为200.求正方形MFNP 的面积.【答案】(1)24(2)1012-(3)正方形MFNP 的面积为900【解析】【分析】本题考查完全平方公式,整体思想:(1)利用题干给定的方法,结合完全平方公式进行求解即可;(2)利用题干给定的方法,结合完全平方公式进行求解即可;(3)根据题意,用字母来代替DE 和DG 的长度,通过化简,来得到要求的面积.【小问1详解】解:设3,5x a x b -=-=,则:352a b x x +=-+-=,∵()()3510x x --=-,∴10ab =-,∴()()22222221024a b a b ab +=+-=-⨯-=,即:()()223524x x -+-=;【小问2详解】设20232024,a x b x ==--,则:202320241a x x b +=-+-=,∵()()22202320242025x x -+-=,∴222025a b +=,∴()()2222120252024ab a b a b =+-+=-=-,∴1012ab =-,即:()()202320241012x x --=-;【小问3详解】设AD x=则10ED AD AE x =-=-,20DG CD CG x =-=-,()()1020200EFGD S DE DG x x =⨯=--=矩形,()()1020FN FG GN ED DG x x ⎡⎤=+=+=-+-⎣⎦,()()221020MFNP S FN x x ⎡⎤==-+-⎣⎦正方形,设10x a -=,20x b -=,则200ab =,()102010a b x x -=---=,()()2224104200900MFNP S a b a b ab =+=-+=+⨯=正方形,∴正方形MFNP 的面积为900.附加题(本题5分,计入总分,但总分不超过100分)23.有一组数据:记13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,…,()()2112n n a n n n +=++.123n n S a a a a =+++⋅⋅⋅+,则10S =______.【答案】9588【解析】【分析】本题主要考查了有理数的混合运算,数字规律探索,根据题意找出数字变化的规律是解题关键.通过探索数字变化的规律进行分析计算即可.【详解】解:()()2112n n a n n n +=++()()()()11212n n n n n n n n +=+++++()()()11221n n n n =++++111111222n n n n ⎛⎫=-+- ⎪+++⎝⎭,∴1012310S a a a a =++++ 1111111111111112321334224111221012⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1111111111111112334111221322421012⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111111···212213241012⎛⎫=-+-+-++- ⎪⎝⎭11111112122121112⎛⎫=-++-- ⎪⎝⎭9588=,故答案为:9588.。

河北省保定市竞秀区2023-2024学年七年级下学期期末数学试题(含答案)

河北省保定市竞秀区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年度第二学期期末学业质量监测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.一、选择题(本大题共12个小题,每题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题意)1.如图,点D 在直线上,,则图中的和的关系是()A .互为补角B .互为余角C .同位角D .对顶角2.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .B .C .D .3.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得,,那么点A 与点B 之间的距离不可能是( )A .B .C .D .4.计算的值为( )A .B .C .1D .25.事件①:射击运动员射击一次,命中靶心;事件②:随意翻到一本书的某页,这页的页码是奇数.则下列表述正确的是()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件AB CD ED ⊥1∠2∠100m PA =90m PB =90m 100m 150m 200m202420250.5(2)⨯-2-0.5-D .事件①和②都是必然事件6.如图,平分,,垂足为A ,,Q 是射线上的一个动点,则线段的最小值是( )A .10B .8C .6D .47.红外线是太阳光线中众多不可见光线中的一种,且应用广泛,某红外线遥控器发出的红外线波长约为,则下列说法正确的是( )A .是8位小数B .C .D .是7位小数8.如图,是一个可折叠衣架,是地平线,当,时,就可以确定点N 、P 、M 在同一直线上,这样判定的依据是()A .内错角相等,两直线平行B .过直线外一点有且只有一条直线与这条直线平行C .两点确定一条直线D .平行于同一直线的两直线平行9.在一次数学实践活动课上,老师指导学生进行折纸活动,下图是小明、小凡、小颖三位同学的折纸示意图(C 的对应点是),分析他们折纸情况说法正确的是()A .小明折出的是中的角平分线B .小凡折出的是边上的中线C .小颖折出的是中边上的高线D .上述说法都错误10.已知线段a ,b ,c 求作:,使,,.下面的作图顺序正确的是()OP MON ∠PA ON ⊥6PA =OM PQ 79.410m -⨯79.410-⨯779.410 1.4810--⨯-=⨯769.410109.410--⨯+=⨯79.410-⨯AB //PM AB //PN AB C 'ABC △BAC ∠BC ABC △BC ABC △BC a =AC b =AB c =①以点A 为圆心,以b 为半径画弧,以点B 为圆心,以a 为半径画弧,两弧交于C 点;②作线段等于c ;③连接,,则就是所求作图形.A .①②③B .③②①C .②①③D .②③①11.如图,已知,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B为圆心,大于的长为半径画弧,两弧分别相交于点M ,N ,作直线,交直线b 于点C ,连接,若,则的度数是()A .B .C .D .12.如图,中,,D 是线段上一点(不与点B ,C 重合),连接,点E ,F 分别在线段,的延长线上,且.则以下结论:①;②;③;④D 从B 运动到C 的过程中,周长不变.正确的是()A .①②④B .①②③C .②③④D .①③④二、填空题(本大题共4个小题;每题3分,共12分.把答案写在题中横线上)13.已知,,则____________.14.如图,点P 是外的一点,点M ,N 分别是两边上的点,点P 关于的对称点Q 恰好落在线段上,点P 关于的对称点R 落在的延长线上,若,,,则线段的长为____________.15.不透明的盒子中装有红、白两色的小球共n (n 为正整数)个,这些球除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,不断重复这一过程.如图显示了用计算机模拟实验的结果.AB AC BC ABC △//a b 12AB MN AC 138∠=︒ACB∠76︒100︒102︒104︒ABC △AB AC BC ==BC AD AB AC DE DF AD ==60E BDE ∠+∠=︒60E CFD ∠+∠=︒EBD DCF △≌△BED △45x =42y=4x y+=AOB ∠AOB ∠OA MN OB MN 2.5PM = 3.5PN =3MN =QR若盒子中共装60个小球,可以根据本次实验结果,估算出盒子中红球有____________个.16.如图,长方形纸片中,,点E ,F 在边上,点G ,H 在边上,分别沿,折叠,使点D 和点A 都落在点M 处,若,则的度数是____________度.三、解答题(本大题共8个小题,共72分,解答应写出必要的文字说明,证明过程或演算步骤.)17.计算:(本小题满分8分,(1)题4分,(2)题4分)(1).(2)利用整式乘法公式计算:.18.(本小题满分6分)先化简,再求值:,其中.19.(本小题满分7分)小明和妈妈去超市买凳子,小明发现售货员把凳子按如图方式叠放在一起时,每叠放一个凳子,增加的高度是一样的.下表是叠放凳子的总高度h 与凳子数量n 的几组对应值.凳子的数量n (个)1234…叠放凳子的总高度h (厘米)46525864…根据以上信息,回答下列问题:(1)按照表格所示的规律,当凳子的数量为6时,叠放的凳子总高度为____________厘米;(2)直接写出叠放的凳子总高度h 与凳子的数量n 之间的关系式:____________;(3)按上表所示的规律,若将该种凳子按如图方式叠放在层高为92厘米的超市货架上,能叠放8个吗?ABCD //AD BC AD BC EG FH 12115∠+∠=︒EMF ∠1021(2024)(2)3π-⎛⎫-+--- ⎪⎝⎭2202320222024-⨯432(32)()()3x x x x x x -÷---⋅12x =-请说明理由.20.(本小题满分8分)如图,墙地面b ,嘉嘉想知道这堵墙上点A 到地面的高度,但又没有直接测量的工具,于是设计了下面的方案.第一步:找一根长度大于的直杆,使直杆斜靠在墙上,且顶端与点A 重合,记下直杆与地面的夹角;第二步:使直杆顶端竖直缓慢下滑,直到,标记此时直杆的底端点D ;第三步:测量的长度即为点A 到地面的高度.(1)请说明为什么的长度即为点A 到地面的高度;(2)若测得,,求梯子下滑的高度.21.(本小题满分9分)小明和小颖都想参加学校杜团组织的暑假实践活动,但只有一个名额,小明提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小明去参加活动;转到3的倍数,小颖去参加活动;转到其它号码则重新转动转盘.(1)转盘转到号码7的概率是____________.(2)转盘转到2的倍数的概率是多少?(3)你认为这个游戏对小明和小颖公平吗?请说明理由.22.(本小题满分11分)题目:如图,中,F 为边上一点,点D 为延长线上一点.(1)在图中按要求完成尺规作图:①在右侧作,交于点G ;②作的角平分线.(不写作图步骤,保留作图痕迹,作图要用2B 铅笔,如果笔迹太细、太轻,可以描重一些.)(2)在(1)的条件下,若.①请说明.a ⊥AN NA ABN ∠NCD ABN ∠=∠ND AN ND AN 1.2m BN = 2.5m DN =AC ABC △AB BC BF BFG A ∠=∠BC ACD ∠CE 180AFG ACE ∠+∠=︒//AB CE②与的关系是____________.下面是嘉嘉的解答过程,请在(1)中完成尺规作图,并补全(2)中的说理依据:解:(1)(2)①因为,根据________________________,得到;因为,根据________________________,得到;因为已知,所以可以得到;进而根据________________________,得到.②与的关系是____________.23.(本小题满分11分)如图1,在长方形中,,E 为边中点.动点P 从点B 开始,以的速度沿路线运动,到点A 停止.图2是点P 出发t 秒后,的面积随时间变化的图象.根据图中提供的信息,回答下列问题:(1)____________;点M 表示的实际意义是________________________;(2)当点P 在上运动时,求的面积为时t 的值;(3)如图3,当点P 从点B 出发时,动点Q 同时以的速度从C 点出发,沿边运动,当点P 运动到点C 时,P 、Q 两点停止运动.当x 为何值时,与全等,请直接写出x 的值.24.(本小题满分12分)活动探究:数学活动课上,王老师准备了若干个图1所示的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a的长方形.AFG ∠B ∠BFG A ∠=∠//FG AC //FG AC 180AFG A ∠+∠=︒180AFG ACE ∠+∠=︒A ACE ∠=∠//AB CE AFG ∠B ∠ABCD 6cm AB =AB 3cm/s B C D A →→→BPE △2(cm )S (s)t BC =cm DA BPE △29cm cm/s x CD PBE △PCQ △(1)若小明想用图1中的三种纸片拼出一个面积为的大长方形,则需要C 种纸片____________张;(2)小兰用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成了图2所示的大正方形,在用两种不同的方法求此大正方形的面积时,小兰发现了代数式,,之间的等量关系式,这个关系式是:________________________;实践应用:(3)如图3,学校在长方形空地里铺了地砖,地砖有三种,一种是5个相同的黑色小长方形,另两种是两个白色大正方形和两个白色小正方形.已知长方形空地的周长为8.4米,每个黑色小长方形地砖的面积均为0.36平方米.设每个黑色小长方形地砖的长为m 米,宽为n 米.①____________;②求空地中白色地砖的总面积.2023-2024学年度第二学期期末学业质量监测七年级数学试卷参考答案及评分标准(仅供参考,其他解法,参照给分)一、选择题(本大题共12个小题,每题3分,共36分。

(试题)甘肃省陇西县文峰初中2012-2013学年七年级数学第二学期期末试卷

(试题)甘肃省陇西县文峰初中2012-2013学年七年级数学第二学期期末试卷

2012-2013学年第二学期期末考试试卷七年级数学题号一二三总分21 22 23 24 25 26 27 28得分温馨提示:本试卷共28道小题,时量120分钟,满分120分.一、选择题(每小题3分,共30分)1.点A(-2,1)是平面直角坐标系中的一点,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限2.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()3.如图,一扇窗户打开后,有窗钩AB可将其固定,这里所运用的数学道理是()A.三角形的稳定性 B.两点之间线段最短C.两点确定一条直线 D.垂线段最短4.暑期临近,需要反映本地一周内每天的最高气温的变化情况,指导人们生产生活,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图5.已知x=2,y=-3是二元一次方程5x+my+2=0的解,则m的值为()(1) A B C DA.4B.-4C.38D.-386. 下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。

(2)过一点有且只有一条直线与已知直线垂直。

(3)在同一平面内,两条直线的位置关系只有相交、平行两种。

(4)不相交的两条直线叫做平行线。

(5)有公共顶点且有一条公共边的两个角互为邻补角。

A. 1个 B. 2个 C. 3个 D. 4个 7.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )1-10342A23-11B2430-11C2430-11D8.如图,下列条件中不能判定AB∥CD 的是( )A.∠3=∠4B.∠1=∠5C.∠1+∠4=180°D.∠3=∠5 9.不等式组⎩⎨⎧>--<32x x 的解集是(A.x<-3B.x<-2C.-3<x<-2D.无解10. 一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °∠2=y °,则可得到方程组为( )二、填空题(每小题3分,共30分)11.剧院里5排2号可以用(5,2)表示,则(7,4)表示 .12.用不等式表示“a 与5的差不是正数”: . 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_ ___ ___. 14.将方程532=-y x 变形为用x 的代数式表示y 的形式是 .15. 不等式-4x ≥-12的正整数解为 . 16. 如图,将三角板的直角顶点放在直尺的一边上, ∠1=300,∠2=500,则∠3等于 .17..若102=+y x ,1534=+y x ,则x +y 的值是 .18.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是 .19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 . 20.己知t 满足方程组⎩⎨⎧=--=x t y tx 23532,则x 和y 之间满足的关系是 .三、解答题(共60分)21.解方程组和不等式组(每小题4分,共8分) (1)33814x y x y -=⎧⎨-=⎩ (2)⎩⎨⎧->--<+;31052,932x x x x22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=62°,求∠ACD 的度数. (5分)23.如图所示,点P ()00,y x 是△ABC 内任意一点,经过平移后所得点P ()00,y x 的对应点为()2-,3001y x P +。

河南省安阳市殷都区2023-2024学年七年级下学期期末数学试题(含答案)

河南省安阳市殷都区2023-2024学年七年级下学期期末数学试题(含答案)

2023-2024学年第二学期期末教学质量检测七年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.请直接将答案写在答题卡上,写在试题卷上的答案无效.3.答题时,必须使用2B 铅笔按要求规范填涂,用0.5毫米的黑色墨水签字笔书写.一、选择题(每小题3分,共30分)1.甲骨文是我国的一种古代文字,是汉字的最早形式,下列甲骨文中,能用其中一部分平移得到的是()A. B. C. D.2.下列调查中,最适合采用抽样调查的是( )A.调查某中学七年级一班学生的视力情况B.中央电视台《2024年第九季诗词大会》的收视率C.选出某校短跑最快的学生参加全市比赛D.对乘坐高铁的乘客进行安检3.下列各点中,在第二象限的点是( )A. B. C. D.4.下列无理数中,介于4和5之间的数是( )5.如图是木匠师傅利用直尺和三角尺过已知直线外一点作直线的平行线的方法,其直接理由是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平面内垂直于同一条直线的两条直线互相平行6.已知,下列式子不一定成立的是( )A. B. C. D.7.下列命题中,属于假命题的是( )A.带根号的数都是无理数B.对顶角相等C.同角的补角相等D.两直线平行,内错角相等8.已知x ,y 满足方程组,则的值是( )()4,2-()4,2--()4,2()4,2-a b >11a b ->-22a b-<-3131a b +>+ma mb>2728x y x y +=⎧⎨+=⎩x y +A.3B.5C.7D.99.中国清代算书《御制数理精蕴》中有这样一题:“马六匹、牛五头,共价四十四两;马二匹、牛三头共价二十四两,问马,牛各价几何?”译文:“有6匹马,5头牛,总价值44两;有2匹马,3头牛,总价值24两.求每匹马价值多少两,每头牛价值多少两?”设每匹马价值x 两,每头牛价值y 两,根据题意可列方程组为().A. B. C. D.10.如图,科技兴趣小组爱好编程的同学编了一个“步步高升”程序,已知点A 在平面直角坐标系中按规律跳动,开始时,已知,,,,,……以此类推,则的坐标为( )A. B. C. D.二、填空题(每小题3分,共15分)11.9的平方根是_______.12.若点在y 轴上,则_______.13.在对某班50名同学的身高进行统计时,发现最高的为,最矮的为.若以为组距分组,则应分为_______组.14.如图,点E 在的延长线上,在不添加任何辅助线和字母的情况下,添加一个条件_______,使(填一个即可).15.定义一种法则“”如下:,例如:,.若,则m 的取值范围是_______.三、解答题(本大题共8个小题,满分75分)16.(10分)计算:56443224x y x y +=⎧⎨+=⎩62445324x y x y +=⎧⎨+=⎩65442324x y x y +=⎧⎨+=⎩65242344x y x y +=⎧⎨+=⎩123O A A A →→→→ ()11,2A ()22,1A ()33,3A ()44,2A ()55,4A ()66,3A 100A ()100,50()100,51()101,50()100,52()3,4M a a +-a =177cm 153cm 5cm AB AB DC ∥⊗()()a ab a b b a b >⎧⎪⊗=⎨≤⎪⎩525⊗=233⊗=()351111m -+⊗=(1(217.(8分)解方程组18.(9分)解不等式组,请按下列步骤完成解答:(1)解不等式①,得________;(2)解不等式②,得________;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为________.19.(9分)某中学计划组织七年级学生前往4个安阳市景点中的1个开展研学活动,这4个景点为:A.林州红旗渠;B.殷墟博物馆;C.汤阴岳飞庙;D.中国文字博物馆.该中学数学兴趣小组针对七年级学生的意向目的地开展抽样调查(注:每位被抽样调查的学生选择且只选择1个意向前往的景点),并将调查结果绘制成如下两幅不完整的统计图:请结合图中所给信息,解答下列问题:(1)本次被抽样调查的学生共有_______名,并补全条形统计图;(2)在扇形统计图中,“C.汤阴岳飞庙”对应的圆心角度数为______;(3)该校七年级共有学生500名,请你估计七年级意向前往“D.中国文字博物馆”的学生人数.20.(9分)如图,点O 在直线上,,与互余.(1)求证:;(2)平分交于点F ,若,补全图形,并求的度数.21.(9分)如图,在平面直角坐标系中,三角形的顶点都在正方形网格的格点上,其中点A 的坐标为,现将三角形平移,使得点A 变换为点,点,分别是点B ,C 的对应点.-)12332x y x y -=⎧⎨+=⎩①②11321x x x x -⎧<+⎪⎨⎪+≥⎩①②AB OC OD ⊥D ∠1∠DE AB ∥OF BOD ∠DE 58OFD ∠=︒1∠ABC ()1,3-ABC A 'B 'C '(1)请画出平移后的三角形(不写画法);(2)点的坐标为______,点的坐标为______;(3)若三角形内部有一点P ,其平移后的对应点为,则点P 的坐标为______.22.(10分)北京时间2024年5月3月17时27分,嫦蛾六号探测器由长征五号遥八运载火箭在中国文昌航天发射场发射,之后准确进入地月转移轨道,发射任务取得圆满成功.某超市为了满足广大航天爱好者的需求,计划购进A 、B 两种型号运载火箭模型进行销售,据了解,2件A 种型号运载火箭模型和4件B 种型号运载飞船模型的进价共计140元;3件A 种型号运载火箭模型和2件B 种型号运载火箭模型的进价共计130元.(1)求A 、B 两种型号运载火箭模型每件的进价分别为多少元?(2)若该超市计划用不超过800元的资金购进这两种型号运载火箭模型共30件,求A 种型号运载火箭模型最多能购买多少件?23.(11分)综合与实践问题情境:数学课上,老师让同学们以“三角板与平行线”为主题开展数学活动.如图1,已知,直角三角板中,,将其顶点A 放在直线上,并使边于点D ,与相交于点H .(1)试判断边与直线的位置关系并说明理由;操作探究:(2)如图2,将图1中三角板的直角顶点B 放在平行线之间,两直角边,分别与,相交于点E ,F ,得到和,试探究与的数量关系并说明理由;下面是小明不完整的解答过程,请你补充完整.解:,理由:过点B 作直线,如图4所示.因为(已知)A B C '''B 'C 'ABC ()3,1P '-12l l ∥ABC 90B ∠=︒2l 1AB l ⊥AC 1l BC 1l ABC AB CB 1l 2l 1∠2∠1∠2∠1290∠+∠=︒1BN l ∥12l l ∥所以(______________)所以,________(______________)因为________,所以深入探究:(3)受小明启发,同学们继续探究下列问题.在图2中作线段和,使它们分别平分和的顶角,如图3,请直接写出的度数.2BN l ∥1ABN ∠=∠2∠=NBC ABC +∠=∠90ABC ∠=︒1290∠+∠=︒EO FO 1∠2∠EOF ∠2023——2024学年第二学期七年级数学参考答案及评分标准评分说明:解答题中,对于一题多解的题目,视学生解法过程的合理性恰当评分。

七上数学实验班答案

七上数学实验班答案

七上数学实验班答案【篇一:浙教版七年级上期中考试数学试卷(实验班)(含答案)】p> 温馨提示:1.本试卷共有23道小题,满分为100分,考试时间90分钟。

2.所有解答要求写在答题卷上,否则不给分。

.....一、选择题(共10小题,每小题3分,满分30分)1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是(▲)a.两点确定一条直线 c.两点之间线段最短b.两点之间直线最短d.直线比曲线短2.尽管受到国际金融危机的影响,但我市经济依然保持了平稳增长。

据统计,截止到今年4月底,我市金融机构存款余额约为1193亿元,用科学计数法应记为(▲) a.1.193?1010元 b. 1.193?1011元c.1.193?1012元 d. 1.193?1013元▲)a.4 4. 已知xa?3,xb?5,则x3a?2b?(▲)9327c. d. 10525a.2b.5.钟表上2时25分时,时针与分针所成的角是(▲ )?x?y?5k,6. 若关于x,y的二元一次方程组?的解也是二元一次方程2x?3y?6 的解,则x?y?9k?k的值为(▲)3a.?43b.444c.d.? 337.方程xxxx??????1的解是 1?33?55?72011?1013x?(▲)a.b2012201320131006b. c.d. 20132012100620139.如图,甲、乙两动点分别从正方形abcd的顶点a、c同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边(▲)a.ab上 b.bc上 c.cd上 d.da上二、填空题(共8小题,每小题3分,满分24分)11. 若3xm?5y2与x3yn的和是单项式,则nm?▲12. 在1,?,,25,0.575775777…(两个5之间依次多一个7),?这六个222数中,属于无理数的个数有▲ 个.13.已知a?2x-1,b是多项式,在计算b?a时,小马虎同学把b?a 看成了b-a,结2果得x?71x,则b?a=▲. 214.如图所示,数轴上表示2c、b,点c是ab的中点,则点a表示的数是____ ▲______.15.将数84960精确到百位,得到的近似值可以表示为▲16.如图,把一张长方形的纸按图那样折叠后,b、d两点落在118.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折。

七年级第二学期数学尖子生对抗赛试题-

七年级第二学期数学尖子生对抗赛试题-

○……○……绝密★启用前 河南省郸城县育才中学2017-2018学年度七年级第二学期数学尖子生对抗赛试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.在下列不等式中,是一元一次不等式的为( ) A.8>6 B.x²>9 C.2x+y≤5 D.12(x-3)<0 2.若(a-1)a x +5=0是关于x 的一元一次方程,则这个方程是( ) A.x+5=0 B.2x+5=0 C.-2x+5=0 D.无法确定 3.21x y =⎧⎨=-⎩适合下列二元一次方程组中的( ) A.3525x y x y -=⎧⎨+=⎩ B.325y x y x =-⎧⎨-=⎩ C.251x y x y -=⎧⎨+=⎩ D.221x y x y =⎧⎨=+⎩ 4.若m>n ,下列不等式不成立的是( ) A.m+2>n+2 B.2m>2n C.22m n > D.-3m>-3n 5.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54 B .45 C .27 D .72 6.把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是( ) A.…线…………○………线…………○……B. C. D. 7.小精灵幼儿园的阿姨给小朋友分巧克力,如果每人3块还差3块,如果每人2块又多2块,设小朋友有x 人,巧克力共有y 块,则下面所列方程组正确的是( ) A.3322x yx y +=⎧⎨-=⎩ B.3322x yx y -=⎧⎨+=⎩ C.3322x yx y -=⎧⎨-=⎩ D.3322x yx y +=⎧⎨+=⎩8.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有( )A .3种B .4种C .5种D .6种9.已知a ,b 满足方程组 则a+b 的值为( )A .﹣4B .4C .﹣2D .210.如果(a +1)x <a +1的解集是x >1,那么a 的取值范围是( )A .a <0B .a <﹣1C .a >﹣1D .a 是任意有理数第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.若关于x的方程mx+2=2(m-x)的解是12x=,则m= .12.已知关于x的不等式3x-5k>-7的解集是x>1,则k的值为________.13.若23m mx y与41n nx y--是同类项,则m+n=______________.14.若A=+175x,B=2-274x-,则当x=_______时,A与B的值相等.15.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,如果每人每天能够缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套。

七年级下数学竞赛考试(含答案)

七年级下数学竞赛考试(含答案)

七年级下数学竞赛考试(含答案)————————————————————————————————作者:————————————————————————————————日期:姓名___________ 考号___________ 班别___________ 校名_____________………………………… 密 ………… 封 ………… 线 ………… 内 ………第二学期校际联考七年级数学试卷题次 一 二 16 17 18 19 20 21 22 23 24 25 总分 得分说明:本卷共8页,25题,总分120分,考试时间共120分钟。

温馨提示:亲爱的同学们,请相信自己,仔细审题,沉着作答,就一定能考出好成绩,祝你成功!一、精心选一选:(每小题给出四个供选答案,其中只有一个是正确的,把正确的答案代号填放下表相应题号下的空格内。

每小题3分,共30分。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列计算正确的是( )A .4416x x x •=B .235()x x x -•-=C .2222a a a •=D .235a a a +=2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( ) A .相等 B .互补 C .互余 D .不能确定 3.用科学计数法表示近似数0.0515的正确的是( )A .15.1510-⨯B . 25.1510-⨯C .10.51510-⨯D . -25.210⨯ 4.下列说法正确的是( )A .0不是单项式B .ba是单项式 C .11x-多项式 D .单项式32x y π-的次数是3,系数是3π-5.如下图所示,已知AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠BAF 相等的角的个数是( )A .7个B .3个C .4个D .9个6.用长分别为10cm ,30cm ,40cm ,50cm 的四段线段,任取其中三段线段可以构成不同的三角形有( )个A B C D E G FA .0B .1C .2D .37.已知等腰三角形的一个外角为1100,则它的一个底角等于( )A .550B .700C .550 或700D .不能确定 8.已知下列条件,不能唯一画出一个三角形的是( )A .AB=5cm ,∠A=700,∠B=500B .AB=5cm ,∠A=700,∠C=500C .AB=5cm ,AC=4 cm ,∠C=500D .AB=5cm ,AC=4 cm ,∠A=500 9.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a <b <c <d B .a <b <d <c C .b <a <c <d D .a <d <b <c 10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。

2022-2023学年度第二学期七年级数学下学期期末数学试题

2022-2023学年度第二学期七年级数学下学期期末数学试题

七年级数学试卷注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算(a2)3的结果是A.a5 B.a 6 C.a 8 D.3a22.若三角形的两边a、b的长分别为3和5,则其第三边c的取值范围是A.2<c<5B.3<c<8C.2<c<8D.2≤c≤83.分解因式a2-2a,结果正确的是1 / 142 / 14A .a (a -2)B .a (a +2)C .a (a2-2)D .a (2-a ) 4.若a <b ,则下列变形正确的是A .a -1>b -1B .a 4>b 4C .-3a >-3bD .1a >1b5.如图,不能判断l1∥l2的条件是A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠36.某铁路桥长1200m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .则火车的长度为( ▲ )A .180mB .200mC .240mD .250m二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡的相应位置上)7.命题“对顶角相等”的逆命题是一个▲ 命题(填“真”或“假”). 8.某粒子的直径为0.000006米,用科学记数法表示0.000006是▲ . 9.如果 am =2,an =3,那么 am —n = ▲ .l 1l 225431(第5题)3 / 1410.计算(-2020)0×(13)-2= ▲ .11.若式子5x +3的值大于3x -5的值,则x 的取值范围是 ▲. 12.若代数式x2-ax +16是一个完全平方式,则常数a = ▲ . 13.若a -b =1,ab =-2,则(a -1)(b +1)= ▲ .14.已知关于x 、y 的二元一次方程组⎩⎨⎧x +y =4,x -2y =1,则4x2-4xy +y2的值为 ▲ .15.如图,在七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若∠1、∠2、∠3、∠4的外角和等于225°,则∠BOD = ▲ °.16.若关于x 的不等式组⎩⎨⎧x≤-0.5,x >m的整数解只有2个,则m 的取值范围为 ▲ .三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分=4分+4分)因式分解:(1)a3-2a2+a ;(2)4a2(2x -y)+b2(y -2x) .(第15题)4 / 1418.(6分)先化简,再求值:(a +b)(a -b)-(a -b)2+2b2,其中a =-3,b =12 .19.(5分)解方程组⎩⎨⎧x -y =-1,2x +3y =8.20.(6分)解不等式组⎩⎨⎧-3x≤9,①x >-2,② 2(x +1)<x +3.③请结合题意,完成本题的解答. (1)解不等式①,得 ▲ . (2)解不等式③,得 ▲ .(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集▲ .0 1 2 3 4-1 -2-30 1234-1 -2 -3 -4 -45 /1421.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中已标出了点B 的对应点B′.(1)在方格纸中画出平移后的△A′B′C′; (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ;(4)点F 为方格纸上的格点(异于点B ),若S △ACB =S △ACF ,则图中的格点F 共有 ▲ 个.22.(6分)如图,BD 为△ABC 的角平分线,若∠ABC =60°,∠ADB =70°.6 / 14(1)求∠C 的度数;(2)若点E 为线段BC 上任意一点,当△DEC 为直角三角形时,则∠EDC 的度数为▲.23.(8分)某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A 种花和2盆B 种花共需13元;2盆A 种花和1盆B 种花共需11元. (1)求1盆A 种花和1盆B 种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A 种盆花的数量不超过B 种盆花数量的2倍,请求出A 种盆花的数量最多是多少?24.(8分)完成下面的证明过程.已知:如图,点E 、F 分别在AB 、CD 上,AD 分别交EC 、BF 于点H 、G ,∠1=∠2, ∠B =∠C . 求证∠A =∠D .(第24题)DCBA (第22题)证明:∵∠1=∠2(已知),∠2=∠AGB(▲),∴∠1=▲.∴EC∥BF(▲).∴∠B=∠AEC(▲).又∵∠B=∠C(已知),∴∠AEC=▲.∴▲(▲).∴∠A=∠D(▲).25.(6分)如图①是由边长为a的大正方形纸片剪去一个边长为b 的小正方形后余下的图形.我们把纸片剪开后,拼成一个长方形(如图②).(第25题)(1)探究:上述操作能验证的等式的序号是▲.①a2+ab=a(a+b)②a2-2ab+b2=(a-b)2③a2-b2=(a+b)(a-b)7 / 14(2)应用:利用你从(1)中选出的等式,完成下列各题:①已知4x2-9y2=12,2x+3y=4,求2x-3y的值;②计算(1-122)×(1-132)×(1-142)×(1-152)×…×(1-11002) .26.(8分)如图①,∠1、∠2是四边形ABCD的两个不相邻的外角.(1)猜想并说明∠1+∠2与∠A、∠C的数量关系;8 / 149 / 14(2)如图②,在四边形ABCD 中,∠ABC 与∠ADC 的平分线交于点O .若∠A =50°,∠C =150°,求∠BOD 的度数;(3)如图③,BO 、DO 分别是四边形ABCD 外角∠CBE 、∠CDF 的角平分线.请直接写出∠A 、∠C 与∠O 的的数量关系▲.①DCBA1 2FEFEODCBA③(第26题)ODCBAFE10 / 14七年级数学答案一、选择题(每题2分,共12分)二、填空题(每小题2分,共20分)7.假 8. 6×10-6 9.23 10. 9 11. x >-412.±8 13.-2 14..25 15 . 45 16.-3≤m <-2 .. 三、解答题(共68分)17.(1)解:原式=a(a2-2a +1)………………2分 =a(a -1)2………………4分(2)解:原式=(2x -y)(4a2-b2)………………2分 =(2x -y) (2a +b)(2a -b)………………4分11 / 1418.解:原式=a2-b2-(a2-2ab +b2)+2b2………………2分 =2ab………………4分当a =-3,b =12时,原式=-3………………6分 19. ⎩⎨⎧ x -y =-1,① 2x +3y =8.②解:①×2 得:2x -2y =-2 ③②-③得:5y =10y =2……………2分将y =2代入①,解得x =1………………4分∴原方程组的解为⎩⎨⎧ x =1,y =2.…………5分 20. (1)x≥-3……………2分 (2)x <1……………4分(3)画图正确…………5分 (4)-2<x <1……………6分21. (1)~(3)画图正确各得2分,(4)7……………7分22. 解:(1)∵BD 为△ABC 的角平分线,∠ABC =60°∴∠DBC =12∠ABC =30°…………1分12 / 14又∵∠ADB 是△BDC 的外角,∠ADB =70°∴∠ADB =∠DBC +∠C……………3分∴∠C =∠ADB -∠DBC =40°…………4分(2)50°或90°…………6分23.解:(1)设一盆A 种花的售价为x 元,一盆B 种花的售价为y 元.根据题意得:⎩⎨⎧ x +2y =13 2x +y =11…………2分 解得:⎩⎨⎧ x =3y =5…………3分 答:一盆A 种花的售价为3元,一盆B 种花的售价为5元.…………4分(2)设A 种花购进a 盆,则B 种花购进(100-a)盆.根据题意得:a≤2(100-a)…………6分解得:a≤2003…………7分 又∵a 为整数,∴a 最大可取66.答:A 种花购进最多66盆………8分24.证明:∵∠1=∠2(已知),∠2=∠AGB(对顶角相等),∴∠1=∠AGB .∴EC ∥BF(同位角相等,两直线平行).∴∠B =∠AEC(两直线平行,同位角相等).13 / 14又∵∠B =∠C(已知),∴∠AEC =∠C .∴ AB ∥CD(内错角相等,两直线平行).∴∠A =∠D(两直线平行,内错角相等).每写对一个得1分25.解:(1)③…………2分(2)①∵4x2-9y2=12,∴(2x +3y)(2x -3y)=12,∴2x -3y =12÷4=3…………4分②101200…………6分26.解:(1)猜想:∠1+∠2=∠A +∠C…………1分 ∵∠1+∠ABC +∠2+∠ADC =360°又∵∠A +∠ABC +∠C +∠ADC =360°∴∠1+∠2=∠A +∠C…………3分(其他方法酌情给分) (2)∵∠A =50°,∠C =150°∴∠ABC +∠ADC =360°-200°=160°又∵BO 、DO 分别平分∠ABC 与∠ADC∴∠OBC =12∠ABC ,∠ODC =12∠ADC14 / 14 ∴∠OBC +∠ODC =12(∠ABC +∠ADC)=80° ∴∠BOD =360°-(∠OBC +∠ODC +∠C)=130°…………6分(其他方法酌情给分) (3)∠C -∠A =2∠O…………8分。

七年级下册数学期末试题 二

七年级下册数学期末试题 二

第1页 (共8页)xx 县20 —20 学年度第二学期期末教学质量检测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。

) 题号 Ⅰ Ⅱ总分 总分人一 二三 17 18 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共30分)一、选择题(本大题10个小题,每小题3分,共30分。

请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。

)1.方程4x -3=x 的解是( )A .x = 34B .x = 43 C .x =1 D .x =-12.已知a >b ,且c 为有理数,则下列关系一定成立的是( )A .ac >bcB .c -a >c -bC .ac 2>bc 2D .c +a >c +b3.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能铺成一个平面图案的是( ) A .正方形和正六边形 B .正三角形和正方形C .正三角形和正六边形D .正三角形、正方形和正六边形4.下列图案既是中心对称图形又是轴对称图形的是( ).A .B .C .D .5.现有5cm ,6cm ,11cm ,13cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成不同的三角形的个数是( ) A .1个 B .2个 C .3个 D .4个得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页 (共8页)6.若⎩⎨⎧==23y x 是方程3x -ay =0的一个解,则a 的值为( )A .3B .4C .4.5D .67.如图1所示,△ABC 是等腰直角三角形,点D 是斜边BC 的中点,△ABD 绕点A 旋转到△ACE 的位置,恰好与△ACD 组成正方形ADCE ,则△ABD 所经过的旋转是( )A .顺时针旋转225°B .逆时针旋转45°C .顺时针旋转315°D .逆时针旋转90°8.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( ) A .⎩⎨⎧=-=+705.25.24205.25.2y x y x B .⎩⎨⎧=+=-4205.25.270y x y xC . ⎩⎨⎧=-=+4205.25.270y x y x D .⎩⎨⎧=+=+4205.25.270y x y x 9.下列判断正确的是( )A .方程(x -3)(y +1)=0的解是⎩⎨⎧-==13y xB .方程2x -4y =8的解必是方程组⎩⎨⎧=+=-753842y x y x 的解C .t 可以取任意数时,⎩⎨⎧+=+=2345t y t x 都是方程3x -5y =2的解D . 二元一次方程组一定只有一组解10.若不等式组⎪⎪⎩⎪⎪⎨⎧++≥++≥++a x a x x x )1(343450312恰有三个整数解,则a 的取值范围为( )第3页 (共8页)A .12≤a ≤1B .12<a ≤1C .1≤a <32D .1≤a ≤32第Ⅱ卷(非选择题 共90分)二、填空题(本大题6个小题,每小题3分,共18分。

育英学校实验班四校联考七年级数学竞赛试卷(含答案)

育英学校实验班四校联考七年级数学竞赛试卷(含答案)

2012学年第二学期四校联考七年级数学竞赛试卷(2013.6.温州育英 周学光)亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。

答题时,请注意以下几点:1.全卷共6页,有三大题,21小题。

全卷满分120分。

考试时间100分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。

祝你成功!一、选择题(共10小题,每小题4分,满分40分) 1、(-2)2013+(-2)2012的值是( ▲ )A 、2B 、-2C 、-22012D 、22012 2、如图,已知直线AB ∥CD ,∠C =115°,∠A =25°,则∠E =( ▲ )A 、70°B 、80°C 、90°D 、100°3、如图,在RtΔABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( ▲ ) A .32 B .76 C .256D .24、已知a ,b 为实数,则解可以为 – 2 < x < 2的不等式组是( ▲ ) A .⎩⎨⎧>>11bx ax B .⎩⎨⎧<>11bx ax C .⎩⎨⎧><11bx ax D .⎩⎨⎧<<11bx ax5、△ABC 中,∠B =90º,两直角边AB =7,BC =24,在三角形内有一点P 到各边的距离相等,则这个距离是( ▲ )A .1B .3C .6D .无法求出 6、横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数是( ▲ ) A .3个 B .4个 C .6个 D .8个7. 已知ABC △中,AB AC =,D 为BC 边上一点,若ACD △和ABD △都是等腰三角形,则C ∠的度数为( ▲ )A .36°B .45°C .36°或45°D .45°或60° 8、如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ▲ )第2题图AD BE第3题图第12题第13题图第16题第15题图A 、B 、25 C、 D 、 359、若三角形的三条边的长分别为a 、b 、c ,且.03222=-+-b c b c a b a 则这个三角形一定是( ▲ ) . A.等腰三角形 B. 直角三角形 C.等边三角形 D.等腰直角三角形 10、如图,过边长为4的等边△ABC 的边AB 上一点P (不包括端点A ),作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA CQ =时,连结PQ 交AC 边于D ,则DE 的长为( ▲ )A .1B .2 C. D .3二、填空题(共6小题,每小题5分,满分30分) 11、已知227a b +=,3a b +=,(a <b ),则a b -= ▲12、如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多___▲_____条.13、如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = ▲14、多项式4244a a +加上一个单项式后,使其等于一个整式的平方,那么加上的单项式可以是 ____▲____(每写出1个得1分,5个或5个或上得5分)15、如图,AA '、BB '分别是∠EAB 、∠DBC 的平分线,若AA ’=BB '=AB ,则∠BAC 的度数为__▲_ 16、质点A 与质点B 分别由点A (2,0)同时出发,沿正方形BCDE 的周界 做环绕运动,质点A按逆时针方向以1单位/秒等速运动,质点B 按顺时针方向,以2单位/秒等速运动,则两个质点运动后的第11次相遇地点的坐标是 ▲ABCDE PQ第10题图2012学年第二学期四校联考七年级数学竞赛试卷答题卷(满分120分,时间100分钟)一、 选择题(本大题共有10小题,每小题4分,共40分)二、填空题(本大题共有6小题,每小题5分,共30分)11、______ ____________ 12、______ _ ____ ________13、_______ _ ______ 14、__ _15、_______ __ __ _____ 16、_______ ________ 三、解答题(第17、18、每题8分,第19题10分,第20、21每题12分,满分50分) 17、利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性. (1)根据下列所示图形写出一个代数恒等式;(2)已知正数a 、b 、c 和m 、n 、l ,满足.a +m =b +n =c +l =k .试构造边长为k 的正方形,利用图形面积来说明al +bm +cn <k 2学校____________________ 班级________________ 考号________________ 姓名________________…………………………………………装…………………………订……………………密…………………封……………………学校 班级 考号 姓名__________________________第17题图18、如图,已知∠BAD=∠DAC=90,AD⊥AE,且AB+AC=BE,求∠B的度数.第18题图19、温州市2013年足球邀请赛的记分规则及奖励方案如下表:(1)试判断A队胜、平、负各几场?(2)若每一场每名参赛队员均得出场费500元,设A队中一位参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.20、阅读理解:对于三个数a ,b ,c 用}{,,M a b c 表示这三个数的平均数,用min }{,,a b c 表示这三个数中最小的数。

七年级第二学期数学竞赛试题及参考答案

七年级第二学期数学竞赛试题及参考答案

七年级数学竞赛试题时间120分钟 总分150分1、平面直角坐标系内,点A (n ,n -1)一定不在 象限。

2、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小....的顺序排列为 。

3、.线段CD 是由线段AB 平移得到的。

点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为 。

4.、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于1 0,则a 的值是 。

5、正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_____ 。

6、定义a*b=ab+a+b,若3*x=27,则x 的值是_____。

7、如图,已知AE ∥DF,则∠A+∠B+∠C+∠D=_________。

8、如图,小亮从A 点出发,沿直线前进10米后向左转30︒,再沿直线前进10米,又向左转30︒,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米。

0 2 8 4 2 4 6 2 4 6 8 44 A30︒30︒30︒第8题第2题FEDCBA 第7题ABCDEFG9、方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解是________________ 。

10、如上图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G = _____________度。

二、选择题((共8小题,每小题5分,共40分):11、若点A(m,n)在第二象限,那么点B(-m,│n│)在( ) A 、 第一象限 B 、第二象限 C 、第三象限 D 、第四象限 12、已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数13、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、1714、设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2=+-+-+b a b a , 则第三边c 的长度取值范围是( )A 、3<c<5B 、2<c<4C 、4<c<6D 、5<c<615、 某种商品若按标价的八折出售,可获利20%,若按原价出售,可获利( ) A 、25% B 、40% C 、50% D 、66.7%16、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =40°,则∠ABX +∠ACX =( ) A 、25° B 、30° C 、45° D 、50°第16题17、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则第17题S 阴影的值为:A 、2Mcm 61B 、2Mcm 51C 、2Mcm 41D 、2Mcm 3118、方程198919901989...433221=⨯++⨯+⨯+⨯x x x x 的解是( )A 、1989B 、1990C 、1991D 、1992三、解答题:(共5小题,共60分):19、(10分)已知方程组⎩⎨⎧=+=+4232y ax y x 的解,x 与y 之和为1,求a 的值20、(15分)如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. 求21∠∠与的度数21、(15分)如图所示,在△ABC 中,∠B=∠C ,∠A DE =∠AED ,︒=∠60BAD ,第23题F求∠EDC的度数;22.(20分)某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格为每顶160元,可供10人居住的大帐篷,价格为每顶400元,学校共花去捐款96000元,正好可供2300人临时居住。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

七年级下册第二学期数学《 二元一次方程组考试试题》含答案.百度文库

七年级下册第二学期数学《 二元一次方程组考试试题》含答案.百度文库

A.(5,44)
B.(4,44)
C.(4,45)
D.(5,45)
8.如图,将正方形 ABCD 的一角折叠,折痕为 AE ,点 B 落在点 B′ 处, BAD 比 BAE 大 48.设 BAE 和 BAD 的度数分别为 x 和 y ,那么 x 和 y 满足的方程组是
()
y x 48
A.
y
x
90
题意可列方程组( )
A.
x y 3000 8%x 11%y
3000
10%
B.
x y 3000 8%x 11%y
3000(1
10%)
x y 3000
x y 3000
C. 1 8% x 111% y 300010% D. 8%x 11%y 10%
3.已知
5a 3a
5b 7b
9 5
点为 P1 , P1 关于 B 的对称点 P2 , P2 关于 C 的对称点为 P3 ,按此规律继续以 A , B , C
为对称中心重复前面操作,依次得到 P4 , P5 , P6 ……则点 P2022 的坐标为( )
A.(0,0)
B.(0,2)
C.(2,-4)
D.(-4,2)
7.一只跳蚤在第一象限及 x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后 接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单 位,那么第 2020 秒时跳蚤所在位置的坐标是( )
2x+y 16 A. 4x 3y 22
2x+y 16 B. 4x 3y 27
2x+y 11 C. 4x 3y 22
2x+y 11 D. 4x 3y 27

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

1七年级第 二学期数学竞赛试题选择题(每题3分,满分30分)1. 若01-<<a ,则2,1,a aa a ,2a ,a1从小到大排列正确的是 ( )A .aa a 12<< B .21a a a <<C .21a a a <<D .aa a 12<< 2.下列运用等式的性质变形正确的是( ).A .若y x =,则55+=-y xB .若b a =,则bc ac =C .若a b cc=,则b a 32= D .若y x = ,则x y aa= 3.已知有理数a ,b 在数轴上对应的两点分别是A ,B.请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b - 4.若A 和B 都是3次多项式,则A+B 一定是( ) A 、6次多项式 B 、3次多项式C 、次数不高于3次的多项式D 、次数不低于3次的多项式 5.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )A .2x -5x +3B .-2x +x -1C .-2x +5x -3D .2x -5x -1326.若2237y y ++的值为8,则2469y y +-的值是( ). A .2 B .-17 C .-7 D .77.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2010 (B )2011 (C )2012 (D )20138.六个整数的积36=⋅⋅⋅⋅⋅f e d c b a ,f e d c b a 、、、、、 互不相等,则f e d c b a +++++ 的和可能是( ).A .0B .10C .6D .89.把100个苹果分给若干个小朋友,每个人至少分得一个,且每个人分得的数目不同,那么最多有( )人. A.11 B. 12 C. 13 D.14 10.方程120072005 (35153)=⨯++++x x x x的解是x 等于( ) A.20072006 B.20062007 C. 10032007 D.20071003二、填空题(每题3分,满分24分)11.如果b a ⋅<0,那么=++ababb b a a. … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫312.如果3()480a a x +++=是关于x 的一元一次方程,那么21a a +-= .13.在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么右下角的小方格内填入的数是 .(1)451(2)321(3)53?14.如上图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图•中该正方体三种状态所显示的数据,可推出“?”处的数字是 . 15.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折10次可以得到 条折痕。

浙江省绍兴县柯岩中学2012-2013学年七年级竞赛模拟数学试题(含答案)

浙江省绍兴县柯岩中学2012-2013学年七年级竞赛模拟数学试题(含答案)

初一数学竞赛试卷学校_________班级_________姓名_________一、细心选一选(本题共30分,每小题3分)1.如果四个互不相同的正整数m,n,p,q满足(6-m)(6-n)(6-p)(6-q)=4,那么m+n+p+q=()A、24B、25C、26D、282.如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)3.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.互余C.互补或相等D.不相等4.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板()A、赚了5元B、亏了25元C、赚了25元D、亏了5元5.如图△ABC中,已知D、E、F分别是BC、AD、CE的中点,且S△ABC=4,那么阴影部分的面积等于()A.2 B.1 C.D.6.如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有()A.5个B.4个C.3个D.2个7.在数轴上表示整数的点称为整数点,某数轴的单位长度是1㎝,若在这个数轴上随意画出一条长2009㎝的线段AB,被线段AB盖住的整数有( )A、2006个或2007个B、2007个或2008个C、2008个或2009个D、2009个或2010个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有( )A .1个B .2个C .3个D .4个9.下列四张扑克牌图案中,旋转180°后能与原来图案重合的是( )A .B .C .D .10.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站, 要求它到三条公路的距离相等,则供选择的地址有( ) A .1处B .2处C .3处D .4处二、精心填一填(本大题共30分,每小题3分)11.计算:若(a —2)2与88|b - 1|2003 互为相反数,则a-b a+b= 。

2019—2020学年度第二学期期末考试七年级数学试题及答案

2019—2020学年度第二学期期末考试七年级数学试题及答案

七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012学年第二学期七年级数学竞赛试题卷
分值:120分 测试时间:120分钟
一、选择题(每小题4分,共24分)
1.若012=-+x x ,则2012223++x x = ( )
A .2013
B .2012
C .2011
D .2010
2.A 、B 两地相距60千米,甲、乙两人驾车(匀速)从A 地驶向B ,甲的时速为120千米,乙的时速为90千米, 如果乙比甲早出发6分钟, 则当甲追上乙以后,乙再经过( )分钟可以到达B .
(A )25 (B )20 (C )16 (D )10
3.5.有一批战士恰好组成一个八列的长方形队伍,若在队列中再增加120人,或从队列中减 少120,并重新列队,都能组成一个正方形队列那么,原来长方形队列的战士人数可能为 ( )
A .136人
B .136人或169人
C .409人
D .136人或904人
4.把两个整数平方得到的数“拼”起来(即按一定顺序写在一起)后仍然得到一个平方数,则称最后得到的这个数为“拼方数”。

如把整数4,3分别平方后得到16,9,拼成的数“169”是13的平方,称“169”是“拼方数”在下列数中,属于“拼方数”的是:( )
A 、225
B 、494
C 、361
D 、1219
5. 如图,直线AB ∥CD ,∠EFA=30°,∠FGH=90°,∠HMN =30°,∠CNP= 50°,则∠GHM 的大小是( )
A .30°
B .40°
C .50°
D .60°
6.5.If the middle one of three consecutive odd number is n ,then their product is ( )
(A )n n 663- (B )n n -34 (C )n n 43- (D )n n -3
(英语小词典:consecutive 连续的;product 乘积;middle 中间的;odd number 奇数)
二、填空题(每小题5分,共50分)
7.已知a 是正数,且21a a -=,则224a a
-等于_________. 8. 已知223,2x xy xy y +=+=-,则2223x xy y --= .
9.若n 满足22(2004)(2005)1n n -+-=,则(2004)(2005)n n --等于_____________
10.若∠A 和∠B 的两边分别平行,且∠A 比∠B 的2倍少30°,则∠B 的度数为_____________
11. 水果市场有甲、乙、丙三种水果,如果买甲2千克,乙1千克,丙4千克,共付钱6元;如果买甲4千克,乙2千克,丙2千克,共付钱4元;今要买甲4千克,乙2 千克,丙5千克,则共应付钱____________.
12.因式分解:2xy+9- x 2- y 2 =_________
13.若关于x 的方程()42a x b bx a -+=-+-有无穷多个解,则323a b +的值为__________
14.若一个两位数ab 是合数,且ba 也是合数,ab +ba 是完全平方数,这样的两位 数ab 是___ __.
15. 已知 正整数a,b,c 满足ab+a+b=bc+b+c=ca+c+a=3,则(a+b)(b+c)(c+a)=
16.若整数z y x ,,满足方程组⎪⎩⎪⎨⎧=+=+95
94
yz x z xy ,则=xyz 或 .
三、解答题(第17题10分、第18、19、20题各12分,共46分)
17. 如果一个数能表示成2222x xy y ++(,x y 是整数),我们称这个数为“好数”.
(1)你认为“好数”的特征是什么?判断29是否为“好数”?
(2)写出1,2,3,…,9中的“好数”;
18.进入初中阶段我们已经学习了很多数学知识,能够解决些实际问题.请用你已经学过数学知识解决下列问题:
(1)如图24-1,表示一条两岸彼此平行的河,现在要求这条河上建一
座桥,并要求桥与两岸垂直,画出你所建“桥”的示意图。

(“桥”
可用线段表示)
(2)如图24—2,用直线l 1,l 2一条河的两岸,且l 1∥l 2,,现在要在这条河上建一座桥(桥与河岸
保持垂直),桥应建在何处才能使村庄A 经桥过河到村庄B 的路程最短?画出示意图。

(3)若河的两岸l 1,l 2在CC ’处直角拐弯,宽度保持不变,从村庄A 处往村庄B
处,经过2坐桥(桥与河岸仍然保持垂直),桥应建在何处才能使村庄A 经
桥过河到村庄B 的路程最短?画出示意图。

(不要求说出理由)
19.一池塘,山泉以固定的流量(即单位时间里流入池中的水量相同)不停地向池塘内流淌,现池塘中有一定深度的水,若用一台A 型抽水机则1小时后正好能把池塘中的水抽完,若用两台A 型抽水机则20分钟正好把池塘中的水抽完,问若用三台A 型抽水机同时抽,则需要多长时间恰好把池塘中的水抽完?
20..已知 a+b+c=6,a 2+b 2+c 2=12,则 a 2013-b 2013+c 2013=________
24—1
答案
选择题
1.A
2.C 3。

D 4.C 5。

B 6。

C
填空题
7. 3 8.12 9. 0 10。

30°或70° 11. 8 12.(3+x-y )(2-x+y ) 13. 30 14. 56或65 15. 8 16. 0或1984
解答题
17. (1)因为222222()x xy y x y y ++=++,,x y 是整数,
所以“好数”是两个整数的平方和--------------------------------------------------------3分
222229(32)2323222=++=+⨯⨯+⨯,29是“好数”。

------------------------6分 (2)1,2,3,…,9中的“好数”有1,2,4,5,8,9。

----------------------------------10分
18作图略
19.12分钟
20. 22013。

相关文档
最新文档