99北师版七年级下学期期末数学试题

合集下载

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。

【北师大版】初一数学下期末试卷(带答案)

【北师大版】初一数学下期末试卷(带答案)

一、选择题1.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一2.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为13,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④3.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾 B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒 D.在一个仅装有白球和黑球的袋中摸球,摸出红球4.有下列说法:①轴对称的两个三角形形状相同;②面积相等的两个三角形是轴对称图形;③轴对称的两个三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的.其中正确的有()A.4个B.3个C.2个D.1个5.下列与防疫有关的图案中不是轴对称图形的有()A.1个B.2个C.3个D.4个6.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个7.下列长度的三条线段能构成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,11cm C .3cm ,4cm ,8cm D .5cm ,6cm ,10cm 8.下列长度的三条线段中,有组成三角形的是( )A .3cm,4cm,9cmB .8cm,7cm,15cmC .12cm,13cm,24cmD .2cm,2cm,6cm9.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .3010.函数y =中自变量x 的取值范围是( ) A .x ≤2B .x ≥2C .x <2D .x >211.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )A .∠α+∠β+∠γ=180°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α-∠β-∠γ=180°[ 12.若6a b +=,4ab =,则22a ab b ++的值为()A .40B .36C .32D .30二、填空题13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.14.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2附近,由此可以估计纸箱内有红球________个.15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,存在着很多这种图形变换(如图①).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图②)的对应点所具有的性质是_____________.16.如图,将一张长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置上,ED′的延长线与BC 的交点为G ,若∠EFG=50°,则∠2-∠1=_____.17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.已知ABC △是等腰三角形,周长是60cm ,腰长为cm x ,底为cm y . (1)用含x 的关系式表示y :__________.(2)当腰长由20cm 变化到25cm 时,底边长由__________cm 变化到__________cm . 19.如图,直线AB 、CD 相交于点O ,OMAB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.20.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.三、解答题21.现有足够多除颜色外均相同的球,请你从中选9个球设计摸球游戏. (1)使摸到红球的概率和摸到白球的概率相等;(2)使摸到红球、白球、黑球的概率都相等;(3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.22.如图,在平面直角坐标系中,ABC 的顶点(1,1),(4,2),(2,4)A B C 均在正方形网格的格点上.(1)画出ABC 关于y 轴对称的图形111A B C △并写出顶点111,,A B C 的坐标; (2)在y 轴上画出点P ,使PB PC 最小(保留作图痕迹).23.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .24.将长为40 cm 、宽为15 cm 的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.…(1)根据上图,将表格补充完整: 白纸张数 1 23 4 5… 纸条长度40110145…(2)设x 张白纸黏合后的总长度为y cm ,则y 与x 之间的关系式是什么? (3)你认为多少张白纸黏合起来总长度可能为2 018 cm 吗?为什么? 25.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别在线段AB 、BC 上,//AC DE ,//DF AE 交BC 于点F ,AE 平分.BAC ∠求证:DF 平分BDE ∠ 证明:AE ∵平分(BAC ∠已知)12∠∠∴= ( ) //AC DE13(∴∠=∠ )故23∠∠= ( )//DF AE25∴∠=∠ ( )并且34∠=∠ ( )45∴∠=∠ ( )DF ∴平分BDE ∠ ( )26.如图①是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)图②中阴影部分的正方形的边长是__________; (2)用两种不同的方法表示②中阴影部分的面积:方法1:____________________;方法2:____________________(3)观察图②,请你写出式子()2a b +、()2a b -、ab 之间的等量关系:__________; (4)根据(3)中的等量关系解决如下问题:若7m n -=-,5mn =,则()2m n +的值为多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】试验次数足够大时,频率才可以表示概率,A选项试验次数过少,所以错误;5%是每张均有%的可能中奖,而不是100张彩票一定会有5张中奖,偷换概念;概率题一定要考虑样本空间,然后确定样本,C中还有脱靶的可能,所以错误;抛掷一枚均匀硬币,结果只有两种正面朝上和正面朝下,且每次发生的可能是相等的,每做一次,正面朝上的概率都是二分之一.【详解】小智说,做3次掷图钉试验,发现2次钉尖朝上,但是试验次数少,因此不能确定钉尖朝上的概率,所以A错误;小慧说,某彩票的中奖概率是5%,那么如果买100张彩票不一定会有5张中奖,所以B 错误;小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是1 2不正确,中靶与不中靶不是等可能事件,一般情况下,还有脱靶的可能,所以C错误;小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一,所以D正确.故选:D.【点睛】本题考察了频率和概率的区别,等可能时间概率的计算;在初中课程中认为当试验次数足够大时,频率可以表示概率;等可能事件中,n件事发生的概率都是相等的,因此每件事发生的概率是1n.2.B解析:B【分析】根据概率和频率的概念对各选项逐一分析即可.【详解】①概率为0的事件是不可能事件,①错误;②试验次数越多,某情况发生的频率越接近概率,故②正确;③事件发生的概率是客观存在的,是确定的数值,故③正确;④根据概率的概念,④错误.故选:B【点睛】本题考查概率的意义,考查频率与概率的关系,本题是一个概念辨析问题.3.B解析:B【解析】【分析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键.4.B解析:B【分析】根据平移、翻折或旋转的性质逐项判断可求解.【详解】解:①轴对称的两个三角形形状相同,故正确;②面积相等的两个三角形形状不一定相同,故不是轴对称图形,故错误;③轴对称的两个三角形的周长相等,故正确;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的,故正确.故选:B.【点睛】本题考查了图形的变换,掌握平移、翻折或旋转的性质是解题的关键.5.B解析:B【分析】根据轴对称图形的概念判断即可.【详解】解:由轴对称图形的概念可得:第一、二个图案是轴对称图形,第三、四个图案不是轴对称图形,故选:B.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C解析:C【解析】【分析】根据轴对称图形的概念对各个图案进行判断即可得解.【详解】解:第1个是轴对称图形,故本选项正确;第2个是轴对称图形,故本选项正确;第3个是轴对称图形,故本选项正确;第4个不是轴对称图形,故本选项错误.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.D解析:D【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、2+3=5,不能构成三角形;B、5+6=11,不能构成三角形;C、3+4<8,不能构成三角形;D、5+6>10,能构成三角形.故选:D.【点睛】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数就可以.8.C解析:C【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】解:A、∵3+4=7<9,∴不能构成三角形,故本选项不符合题意;B、∵8+7=15,∴不能构成三角形,故本选项不符合题意;C、∵12+13=25>24,∴能构成三角形,故本选项符合题意;D、∵2+2=4<6,∴不能构成三角形,故本选项不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠BAC=∠EAD=80°,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.10.D解析:D【解析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,x-2>0,解得x>2,故选D.11.C解析:C【分析】过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β-∠γ=180°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.12.C解析:C【分析】根据a+b=6,ab=4,应用完全平方公式,求出a2+ab+b2的值为多少即可.【详解】解:∵a+b=6,ab=4,∴a2+ab+b2=(a+b)2-ab=36-4=32故选:D.【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.二、填空题13.【分析】根据概率的计算公式解答【详解】∵共有16个小正方形其中有4个涂上阴影∴小虫落到阴影部分的概率是故答案为:【点睛】此题考查简单事件的概率计算掌握事件发生的所有可能性及该事件可能发生的次数是解题解析:1 4【分析】根据概率的计算公式解答.【详解】∵共有16个小正方形,其中有4个涂上阴影,∴小虫落到阴影部分的概率是41164,故答案为:14.【点睛】此题考查简单事件的概率计算,掌握事件发生的所有可能性及该事件可能发生的次数是解题的关键.14.200【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手列出等式解答【详解】设红球的个数为x根据题意得:解得:x=200故答案为:200考点:利用频率估计概率解析:200【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】设红球的个数为x,根据题意得:10000.2x解得:x=200故答案为:200.考点:利用频率估计概率.15.对应点到对称轴的距离相等【分析】由已知条件根据轴对称的性质和平移的基本性质可得答案【详解】解:两个对应三角形的对应点所具有的性质是对应点到对称轴的距离相等故答案为:对应点到对称轴的距离相等【点睛】本解析:对应点到对称轴的距离相等【分析】由已知条件,根据轴对称的性质和平移的基本性质可得答案.【详解】解:两个对应三角形的对应点所具有的性质是对应点到对称轴的距离相等.故答案为:对应点到对称轴的距离相等.【点睛】本题主要考查了轴对称及平移的性质,正确把握对应点之间关系是解题的关键.16.20°【分析】根据AD∥BC折叠可知∠EFG=∠DEF=∠D′EF=50°进而知∠1度数再根据两直线平行同旁内角互补可得∠2度数可得答案【详解】解:∵AD∥BC∴∠DEF=∠EFG∵∠EFG=50°解析:20°【分析】根据AD∥BC、折叠可知,∠EFG=∠DEF=∠D′EF=50°,进而知∠1度数,再根据两直线平行,同旁内角互补可得∠2度数,可得答案.【详解】解:∵AD∥BC,∴∠DEF=∠EFG,∵∠EFG=50°,∴∠DEF=50°;又∵∠DEF=∠D′EF,∴∠D′EF=50°;∴∠1=180°-50°-50°=80°;又∵AD∥BC,∴∠1+∠2=180°,即∠2=180°-∠1=180°-80°=100°,∴∠2-∠1=20°.故答案为:20°.【点睛】本题主要考查翻折问题及平行线的性质,结合题干熟悉翻折过程中相等的量及平行线的性质是关键.17.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.10【解析】(1)∵2x+y=60∴y=60-2x(2)把x=20代入y=60-2x 得:y=20;把x=25代入y=60-2x 得:y=10;∴当腰长由20cm 变化到25cm 时底边长由20cm 变化到1解析:602y x =-10【解析】(1)∵2x+y=60,∴y=60-2x.(2)把x=20代入y=60-2x得:y=20;把x=25代入y=60-2x得:y=10;∴当腰长由20cm变化到25cm时,底边长由20cm变化到10cm.故答案为:(1)y=60-2x;(2)20;10.19.132【分析】先根据垂直定义得到∠AOM=90°求出∠AOD的度数然后根据对顶角的性质求解即可【详解】∵∴∠AOM=90°∵∴∠AOD=90+42=132°∴∠AOD=132°故答案为:132【点睛解析:132【分析】先根据垂直定义得到∠AOM=90°,求出∠AOD的度数,然后根据对顶角的性质求解即可.【详解】⊥,∵OM AB∴∠AOM=90°,∵42∠=,MOD∴∠AOD=90+42=132°,∠=∠AOD=132°.∴COB故答案为:132.【点睛】本题考查了垂直的定义,对顶角的性质,熟练掌握对顶角相等是解答本题的关键.20.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x的一次项所以让一次项的系数等于0得a的等式再求解【详解】解:(2x-a)(x+1)=2x2+(2-a)x-a∵积中不含x的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(2x-a)(x+1)=2x2+(2-a)x-a,∵积中不含x的一次项,∴2-a=0,∴a=2,故答案为:2.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.三、解答题21.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)设计红球和白球的个数相等即可;(2)让红球、白球、黑球的个数都相等即可;(3)让红球和白球的个数相等,且小于黑球的个数即可.【详解】解:可以按如下设计:(1)袋中放入红球4个,白球4个,黑球1个,则P (红球)P =(白球)49=,P (黑球)19=; (2)袋中放入红球3个,白球3个,黑球3个,则P (红球)P =(白球)P =(黑球)13=; (3)袋中放入红球2个,白球2个,黑球5个,则P (红球)P =(白球)29P <(黑球)59=; 【点睛】 考查概率公式的应用;用到的知识点为:在总数一定的情况下,相应数量越多,概率越大.22.(1)见解析;111(1,1),(4,2),(2,4)A B C ---;(2)见解析【分析】(1)过点A 、B 、C 作y 轴垂线,交y 轴于G 、F 、E ,在线段AG ,BF ,CE 的延长线上截取C 1E=CE ,B 1F=BF ,A 1G=AG ,顺次连结A 1B 1、B 1C 1、C 1A 1即可得到要作的图形,由(1,1),(4,2),(2,4)A B C ,关于y 轴对称,点的横坐标互为相反数,纵坐标不变,可求111A B C △顶点坐标为:111(1,1),(4,2),(2,4)A B C ---;(2)如图,连结BC 1交y 轴于点P ,根据轴对称性质CP=C 1P ,可得CP+BP=C 1P+BP=C 1B ,由两点之间,线段最短,则点P 即为所求.【详解】解:(1)过点A 、B 、C 作y 轴垂线,交y 轴于G 、F 、E ,在线段AG ,BF ,CE 的延长线上截取C 1E=CE ,B 1F=BF ,A 1G=AG ,顺次连结A 1B 1、B 1C 1、C 1A 1,则111A B C △为所求,如图所示.∵(1,1),(4,2),(2,4)A B C ,由关于y 轴对称,点的横坐标互为相反数,纵坐标不变,∴111A B C △顶点坐标为:111(1,1),(4,2),(2,4)A B C ---.(2)如图,连结BC 1交y 轴于点P ,则CP=C 1P ,CP+BP=C 1P+BP=C 1B ,由两点之间,线段最短,则点P 即为所求.【点睛】本题考查轴对称作图和线段和最短问题,掌握轴对称作图的方法与步骤,利用轴对称性质,与两点之间线段最短构造线段BC 1是解题关键.23.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a , 故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.24.(1) 75,180;(2)y =35x +5;(3)不能.理由见解析.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填表即可;(2)x 张白纸黏合,需黏合(x-1)次,重叠5(x-1)cm ,所以总长可以表示出来;(3)当y=2018时,列出方程并解之,注意x 是整数,若x 为自变量取值范围内的值则能,反之不能.【详解】(1)由题意可得,2张白纸粘合后的长度为:402⨯-5=75cm ,5张白纸黏合后的长度为:405⨯-54⨯=180cm ,故答案为75,180;(2)根据题意和所给图形可得出:y =40x -5(x -1)=35x +5.(3)不能.理由如下:令y=2018得:2018=35x +5,解得x≈57.5.∵x 为整数,∴不能使黏合的纸片总长为2018cm【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.25.角平分线的定义 ; 两直线平行,内错角相等 ; 等量代换 ; 两直线平行,同位角相等 ; 两直线平行,内错角相等 ; 等量代换 ; 角平分线的定义.【分析】根据角平分线的定义得到12∠=∠,根据平行线的性质得到13∠=∠,等量代换得到23∠∠=,根据平行线的性质得到25∠=∠,等量代换即可得到结论.【详解】证明:AE ∵平分(BAC ∠已知)12(∴∠=∠角平分线的定义)//(AC DE 已知)13(∴∠=∠两直线平行,内错角相等)故23(∠=∠等量代换)//(DF AE 已知)25∴∠=∠,(两直线平行,同位角相等)34(∠=∠两直线平行,内错角相等)45(∴∠=∠等量代换)DF ∴平分(BDE ∠角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解答本题的关键. 26.(1)-a b ;(2)()2a b -;()24a b ab +-;(3)22()()4a b a b ab -=+-;(4)69【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可;(2)①从整体考虑,用大正方形的面积减去四个小矩形的面积就是阴影部分的面积;②从局部考虑,根据正方形的面积公式,小正方形的边长的平方就是阴影部分的面积;(3)把已知条件代入进行计算即可求解.(4) 利用第 (3) 问得出的式子进行计算即可.【详解】解:(1)阴影部分的正方形的边长是:a﹣b;(2)方法1:大正方形的面积减去四个小矩形的面积:(a+b)2﹣4ab,方法2:阴影小正方形的面积:(a﹣b)2;(3)(a+b)2﹣4ab=(a﹣b)2;(4)根据(3)的关系式,(m+n)2=(m﹣n)2+4mn,∵m﹣n=﹣7,mn=5,∴(m+n)2=(﹣7)2+4×5=49+20=69.【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.。

北师大版数学七年级下册期末考试试题附答案

北师大版数学七年级下册期末考试试题附答案

北师大版数学七年级下册期末考试试卷本试卷满分120分,考试时间90分钟,试题共25题,选择12道、填空6道、解答7道.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定2.下列计算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(2b2)3=6b6D.(﹣a+b)(﹣b﹣a)=a2﹣b23.下列微信表情图标属于轴对称图形的是()A.B.C.D.4.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定∠ACB与∠DFE 全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E5.如图,在∠ABC中,AB=AC,∠A=30°,直线a∠b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.40° B.45° C.50° D.35°6.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A .B .C .D .7.下列计算正确的是( )A .(﹣2y +1)(﹣2y ﹣1)=1﹣4y 2B .(12x +1)2=14x 2+1+xC .(x ﹣2y )2=(x +2y )2﹣6xyD .(x +3)(2x ﹣5)=2x 2﹣x ﹣158.如图,已知AB =AC ,AB =5,BC =3,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则∠BDC 的周长为( )A .8B .10C .11D .139.如图,在Rt∠ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N .再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =12,则∠ABD 的面积是( )A .12B .24C .36D .4810.如图,AB =AC ,BE ∠AC 于E ,CF ∠AB 于F ,BE ,CF 交于D ,则以下结论:∠∠ABE ∠∠ACF ;∠∠BDF ∠∠CDE ;∠点D 在∠BAC 的平分线上.正确的是( )A .∠B .∠C .∠∠D .∠∠∠11.小虎和小丽一起玩一种转盘游戏.转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示,固定指针转动转盘,任其自由停止.若指针所指的数字为奇数,小虎获胜;否则小丽获胜.则在该游戏中小虎获胜的概率是( )A .12B .49C .59D .2312.如图,有A ,B ,C 三个地点,且AB ∠BC ,从A 地测得B 地的方位角是北偏东43°,那么从C 地测B 地的方位角是( )A .南偏东47°B .南偏西43°C .北偏东43°D .北偏西47° 二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上 13.计算:﹣12016﹣(−13)﹣2+(π+1)0= ;(34)2007×(﹣113)2008= .14.等腰三角形的一个角为40°,则它的顶角为 . 15.计算:2019×2021﹣20202= .16.如图,在∠ABC 中,AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 的直线GH 与DE 平行,若∠C =40°,则∠GAD 的度数为 .17.如图,从以下给出的四个条件中选取一个: (1)∠1=∠2;(2)∠3=∠4;(3)∠A=∠DCE;(4)∠A+∠ABD=180°.恰能判断AB∠CD的概率是.18.如图,这是用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成…按照这样的规律排列下去,则第6个图案中共有个白子.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤),只有一项是符合题目要求的.19.(1)(2x2y﹣3xy2)﹣(6x2y﹣3xy2)(2)(−32ax4y3)÷(−65ax2y2)⋅8a2y(3)(ab+1)2﹣(ab﹣1)2(4)20153﹣2014×2015×2016(5)(4y+3x﹣5z)(3x+5z﹣4y)(6)(34a4b7−12a3b8+19a2b6)÷(13ab3)2,其中a=12,b=﹣4.20.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图1中涂黑一块小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图2中涂黑一块小正方形,使涂黑的四个小正方形组成一个中心对称图形.21.如图,是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向绿色扇形的概率;(2)指针指向红色扇形的概率大,还是绿色扇形概率大?为什么?22.如图,在∠ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∠BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.23.如图,已知AB=DC,AB∠CD,E、F是AC上两点,且AF=CE.(1)求证:∠ABE∠∠CDF;(2)连接BC,若∠CFD=100°,∠BCE=30°,求∠CBE的度数.24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.25.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)答案一、选择题1.C .2.D .3.C .4.D .5.A .6.C .7.B .8.A .9.B .10.D .11.D .12.A . 二、填空题 13.:﹣9,43.14.:40°或100°. 15.:﹣1. 16.:55°. 17.:12.18.54. 三、解答题19.【解析】(1)原式=2x 2y ﹣3xy 2﹣6x 2y +3xy 2=﹣4x 2y ; (2)原式=10x 2y 2;(3)原式=(ab +1+ab ﹣1)(ab +1﹣ab +1)=4ab ;(4)原式=20153﹣(2015﹣1)×2015×(2015+1)=20153﹣(20152﹣1)×2015=20153﹣(20153﹣2015)=20153﹣20153+2015=2015;(5)原式=9x 2﹣(4y ﹣5z )2=9x 2﹣16y 2+40yz ﹣25z 2; (6)原式=(34a 4b 7−12a 3b 8+19a 2b 6)÷19a 2b 6=274a 2b −92ab 2+1,当a =12,b =﹣4时,原式=−274−36+1=﹣4134. 20.【解析】(1)如图1所示:∠、∠、∠、∠处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图2所示:∠、∠使涂黑的四个小正方形组成一个中心对称图形..21.【解析】按颜色把8个扇形分为2红、3绿、3黄,所有可能结果的总数为8,(1)指针指向绿色的结果有3个, ∠P (指针指向绿色)=38; (2)指针指向红色的结果有2个, 则P (指针指向红色)=28=14, 由(1)得:指针指向绿色扇形的概率大. 22.【解析】(1)∠AB =AC , ∠∠C =∠ABC , ∠∠C =36°, ∠∠ABC =36°, ∠D 为BC 的中点, ∠AD ∠BC ,∠∠BAD =90°﹣∠ABC =90°﹣36°=54°. (2)∠BE 平分∠ABC , ∠∠ABE =∠EBC , 又∠EF ∠BC , ∠∠EBC =∠BEF , ∠∠EBF =∠FEB , ∠BF =EF .23.【解答】(1)证明:∠AB ∠CD , ∠∠A =∠DCF , ∠AF =CE , ∠AE =CF ,在∠ABE 和∠CDF 中, {AB =CD∠A =∠DCF AE =CF, ∠∠ABE ∠∠CDF (SAS ).(2)∠∠ABE ∠∠CDF , ∠∠AEB =∠CFD =100°, ∠∠BEC =180°﹣100°=80°, ∠∠CBE =180°﹣80°﹣30°=70°.24.【解析】(1)∠乌龟是一直跑的而兔子中间有休息的时刻, ∠折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的全过程为1500米; 故答案为:兔子,1500; (2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米). (3)700÷30=703(分钟), 所以乌龟用了703分钟追上了正在睡觉的兔子.(4)∠兔子跑了700米停下睡觉,用了2分钟, ∠剩余800米,所用的时间为:800÷400=2(分钟), ∠兔子睡觉用了:50.5﹣2﹣2=46.5(分钟). 所以兔子中间停下睡觉用了46.5分钟.25.【解析】(1)方法1:大正方形的面积为(a +b )2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b )2=a 2+2ab +b 2, 故答案为:(a +b )2=a 2+2ab +b 2. (2)如图,(3)设DG 长为x .∠S 1=a [x ﹣(a +2b )]=ax ﹣a 2﹣2ab ,S 2=2b (x ﹣a )=2bx ﹣2ab , ∠S =S 2﹣S 1=(2bx ﹣2ab )﹣(ax ﹣a 2﹣2ab )=(2b ﹣a )x +a 2, 由题意得,若S 为定值,则S 将不随x 的变化而变化, 可知当2b ﹣a =0时,即a =2b 时,S =a 2为定值, 故答案为:a =2b ,a 2.。

北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A.a+b=ab B.(x+1)2 =x2+1C.a10÷ a5=a2D.(﹣a3)2=a62.某种细胞直径是0.00000095米,将0.00000095用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣6D.95×10﹣83.以每组数为线段的长度,可以构成三角形三边的是()A.5,6,10B.5,6,11C.3,4,8D.4,4,84.下列图形是轴对称图形的是()A.B.C.D.5.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻6.如果∠A=50°,那么∠A的余角是()A.30°B.40°C.90°D.130°7.如图,把一副三角板放在桌面上,当AB∠DC时,∠CAE等于()A.10°B.15°C.20°D.25°8.一个长方体的长、宽、高分别是3m-4,2m和m,则它的体积是()A.3m3-4m2B.3m2-4m3C.6m3-8m2D.6m2-8m39.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b] [(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)] [a+(b﹣c)]D.[a﹣(b﹣c)] [a+(b﹣c)]10.如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()∠体育场离张强家3.5千米∠张强在体育场锻炼了15分钟∠体育场离早餐店1.5千米∠张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个二、填空题11.计算:(﹣a)2•a3=_______.12.若a x=2,a y=3,则a x-y=______.13.如图所示,在∠ABC中,AB=AC,∠B=50°,则∠A=________.14.有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的概率为_____.15.已知等腰三角形的两边长为3和6,则它的周长为_____.16.三角形的底边长为8,高是x,那么三角形的面积y与高x之间的关系式是______.17.如图,已知∠ACB=90°,BC=6,AC=8,AB=10,点D在线段AB上运动,线段CD的最短距离是_____.三、解答题)﹣2+(﹣1)202018.﹣32+50﹣(1219.先化简再求值:[(x﹣y)2﹣(y﹣x)(y+x)]÷2x,其中x=2021,y=1.20.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?21.如图,AB=CD,AF=CE,∠A=∠C,那么BE=DF吗?请说明理由.22.三水区响应“绿色环保”号召,鼓励市民节约用电,对电费采用分段收费标准,若某户居民每月应交电费y(元)与用电量x(度)之间关系的图象如图所示:(1)当用电量不超过50度时,每度收费多少元?超过50度时,超过的部分每度收费多少元?(2)若某户居民某月交电费120元,该户居民用电多少度?23.如图,在∠ABC中,∠C=60°,∠A=40°.用尺规作图作边AB的垂直平分线,交AC于点D,交AB于点E(要求:不写作法,保留作图痕迹).24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1)观察图2,写出所表示的数学等式:_________________________=____________________________.(2)观察图3,写出所表示的数学等式:_________________________=____________________________.(3)已知(2)的等式中的三个字母可以取任何数,若a=7x-5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37.请利用(2)中的结论求ab+bc+ac的值.25.如图(1),AB=7cm,AC∠AB,BD∠AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,∠ACP与∠BPQ全等,此时PC∠PQ吗?请说明理由.(2)将图(1)中的“AC∠AB,BD∠AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有∠ACP与∠BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)参考答案1.D【分析】根据合并同类项法则、完全平方公式、同底数幂的的除法的运算法则、幂的乘方的运算法则进行计算后判断即可.【详解】解:A、a与b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(x+1)2=x2+2x+1,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、(-a3)2=a6,原计算正确,故此选项符合题意;故选:D.2.A【解析】【分析】用科学记数法表示较小数时的形式为10n a -⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,n 等于该数从左起第一个不为0的数字前所有0的个数.【详解】易知9.5a =,从左起第一个不为0的数字前面有7个0,所以7n =∠70.000000959.510-=⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.A【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A 、5+6=11>10,能组成三角形;B 、5+6=11,不能够组成三角形;C 、3+4=7<8,不能组成三角形;D 、4+4=8,不能组成三角形.故选:A .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.D【解析】【分析】一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、B、C不符合轴对称图形的定义,D符合轴对称图形的定义,故选D.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.5.C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】解:A.内错角相等,是随机事件,不合题意;B.掷两枚硬币,必有一个正面朝上,一个反面朝上,是随机事件,不合题意;C.13人中至少有两个人的生肖相同,是必然事件,符合题意;D.打开电视,一定能看到三水新闻,是随机事件,不合题意;故选:C.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.6.B【解析】【分析】和为90°的两个角是互为余角,∠A的余角为(90°-∠A),代入计算即可.【详解】解:90°-∠A=90°-50°=40°,故选:B.【点睛】本题主要考查余角的意义和计算方法,关键是掌握如果两个角的和为90°,那么这两个角互为余角.7.B【解析】【分析】根据三角形的内角和定理和平行线的性质定理可得结果.解:∠AB∠DC,∠∠EAB=∠AED=45°,∠∠BAC=30°,∠∠CAE=∠EAB-∠BAC=45°-30°=15°,故选:B.【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握性质定理.8.C【解析】【分析】根据长方体体积的计算方法,列出算式进行计算即可.【详解】解:根据长方体体积的计算公式得,(3m-4)•2m•m=6m3-8m2,故选:C.【点睛】本题考查单项式乘以多项式的计算方法,掌握计算方法是正确计算的前提.9.D【解析】【分析】由于平方差公式是把多项式分解为两个数的和与两个数的差的积的形式,所以根据这个特点即可判定选择项.【详解】解:(a-b+c)(a+b-c)=[a-(b-c)][a+(b-c)].选项A,B,C不符合平方差公式的结构特征,只有选项D是正确的,故选:D.【点睛】此题主要考查了因式分解的平方差公式的特点:两个数的和乘以两个数的差,此题解题关键是分别找出两个括号的符号相同的和符号不同的项,然后变形就比较简单.10.A【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】解:∠由纵坐标看出,体育场离张强家3.5千米,故∠正确;∠由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故∠正确;∠由纵坐标看出,3.5-2.0=1.5千米,体育场离早餐店1.5千米,故∠正确;∠由纵坐标看出早餐店离家2千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小=4千米/小时,故∠错误;时,2÷12故选:A.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.11.a5【解析】【分析】先计算积的乘方,再根据“同底数幂相乘,底数不变,指数相加”进行计算即可.【详解】解:(﹣a)2•a3= a2•a3=a5,故答案是:a5.【点睛】本题考查了积的乘方、同底数幂的乘法,解题的关键是注意符号的确定..12.23【解析】【详解】试题解析:∠a x=2,a y=3,.∠a x-y=a x÷a y=2÷3=23考点:同底数幂的除法.13.80°【解析】略【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数解:∠在∠ABC中,AB=AC,∠B=50°∠∠C=50°∠∠A=180°﹣50°﹣50°=80°故答案为80°.【点睛】略14.3 5【解析】【分析】直接利用概率公式得出答案.【详解】解:有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的是2,4,6,故抽出标有数字为偶数的概率为:35.故答案为:35.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.15.15【解析】【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【详解】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,∠3+3=6,∠3,3,6不能组成三角形,综上所述,等腰三角形的三边长为3,3,6,周长为15;故答案为:15.【点睛】本题考查了等腰三角形的定义以及三角形的三边关系定理,是基础知识,要熟练掌握.注意分类讨论思想的应用.16.y=4x【解析】【分析】根据三角形的面积计算方法可得函数关系式.【详解】解:y=12×8x=4x ,故答案为:y=4x .【点睛】本题考查用函数关系式表示变量之间的关系,掌握三角形面积的计算方法是得出关系式的前提.17.4.8【解析】【分析】当CD∠AB 时,线段CD 的长度最短,依据三角形的面积即可得到CD 的长.【详解】解:∠点D 在线段AB 上运动,∠当CD∠AB 时,线段CD 的长度最短,又∠∠ACB=90°,BC=6,AC=8,AB=10, ∠12AC×BC=12AB×CD ,86 4.810AC BC CD AB ⨯⨯∴===, 故答案为:4.8.【点睛】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.18.-11【解析】【分析】先分别化简乘方,零指数幂,负整数指数幂,然后进行有理数的混合运算.【详解】解:原式=-9+1-4+1=-11.【点睛】本题考查乘方,零指数幂,负整数指数幂及有理数的混合运算,掌握法则和运算顺序正确计算是解题关键.19.x-y;2020【解析】【分析】原式中括号中利用完全平方公式,以及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:[(x-y)2-(y-x)(y+x)]÷2x=(x2-2xy+y2-y2+x2)÷2x=(2x2-2xy)÷2x=x-y,当x=2021,y=1时,原式=2021-1=2020.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)34;(2)125【解析】【分析】根据题意求出概率,进行简单计算即可求解.【详解】解:(1)指针指向1,2,3,5,6,8都获奖,∠获奖概率P=68=3,4(2)获得一等奖的概率为18, 100018⨯=125(人),∠获得一等奖的人数可能是125人.【点睛】本题考查了概率的简单应用,概率的求法,属于简单题,熟悉概率的实际含义是解题关键.21.见解析【解析】【分析】由“SAS”可证∠ABF∠∠CDE ,可得BF=DE ,可得BE=DF .【详解】解:BE=DF .理由如下:在∠ABF 和∠CDE 中,AB CDA CAF CE=⎧⎪∠=∠⎨⎪=⎩∠∠ABF∠∠CDE (SAS ),∠BF=DE ,∠BF -EF=DE -EF ,∠BE=DF .【点睛】本题考查了全等三角形的判定和性质,证明∠ABF∠∠CDE 是本题的关键.22.(1)0.6元;1元 (2)140度【解析】【分析】(1)根据图象上点的坐标进行列式计算即可;(2)根据(1)的结论求出超过50度部分的用电量即可求解.【详解】解:(1)不超过50度时每度收费:30÷50=0.6(元),超过50度时,超过的部分每度收费:(60-30)÷(80-50)=1(元);答:当用电量不超过50度时,每度收费0.6元,超过50度时,超过的部分每度收费1元.(2)120-0.6×50=90(元),90÷1=90(度),50+90=140(度).答:该户居民用电140度.【点睛】本题主要考查一次函数的应用,关键学会读懂图象信息,学会构建一次函数解决问题.23.作图见解析【解析】【分析】AB长为半径画弧,两弧交于点M,N,作直线MN交AC于分别以A.B为圆心,大于12D,交AB于E.【详解】解:如图,直线DE即为所求.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)(a+2b)(a+b);a2+3ab+2b2;(2)(a+b+c)2;a2+b2+c2+2ab+2ac+2bc;(3)-18【解析】【分析】(1)根据大矩形的面积=各矩形的面积之和求解即可;(2)根据正方形的面积=各矩形的面积之和求解即可;(3)先求出(a+b+c)2的值,再根据(2)中关系式求得结果.【详解】解:(1)大矩形的面积=(a+2b)(a+b),各部分面积和=a2+3ab+2b2,∠(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b);a2+3ab+2b2;(2)正方形的面积可表示为=(a+b+c)2;各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∠(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(3)由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∠(a+b+c)2=(7x-5-4x+2-3x+4)2=1,∠1=a2+b2+c2+2ab+2ac+2bc,∠a2+b2+c2=37,∠1=37+2(ab+bc+ac),∠2(ab+bc+ac)=-36,∠ab+bc+ac=-18.【点睛】本题考查了因式分解的应用,完全平方公式的几何背景,以及完全平方公式在几何图形相关计算中的应用,本题具有一定的综合性,难度中等略大.25.(1)PC∠PQ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【解析】【分析】(1)利用SAS证得∠ACP∠∠BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由∠ACP∠∠BPQ,分两种情况:∠AC=BP,AP=BQ,∠AC=BQ,AP=BP,建立方程组求得答案即可;(3)根据题意得P、Q两点的运动速度为2,得到BP=AC,根据全等三角形的性质得到∠C=∠BPQ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∠AC∠AB,BD∠AB,∠∠A=∠B=90°在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS),∠ACP BPQ∠=∠,∠90APC BPQ APC ACP∠+∠=∠+∠=∠∠CPQ=90°,即线段PC与线段PQ垂直;(2)∠若∠ACP∠∠BPQ,则AC=BP,AP=BQ,7-2t=5,2t=xt,解得t=1,x=2,∠存在t=1,x=2,使得∠ACP与∠BPQ全等,∠若∠ACP∠∠BQP,则AC=BQ,AP=BP,5=xt,2t=7 2解得t=74,x=207,∠存在t=74,x=207,使得∠ACP与∠BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得∠ACP与∠BPQ全等(3)∠∠A=∠B=60°∠P、Q两点的运动速度相同,∠P、Q两点的运动速度为2,∠t=1,∠AP=BQ=2,∠BP=5,∠BP=AC,在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS);∠∠C=∠BPQ,∠∠C+∠APC=120°,∠∠APC+∠BPQ=120°,∠∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.。

(完整版)北师大版七年级下册数学期末试卷及答案

(完整版)北师大版七年级下册数学期末试卷及答案

件是 添加 还 格除颜色 要 的条 c (件)123 第 3D 第 7AD一、细心填一填(每小题 2 分,共计 20)12. 下列运算正确的是( )1. 计算: x 2 ⋅ x 3 =; 4a 2b ÷ 2ab =.c A . a 5 + a 5 = a 10 B . a 6 ⨯ a 4 = a 24aC . a 0 ÷ a -1 = aD . a 4 - a 4 = a 02. 如果x 2 + kx + 1 是一个完全平方式,那么k 的值是.3. 如图,两直线 a 、b 被第三条直线 c 所截,若∠1=50°,∠2=130°,则直线 a 、b 的位置关系是 .13. 下列结论中,正确的是()bA. 若a ≠ b,则a 2 ≠ b 2C .若a 2 = b 2,则a = ±bB. 若a > b , 则a 2 > b 2D .若a > b , 则1 > 1BE C第 14a b4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006 年中央财政用于“三农” 的支出将达到 33970000 万元,这个数据用科学记数法可表示为 万元.14. 如图,在△ABC 中,D 、E 分别是 AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是() A .15°B .20°C .25°D .30°5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方 S (千米)外完全相同),则蝴 16. 观察一串数:0,2,4,6,….第 n 个数应为()蝶停止在白色方格中的概率是 .30A .2(n -1)B .2n -1C .2(n +1)D .2n +16. 等腰三角形一边长是 10㎝,一边长是 6㎝,则它的周长是 O7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,需2 第 9 题t (小时).17. 下列关系式中,正确的是( )A . (a - b )2= a 2 - b 2C . (a + b )2= a 2 + b 2B. (a + b )(a - b )= a 2 - b 2 D. (a + b )2= a 2 - 2ab + b 2A18. 如图表示某加工厂今年前 5 个月每月生产某种产品的产量 c (件)与时间 t (月)之间的关系, E则对这种产品来说,该厂()A .1 月至 3 月每月产量逐月增加,4、5 两月产量逐月减小B .1 月至 3 月每月产量逐月增加,4、5 两月产量与 3 月持平第 59.某物体运动的路程 s (千米)与运动的时间 t (小时)关系如图所示,则当 t=3 小时时,物体运动所经过的路程为千米.C .1 月至 3 月每月产量逐月增加,4、5 两月产量均停止生产D . 1 月至 3 月每月产量不变,4、5 两月均停止生产19.下列图形中,不一定是轴对称图形的是() O(月)第 18 题10. 某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示, 则该汽车的号码是 .二、相信你的选择A .等腰三角形B .线段C .钝角D .直角三角形20. 长度分别为 3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为()A .1B .2C . 3D .4.O 21 3345y(元)21. 2(y6 )2 -(y4 )3 ;22.先化简(2x -1)2 -(3x +1)(3x -1)+ 5x(x -1),再选取一个你喜欢的数代替 x,并求原代数式的值. 29.如图所示,要想判断AB 是否与CD 平行,我们可以测量那些角;请你写出三种方案,并说明理由.B四、认真画一画(23 题 4 分,24 题 4 分,共计 8 分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写30.乘法公式的探究及应用.D 第29 C作法和证明)M (1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是理由是:. 第23 ,面积是(写成多项式乘法的形式)25.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6 份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?第25 题第30 题(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达). (4)运用你所得到的公式,计算下列各题:六、生活中的数学(第27 小题4 分,第28 小题5 分,共计9 分)①10.3 ⨯ 9.7 ② (2m +n -p)(2m -n +p)28.某种产品的商标如图所示,O 是线段AC、BD 的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:八、信息阅读题(6 分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零26在△ABO 和△DCO 中⎧AC =BD A D 20钱备用.按市场售出一些后,又降价出售.售出土豆千克数 x 与他手中10⎪⎨∠AOB =∠DOC⎪AB =CD −→∆ABO ≅∆DCO 持有的钱数y(含备用零钱)的关系如图所示,结合图像回答下列问 5 0⎩30 x(千克)你认为小明的思考过程正确吗?如果正确,他用的是判定三B 角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程. C第28 题题:(1)农民自带的零钱是多少?abbaEA(2)降价前他每千克土豆出售的价格是多少?第31(3)降价后他按每千克 0.4 元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26 元,问他一共带了多少千克的土豆?。

北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试题含答案北师大版七年级下册数学期末考试试卷一、单选题1.下列图形中是轴对称图形的是()A。

B。

C。

D。

2.下列运算正确的是()A。

a ÷ a = a^6 (a ≠ 0)B。

a^2 × a^3 = a^6C。

3a + 2a = 5aD。

a^2 ÷ a^(-3) = a^53.下列长度的四根木棒,能与长度分别为3cm和6cm的木棒构成三角形的是()A。

3cmB。

6cmC。

9cmD。

10cm4.石墨烯被认为是一种未来革命性的材料,它是一种由碳原子构成的纳米材料。

其中每两个相邻碳原子间的键长为0.xxxxxxxx0142米,将0.xxxxxxxx0142科学记数法表示为()A。

0.142×10^(-9)B。

1.42×10^(-10)C。

1.42×10^(-11)D。

0.142×10^(-8)5.下列事件中,属于随机事件的是()A。

抛出的篮球往下落B。

在只有白球的袋子里摸出一个红球C。

购买10张彩票,中一等奖D。

地球绕太阳公转6.若多项式m^2 - kmn + n^2是一个完全平方式,则常数k 的值为()A。

1B。

±1C。

2D。

±27.如图,在钝角三角形ABC中,∠ABC为钝角,以点B 为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD于点E。

下列结论错误的是()A。

CE垂直平分ADB。

CE平分∠ACDC。

ABD是等腰三角形D。

ACD是等边三角形8.将202×198变形正确的是()A。

2002 - 4B。

2022 - 4C。

2002 + 2×200 + 4D。

2002 - 2×200 + 49.如图,在四边形ABCD中,AD//BC,∠A为直角,动点P从点A开始沿A→B→C→D的路径匀速前进D,在这个过程中,△APD的面积S随时间t的变化过程可以用图像近似的表示为()A。

北师大版七年级数学下学期期末达标测试卷

北师大版七年级数学下学期期末达标测试卷

北师大版七年级数学下学期期末达标测试卷一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形且对称轴最多的是( )A.B.C.D.2.下列运算正确的是( )A.5ab﹣ab=4B.a4﹣a=a3C.a6÷a2=a4D.(a2b)3=a5b33.某新型冠状病毒直径为0.000&nbsp;000&nbsp;178米,那么该新型冠状病毒的直径约为( )米.A.1.78×10﹣7B.1.78×10﹣11C.0.178×10﹣8D.178×10﹣94.一个不透明的袋子里装有8个形状大小完全相同的球,其中4个红球,1个黄球( )A.B.C.D.5.下列可以运用平方差公式运算的有()(a+b)(−b+a)(−a+b)(a−b)(a+b)(−a−b)(a−b)(−a−b)①;②;③;④A.1个B.2个C.3个D.4个6.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是( )A. B. C. D.7.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是( )A.SSS B.ASA C.AAS D.SAS8.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180° B.∠1+∠2-∠3=90°C.∠1-∠2+∠3=90° D.∠2+∠3-∠1=180°9.如图,,,于点,于点,,,则的长为()A.B.C.D.10.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45° C.45°或60° D.30°或60°11.如图,△ABC中,D、E两点分别在BC、AD上,若∠ABE=∠C,AE:ED=2:1( )A.16:45B.1:9C.2:9D.1:312.如图,点F,C在BE上,BF=EC,AB=DE,则与2∠DFE相等的是( )A .∠A +∠DB .3∠BC .180°﹣∠FGCD .∠ACE +∠B二.填空题(共6小题,满分24分,每小题4分)1. 若,则________,________.(x +m)(x +2)=x 2−6x +n m =n =2.已知三角形的两边长分别为3cm 和9cm ,则第三边的取值范围 .3.当,时,代数式________.a 2−b 2=16a−b =13a +b =4.如图,在中,分别以点和点为圆心,大于为半径画弧,两弧相交于点、,作直线,△ABC A B 12AB M N MN 交于点,的周长为,,则的周长为________.BC D △ADC 15AB =7△ABC5.已知等腰三角形的两边长分别为6cm 、8cm ,那么它的周长为 cm .6.A 、B 两地相距80km ,甲、乙两人沿同一条路从A 地到B 地.l 1,l 2分别表示甲、乙两人离开A 地的距离s (m )与时间t (h )之同的关系.当甲车出发1小时时 km .三.解答题(共8小题,满分78分)1.计算:; .(1)(x 2y )4÷(x 2y)+(x 2y )3(2)(−14)−1+(−2)2×50−(12)−22.阅读并完成下列推理过程,在括号内填写理由.已知∠ABC =∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,F 是BC 延长线上一点,且∠DBC =∠F .求证:∠CED +∠EDF =180°.证明:∵BD 平分∠ABC ,CE 平分∠ACB (已知)∴∠DBC =∠ABC ,∠BCE =∠ACB (______)1212∴∠DBC =______(等式的性质)∵∠DBC =∠F (已知)∴∠F =_______(等量代换)∴(_______)CE DF ∥∴∠CED +∠EDF =180°(_______)3.如图,在中,,分别是边上的中线和高,,.求和的△ABC AD AE BC AE =3cm S △ABC =12cm 2BC DC 长.4.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图像.根据图像回答下列问题∶(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?5.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.40.32b1(1)频数、频率分布表中a=______ ,b=____ ;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是_____ .6.如图,在正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应)(2)△ABC的面积为 .(3)在直线l上找一点P,使得PA+PC的和最小.AM△ABC D AM A DE//AB AC F CE//AM7.如图,是的中线,是射线上一点(不与点重合).交于点,连接AE BD,.(1)D M AE=BD如图①,当点与点重合时,易证(不需要证明);(2)D M AE BD如图②、图③,当点不与点重合时,线段,又有怎样的关系呢?选择一个图形证明你的结论.8已知:如图,AB=AC,AD=AE,BE与AC、CD分别相交于点N、M.(1)求证:BE=CD;(2)求∠BMC的大小.(用α表示).。

七年级下册北师大版数学期末试卷【含答案】

七年级下册北师大版数学期末试卷【含答案】

七年级下册北师大版数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 26厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个等差数列的前三项分别是2,5,8,那么这个数列的第四项是多少?A. 7B. 10C. 11D. 125. 下列哪个图形是中心对称图形?A. 正方形B. 长方形C. 三角形D. 梯形二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

()2. 一个三角形的内角和一定是180度。

()3. 任何两个等边三角形都是全等的。

()4. 一个等差数列的相邻两项之差是常数。

()5. 任何两个等腰三角形都是相似的。

()三、填空题(每题1分,共5分)1. 一个数的因数是______和______。

2. 一个等腰三角形的底角是______度,顶角是______度。

3. 一个正方形的对角线长是______厘米,它的面积是______平方厘米。

4. 一个等差数列的公差是______,它的第10项是______。

5. 一个平行四边形的对角线互相______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述等腰三角形的性质。

3. 简述轴对称图形的定义。

4. 简述中心对称图形的定义。

5. 简述勾股定理的定义。

五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

3. 一个正方形的对角线长是10厘米,求这个正方形的面积。

4. 一个平行四边形的对角线互相垂直,其中一条对角线长是12厘米,另一条对角线长是16厘米,求这个平行四边形的面积。

北师大版七年级下册数学《期末测试题》(附答案)

北师大版七年级下册数学《期末测试题》(附答案)
故选B.
6.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y与运动的时间x之间关系的图象大致是()
A. B. C. D.
【答案】B
【解析】
周长y与运动 时间x之间成正比关系,
故选B
点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.
C.连接AP,BP,则AP+BP>AB,故C符合题意;
D. Q在A的右边时,AQ=AB−BQ或AQ=AB+BQ,故D不符合题意;
故选C.
5.如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()
A. 6.5cmB. 5cmC. 9.5cmD. 11cm
【答案】B
【解析】
由题意可得:∠ACD+∠DAC=90°,∠BCE+∠ACD=90°,AC=BC,
则∠DAC=∠BCE,
在△ACD和△CBE中,
∠CDA=∠BEC∠DAC=∠ECBAC=BC,
∴△ACD≌△CBE(AAS),
∴AD=EC,BE=CD,
∵BC=8cm,BE=3cm,
∴AD=EC=5(cm).
【详解】设∠3=3x,则∠1=28x,∠2=5x,
∵∠1+∠2+∠3=180°,
∴28x+5x+3x=180°,解得x=5°,
∴∠1=140°,∠2=25°,∠3=15°,

北师大版七年级第二学期期末数学试卷及答案

北师大版七年级第二学期期末数学试卷及答案

北师大版七年级第二学期期末数学试卷及答案一、选择题(共10小题).1.下列图形是轴对称图形的是()A.B.C.D.2.将0.0012用科学记数法表示为()A.1.2×10﹣2B.1.2×10﹣3C.1.2×10﹣4D.1.2×10﹣53.下列说法正确的是()A.明天会下雨是必然事件B.随机事件发生的概率为C.概率很小的事件不可能发生D.不可能事件发生的概率为04.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.165.计算(x2)3的结果是()A.x6B.x5C.3x2D.6x6.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°7.下列计算正确的是()A.(3×103)2=6×105B.36×32=38C.(﹣)4×34=﹣1D.36÷32=338.若等腰三角形的顶角为50°,则它的底角度数为()A.40°B.50°C.65°D.60°9.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°10.小红从家出发去晨跑,她离开家和返回的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度二、填空题(7小题)11.正方形有条对称轴.12.计算:2a•3a2=.13.计算:4x2÷(2x)=.14.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是.15.某路口东西方向红绿灯的设置时间为:红灯30s,绿灯27s,黄灯3s.司机甲随机的从东往西开车到达该路口,请问他遇到红灯的概率是.16.如图,AD为∠BAE的平分线,AB∥CD.若∠BAE=40°,则∠ADC=度.17.如图,△ABC沿DE折叠,点A落在边BC上的点A1处,连接AA1,△ABC的周长为C△ABC=8.给出下列结论:①AE=A1E;②∠BAC=∠EA1D;③DE垂直平分AA1;④C+C=8.正确结论的序号是.三、解答题(一)(3个题,每题6分,共18分)18.计算:()﹣1+(π﹣3)0﹣(﹣2)2.19.先化简,再求值:(a+2b)(a+b)+(a﹣b)2,其中a=﹣1,b=2.20.弹簧挂上物体后会伸长,测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)间有下面关系(假设弹簧在弹性限度内):x012345y1010.51111.51212.5(1)根据表格,直接写出y与x之间的关系式为;(2)求挂了10千克的物体后弹簧的长度.四、解答题(二)(3个题,每题8分,共24分)21.如图,在钝角△ABC中.(1)用尺规作图法作AC的垂直平分线,与边BC、AC分别交于点D、E(保留作图痕迹,不用写作法);(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图),连接AD,直接写出∠ADE和∠HBC的大小关系.22.一个不透明的盒子里装有红、蓝、黄三种颜色的小球共60个,它们除颜色外其它均相同,其中红球有20个,蓝球比黄球多4个,随机的从盒子里摸出一个球.(1)求摸出一球是红球的概率;(2)求摸出一球是黄球的概率.23.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.五、解答题(三)(2个小题,每小题10分,共20分)24.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.25.在△ABC中,AB=BC=12,∠ABC=90°.如图1,过点A作AH⊥AB,点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位.连结BD、DE,延长DE交直线BC于点M.当E到达点B时两点停止运动,设运动时间为t.(1)如图1,请直接写出AC与DM的位置关系和数量关系;(2)如图2,若改为在线段AB的上方作AH⊥AB,其它条件保持不变.①写出AC与DM的关系;当t=3时,判断△AEC和△MBD是否是全等三角形?并说明判断的理由;②连结CD和CE,求△CDE的面积y与t的关系式,并写出当t=3时y的值.参考答案一、选择题(10个题,每题3分,共30分)1.下列图形是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义分析得出答案.解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意.故选:D.2.将0.0012用科学记数法表示为()A.1.2×10﹣2B.1.2×10﹣3C.1.2×10﹣4D.1.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0012=1.2×10﹣3.故选:B.3.下列说法正确的是()A.明天会下雨是必然事件B.随机事件发生的概率为C.概率很小的事件不可能发生D.不可能事件发生的概率为0【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.解:A.明天会下雨是随机事件,故此选项错误;B.随机事件发生的概率为0到1之间;故此选项错误;C.概率很小的事件也有可能发生,故此选项错误;D.不可能事件发生的概率为0,此选项正确;4.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.5.计算(x2)3的结果是()A.x6B.x5C.3x2D.6x【分析】根据幂的乘方,底数不变指数相乘计算即可.解:(x2)3=x2×3=x6.故选:A.6.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°【分析】根据直角三角形两锐角互余列式计算即可得解.解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.7.下列计算正确的是()A.(3×103)2=6×105B.36×32=38C.(﹣)4×34=﹣1D.36÷32=33【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.解:A、(3×103)2=9×106,故此选项错误;B、36×32=38,正确;C、(﹣)4×34=1,故此选项错误;D、36÷32=34,故此选项错误;故选:B.8.若等腰三角形的顶角为50°,则它的底角度数为()A.40°B.50°C.65°D.60°【分析】等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65°.9.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°【分析】直接利用平行线的判定方法分别分析得出答案.解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.10.小红从家出发去晨跑,她离开家和返回的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度【分析】①由x=10时y=1000可得出A结论正确;②整个晨跑过程一共走了1800×2=3600米,B结论正确;③返回时速度为:1800÷(30﹣20)=180(米/分),可得C结论错误;⑤去时的平均速度为:1800÷20=90(米/分),故D结论正确.解:由图象可得:x=10时y=1000,即出发10分钟时,小红距离家1000米,故本选项不合题意;B.整个晨跑过程一共走了1800×2=3600(米),故本选项不合题意;C.返回时速度为:1800÷(30﹣20)=180(米/分),故本选项符合题意;D.去时的平均速度为:1800÷20=90(米/分),即去时的平均速度小于返回速度,故本选项不合题意.故选:C.二、填空题(7小题,每题4分,共28分)11.正方形有4条对称轴.【分析】根据正方形是轴对称图形的性质分析.解:根据正方形的性质得到,如图:正方形的对称轴是两组对边中线所在直线和两组对角线所在直线,共有4条.故答案为:4.12.计算:2a•3a2=6a3.【分析】利用单项式与单项式相乘的乘法法则运算.解:原式=6a3.故答案为6a3.13.计算:4x2÷(2x)=2x.【分析】直接利用整式的除法运算法则计算得出答案.解:4x2÷(2x)=2x.故答案为:2x.14.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是DF=AC或CD=AF..【分析】根据ASA即可解决问题.解:∵∠1=∠2,∠D=∠A,∴要得到△ABC≌△DEF,必须添加条件DF=AC或CD=AF.故答案为:DF=AC或CD=AF.15.某路口东西方向红绿灯的设置时间为:红灯30s,绿灯27s,黄灯3s.司机甲随机的从东往西开车到达该路口,请问他遇到红灯的概率是.【分析】根据题目中的数据,可以计算出司机甲遇到红灯的概率.解:由题意可得,司机甲遇到红灯的概率是=,故答案为:.16.如图,AD为∠BAE的平分线,AB∥CD.若∠BAE=40°,则∠ADC=20度.【分析】根据角平分线的定义求出∠DAB,根据平行线的性质得出∠ADC=∠DAB,代入求出即可.解:∵AD为∠BAE的平分线,∠BAE=40°,∴∠DAB=BAE=20°,∵AB∥CD,∴∠ADC=∠DAB=20°,故答案为:20.17.如图,△ABC沿DE折叠,点A落在边BC上的点A1处,连接AA1,△ABC的周长为C△ABC=8.给出下列结论:①AE=A1E;②∠BAC=∠EA1D;③DE垂直平分AA1;④C+C=8.正确结论的序号是①②③④.【分析】由折叠的性质可得AE=A1E,AD=A1D,∠BAC=∠EA1D,可得DE垂直平分AA1,由线段的和差关系可求C+C=8,即可求解.解:∵△ABC沿DE折叠,点A落在边BC上的点A1处,∴AE=A1E,AD=A1D,∠BAC=∠EA1D,故①②正确,∴DE垂直平分AA1,故③正确,∵△ABC的周长为C△ABC=8,∴AB+AC+BC=8,∵C+C=BE+A1E+A1B+CD+A1D+CA1=BE+AE+BC+AD+DC=AB+AC+BC,∴C+C=8,故④正确,故答案为:①②③④.三、解答题(一)(3个题,每题6分,共18分)18.计算:()﹣1+(π﹣3)0﹣(﹣2)2.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.解:原式=3+1﹣4=0.19.先化简,再求值:(a+2b)(a+b)+(a﹣b)2,其中a=﹣1,b=2.【分析】根据整式的混合运算顺序进行化简,然后代入值进行计算即可.解:原式=a2+ab+2ab+2b2+a2﹣2ab+b2=2a2+ab+3b2,当a=﹣1,b=2时,原式=2×(﹣1)2+(﹣1)×2+3×22=12.20.弹簧挂上物体后会伸长,测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)间有下面关系(假设弹簧在弹性限度内):x012345y1010.51111.51212.5(1)根据表格,直接写出y与x之间的关系式为y=0.5x+10;(2)求挂了10千克的物体后弹簧的长度.【分析】(1)根据表格中的数据可以求得y与x的函数关系式;(2)把x=10代入(1)的结论解答即可.解:(1)由表格的数据可知,当x=0时,y=10,x每增加1kg,弹簧伸长0.5cm,∴y=0.5x+10;故答案为:y=0.5x+10;(2)把x=10代入y=0.5x+10得:y=5+10=15.即挂了10千克的物体后弹簧的长度为15cm.四、解答题(二)(3个题,每题8分,共24分)21.如图,在钝角△ABC中.(1)用尺规作图法作AC的垂直平分线,与边BC、AC分别交于点D、E(保留作图痕迹,不用写作法);(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图),连接AD,直接写出∠ADE和∠HBC的大小关系.【分析】(1)利用尺规作图法作AC的垂直平分线即可;(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图)即可,进而可以写出∠ADE和∠HBC 的大小关系.解:(1)如图,AC的垂直平分线DE即为所求;(2)在(1)的条件下,AC边上的高BH即为所求.∠ADE和∠HBC的大小关系为:相等.理由如下:∵DE是AC的垂直平分线,∴DA=DC,AE=EC,又DE=DE,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵BH⊥AC,DE⊥AC,∴DE∥BH,∴∠CDE=∠HBC,∴∠ADE=∠HBC.22.一个不透明的盒子里装有红、蓝、黄三种颜色的小球共60个,它们除颜色外其它均相同,其中红球有20个,蓝球比黄球多4个,随机的从盒子里摸出一个球.(1)求摸出一球是红球的概率;(2)求摸出一球是黄球的概率.【分析】(1)用红球的个数除以球的总个数即可得;(2)设黄球有x个,则篮球有(x+4)个,根据三种颜色球的总个数为60列方程求出x的值,再用黄色球的个数除以总个数即可得.解:(1)摸出一球是红球的概率为=;(2)设黄球有x个,则篮球有(x+4)个,根据题意,得:20+x+x+4=60,解得:x=18,∴袋子中黄球有18个,∴摸出一球是黄球的概率为=.23.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.【分析】(1)根据SAS证明三角形全等即可.(2)证明∠B=∠ACB=∠ACE=40°,推出∠DCE=80°,利用等腰三角形的性质以及三角形内角和定理解决问题即可.【解答】(1)证明:∵∠BAC=∠DAE=100°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵△BAD≌△CAE,∴∠B=∠ACE=40°,∴∠DCE=∠BCA+∠ACE=80°,∵DE=DC,∴∠DEC=∠DCE=80°,∴∠EDC=180°﹣80°﹣80°=20°.五、解答题(三)(2个小题,每小题10分,共20分)24.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.【分析】(1)利用多项式除以单项式法则,以及平方差公式计算确定出A与B即可;(2)把化简得到A与B代入y﹣A=B中计算,得到y与x的关系式即可;(3)把y=7代入(2)中关系式计算求出x的值,即可求出所求.解:(1)A=(4x4﹣x2)÷x2=4x2﹣1,B=(2x+5)(2x﹣5)+1=4x2﹣25+1=4x2﹣24;(2)由y﹣A=B,得到y=A+B=4x2﹣1+4x2﹣24=8x2﹣25;(3)把y=7代入(2)中关系式得:8x2﹣25=7,即x2=4,则原式=8×4+(8×4﹣7)2﹣30=32+625﹣30=627.25.在△ABC中,AB=BC=12,∠ABC=90°.如图1,过点A作AH⊥AB,点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位.连结BD、DE,延长DE交直线BC于点M.当E到达点B时两点停止运动,设运动时间为t.(1)如图1,请直接写出AC与DM的位置关系和数量关系AC∥DM,AC=DM;(2)如图2,若改为在线段AB的上方作AH⊥AB,其它条件保持不变.①写出AC与DM的关系;当t=3时,判断△AEC和△MBD是否是全等三角形?并说明判断的理由;②连结CD和CE,求△CDE的面积y与t的关系式,并写出当t=3时y的值.【分析】(1)易证△DAE是等腰直角三角形,得∠DAE=90°,∠AED=45°,证明△ABC是等腰直角三角形,得AC=AB,∠BAC=∠ACB=45°,推出∠BAC=∠AED,则AC∥DM,过点D作DN⊥CB交CB延长线于N,则DN∥AB,由ASA证得△ADB≌△NBD,得DN=AB,证明△DNM是等腰直角三角形,得DM=DN,即可推出AC=DM;(2)①设AC与DM交F,证明∠DAF=45°,∠ADE=45°,则∠DFA=180°﹣∠DAF ﹣∠ADF=90°,得出AC⊥DM,△DFA是等腰直角三角形,得DF=AF,证明△CFM是等腰直角三角形,得CF=MF,即可得出AC=DM;当t=3时,易证AD=AE=BE,△EBM是等腰直角三角形,得BM=BE,∠BME =45°,推出BM=AE,即可由SAS证得△AEC≌△MBD;②由△AFE是等腰直角三角形,得AF=t,CF=AC﹣AF=12﹣t,由△DAE是等腰直角三角形,得DE=2t,由S△CDE=DE•CF,即可得出y与t的关系式,当t=3时代入即可得出y的值.【解答】(1)解:AC与DM的位置关系和数量关系是:AC∥DM,AC=DM;理由如下:∵点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位,∴AD=AE,∵AH⊥AB,∴△DAE是等腰直角三角形,∴∠DAE=90°,∠AED=45°,∵∠ABC=90°,AB=BC,∴△ABC是等腰直角三角形,∴AC=AB,∠BAC=∠ACB=45°,∴∠BAC=∠AED,∴AC∥DM,过点D作DN⊥CB交CB延长线于N,如图1所示:则DN∥AB,∴∠ABD=∠NDB,∵∠DAE=90°,∠ABC=90°,∴AD∥CN,∴∠ADB=∠NBD,在△ADB和△NBD中,,∴△ADB≌△NBD(ASA),∴DN=AB,∵AC∥DM,∴∠DMN=∠ACB=45°,∴△DNM是等腰直角三角形,∴DM=DN,∴AC=DM,故答案为:AC∥DM,AC=DM;(2)①AC与DM的关系为:AC⊥DM,AC=DM,理由如下:设AC与DM交F,如图2所示:∵△ABC是等腰直角三角形,∴∠BAC=∠BCA=45°,∵HA⊥AB,∴∠DAE=90°,∴∠DAF=90°﹣45°=45°,同(1)得:△DAE是等腰直角三角形,∴∠ADE=45°,∴∠DFA=180°﹣∠DAF﹣∠ADF=180°﹣45°﹣45°=90°,∴AC⊥DM,△DFA是等腰直角三角形,∴DF=AF,∴∠CFM=∠DFA=90°,∵∠ACB=45°,∴△CFM是等腰直角三角形,∴CF=MF,∴AF+CF=DF+MF,即AC=DM;当t=3时,△AEC和△MBD是全等三角形,如图3所示,理由如下:当t=3时,AE=AD=2×3=6,∴BE=AB﹣AE=12﹣6=6,∴AD=AE=BE,∵∠BEM=∠AED=45°,∴△EBM是等腰直角三角形,∴BM=BE,∠BME=45°,∴BM=AE,∵∠BAC=45°,∴∠EAC=∠BMD,在△AEC和△MBD中,,∴△AEC≌△MBD(SAS);②如图4所示:∵∠AED=45°,AC⊥DE,∴△AFE是等腰直角三角形,∴AF=AE=×2t=t,∵AC=AB=12,∴CF=AC﹣AF=12﹣t,∵△DAE是等腰直角三角形,∴DE=AE=×2t=2t,∵S△CDE=DE•CF,∴y=×2t×(12﹣t)=24t﹣2t2(0≤t≤6),当t=3时,y=24×3﹣2×32=54.。

北师大版七年级下册数学《期末考试试题》(带答案解析)

北师大版七年级下册数学《期末考试试题》(带答案解析)

2020年北师大版数学七年级下册期末测试学校 _________ 班级 ____________一、选择题(每小题3分,共30分)1•下列世界博览会会徽图案中是轴对称图形的是(2•下列计算正确的是()551032A. a + a = aB. a • a = a4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()意翻开一张是汉字“信”的概率是 ()7•下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;行于同一条直线的两条直线也互相平行;④同位角相等•其中正确的个数有(8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是(1 = Z 2,那么下列结论正确的是()| ----- p3•如图所示,已知/A. AB //BC B. AB // CD C. / C=ZD D. / 3=Z4A. 5 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45如图①所示,有6张写有汉字的卡片,它们的背面都相同, 现将它们背面朝上洗匀后如图 2摆放,从中任1A.- 26.利用基本作图,作出唯一三角形的是(□ □ U□ □ □ 阳2B. 13C.A.已知三边B .C.已知两角及其夹边D. 已知两边及其夹角 已知两边及其中一边1D.-6对角B. 2个C. 3个D. 4个姓名 _________成绩 ________76C. a 十 a = 3、2八 6D. ( — a ) = —②垂线段最短;③在同一平面内平C. DBro二、填空题(每小题3分,共15分)11.0.000 000 087 用科学记数法可表示为 _____ . 12.如图,已知 AB// CD, / 1 = 120 °,则/ C =13.一棵树高h (m )与生长时间n (年)之间满足一定的关系,请你根据下表中的数写出h (m )与n (年)之间的关A. (a b)(a b) a 2b 2B. (a b)2 a 22ab b 2 2C. 2a(a b) 2a 2abD. (a b)22a 2abb 29•如图,等腰△ABC 中, AB=AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点 D ,交 AC 于点 E ,贝U ABECB. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y 之的周长为()间的关系用图像描述大致是(系式:h= _____ .h(m)2.63.2 3.84.45.014.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在 10%和15%,则箱子里蓝色球的个数很可能是15.如图,△ ABE^A ABC 分别沿着 AB, AC 边翻折 180 ° 形成的•若/ BAC = 145。

北师大版数学七年级下册期末考试试题含答案

北师大版数学七年级下册期末考试试题含答案

北师大版数学七年级下册期末考试试卷一、选择题1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.2.下列各式运算正确的是()A.a2+a2=2a4B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2D.(﹣ab2)2=﹣a2b43.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣95.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S38.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上).11.化简(a+b)(a﹣b)=.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为.(不要求写出自变量x的取值范围)13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD =.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数度,再沿BF折叠成图c.则图中的∠CFE的度数是度.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.参考答案一、单选题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.2.下列各式运算正确的是()A.a2+a2=2a4B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2D.(﹣ab2)2=﹣a2b4【分析】分别根据合并同类项法则,同底数幂的乘法法则,单项式除以单项式的运算法则以及积的乘方运算法则逐一判断即可.解:A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项符合题意;C.(﹣3x)3÷(﹣3x)=9x2,故本选项不合题意;D.(﹣ab2)2=a2b4,故本选项不合题意.故选:B.3.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军【分析】根据事件发生的可能性大小判断即可.解:A、抛出的篮球会下落,是必然事件;B、打开电视,正在播《新闻联播》,是随机事件;C、任意买一张电影票,座位号是3的倍数,是随机事件;D、校篮球队将夺得区冠军,是随机事件;故选:A.4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣9【分析】根据平方差公式即可得出结果.解:(x+3)(x﹣3)=x2﹣32=x2﹣9.故选:D.5.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°【分析】根据平行线的性质和直角的定义解答即可.解:如图,作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠2=∠AEF=30°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣30°=60°,故选:C.6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm【分析】看哪个选项中两条较小的边的和不大于最大的边即可.解:A、1+2=3,不能构成三角形;B、2+2<5,不能构成三角形;C、3+4>5,能构成三角形;D、1+5<7,不能构成三角形.故选:C.7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S3【分析】根据同高三角形面积的比等于对应底边的比可得结论.解:∵BD=DE=EC,∴S△ABD=S△ADE=S△AEC,即S1=S2=S3,故选:C.8.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,∵,∴△EOC≌△DOC(SSS).故选:A.9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.【分析】根据匀速直线运动的路程、时间图象是一条过原点的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条直线,修车后为了赶时间,加大速度后再做匀速直线运动,其速度比原来变大,斜线的倾角变大,即可得出答案.解:小明骑自行车上学,开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条平行于横坐标的水平线,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求.故选:C.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【分析】题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上).11.化简(a+b)(a﹣b)=a2﹣b2.【分析】根据平方差公式直接将(a+b)(a﹣b)展开即可.解:(a+b)(a﹣b)=a2﹣b2.故答案为a2﹣b2.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为y=﹣2x2+20x.(不要求写出自变量x的取值范围)【分析】根据AB的长为x米可以得出BC的长为(20﹣2x)米,然后根据矩形的面积公式即可求出函数关系式.解:∵AB的边长为x米,而菜园ABCD是矩形菜园,∴BC=20﹣2x,∵菜园的面积=AB×BC=x•(20﹣2x),∴y=﹣2x2+20x.故填空答案:y=﹣2x2+20x.13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为12cm.【分析】根据折叠的性质得到AD=BD,根据三角形的周长公式计算,得到答案.解:由折叠的性质可知,AD=BD,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=12(cm),故答案为:12cm.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.【分析】用阴影部分的面积除以正方形的总面积即可得.解:由图形知,S①=S②,∴阴影部分的面积为正方形面积的一半,∴蚂蚁停在阴影部分的概率为,故答案为:.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【分析】(1)根据实数的运算法则即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据整式的运算法则即可求出答案.(4)根据整式的运算法则即可求出答案.解:(1)原式=1+﹣1=.(2)原式=a2﹣1﹣(a2﹣4a+4)=a2﹣1﹣a2+4a﹣4=4a﹣5.(3)原式=﹣4x+2y.(4)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷(2x2)=﹣8x7y3+4x7y3=﹣4x7y3.16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.【分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=x2+6xy+9y2﹣2x2﹣4xy+x2﹣9y2=2xy,当x=﹣1,y=2时,原式=2×(﹣1)×2=﹣4.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.【分析】(1)直接利用对称点的性质进而得出答案;(2)直接利用轴对称设计求最短路线的方法得出P点位置.解:(1)如图所示:A′点即为所求;(2)如图所示:点P即为所求.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)【分析】直接利用互余的性质以及三角形内角和定理、平行线的判定方法进而分析得出答案.【解答】证明:∵EC⊥AF(已知),∴∠CHF=90°(垂直的定义),∴∠1+∠C=90°(三角形内角和定理),∵∠2+∠C=90°(已知),∴∠1=∠2(同角的余角相等),又∵∠1=∠D(已知),∴∠2=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)【分析】由AD∥CB,利用“两直线平行,内错角相等”可得出∠ADB=∠CBD,由等角的补角相等可得出∠ADE=∠CBF,结合DE=BF,∠E=∠F可证出△ADE≌△CBF(ASA),再利用全等三角形的性质可证出AE=CF.【解答】证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.【分析】根据SAS证明△AFC与△AGB全等,进而利用全等三角形的性质得出∠AFC=∠AGC,进而利用AAS证明△ADF与△AEG全等解答即可.【解答】证明:在△AFC与△AGB中,∴△AFC≌△AGB(SAS),∴∠AFC=∠AGC,∴∠AFD=∠AGE,∵AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.∴∠ADF=∠AEG=90°,在△ADF与△AEG中,∴△ADF≌△AEG(AAS),∴AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=±3.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.解:∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2=x2±6x+9,∴2m=±6,m=±3.故答案为:±3.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=60°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.解:∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣A,∴在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+A=120°,∴∠A=60°,故答案为:60°.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD =2.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.解:∵AC⊥BC,∴∠ACB=90°,∵∠A=30°,∴AB=2BC=2×2=4,∵D为斜边AB的中点,∴CD=AB=×4=2.故答案为:2.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为12.【分析】原式利用多项式乘多项式法则计算,合并后根据积中不含x的二次项和一次项,确定出a与b的值,即可求出a+b的值.解:原式=x3+ax2+bx﹣3x2﹣3ax﹣3b=x3+(a﹣3)x2+(b﹣3a)x﹣3b,由积中不含x的二次项和一次项,得到a﹣3=0,b﹣3a=0,解得:a=3,b=9,则a+b=3+9=12.故答案为:12.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数150度,再沿BF折叠成图c.则图中的∠CFE的度数是135度.【分析】根据长方形纸条的对边平行,利用平行线的性质和翻折不变性求出∠2=∠EFG,继而求出图b中∠GFC的度数,再减掉∠GFE即可得图c中∠CFE的度数.解:如图,延长AE到H,由于纸条是长方形,∴EH∥GF,∴∠1=∠EFG,根据翻折不变性得∠1=∠2=15°,∴∠2=∠EFG,∠AEG=180°﹣2×15°=150°,又∵∠DEF=15°,∴∠2=∠EFG=15°,∠FGD=15°+15°=30°.在梯形FCDG中,∠GFC=180°﹣30°=150°,根据翻折不变性,∠CFE=∠GFC﹣∠GFE=150°﹣15°=135°.故答案为:150;135.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.【分析】(1)根据全等三角形的判定和性质证明即可;(2)根据全等三角形的性质和判定证明即可;(3)根据全等三角形的性质和等边三角形的判定证明即可.【解答】证明:(1)∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE;(2)∵ADC≌△BEC,∴∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,∴△APC≌△BQC(ASA);(3)∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.【分析】(1)连接FD,根据等腰三角形的性质和平角的定义得出∠EFB+∠CDB=90°,根据直角三角形两锐角互余得出∠BFD+∠BDF=90°,进一步得出∠EFD+∠CDF=180°,即可证得EF∥CD;(2)连接FD,延长CB到H,根据平移的性质,等腰三角形的性质,直角三角形两锐角互余的性质证得∠EFD+∠CDF=180°,即可证得EF∥CD.【解答】(1)证明:如图1,连接FD,∵EB=EF,CB=CD,∴∠EBF=∠EFB,∠CBD=∠CDB,∵∠FBD=90°,∴∠EBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD;(2)成立,证明:如图2,连接FD,延长CB到H,∵EG∥BC,∴∠EGF=∠HBF,∵∠FBD=90°,∴∠HBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EGF+∠CBD=90°,∵EG=EF,CB=CD,∴∠EGF=∠EFB,∠CBD=∠CDB,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是EF=BE+DF(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.【分析】(1)延长FD到点G.使DG=BE.连结AG,由“SAS”可证△ABE≌△ADG,可得AE=AG,∠BAE=∠DAG,再由“SAS”可证△AEF≌△AGF,可得EF=FG,即可解题;(2)延长EB到G,使BG=DF,连接AG,即可证明△ABG≌△ADF,可得AF=AG,再证明△AEF≌△AEG,可得EF=EG,即可解题;(3)延长EA到H,使AH=CF,连接BH,由“SAS”可证△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由“SAS”可证△EBH≌△EBF,可得EF=EH,可得EF=EH=AE+CF,即可求解.【解答】证明:(1)延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠FAD=∠DAG+∠FAD=50°,∴∠EAF=∠FAG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案为:EF=BE+DF;(2)结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如图,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.。

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。

七年级下学期期末数学测试题北师大版含答案共4套

七年级下学期期末数学测试题北师大版含答案共4套

教育精品资料七年级下学期期末数学测试题一.精心选一选 (以下每小题给出的四个选项中,只有一个选项是正确的,将正确选项前的字母填在题后的括号内.本题有10小题,每小题3分,共30分) 1.下列各式计算结果正确的是( )A .2a a a =+B .()2263a a = C .()1122+=+a a D .2a a a =⋅2.2004年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元,136515亿元用科学记数法表示(保留4个有效数字)为( ) A .121.36510⨯元; B .131.365210⨯元; C .121.36510⨯元; D .121.36510⨯元 3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个 4.下列说法正确的是( )A .如果一件事不可能发生,那么它是必然事件,即发生的概率是1;B .概率很大的事情必然发生;C .若一件事情肯定发生,则其发生的概率1≥P ;D .不太可能发生的事情的概率不为05.下列关于作图的语句中正确的是( )A .画直线AB =10厘米; B .画射线OB =10厘米;C .已知A .B .C 三点,过这三点画一条直线;D .过直线AB 外一点画一条直线和直线AB 平行 6.如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是( )A .60°B .70°C .80°D .90° 7.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短8.下列乘法中,不能运用平方差公式进行运算的是( )A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )9.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,1l .2l 分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟; B.步行的速度是6千米/时;C.骑车的同学从出发到追上步行的同学用了20分钟;D.骑车的同学和步行的同学同时达到目的地l2306054506y(千米)x(分)l1FEDCBA10.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE,(2)BC=EF,(3)AC=DF ,(4)∠A=∠D,(5)∠B=∠E,(6)∠C=∠F,以其中三个作为已知条件,不能..判断△ABC与△DEF全等的是()A.(1)(5)(2)B.(1)(2)(3)C.(2)(3)(4)D.(4)(6)(1)二、耐心填一填(请直接将答案填写在题中的横线上,每题3分,共24分)11.等腰三角形的一个角为100°,则它的底角为.12.()32+-m(_________)=942-m; ()232+-ab=_____________.13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= ,P(摸到偶数)= .(第15题) (第17题) (第18题)15.如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交与点E,若∠1=43°,则∠2= 度.16.有一个多项式为a8-a7b+a6b2-a5b3+…,按照此规律写下去,这个多项式的第八项是_____________.17.如图,∠ABC=∠DCB,请补充一个条件:,使△ABC≌△DCB.18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是分钟.三、细心算一算:19.(4分)①)()(2322cabcab÷(4分)②2)())((yxyxyx++---20.(5分)先化简再求值:)4)(12()2(2+-+-aaa,其中2-=a.21.(4分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?22.(6分)如图所示:ΔABC的周长为24cm,AB=10cm,边AB的垂直平分线DE交BC边于点E,垂足为D,求ΔAEC的周长.四、用心想一想23.(6分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,你能找出一对全等的三角形吗?为什么它们是全等的?24.(5分)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a、b的等式.25.(5分)已知如图,要测量水池的宽AB,可过点A作直线AC ⊥AB,再由点C观测,在BA延长线上找一点B’,使∠ACB’= ∠AC B,这时只要量出AB’的长,就知道AB的长,对吗?为什么?26.(6分)请你设计一个摸球游戏:在袋子中装有若干个黄球、绿球和红球,使摸到球的概率:P (摸到红球)=41;P (摸到黄球)=32;P (摸到绿球)=121,那么袋子中黄球、绿球和红球至少各需要多少个?五、识图与计算:27.(12分)如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按同路从A 地出发驶往B 地,如图所示,图中的折线PQR 和线段MN 分别表示甲、乙所行驶的路程S 与该日下午时间t 之间的关系. 根据图象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间? (2)甲和乙哪一个更早到达B 城,早多长时间? (3)乙出发大约用多长时间就追上甲? (4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.(9分)下图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少? (2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.24681012周一周二周三周四周五周六周日答 案1~10:DACDD BABDC11.40°; 12.32--m ,912422+-ab b a ; 13.E6395; 14.101,21; 15.133°; 16.7ab -; 17.AB=DC 或∠A=∠D ; 18.37.2;19.①)c ab ()c ab (2322÷=)c ab (c b a 23242÷=ab ②xy y 222+ 20.a a 332+,值为6. 21.21 22.ΔAEC 的周长=AE+EC+AC=BE+EC+AC=BC+AC=24-10=14cm .23.△AED ≌△AFD .理由: 因为∠AED=∠AFD ,∠EAD=∠FAD ,AD 是公共边,所以它们全等(AAS ).(或理由:因为角的平分线上的点到这个角的两边距离相等, 所以DE=DF ,AD 是公共的斜边,所以它们全等(HL ).) 24.()()ab b a b a 422+==+等.25.对,用ASA 可以证明三角形全等. 26.红球3个,黄球8个,绿球1个. 27.(1)甲比乙出发更早,要早1小时(2)乙比甲早到B 城,早了2个小时 (3)乙出发半小时后追上甲(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B 城 (5)乙的速度为50千米/时,甲的平均速度为12.5千米/时. 28.(1)周三,1元,10元,(2)周一与周五都是6元,周六和周日都是10元, (3)()67101065146=÷++++++(元);(4)略.七年级数学试题(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是B ′C ′D ′O ′A ′O DC BA (第8题图) A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a - B .221a a -+ C .221a a -- D .21a + 5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同 已知角∠AOB8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分) 9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °. 12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 . 14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据: 试验者 试验次数n 正面朝上的次数m正面朝上的频率nm 布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 .16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OAC P P′ B(第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分) (1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b +的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:FECBA(第22题图)项目 月功能费基本话费 长途话费短信费金额/元550(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形 的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。

北师大版七年级第二学期期末数学试卷及答案3

北师大版七年级第二学期期末数学试卷及答案3

北师大版七年级第二学期期末数学试卷及答案一、选择题(共9小题).1.(2分)下列计算正确的是()A.a3•a3=2a3 B.3a3﹣a3=2a6C.a6÷a3=a2 D.(﹣2a3)2=4a62.(2分)下列图案不是轴对称图形的是()A.B.C.D.3.(2分)下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)4.(2分)“a是实数,a2≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件5.(2分)如图,AB∥CD,∠ACB=90°,CE⊥AB,垂足为E,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个6.(2分)如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE 的面积等于()A.15B.12C.10D.147.(2分)已知多项式x﹣a与x2+2x﹣1的乘积中不含x2项,则常数a的值是()A.﹣1B.1C.2D.﹣28.(2分)小明从家出发走了10分钟后到达了离家800米的书店买书,在书店停留了10分钟,然后用15分钟返回到家,下列图象能表示小明离家y(米)与时间x(分)之间关系的是()A.B.C.D.9.(2分)如图,AB∥CD,则下列等式正确的是()A.∠1=∠2+∠3B.∠1﹣∠2=180°﹣∠3C.∠1﹣∠3=180°﹣∠2D.∠1+∠2+∠3=180°二、填空题(每小题2分,共18分)10.(2分)医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为.11.(2分)若b m=8,b n=5,则b m+n=.12.(2分)一个等腰三角形的两边长分别是4和9,则周长是.13.(2分)已知x+y=5,xy=﹣24,则x2+y2=.14.(2分)一个等腰三角形的周长是60cm,腰为xcm,底为ycm,请列出y与x之间的关系式为.15.(2分)一个袋子里有n个除颜色外完全相同的小球,其中有8个黄球,每次摸球前先将袋子里的球摇匀,任意摸出一球记下颜色后放回,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么可以推算出n大约是.16.(2分)已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是cm.17.(2分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点N,交AC于点M,连接BM,则∠MBC=度.18.(2分)如图,△ABC的面积为S,BD=BC,AE=AC,连接AD和BE交于点O,连接CO,则△ABO 的面积为.若BD=BC,AE=AC,则△ABO的面积为.三、计算(19题每小题8分,共8分;20题8分)19.(8分)(1)()0÷(4)﹣2(2)4xy•(﹣xy2z3)÷(2x2y3)20.(8分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中a=,b=﹣25.四、(21题6分,22题8分)21.(6分)如图,点B在线段AC上,点E在线段DF上,连接DB,EC,AF,若∠A=∠F,DB∥EC,下面写出了说明“∠C=∠D”的过程,请将说明过程补充完整.∵∠A=∠F(已知)∴DF∥.()∴∠DEC+∠C=180°.()∵DB∥EC(已知)∴∠DEC+∠=180°.()∴∠C=∠D.()22.(8分)现有除数字外完全相同的10张卡片,上面分别标有1,2,3,4,5,6,7,8,9,10.小明和小亮两人合作完成一个游戏,规则是小明先随意抽取1张卡片,然后由小亮猜这张卡片上标的数,如果小亮猜对了,则小亮获胜,如果猜错了,则小明获胜.(1)这个游戏对双方公平吗?(2)下面这几个游戏规则,你认为对双方公平的是哪几个?(只写出序号即可)①猜奇数还是偶数;②猜不是3的倍数;③猜是3的倍数;④猜大于5的数;⑤猜不大于5的数.(3)如果你是小亮,为了获胜,你想选择上面(2)中的哪一个猜法?并说明理由.五、(本题6分)23.(6分)校园的一角如图所示,其中线段AB,BC,CD表示围墙,围墙内是学生的一个活动区域,小明想在图中的活动区域中找到一点P,使得点P到三面围墙的距离都相等.请在图中找出点P.(用尺规作图,不用写作法,保留作图痕迹)六、(本题8分)24.(8分)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.(1)下表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.x/人次50010001500200025003000…y/元1000200040006000…(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入﹣支出费用)七、(本题10分)25.(10分)(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.八、(本题10分)26.(10分)已知:如图1,在△ABC和△ADE中,∠C=∠E,∠CAE=∠DAB,BC=DE.(1)请说明△ABC≌△ADE.(2)如图2,连接CE和BD,DE,AD与BC分别交于点M和N,∠DMB=56°,求∠ACE的度数.(3)在(2)的条件下,若CN=EM,请直接写出∠CBA的度数.参考答案一、选择题(下列各题的备选答案中,只有一一个是正确的.每小题2分,共18分)1.(2分)下列计算正确的是()A.a3•a3=2a3B.3a3﹣a3=2a6C.a6÷a3=a2D.(﹣2a3)2=4a6解:A.a3•a3=a6,故本选项不合题意;B.3a3﹣a3=2a3,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(﹣2a3)2=4a6,故本选项符合题意.故选:D.2.(2分)下列图案不是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.3.(2分)下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.4.(2分)“a是实数,a2≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件解:a为实数,a2≥0,是一定成立的问题,是必然事件.故选:A.5.(2分)如图,AB∥CD,∠ACB=90°,CE⊥AB,垂足为E,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个解:∵CE⊥AB于点E,∴∠CEA=90°,∴∠CAB+∠ACE=90°,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵AB∥CD,∴∠ABC=∠DCB,∴∠DCB+∠CAB=90°,由上可得,图中与∠CAB互余的角有∠ACE、∠ABC、∠DCB,即图中与∠CAB互余的角有3个,故选:C.6.(2分)如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE=3,则△ABE 的面积等于()A.15B.12C.10D.14解:过点E作EF⊥AB于点F,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.7.(2分)已知多项式x﹣a与x2+2x﹣1的乘积中不含x2项,则常数a的值是()A.﹣1B.1C.2D.﹣2解:(x﹣a)(x2+2x﹣1)=x3+2x2﹣x﹣ax2﹣2ax+a=x3+2x2﹣ax2﹣x﹣2ax+a=x3+(2﹣a)x2﹣x﹣2ax+a令2﹣a=0,∴a=2故选:C.8.(2分)小明从家出发走了10分钟后到达了离家800米的书店买书,在书店停留了10分钟,然后用15分钟返回到家,下列图象能表示小明离家y(米)与时间x(分)之间关系的是()A.B.C.D.解:根据题意,在前10分钟,离家的距离随时间增加而增加,当时间为10分钟,距离达到离家800米,在书店停留了10分钟,离家的距离仍为800米不变,然后用15分钟离家的距离由800米逐渐减少到0米,返回到家,故选:D.9.(2分)如图,AB∥CD,则下列等式正确的是()A.∠1=∠2+∠3B.∠1﹣∠2=180°﹣∠3C.∠1﹣∠3=180°﹣∠2D.∠1+∠2+∠3=180°解:如右图所示,∵CD∥AB,∴∠4=∠3,∵∠4=∠2+(180°﹣∠1),∴∠3=∠2+(180°﹣∠1),∴∠1﹣∠2=180°﹣∠3,故选:B.二、填空题(每小题2分,共18分)10.(2分)医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为6×10﹣8.解:0.00000006=6×10﹣8.故答案为:6×10﹣8.11.(2分)若b m=8,b n=5,则b m+n=40.解:∵b m=8,b n=5,∴b m+n=b m×b n=8×5=40.故答案为:40.12.(2分)一个等腰三角形的两边长分别是4和9,则周长是22.解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.13.(2分)已知x+y=5,xy=﹣24,则x2+y2=73.解:∵x+y=5,xy=﹣24,∴x2+y2=(x+y)2﹣2xy=52﹣2×(﹣24)=73.故答案为73.14.(2分)一个等腰三角形的周长是60cm,腰为xcm,底为ycm,请列出y与x之间的关系式为y=﹣2x+60.解:依题意得2x+y=60,即y=﹣2x+60;故答案为:y=﹣2x+60.15.(2分)一个袋子里有n个除颜色外完全相同的小球,其中有8个黄球,每次摸球前先将袋子里的球摇匀,任意摸出一球记下颜色后放回,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么可以推算出n大约是20.解:根据题意得:=0.4,解得:n=20,则n大约是20个;故答案为:20.16.(2分)已知△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,那么△DEF中EF边上的高是8cm.解:∵△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,∴BC•h=20,即h=8,则△DEF中EF边上的高是8cm,故答案为:8.17.(2分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点N,交AC于点M,连接BM,则∠MBC=30度.解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=×(180°﹣40°)=70°,∵AB的垂直平分线交AB于点N,交AC于点M,∴∠ABM=40°,∴∠MBC=∠ABC﹣∠ABM=70°﹣40°=30°.故答案为:30.18.(2分)如图,△ABC的面积为S,BD=BC,AE=AC,连接AD和BE交于点O,连接CO,则△ABO 的面积为.若BD=BC,AE=AC,则△ABO的面积为.解:∵BD=BC,AE=AC,∴S△ABD=S△ACD,S△OBD=S△OCD,∴S△ABO=S△ACO,同理:S△ABO=S△BCO,∴S△ABO=S△ACO=S△BCO,∵S△ABO+S△ACO+S△BCO=S△ABC,∴S△ABO=;若BD=BC,AE=AC,∴S△ABO+S BDO=S,S△ABO+S△AEO=,S△BCO=3S△BDO,S△ACO=3S△AEO,∴S△AEO=﹣S△ABO,S△BDO=S△AEO,∴S△ABO+6S△AEO=S,即S△ABO+6(﹣S△ABO)=S,∴S△ABO=,故答案为,.三、计算(19题每小题8分,共8分;20题8分)19.(8分)(1)()0÷(4)﹣2(2)4xy•(﹣xy2z3)÷(2x2y3)解:(1)==16;(2)4xy•(﹣xy2z)3÷(2x2y3)=4xy•(﹣x3y6z3)÷(2x2y3)=﹣4x4y7z3÷(2x2y3)=﹣2x2y4z3.20.(8分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中a=,b=﹣25.解:a(a+2b)﹣(a+1)2+2a=a2+2ab﹣(a2+2a+1)+2a=2ab﹣1,当,b=﹣25时,原式==﹣3.四、(21题6分,22题8分)21.(6分)如图,点B在线段AC上,点E在线段DF上,连接DB,EC,AF,若∠A=∠F,DB∥EC,下面写出了说明“∠C=∠D”的过程,请将说明过程补充完整.∵∠A=∠F(已知)∴DF∥AC.(内错角相等,两直线平行)∴∠DEC+∠C=180°.(两直线平行,同旁内角互补)∵DB∥EC(已知)∴∠DEC+∠D=180°.(两直线平行,同旁内角互补)∴∠C=∠D.(同角的补角相等)解:∵∠A=∠F(已知)∴DF∥AC.(内错角相等,两直线平行),∴∠DEC+∠C=180°.(两直线平行,同旁内角互补),∵DB∥EC(已知)∴∠DEC+∠D=180°.(两直线平行,同旁内角互补),∴∠C=∠D(同角的补角相等).故答案为:AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.22.(8分)现有除数字外完全相同的10张卡片,上面分别标有1,2,3,4,5,6,7,8,9,10.小明和小亮两人合作完成一个游戏,规则是小明先随意抽取1张卡片,然后由小亮猜这张卡片上标的数,如果小亮猜对了,则小亮获胜,如果猜错了,则小明获胜.(1)这个游戏对双方公平吗?(2)下面这几个游戏规则,你认为对双方公平的是哪几个?(只写出序号即可)①猜奇数还是偶数;②猜不是3的倍数;③猜是3的倍数;④猜大于5的数;⑤猜不大于5的数.(3)如果你是小亮,为了获胜,你想选择上面(2)中的哪一个猜法?并说明理由.解:(1)不公平,小明获胜的概率为,小亮获胜的概率仅为,小明获胜概率大于小刚的,所以不公平.(2))①公平,猜奇数或偶数的概率都是0.5,概率相等,所以是公平的;②③不公平,P(3的倍数)=,P(不是3的倍数)=,两者不相等,所以不公平;④⑤公平,P(大于5)==P(不大于5)=,所以是公平的;则双方公平的是①④⑤;(3)选择②,理由:不是3的倍数的数字有1,2,4,5,7,8,10共有7种情况,所以P(不是3的倍数)=>,获胜可能性大.五、(本题6分)23.(6分)校园的一角如图所示,其中线段AB,BC,CD表示围墙,围墙内是学生的一个活动区域,小明想在图中的活动区域中找到一点P,使得点P到三面围墙的距离都相等.请在图中找出点P.(用尺规作图,不用写作法,保留作图痕迹)解:如图,点P即为所求.六、(本题8分)24.(8分)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.(1)下表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.x/人次50010001500200025003000…y/元100020003000400050006000…(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入﹣支出费用)解:(1)表格中反映了收入y(元)与人次x(人)两个变量之间的变化关系,其中人次x是自变量,y是因变量;(2)补全表格如下:x/人次50010001500200025003000…y/元y/元100020003000400050006000…故答案为:3000、5000;(3)每人次乘坐的票价为:1000÷500=2(元),由题意得,2x=4000+10000,解得,x=7000,答:每月乘坐该路公交车要达到7000人次.七、(本题10分)25.(10分)(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.解:(1)AB∥CD,理由如下:∵∠BAM+∠D=180°,又∵∠BAM+∠BAE=180°,∴∠D=∠BAE,∵MA⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,∴∠BAE+∠B=90°,∠D+∠DCF=90°,∴∠B=∠DCF,∴AB∥CD;(2)∵AB∥CD,∴∠DCF=∠B,∵∠DCF=∠DEC+∠EDC,∴∠B=∠DEC+∠EDC,∵∠AEB=∠AEC=90°,∴∠BAE=90°﹣∠B,∵∠DEC=90°﹣∠AED,∴90°﹣∠BAE=∠EDC+∠90°﹣∠AED,∴∠BAE+∠EDC=∠AED;(3)延长CD至点N交EF于点H,过E作EM∥CN,∵EM∥CN,∴∠MEF=∠EHC,∵AB∥CD,∴AB∥EM,∴∠A=∠AEM,∵∠AEF=∠AEM+∠MEF,∴∠AEF=∠A+∠EHC,∴∠EHC=60°﹣32°=28°,∵EF∥CG,∴∠C=∠EHC=28°.八、(本题10分)26.(10分)已知:如图1,在△ABC和△ADE中,∠C=∠E,∠CAE=∠DAB,BC=DE.(1)请说明△ABC≌△ADE.(2)如图2,连接CE和BD,DE,AD与BC分别交于点M和N,∠DMB=56°,求∠ACE的度数.(3)在(2)的条件下,若CN=EM,请直接写出∠CBA的度数.解:(1)∵∠CAE=∠DAB,∴∠CAE+∠CAD=∠DAB+∠CAD,即∠CAB=∠EAD,在△ABC和△ADE中,∴△ABC≌△ADE(AAS);(2)∵△ABC≌△ADE,∴∠CBA=∠EDA,AC=AE,在△MND和△ANB中,∵∠EDA+∠MND+∠DMB=180°,∠CBA+∠ANB+∠DAB=180°,又∵∠MND=∠ANB,∴∠DAB=∠DMB=56°,∴∠CAE=∠DAB=56°,∵AC=AE,∴∠ACE=∠AEC=,∴∠ACE=62°;(3)连接AM,由图(1)的∠A=∠C得∠MEA=∠ACN,而AE=AC,CN=EM,∴△AME≌△ANC(SAS),∴AM=AN,∠EAM=∠CAN,∵∠EAM=∠CAN,∴∠MAD=∠EAC=56°,∵AM=AN,∴∠AMN=∠ANM=(180°﹣∠MAD)=(180°﹣56°)=62°=∠BND,由(2)知∠DAB=56°,∴∠CBA=∠BND﹣∠DAB=62°﹣56°=6°.。

【北师大版】初一数学下期末试卷附答案

【北师大版】初一数学下期末试卷附答案

一、选择题1.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = 2.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩3.已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( )A .8B .0C .4D .﹣2 4.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( )y a2y 4x -92x - 11 B .7 C .8 D .9 5.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 6.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .4 8.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D .9.下列说法中不正确的是( )A .若a b >,则a 1b 1->-B .若3a 3b >,则a b >C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- 10.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc < 11.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( ) A .2m > B .2m < C .2m ≥D .2m ≤ 12.已知a<b ,则下列四个不等式中,不正确的是( )A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>二、填空题 13.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____.14.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本.15.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ . 16.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.17.写一个第三象限的点坐标,这个点坐标是_______________.18.计算:2(3.14)|2|ππ---=________.19.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.20.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________. 三、解答题21.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.22.点(),P x y 满足525744x y a x y a +=⎧⎨+=⎩. (1)当1a =时,求P 点的坐标;(2)点(),P x y 的坐标满足不等式组259x y x y +<⎧⎨->-⎩,求出整数a 的所有值之和. 23.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A 、B 品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润? 类别/单价成本价(元/箱 销售价(元/箱) A 品牌20 32 B 品牌 35 5024.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()6,6-,()3,0-,()0,3.(1)画出三角形ABC ,并求它的面积.(2)在三角形ABC 中,点C 经过平移后的对应点为()5,4C ',将三角形ABC 做同样的平移得到三角形A B C ''',画出平移后的三角形A B C ''',并写出点A ',B '的坐标. 25.(1)求x 的值:2490x -=;(2()2325227-26.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 2.B解析:B【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0? 25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.3.A解析:A【分析】先利用加减消元法求出方程组734437x y x y +=⎧⎨-=⎩的解,再代入方程521x y m -=-即可得. 【详解】由题意得:方程组734437x y x y +=⎧⎨-=⎩①②的解能使等式521x y m -=-成立, 由①+②得:1111x =,解得1x =,将1x =代入①得:734y +=,解得1y =-,将1,1x y ==-代入521x y m -=-得:()5211m -⨯-=-,解得8m =,故选:A .【点睛】本题考查了利用加减消元法解二元一次方程组,熟练掌握方程组的解法是解题关键. 4.B解析:B【分析】根据第一列、第三行、对角线建立关于x 、y 的方程组,解方程组求出x 、y 的值,由此即可得.【详解】由题意得:29411299211y y y x y y x ++=-+⎧⎨++=-+⎩, 整理得:4222311x y x y +=⎧⎨+=⎩, 解得25x y =-⎧⎨=⎩, 则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+,解得7a =,故选:B .【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键.解析:D【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)逐项进行判断即可得到答案.【详解】解:A、(1,0)是x轴正半轴上的点,故选项A不符合题意;B、(1,1)是第一象限内的点,故选项B不符合题意;C、(1,﹣1)是第四象限内的点,故C不符合题意;D、(﹣1,1)是第二象限内的点,故D符合题意;故选:D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.B解析:B【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】解:∵−1<0,0,∴点P在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.C解析:C【分析】根据平方根的概念从而得出a的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a的一个平方根,a ,∴4∴4的算术平方根是2,故选:C.【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.C解析:C【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A 、∵a >b ,∴a-1>b-1,故本选项正确,不符合题意;B 、∵3a >3b ,∴a >b ,故本选项正确,不符合题意;C 、∵a >b 且c≠0,当c >0时,ac >bc ;当c <0时,ac <bc ,故本选项错误,符合题意;D 、∵a >b ,∴-a <-b ,∴7-a <7-b ,故本选项正确,不符合题意.故选:C .【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.D解析:D【分析】根据不等式的性质进行解答.【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.11.D解析:D【分析】先求出11x ->的解,再根据不等式组无解,可得关于m 的不等式,根据解不等式,可得答案.【详解】解:解11x ->得2x >.∵不等式组11x x m ->⎧⎨<⎩无解, ∴2m ≤,故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.B解析:B【分析】根据不等式的性质逐项排除即可.【详解】解:∵a<b∴a+2<b+2成立,则A 选项不符合题意;当c=0时,22ac bc =,则B 选项符合题意;1122a b <成立,则C 选项不符合题意; -2a-1-2b-1>成立,则D 选项不符合题意.故答案为B .【点睛】本题考查了不等式的性质,掌握①不等式左右两边同时加(减)一个数(式)不等式符号不变;②给不等式左右两边同时乘(除)一个不为零的数(式),当该数(式)大于零时不等式符号不变,反之改变.二、填空题13.﹣2<m <﹣1【分析】根据各象限内坐标符号特征列出不等式组然后解不等式组即可解答【详解】解:∵点P (3m+61+m )在第四象限∴即解得:﹣2<m <﹣1故答案为:﹣2<m <﹣1【点睛】本题考查各象限内解析:﹣2<m <﹣1【分析】根据各象限内坐标符号特征列出不等式组,然后解不等式组即可解答【详解】解:∵点P (3m +6,1+m )在第四象限,∴3601+0m m +>⎧⎨<⎩即21m m >-⎧⎨<-⎩, 解得:﹣2<m <﹣1,故答案为:﹣2<m <﹣1.【点睛】本题考查各象限内坐标符号特征、解一元一次不等式组,记住各象限内点的坐标符号特征是解答的关键.14.80【分析】先设甲种书的单价为x 元数量为y 本乙种书的数量为z 本根据数学组购买了甲乙两种自然科学书籍若干本用去7690元:语文组购买了AB 两种文学书籍若干本用去8330元列出方程组求出z-y 的值即可求解析:80【分析】先设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据数学组购买了甲、乙两种自然科学书籍若干本,用去7690元:语文组购买了A 、B 两种文学书籍若干本,用去8330元列出方程组,求出z-y 的值即可求出答案.【详解】设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据题意得:()()8769088330xy x z x y xz ⎧+-⎪⎨-+⎪⎩==,整理得:8769088330xy xz z xy y xz +-⎧⎨-+⎩=①=②, ②−①得:8z-8y =640,则z-y =80,故乙种书籍比甲种书籍多买了80本故答案为:80.【点睛】此题考查了三元二次方程组的应用,关键是读懂题意,根据题目中的数量关系列出方程组,在解方程组时要注意方程组的特点.15.【分析】将代入方程组求出a 和b 的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值解析:0【分析】 将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,求出a 和b 的值,即可求解. 【详解】将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,得: 121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩, 解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴11022a b +=-+=. 故答案为:0.【点睛】 本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A (2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A (2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.17.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如( 解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.18.【分析】先计算算术平方根化简绝对值再计算实数的加减法即可得【详解】原式故答案为:【点睛】本题考查了算术平方根绝对值实数的加减运算熟练掌握各运算法则是解题关键解析: 1.14-【分析】先计算算术平方根、化简绝对值,再计算实数的加减法即可得.【详解】原式()3.142ππ=---,3.142ππ=--+,1.14=-,故答案为: 1.14-.【点睛】本题考查了算术平方根、绝对值、实数的加减运算,熟练掌握各运算法则是解题关键. 19.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.20.【分析】先求出不等式组中每一个不等式的解集再求出它们的公共部分【详解】解:解①得:x >2解②得:x≥-4所以不等式组的解集是:x >2故答案为:x >2【点睛】本题考查的是一元一次不等式组的解解此类题目 解析:2x >【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】 解:21312?2x x ->⎧⎪⎨-≤⎪⎩①② 解①得:x >2,解②得:x≥-4.所以,不等式组的解集是:x >2.故答案为:x >2.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.三、解答题21.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.22.(1)5(2)2P -,;(2)5. 【分析】(1)将a=1带入,再用加减消元法解方程组;(2)直接解出方程组,用a 表示x 、y ,再代入不等式组,求出解集,最后取整数解相加求和.【详解】解:(1)a=1代入方程组525744x y x y +=⎧⎨+=⎩①② ①2⨯,得:10410x y +=③③-②,得:36x =系数化为1,得:2x =2x =代入①,得:52y =- 则252x y =⎧⎪⎨=-⎪⎩因此,P 点坐标为5(2)2-,(2)525744x y a x y a +=⎧⎨+=⎩①② ①2⨯,得:10410x y a +=③③-②,得:36x a =系数化为一,得:2x a =2x =代入①,得:52y a =- 则252x a y a =⎧⎪⎨=-⎪⎩将x 、y 代入不等式组259x y x y +<⎧⎨->-⎩ 54525292a a a a ⎧-<⎪⎪⎨⎪+>-⎪⎩④⑤ 由不等式④得:103a < 由不等式⑤得:2a >- 综合得:1023a -<< 则a 的整数解为-1、0、1、2、3,a 的整数解的和为-1+0+1+2+3=5【点睛】本题考查解二元一次方程组,解不等式组等知识点,熟练掌握二元一次方程组的解法,会用参数表示方程组的解,以及会取不等式解集的整数解是解题的关键.23.(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,根据总价=单价×数量,结合该超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,即可列出关于x,y的二元一次方程组,解之即可;(2)根据总利润=每箱利润×数量,即可求出该超市销售完600箱矿泉水获得的利润.【详解】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:600 203515000x yx y+=⎧⎨+=⎩,解得:400200 xy=⎧⎨=⎩.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(1)画△ABC见解析,△ABC的面积为272;(2)平移后的△A′B′C′见解析,A′(-1,7),B′(2,1)【分析】(1)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出各对应点位置,进而得出答案.【详解】(1)△ABC如图所示:△ABC的面积为:ABC11127 666333362222S=⨯-⨯⨯-⨯⨯-⨯⨯=;(2)如图所示:△A′B′C′即为所求,A′(-1,7),B′(2,1);故答案为:A′(-1,7),B′(2,1).【点睛】本题考查了作图-平移变换,熟知图形平移不变性的性质以及正确得出对应点位置是解答此题的关键.25.(1)32x=或32x=-;(2)4【分析】(1)利用开方要根的概念求出x的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.26.125°.【分析】由两直线垂直,求得∠AOE=90°;由∠AOC 与∠EOC 互余,∠EOC=35°,即可得到∠AOC 的度数;再由∠AOD 与∠AOC 互补,即可得出∠AOD 的度数.【详解】∵EO ⊥AB ,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.。

北师版七年级下册数学期末试卷

北师版七年级下册数学期末试卷

北师版七年级下册数学期末试卷北师版七年级下册数学期末试卷鲜花纷纷绽笑颜,捷报翩翩最灿烂。

祝你七年级数学期末考试取得好,期待你的成功!以下是啦店铺为你整理的北师版七年级下册数学期末试卷,希望对大家有帮助!北师版七年级下册数学期末试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?北师版七年级下册数学期末试卷答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的`几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣> ﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣ |= ,|﹣0.4|=0.4,∵ <0.4,∴﹣ >﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算: = ﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣ )2=﹣ .故答案为:﹣ .【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= 1 .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= 0 .【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1 .【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为 2 .【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= 13或7 cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM= AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC 的中点,则AM= AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240 元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为 2.5 cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣× ×6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2) ,去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x= .【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x 一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA 的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为 .根据题意,得160x+300× =4020.解得:x=12.从而 =7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45 °,∠COD和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= 8 cm OB= 4 cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x= .故CO的长是 cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版七年级下学期期末数学试题
一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.
1.下列各式计算正确的是( )
A .8
442x x x =+ B .()
3
2
6x y
x y =
C .()
3
25x
x = D .()853x x x =-⋅-
2.下列各式中,不能用平方差公式计算的是( )
A.)43)(34(x y y x ---
B.)2)(2(2
2
2
2
y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+-
3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )
A .5.464×107
吨 B .5.464×108

C .5.464×109吨
D .5.464×1010

4.将图甲中阴影部分的小长方形变换到图乙
位置,根据两个图形的面积关系可以得到一个 关于a 、b 的恒等式为( ) A.()2
2
2
b 2ab a b a +-=-
B.()222
2b ab a b a ++=+
C.()()22b a b -a b a -=+
D.()ab a b a a -=-2
6. 如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别
是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( )
A 、5个
B 、4个
C 、3个
D 、2个
二、填空题:(本大题共10个小题,每小题3分,共30分)请将每小题的正确答案填入下面的表格中.
11.长方形面积是a ab a 6332
+-,一边长为3a ,则它的另一边长是 。

12.若4a 2
+ka +9是一个完全平方式,则k 等于 。

13.已知:9,
3xy x y =-=-,则__________y xy x =++223.
14.如图,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°, 则∠C =__________.
15.某楼梯的侧面视图如图所示,其中AB=6.5米,BC=2.5米,
90
C ∠=°,楼梯的宽度为6米,因某种活动要求铺设红色地毯, 则在AB 段楼梯所铺地毯的面积应为 .
C
(第6题) (第15题) B
C
A
A
B
C
D
E
第14题
a a 甲

(第4
17.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折 叠成图c ,则图c 中的∠CFE 的度数是 .
18.如图,已知长方体的三条棱AB 、BC 、BD 分别为4,5,2,蚂蚁从A 点出发沿长方体的表面爬行到M 的最短路程的平方..是 。

19.如图所示,AD 和BE 是等边三角形的两条高,其交点为O ,若OD=4,则AD= .
20.如图, AE 和CD 分别是△ABC 的边AB 、BC 上的中线,AE 和CD 相交于点G ,GA=5cm ,GD=2cm ,
GB=3cm ,则△ABC 的面积为 cm 2
.
三、解答题:(本大题8个小题,共80分)解答时必须给出必要的演算过程或推理步骤.
22.计算或化简(每题5分,共10分): (1)()
()3
2013
21313---⎪⎭
⎫ ⎝⎛---⨯+π (2))5.0()2()41(5
4222b a ab b a -÷-⋅
23.(本题10分) 化简求值:已知x 、y 满足:013642
2
=++-+y x y x 求代数式3y)3y)(x (x y)y)(x 3(3x y)(3x 2
+--+--+的值.
A D A C
B A E A A A
C A C B 图a 图c
第18题 O
E D C B A
第19题 G E D C B A 第20题
24.(本题10分)如图,Rt △ABC 中,∠ACB=900
,D 是AB 上的一点,BD=BC.过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F.求证:BE ⊥CD.
26.(本题10分)如图,△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,
D 为AB 边上一点, (1)求证:△ACD ≌△BCE;
(2) 若AD=12,BD=5, 求DE 的长
参考答案
同学们注意:本试题共28个小题,满分150分,考试时间120分钟
一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.
E D
C
B A F E D C
B A
面的表格中.
21.略
22.(1)解:原式=3+(-1)×1-(-2)3
……3分 (2) 解:原式=
)2
1
(44154422b a b a b a -÷⋅…2分
=3-1+8 ……4分 =-2 …5分
=10 ……5分
23.解:原式=-x 2+13y 2
……6分 ∵x 2+y 2
-4x+6y+13
∴(x-2)2+(y+3)2
=0
∴x=2,y=-3 ......8分 当x=2,y=-3时
原式=-4+13×9=113 ……10分 24.证明:∵ED ⊥AB
∴∠EDB=900
在Rt △ECB 和Rt △EDB 中
⎩⎨
⎧==DB
CB EB
EB ∴Rt △ECB ≌Rt △EDB (HL )……6分 ∴∠EBC =∠EBD 又BD=BC
∴BF ⊥CD(三线合一)……10分
F
E
D
C B
A。

相关文档
最新文档