七年级数学竞赛考试试题及答案
七年级数学竞赛试题及答案
3.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,E a+2000的值不能是().1998⨯1998+1998,b=-1999⨯1999+1999,c=-2000⨯2000+2000,CF=BC,则长方形ABCD的面积是阴影部分面积的d+2000,则a,b,c,d的大小关系是(9.有理数-3,+8,-12,0.1,0,,-10,5,-0.4中,绝对值小于1的数共有_____个;所有七年级数学竞赛(时间100分钟满分100分)一、选择题:(每小题4分,共32分)1.(-1)2000的值是().(A)2000(B)1(C)-1(D)-2000二、填空题:(每题4分,共44分)1.用科学计数法表示2150000=__________.2.有理数a、b、c在数轴上的位置如图所示:若m=│a+b│-│b-1│-│a-c│-│1-c│,则1000m=_________.A D2.a是有理数,则11若△BDF的面积为6平方厘米,则长方形ABCD的面积6(A)1(B)-1(C)0(D)-20003.若a<0,则2000a+11│a│等于().(A)2007a(B)-2007a(C)-1989a(D)1989a 是________平方厘米.F4.a的相反数是2b+1,b的相反数是3a+1,则a2+b2=____.B C5.某商店将某种超级VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”4.已知a=-1999⨯1999-1999则abc=().2000⨯2000-20002001⨯2001-2001的广告,结果每台超级VCD仍获利208元,那么每台超级VCD的进价是________.6.如图,C是线段AB上的一点,D是线段CB的中点.已知图(A)-1(B)3(C)-3(D)15.某种商品若按标价的八折出售,可获利20%,若按原价出售,则可获利()(A)25%(B)40%(C)50%(D)66.7%6.如图,长方形ABCD中,E是AB的中点,F是BC上的一点,且A D13 ()倍.E中所有线段的长度之和为23,线段AC的长度与线段CB的A C D B长度都是正整数,则线段AC的长度为_______.7.张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券1000元.回家后他在存单的背面记下了当国库券于2003年7月8日到期后他可获得的利息数为390元.若张先生计算无误的话,则该种国库券的年利率是________.8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇.相遇后,甲、乙步行速(A)2(B)3(C)4(D)57.若四个有理数a,b,c,d满足B 1111a-1997=b+1998=c-1999=)F C度都提高了1千米/小时.当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,则A、B两地的距离是_________千米.(A)a>c>b>d(B)b>d>a>c;(C)c>a>b>d(D)d>b>a>c8.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入-1,并将所显示的结果再次输入,这时显示的结果应当是().(A)2(B)3(C)4(D)513正数的平方和等于_________.10.设m和n为大于0的整数,且3m+2n=225.(1)如果m和n的最大公约数为15,则m+n=________.(2)如果m和n的最小公倍数为45,则m+n=________.11.若a、b、c是两两不等的非0数码,按逆时针箭头指向组成的两位数a 2.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为ab,bc都是7的倍数(如图),则可组成三位数abc共_______个;圆心,边长为半径的圆弧.则阴影部分的面积是多其中的最大的三位数与最小的三位数的和等于_________.b c少?(取3).三、解答题(每小题12分,共24分)1.某书店积存了画片若干张.按每张5角出售,无人买.现决定按成本价出售,一下子全部售出.共卖了31元9角3分.则该书店积存了这种画片多少张?每张成本价多少元?a - 1997 = 2. ∵a 是有理数, ∴不论a 取任何有理数, 11当选(D)时, 111998 ⨯ (1998 + 1) =- 1999 ⨯19981998 ⨯1999 = -1 ,1999 ⨯ (1999 +1) =- 2000 ⨯ (2000 +1) =- 2001 ⨯20002000 ⨯2001 = -1 ,FQ= 1 b,FG= 12 BC ·FQ= 1因△BFC 的面积= 12 a · 2 2 · b · 4 解之得 x= 36= 18ab)= 1 2 ab-(48 ab ∴ x 所以若按标价出售可获利为 3 ⎩-b 3a 1 5 ,b=- 2解之得 a=- 12 b,又∵以FC= 1 ∴ BE= 1∴a +b = 1 5 .23 a ⨯ b = ∴阴影部分的面积= 1答案:7.由 1 1 b + 1998 = 1 c - 1999 =1d + 2000 ,一、选择题1. 由-1的偶次方为正1,-1的奇次方为负1可得(-1)2000=1,所以应选(B).a + 2000 的值永远不会是0. ∴选(C).但要注意a + 2000 这个式子本身无意义, ∴不能选(D).故选(C)是正确的.3.∵ a<0,∴│a │=-a,∴ 2000a+11│a │=2000a-11a=1989a,所以应选(D).4.∵ a=- 1999 ⨯ (1999 - 1)可知a-1997=b+1998=c-1999=d+2000,由这个连等式可得:a>b,a<c,a>d;b<c,b>d,c>d,由 此可得c>a>b>d,故应选(C).8.因为当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1 之和,所以若输入-1,则显示屏的结果为(-1)2+1=2,再将2输入,则显示屏的结果为22+1=5 ,故应选择(D). 二、填空题1.∵ 2150000=2.16× 106∴ 用科学计数法表示2150000=2.15×106 .2.由图示可知,b<a<0,c>0,∴ │a+b │=-(a+b),│b-1│=1-b,│a-c │=c-a,│1-c │=1-c, ∴ 1000n=1000×(-a-b-1+b-c+a-1+c)=1000×(-2)b= 2000 ⨯ (2000 -1) 2000 ⨯1999 1999 ⨯2000 = -1,=-20003.如图所示.设这个长方形ABCD 的长为a 厘米,宽为b 厘米.即BC=a,AB=b,则其面积为ab 平方厘米. ∵ E 为AD 的中点,F 为CE 的中点,∴过F 作FG ⊥CD,FQ ⊥BC 且分别交CD 于G 、BC 于Q,则c= 2001⨯ (2001 -1)∴ abc=(-1)×(-1)×(-1)=-1,故应选(A).5.设某种商品的标价为x,进价为y.由题意可得:80%x=(1+20%)y2 y .3y = 2 ,这就是说标价是进价的1.5倍,12 y - y = 2 y ,即是进价的50%,所以应选(C).6.设长方形ABCD 的长为a,宽为b,则其面积为ab.在△ABC 中, ∵ E 是AB 的中点,12 CD= 2 4 a.1 1 1b,同理△FCD 的面积= ∴△BDF 的面积△= BCD 的面积-( △BFC 的面积△+ CDF 的面积),即1 1 ab+∴ ab=48.∴ 长方形ABCD 的面积是48平方厘米.⎧-a = 2b + 1 4.∵ a 的相反数是2b+1,b 的相反数是3a+1,由此可得: ⎨5 .a,2 3 a,∴ BF= 3a,2 212 1 ∴ △EBF 的面积为 ⨯ 21 1 6 ab △但 ABC 的面积=2 ab , 5.设每台超级VCD 的进价为x 元,则按进价提高35%,然后打出“九折”的出售价每台为x ·(1+35%)×90%元,由题意可列方程为:1 12 ab - 6 ab =3 ab ,∴ 长方形的面积是阴影部分面积的3倍,故应选(B).x · ((1+35%)×90%-50=x+2081.35×0.9x=x+2580.215x=2583∴ AC= 23 - 7CD9.绝对值小于1的数共有5个.所有正数的平方和等于89 109x=12001 ∴ 每台超级VCD 的进价是1200元.∴ 阴影部分面积=4 π R 2 = 6.由图知,图中共有六条线段,即AC 、AD 、AB 、CD 、CB 、DB.又因D 是CB 的中点, 所以CD=DB,CB=2CD,AB=AC+2CD,AD=AC+CD,由题意可得AC+AD+AB+CD+CB+DB=23,即AC+AC+CD+AC+2CD+CD+2CD+CD=23,也即 3AC+7CD=233 ,∵ AC 是正整数,∴ 23-7CD ∣3的条件是CD=2,也即23-7CD=9时,能被3整除, ∴AC=3.7.设该国库券的年利率为x,则由题意可列方程:1000×5×x=390解之得 x=7.8%所以,该国库券的年利率为7.8%.8.设甲每小时行v 1千米,乙每小时行v 2千米,则甲乙两地的距离就是2(v 1+v 2)千米.由题意可得:3.6·(v 1+v 2+2)=4(v 1+v 2),0.4(v 1+v 2)=7.2, v 1+v 2=18.∴2(v 1+v 2)=2×18=36,即A 、B 两地的距离为36千米.900 .10.∵ m 、n 为大于0的整数,且3m+2n=225,若(m,n)=15,则3m=3×15=45,2n= 2×90=180,∴ m=15,n=90∴(1)m+n=15+90=105.(2)若[m,n]=45,则m+n=45+45=90.11.若 ab , b c 都是7的倍数,则可组成 abc 的三位数共有15个,其中最大的是984,最小的是142,它们的和是1126. 三、 解答题1.∵ 每张的成本价小于5角.但又能被31元9角3分整除. 所以可设每张成本价为x 角y 分,则3193∣ xy ,显然 xy =31(分).即每张成本价为0. 31 元. 这种画片共有3193÷31=103(张).25 ⨯ 34 = 18.752.根据已知可得,S Δ ABC =S 梯形BCDE∴S Δ ABC -S 梯形BCFE = S 梯形BCDE - S 梯形BCFE ,即S Δ cdf = S Δ aef。
七年级上学期数学竞赛试题(含答案)
学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。
初一数学竞赛试题及答案
初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果是多少?A. 3 + 4B. 5 - 2C. 6 × 2D. 8 ÷ 2答案:C3. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:C6. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B7. 计算下列表达式的结果是多少?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. 2 × 3答案:A8. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 0D. -2答案:A9. 下列哪个选项是奇数?A. 2B. 3C. 4D. 5答案:B10. 计算下列表达式的结果是多少?A. 10 × 0B. 10 ÷ 0C. 10 - 0D. 10 + 0答案:C二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是____。
答案:±612. 一个数的立方是27,这个数是____。
答案:313. 计算下列表达式的结果:(-3) × (-4) = ____。
答案:1214. 一个数的绝对值是7,这个数是____。
答案:±715. 计算下列表达式的结果:(-5) ÷ (-1) = ____。
答案:5三、解答题(每题10分,共50分)16. 计算下列表达式的结果:(1) 2 × 3 + 4 × 5(2) (-3) × 2 - 5 × (-2)答案:(1) 2 × 3 + 4 × 5 = 6 + 20 = 26(2) (-3) × 2 - 5 × (-2) = -6 + 10 = 417. 求下列方程的解:(1) 2x + 3 = 7(2) 3x - 4 = 11答案:(1) 2x + 3 = 72x = 7 - 32x = 4x = 2(2) 3x - 4 = 113x = 11 + 43x = 15x = 518. 一个数的平方是49,求这个数。
七年级数学竞赛试题及答案
七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。
A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。
2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。
4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。
5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。
三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。
如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。
2. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。
现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。
在一个直角三角形中,直角边的平方和等于斜边的平方。
2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。
七年级数学竞赛试题及答案
七年级数学竞赛试题一、选择题(每小题4分,共40分)1、如果m 是大于1的偶数,那么m 一定小于它的……………………( )A 、相反数B 、倒数C 、绝对值D 、平方2、当x=-2时,37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、17 3、255,344,533,622这四个数中最小的数是………………………( )A. 255B. 344C. 533D. 6224、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 …………………………….. ( ).A 、21B 、24C 、33D 、375、有理数的大小关系如图2所示,则下列式子中一定成立的是……( )A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打 ( )A 、9折B 、8.5折C 、8折D 、7.5折7、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………………………………………………… ( )图1 图2A 、1B 、2C 、3D 、48、方程 |x|=ax+1有一负根而无正根, 则a 的取值范围…………( )A. a>-1B. a>1C. a ≥-1D. a ≥19、122-+-++x x x 的最小值是…………………………………( )A. 5B.4C.3D. 210、某动物园有老虎和狮子,老虎的数量是狮子的2倍。
七年级数学竞赛试题(含答案)
七年级数学竞赛试题(含答案)一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
4、定义a*b=ab+a+b,若3*x=27,则x的值是________。
5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F的对面是_______。
FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。
7、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为________。
8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有________ 中不同的值,其中最小值为________。
9、当a ______时,方程组223196922x y a ax y a a⎧+=+-⎪⎨-=-+⎪⎩的解是正数。
10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。
二、细心选一选(每题5分,共30分)1、如果有2015名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2015名学生所报的数是()A、1B、2C、3D、42、俗话说“商场如战场”,“买的永远没有卖的精”。
初一数学竞赛试卷及答案解析
初一数学竞赛试卷及答案解析二、填空题1、 有理数a ,b ,c 在数轴上的位置如图所示,化简=------+c c a b b a 11.2、 三个互不相等的有理数,既可以表示为1,a +b ,a 的形式,又可以表示为0,ab ,b 的形式,则a 1992+b 1993=_________. 3、 计算:=-------++-+-)100011)(99911()511)(411)(311)(211(10201970198019902000 . 4、 已知,1||,1||≤≤y x 且u =|x +y |+|y +1|+|2y -x -4|,则u 的最大值和最小值之和等于___________.5、 有理数4.0,5.10,31,0,1.0,21,8,3---+-中,所有正数的和填在下式的〇中,所有负数的和填中下式的□中,并计算出下式的结果填在等号右边的横线上.〇÷□= .6、 已知a = -1,则1+)8)(8(2)6)(6(2)4)(4(2765432a a a a a a ++++++++ +)14)(14(2)12)(12(2)10)(10(21312111098a a a a a a ++++++++=___________。
7、 a 是自然数,且a a 22=,则a = 。
8、 能够使不等式成立的x 的{(|x |-x )(1+x )<0}取值x 范围是_____。
参考答案二、填空题1、 -2解:由图可见,)(00,0b a b a b a b a +-=+⇒<+⇒<<, 又)1(10110--=-⇒<-⇒<<b b b b ,)(00c a c a c a c a --=-⇒<-⇒<<. 由图可知c c c c -=-⇒>-⇒<11011, 所以c c a b b a ------+11)1()]([)]1([)(c c a b b a --------+-=)1()()1()(c c a b b a ---+-++-=211-=+--+-+--=c c a b b a .2、 2解:由于三个互不相等的有理数,既可表示为1,a +b ,a 的形式,又可以表示为0,a b ,b 的形式,也就是说这两个三数组分别对应相等,于是可以判定,a +b 与a 中间有一个为0,a b 与b 中有一个为1,但若a =0,会使a b 没意义,所以a 0≠,只能是a +b =0,即a = -b ,又a 0≠得a b = -1,由于0, a b ,b 为两两不相等的有理数,在a b = -1的情况下,只能是b =1,于是a = -1.所以a 1992+b 1993=(-1)1992+(1)1993=1+1=2.3、 1000000 解:)10001)(9991()51)(41)(31)(21(10201970198019902000-------++-+- 100099999999854433221)1020()19701980()19902000(⋅⋅⋅⋅⋅⋅-++-+-= 10001)10101010(10100÷++++= 个 10001000⨯=1000000=.4、 10解:因为11,11,1,1||≤≤-≤≤-∴≤≤y x y x 从而y x x y y y 24|42|,1|1|-+=--+=+, 当0≤+y x 时, 52)2941)(+=-+++++=x y x y y x u .11≤≤-x ,73≤≤∴u ,又当1,1=-=y x 时, 3=u ;当1,1-=-=y x 时, 7=u ,即u 的最大值为7,最小值为3,则u 的最大值与最小值的和等于10.5、 417403- 解:〇中填的数是:3013135311.0)8(=++++, □中填的数是:10913)4.0()10()21()3(-=-+-+-+-, 而4174031391030403)10139()30403()10913(301313-=⨯-=÷-=-÷.6、 1541 解: 原式=1++-+-+=⨯+⨯+⨯+⨯+⨯+⨯)7151()5131(113152111329112792572352 (15411541151311)151131()131111()11191()9171=+=-+=-+-+-+-.7、 2或4解:a 为自然数,要使 a a 22= ①由于①右边只有质因数2,所以①左边也只能有质因数2,即m a 2=,m 为自然数。
数学竞赛试题及答案初中
数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
七年级数学竞赛试题及答案
七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。
12. 如果5个连续的整数的和是45,那么中间的数是______。
13. 一个数的2倍与7的和是35,那么这个数是______。
14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。
15. 一本书的价格是35元,如果打8折出售,那么现价是______元。
16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。
17. 一个数的3/4加上它的1/2等于5,那么这个数是______。
18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。
七年级超难数学竞赛题带解析
七年级超难数学竞赛题带解析一、代数部分。
1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。
- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。
- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。
- 那么a^b = 3^-2=(1)/(9)。
2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。
- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。
- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。
- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。
3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。
- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。
4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。
- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。
七年级数学竞赛试卷(附参考答案)
张掖第十四中2019-2020学年第一学期七年级数学数学试卷一、选择题(每小题5分,共50分)1、如果m 是大于1的偶数,那么m 一定小于它的( ).A 、相反数B 、倒数C 、绝对值D 、平方2、-|-3|的相反数的负倒数是( )A 、-13B 、13 C 、-3 D 、33、长城总长约为6700千米,用科学计数法表示为( )。
A 、6.7510⨯米 B 、6.7610⨯米 C 、6.7710⨯米 D 、6.7810⨯米4、若m <0,n >0,m+n <0,则m ,n ,-m ,-n 这四个数的大小关系是( ) A.m >n >-n>-m B.-m >n >-n >m C.m >-m >n >-n D.-m >-n >n >m5、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场 ( )A.不赔不赚B.赚160元C.赚80元D.赔80元6、若,,,a b c m 是有理数,且23,2a b c m a b c m ++=++=,那么b 与c ( )A 、互为相反数B 、互为倒数C 、互为负倒数D 、相等7、有理数a 等于它的倒数,则a 2004是( ) A 、最大的负数 B 、最小的非负数 C 、绝对值最小的整数 D 、最小的正整数 8、已知一个多项式与x x 932+的和等于1432-+x x , 则这个多项式是( )A 、15--xB 、15+xC 、113--xD 、113+x9、把14个棱长为1的正方体,在地面上堆叠成 如图所示的立方体,然后将露出的表面部分涂成红色,那么红色部分的面积为( )A 、21B 、24C 、33D 、3710、如图,点C ,D ,E ,F 都在线段AB 上,点E 是AC 的中点, 点F 是BD 的中点,若EF =18,CD =6,则线段AB 的长为( )A .24B .12C .30D .42二、填空题(每小题5分,共40分)1、 计算:1-2+3-4+5-6+7-8+……+2019 =_________班级姓名考场F · · · · · · A BC DE2、(-0.125)2013×(-8)2014的值为3、有理数在数轴上的位置如图1所示,化简4、已知:5||=a ,且0=+b a ,则_______=-b a ;5、若0232=--a a ,则______6252=-+a a6、 已知x=5时,代数式ax 3+ bx -5的值是10,当x=-5时,代数式ax 3+bx+5= 。
数学竞赛试卷七年级【含答案】
数学竞赛试卷七年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是9,那么这个数是:A. 81B. 9C. 3D. -92. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 下列哪个数是整数?A. 3.14B. 2.5C. 5.0D. -3.54. 下列哪个数是负数?A. -1B. 0C. 1D. 25. 下列哪个数是偶数?A. 21B. 23C. 25D. 27二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 两个正数相乘的结果是负数。
()3. 两个负数相除的结果是正数。
()4. 两个正数相除的结果是负数。
()5. 0乘以任何数都等于0。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是16,那么这个数是______。
2. 如果一个数的平方根是4,那么这个数是______。
3. 两个负数相乘的结果是______。
4. 两个正数相乘的结果是______。
5. 0乘以任何数都等于______。
四、简答题(每题2分,共10分)1. 请解释有理数的概念。
2. 请解释整数的概念。
3. 请解释负数的概念。
4. 请解释偶数的概念。
5. 请解释奇数的概念。
五、应用题(每题2分,共10分)1. 计算下列各式的值:a) -3 + 7b) 5 (-2)c) -4 × 6d) -9 ÷ 3e) 14 ÷ (-2)2. 判断下列各式的符号:a) -(-5)b) -(+8)c) -(-12)d) -(+15)e) -(-20)3. 计算下列各式的值:a) √16c) √36d) √49e) √644. 判断下列各数是否为整数,并解释原因:a) 3.14b) 2.5c) 5.0d) -3.5e) 8.95. 判断下列各数是否为负数,并解释原因:a) -1b) 0c) 1d) 2e) -3六、分析题(每题5分,共10分)1. 请分析并解释为什么两个负数相乘的结果是正数。
七年级数学竞赛试题及答案
七年级数学竞赛试题及答案一、选择题1. 已知a = 3,b = -4,则下列哪一个式子是正确的?A. a + b = 7B. a - b = -1C. a × b = -12D. a ÷ b = -3答案:B2. 如果a × b = 20,且b = 5,求a的值。
A. 4B. 5C. 10D. 25答案:C3. 打折前售价为120元的商品现以原价的95%出售,打折后的价格是多少?A. 108元B. 114元C. 119元D. 123元答案:B4. 若一边长为5的正方形的面积是矩形的面积的四分之一,则矩形的长为多少?A. 5B. 10C. 15D. 20答案:C5. 以下哪个数不是素数?A. 17B. 19C. 21D. 23答案:C二、解答题1. 一个数减去13等于19,求这个数是多少?解答:设这个数为x,根据题目可得方程x - 13 = 19,将方程两边同时加上13,则x = 32。
因此,这个数是32。
2. 计算1/4 + 2/3的值,结果用最简分数表示。
解答:首先计算通分,得到3/12 + 8/12 = 11/12。
因此,1/4 + 2/3 = 11/12。
3. 六边形ABCDEF的周长是42 cm,已知AB = CD = EF = 5 cm,BC = DE = 6 cm。
求六边形的面积。
解答:六边形由三个边长相等的正三角形组成,而正三角形的面积公式为S = (边长^2 * √3) / 4。
根据题目可得六边形的面积为3 * [(5^2 * √3) / 4] = (75√3) / 4。
因此,六边形的面积为(75√3) / 4。
4. 如图所示,一个长方体的表面积为94 cm²,其中长、宽和高的比为1:2:3。
求长方体的体积。
解答:设长、宽和高分别为x、2x和3x,则根据长方体的表面积公式2(x * 2x + 2x * 3x + x * 3x) = 94,化简为14x^2 = 94,解得x =√(94/14) = √(47/7)。
数学竞赛初中试题及答案
数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。
答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。
初一数学竞赛测试题及答案
初一数学竞赛测试题及答案【测试题一】题目:计算下列表达式的值:\[ 2^3 + 3^2 - 4 \times 5 \]【答案】首先,按照运算顺序,先计算乘方和乘法,再计算加法和减法。
\[ 2^3 = 8 \]\[ 3^2 = 9 \]\[ 4 \times 5 = 20 \]然后进行加减运算:\[ 8 + 9 - 20 = 17 - 20 = -3 \]所以,表达式的值为 -3。
【测试题二】题目:如果一个数的平方等于这个数本身,这个数是什么?【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = x \]这个方程可以重写为:\[ x^2 - x = 0 \]\[ x(x - 1) = 0 \]根据零乘律,\( x = 0 \) 或 \( x - 1 = 0 \),所以 \( x = 0 \) 或 \( x = 1 \)。
【测试题三】题目:一个长方体的长、宽、高分别是 8 厘米、6 厘米和 5 厘米,求这个长方体的体积。
【答案】长方体的体积可以通过长、宽、高的乘积来计算:\[ \text{体积} = 长 \times 宽 \times 高 \]\[ \text{体积} = 8 \times 6 \times 5 = 240 \text{ 立方厘米} \]【测试题四】题目:一个圆的半径是 7 厘米,求这个圆的周长和面积。
【答案】圆的周长公式是 \( C = 2\pi r \),面积公式是 \( A = \pi r^2 \)。
将半径 \( r = 7 \) 厘米代入公式中:\[ C = 2 \times \pi \times 7 \approx 44 \text{ 厘米} \]\[ A = \pi \times 7^2 \approx 153.94 \text{ 平方厘米} \]【测试题五】题目:一个班级有 40 名学生,其中 2/5 是男生,3/5 是女生。
如果班级里增加了 10 名男生,那么班级里男生和女生的比例是多少?【答案】首先,计算原有男生和女生的人数:男生:\( 40 \times \frac{2}{5} = 16 \) 人女生:\( 40 \times \frac{3}{5} = 24 \) 人增加 10 名男生后,男生总数变为 \( 16 + 10 = 26 \) 人,女生人数不变。
初一数学竞赛测试题及答案
初一数学竞赛测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于这个数本身,那么这个数可能是:A. 0B. 1C. -1D. 2答案:A、B3. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零答案:D4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9答案:C5. 如果一个三角形的三个内角分别为x°,y°和z°,那么x+y+z的值是:A. 180°B. 360°C. 90°D. 270°答案:A二、填空题(每题3分,共15分)6. 一个数的平方根是它本身,这个数可以是______。
答案:0或17. 如果a和b是两个连续的自然数,且a>b,那么a-b的值是______。
答案:18. 一个数的立方等于它本身,这个数可能是______。
答案:1或-1或09. 如果一个数的相反数是它本身,那么这个数是______。
答案:010. 一个数的绝对值等于它本身,这个数是非负数,即这个数是______。
答案:正数或零三、计算题(每题5分,共20分)11. 计算下列各题:(1) (-3) × (-4) = ______。
答案:12(2) 5 - (-3) = ______。
答案:8(3) (-2)² = ______。
答案:4(4) √16 = ______。
答案:4四、解答题(每题10分,共30分)12. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = √(9 + 16) = √25 = 5厘米。
13. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
求第10项的值。
七年级数学竞赛试卷含答案
一、选择题(每题3分,共30分)1. 下列数中,哪个是质数?A. 15B. 17C. 28D. 352. 下列哪个图形是轴对称图形?A. 长方形B. 三角形C. 平行四边形D. 梯形3. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 24B. 32C. 16D. 204. 如果一个数的平方是25,那么这个数可能是?A. 5B. -5C. 5或-5D. 255. 下列哪个数是负数?A. -3B. 0C. 3D. ±36. 一个等腰三角形的底边长是6厘米,腰长是8厘米,那么这个三角形的周长是多少厘米?A. 20B. 24C. 28D. 327. 下列哪个数是正数?A. -0.5B. 0C. 0.5D. ±0.58. 一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 25C. 15D. 209. 下列哪个数是有理数?A. √2B. πC. 0.101001D. √-110. 一个圆的半径是3厘米,那么它的直径是多少厘米?A. 6B. 9C. 12D. 15二、填空题(每题5分,共20分)11. 一个数的倒数是它的什么数?12. 一个等腰直角三角形的两条直角边长分别是3厘米和4厘米,那么它的斜边长是________厘米。
13. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是________平方厘米。
14. 下列分数中,哪个是最简分数?________三、解答题(每题10分,共30分)15. 一辆汽车从甲地出发,以每小时60公里的速度行驶,2小时后到达乙地。
如果以每小时80公里的速度行驶,那么到达乙地需要多少小时?16. 一个梯形的上底是10厘米,下底是20厘米,高是15厘米,求这个梯形的面积。
17. 解下列方程:3x - 5 = 4x + 2。
四、应用题(每题15分,共30分)18. 小明家住在5楼,他每层楼爬3分钟,那么他从1楼到5楼一共需要多少时间?19. 一块正方形的草坪,边长是20米,现在要在草坪周围围一圈篱笆,篱笆的长度是多少米?答案:一、选择题1. B2. A3. B4. C5. A6. B7. C8. B9. C 10. A二、填空题11. 相反数 12. 5 13. 50 14. 2/3三、解答题15. 2小时16. 300平方厘米17. x = -7四、应用题18. 10分钟19. 80米。
初中数学竞赛题(七年级)含答案
永阳中学七年级数学竞赛试题一、选择题(每小题3分,共30分)1、若21)1(22)1(1)1(32=+-⨯--⨯-+--M ,则)(=M A .2- B .1- C .1 D .22、若N 是能够被所有小于8的正整数整除的第二小的正整数,则N 的各数字之和是( )A .12B .10C .8D .63、在△ABC 中,∠A+∠C=2∠B ,2∠A+∠B=2∠C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4、△ABC 外角的度数之比为3:4:5,则与之对应的三个内角度数之比为( )A .5:4:3B .3:4:5C .3:2:1D .1:2:35、若2011999=a ,20121000=b ,20131001=c ,则( ) A .a<b<c B .b<c<a C .c<b<a D .a<c<b6、下列命题中,正确的是( )A .若0>a ,则a a >2;B .一个数的绝对值的相反数和这个数的相反数的绝对值不可能相等;C .倒数等于其自身的数只有1;D .负数的任意次幂都不会是0;7、电视机的售价连续两次下降10%,降价后每台电视机的售价为a 元,该电视机的原价为( ) A .a 81.0 B .a 21.1 C .21.1a D .81.0a 8、一个多边形的内角和为900°,则从这个多边形的某一个顶点引出的对角线有( )A .3B .4C .5D .69、△ABC 的三边长分别是a ,b ,c ,如果)(22a c b a bc c b -+=-+,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形10、用8个相同的小正方形搭成一个几何体,其俯视图如图4所示,那么这个几何体的左视图一定不是( )二、填空题(每小题4分,共48分)11、以小于20的质数为边长的各边不等的三角形有________个;12、已知 a □b=2a -3b+ab , a ★b=a+b -ab ,则 [2□(-3)] ★[3□(-2)]=___________;13、如图6,射线OC 、OD 、OE 、OF 分别平分∠AOB 、∠COB 、∠AOC 、∠EOC ,若∠FOD=24°,则∠AOB=_____________14、李强用15分钟完成了某项工作的254,若他将工作效率提高到原来的23倍,则他再需________小时即可完成这项工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每题1分,共15分)
1.数1是( )
A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )
A.11
a b
<; B.-a<-b.C.|a|>|b|.D.a2>b2.
3.a为有理数,则一定成立的关系式是( )
A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )
A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )
A.(-13579)+0.2468; B.(-13579)+
1 2468
;
C.(-13579)×
1
2468
; D.(-13579)÷
1
2468
6.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.
7.如果四个数的和的1
4
是8,其中三个数分别是-6,11,12,则笫四个数是( )
A.16. B.15. C.14. D.13.
8.下列分数中,大于-1
3
且小于-
1
4
的是( )
A.-11
20
; B.-
4
13
; C.-
3
16
; D.-
6
17
.
9.方程甲:3
4
(x-4)=3x与方程乙:x-4=4x同解,其根据是( )
A.甲方程的两边都加上了同一个整式x.
B.甲方程的两边都乘以4
3
x;
C. 甲方程的两边都乘以4
3
; D. 甲方程的两边都乘以
3
4
.
10.如图: ,数轴上标出了有理数a,b,c的位置,其中O
是原点,则111
,,
a b c
的大小关系是( )
A.111
a b c
>>; B.
1
b
>
1
c
>
1
a
; C.
1
b
>
1
a
>
1
c
; D.
1
c
>
1
a
>
1
b
.
11.方程
522.2 3.7
x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=
1
2
,y=-2时,代数式42x y xy -的值是( )
A .-6.
B .-2.
C .2.
D .6.
13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )
A .225.
B .0.15.
C .0.0001.
D .1.
14.不等式124816
x x x x
x +
+++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-
116
. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.
%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()
%mp nq m n
++.
二、填空题(每题1分,共15分)
1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32
÷6×
1
6
=_______. 3. 计算:
(63)36
162
-⨯=__________.
4. 求值:(-1991)-|3-|-31||=______. 5. 计算:
1111112612203042
-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.
7. 计算:19191919199191919191⎛⎫⎛⎫
--- ⎪ ⎪⎝⎭⎝⎭
=_______.
8. 计算:
1
5
[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________. 9.在(-2)5,(-3)5
,5
12⎛⎫- ⎪⎝⎭
,5
13⎛⎫- ⎪⎝⎭
中,最大的那个数是________. 10.不超过(-1.7)2的最大整数是______.
11.解方程2110121
1,_____. 3124
x x x
x
-++
-=-=
12.求值:
355355
113113
355
113
⎛⎫
---
⎪
⎝⎭
⎛⎫
- ⎪
⎝⎭
=_________.
13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.
14.一个数的相反数的负倒数是
1
19
,则这个数是_______.
15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之
和都相等,则
ab cd ef
a b c d e f
++
+++++
=____.
答案与提示
一、选择题
1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D
提示:
1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.
有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.
3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.
4.把图形补成一个大矩形,则阴影部分面积等于
ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
6.3.1416×7.5944+3.1416×(-5.5944)
=3.1416(7.5944-5.5944)=2×3.1416
=6.2832.选B.
为32.第四个数数=32-(-6+11+12)=15.选B.
新方程x-4=4x与原方程同解.选C.
13.-4,-1,-2.5,-0.01与-15中最大的数是-0.01,绝对值最大的数是-15,(-0.01)×(-15)=0.15.选B.
15.设混合溶液浓度为x,则m×p%+n×q%=(m+n)x.
二、填空题
提示:
1.(-1)+(-1)-(-1)×(-1)÷(-1)=(-2)-(-1)=-1.
4.(-1991)-|3-|-31||=-1991-28=-2019.
6.1990n的末四位数字应为1991+8009的末四位数字.即为0000,即1990n末位至少要4个0,所以n的最小值为4.
(-1993)]=-1991.
10.(-1.7)2=2.89,不超过2.89的最大整数为2.
去分母得
4(2x-1)-(10x+1)=3(2x+1)-12.
8x-4-10x-1=6x+3-12.
8x-10x-6x=3-12+4+1.
13.十位数比个位数大7的两位数有70,81,92,个位数比十位数大7的两位数有18,29,其中只有29是质数.
b+d+7=-1+3+7=9,所以各行各列两条对角线上三个数之和等于9.易求得a=4,e=1,c=5,f=0.。