外文翻译---微机发展简史
微机发展历史
微机发展历史微机,也被称为个人电脑或PC(Personal Computer),是一种小型计算机系统,由中央处理器、内存、硬盘、显示器等组成。
微机的发展历史可以追溯到20世纪70年代,经过数十年的演变和创新,如今的微机已经成为人们生活中不可或缺的一部分。
1970年代初,微机的雏形开始出现。
当时的微机体积庞大,价格昂贵,只有大型企业和研究机构才能购买和使用。
这些早期的微机主要采用了8位或16位的微处理器,内存容量非常有限。
由于技术限制,这些微机的计算能力和图形显示功能都很有限。
随着技术的进步和集成电路的发展,1977年,苹果公司推出了第一台个人电脑Apple II,这是当时市场上第一款真正意义上的微机。
Apple II采用了8位的6502微处理器,拥有16KB的内存,具备了图形显示和音频功能。
它的成功引领了个人电脑的潮流,使得微机逐渐从小众市场走向大众市场。
1981年,IBM推出了第一台IBM PC,这是一款以8088微处理器为核心的个人电脑。
IBM PC的推出标志着微机进入了一个全新的阶段,也奠定了微机的标准化地位。
IBM PC的成功使得微软公司的操作系统MS-DOS成为了主流操作系统,微机市场进一步扩大。
随着技术的不断进步,微机的性能也得到了显著提升。
1985年,Intel推出了第一款x86架构的微处理器386,它的推出使得微机的计算能力大幅提升,同时也推动了图形界面操作系统的发展。
微软公司于是推出了Windows操作系统,使得微机的用户界面更加友好和直观。
1990年代,微机进入了一个高速发展的时期。
随着互联网的兴起,微机开始与网络结合,人们可以通过微机上网冲浪、发送电子邮件等。
同时,微机的硬件技术也不断创新,处理器频率、内存容量、存储空间等都得到了巨大提升。
微机不再局限于个人使用,也广泛应用于商业、教育、娱乐等领域。
进入21世纪,微机的发展进入了一个全新的阶段。
随着移动互联网的兴起,智能手机和平板电脑逐渐取代了传统的个人电脑。
计算机发展史-英文版
Until the 17th century, computing devices have a second important step forward(计算设备有一个第二重要的一步).
In 1666, Samuel Morland(塞缪尔· 莫 兰德) who was English ,invented the addend and subtrahend machine (加数和减数机) .
1987: A supercomputer release,which can
made 200 million operations per second.
1987年:一个超级版本,它可以每秒
运算200万
At present, the type of computer has a lot of friends, according to the computer’s processing speed classification, It can be divided into five types:
The History of
computer development
5th century BC, Chinese invented the
abacus(算盘).
It is widely used in commercial trade (商业贸易), and this is the first calculation tool. It is also considered the prototype(原型) of a computer.
The real answer is that many inventors contributed to the history of computers. The development of computers reflects the wisdom of modern humans.
计算机发展史
CPU
外存(硬盘、 U盘等)
二进制原理
计算机的二进制?
为什么不使用10进制来表示呢?
采用二进制表示的好处是: (1)物理上容易实现,可靠性强; (2)运算简单; (3)便于进行逻辑运算。
128瓦 64瓦 32瓦 16瓦 8瓦 4瓦 2瓦 1瓦
1
1
1
0
1
0
1
0
一、进位计数制
十进制:
(256.73)10=2×102+5×101+6×100+7×10-1+3×10-2 =200+50+6+0.7+0.03 =256.73
计算机发展史
第二次世界大战期间,美国军方要 求宾州大学莫奇来(Mauchly)博士和他 的学生爱克特(Eckert) 设计以真空管 取代继电器的"电子化"电脑--ENIAC (Electronic Numerical Integrator and Calculator), 电子数字积分器与 计算器), 目的是用来计算炮弹弹道。 这部机器使用了18800个真空管,长50英 尺,宽30英尺, 占地1500平方英尺,重 达30吨(大约是一间半的教室大,六只 大象重)。它的计算速度快,每秒可从 事5000次的加法运算,运作了九年之久。 由於吃电很凶, 据传ENIAC每次一开机, 整个费城西区的电灯都为之黯然失色。
软件的分类
系统软件:用以实现计算机系统的管理、 控制、运行和维护等方面的操作。
应用软件:为了某一专门的用途而 编写的软件。
计算机软件系统
常见的系统软件有:
操作系统(常见的有Windows、Unix、Linux等) 程序设计语言(如:机器语言、高级语言) 数据库管理系统(如:SQL Server 、 Oracle)
计算机基础(计算机概述)
二、微机发展简史
4、第四代CPU(32位)
1985年的80386,主频33MHz,含27.5万个晶体 管;1989年的80486,是将80386和80387(数学协 处理器,支持浮点运算)及8KB高速缓存器Cache 集成在一个芯片内,并首次采用了RISC技术,其 性能较80386DX/80387的组合提高4倍,其主频逐 步提高到100MHz,单片集成了120万个晶体管。
三、计算机的基本结构
计算机系统包括硬件和软件 计算机硬件包括主机和外部设备 计算机主机包括CPU和存储器
三、计算机的基本结构
四. 计算机分类、特点、用途
计算机的分类
巨型机:运算速度达每秒上亿次。如我国研制的银 河、曙光、神州等超级计算机。
大型机:速度和性能比巨型机稍低,其特点是有自 己的专用操作系统。
从计算能力来看,不如现在的小计算器。 ENIAC的照片: (见下图)
计算机的基本结构——冯·诺依曼模型
➢ 电子计算机之父 以美籍匈牙利数学家约翰·冯·诺依曼(1903-1957 ,电
子计算机之父)为首的研制小组提出了“存储程序控制”的计 算机结构(即诺依曼机),奠定了现代计算机的体系结构。 ➢ 冯·诺依曼模型的主要思想 ⑴ 计算机(指硬件)由五大基本部件组成——运算器、控制器、 存储器、输入设备和输出设备; ⑵ 计算机内部采用二进制来表示指令和数据; ⑶ 将编好的程序和原始数据事先存入存储器中,然后再执行程 序。
计算机概述
一. 计算机、微机发展简史
1、世界上第一台计算机ENIAC(第一代 )
1946年2月,美国研制成功 ENIAC (Electronic Numberical Intergrator And Caculator 爱尼克)。它由18000多个电子管、1500多个继 电器等组成,重30吨,耗电150千瓦,占地170 平方米,运算速度为每秒5000次。这是以电子 管为逻辑元件的计算机,称为第一代计算机。
微型计算机和PC机—历史和结构
微机发展最显著的特征就是易于使用并且价格低廉。
微机的简介
根据其放置方式,微机 也叫做台式机。左图的 微机为卧式机箱,也有 使用直立式机箱的
微ቤተ መጻሕፍቲ ባይዱ的结构
从广义上讲,微机可以分为运算器,控制器,存储器,输入 设备和输出设备这五个设备。 运算器和控制器统称为处理器,也就是CPU,运算器负责算 术运算和逻辑运算,控制器负责键盘,鼠标等外部设备。 存储器:存储器包括外存储器和存储器,外存储器常见的有 硬盘,U盘,MP3等,内存储器也就是内存RAM,分问 SDRAM和DDRAM也就是SD内存和DDR内存 输入设备:常见的有键盘,鼠标,写字板,扫描仪,摄像头 输出设备:常见的有打印机,显示器,传真机等等
微型计算机和PC机——历史和结构
微机的简介intruduce
微机的结构structure
微(Microcomputr)也叫做个人计算机(personal Computer,PC),简称微机或者PC机,一般用于桌面系统, 特别适合个人事务处理、网络终端等的应用。大多数用户使 用的都是这种类型的机器,它已经进入了家庭。微机也被应 用在控制、工程、网络等领域。
微机的历史
1. 第一代微机 第一代PC机以IBM公 司的IBM PC/XT机为代 表,CPU是8088,诞 生于1981年,如右图所 示。后来出现了许多兼 容机。
微机的历史
2. 第二代微机 IBM公司于1985年推 出的IBM PC/AT(如右 图所示)标志着第二代 PC机的诞生。它采用 80286为CPU,其数据 处理和存储管理能力都 大大提高 。
微机的历史
5. 第五代微机 1993年Intel公司推出了第五代微处理器Pentium (中文名“奔腾”)。Pentium实际上应该称为 80586 80586,但Intel公司出于宣传竞争方面的考虑,改 Intel 变了“x86”传统的命名方法。 其他公司推出的第五代CPU还有AMD公司的K5、 Cyrix公司的6x86。1997年Intel公司推出了多功能 Pentium MMX。奔腾档次的微机由于可运行 Windows 95,所以现在仍有部分在使用。
计算机基础(计算机概述)
五.计算机的速度指标
➢计算机速度的度量单位一般是MIPS(Million Instruction Per Second),但MIPS和指令复杂度没有关系,为了描述浮点 数的运算速度,另一个指标是FLOPS (FLOPS:Floating point number Operations Per Second )
➢ 网络化 多种接入方式——在目前计算机网络已经比较普及的情况下, 逐步普及无线接入方式(无线公网或无线局域网) 主干通信实现三网合一——整合计算机网、电信网和广播电 视网,实现数据包交换。
名称解读
◆PC--我们使用的最多的就是personal computer ,即个人计算
机的意思。pc是什么意思?PC一词源自于1978年IBM的第一 部桌上型计算机型号PC,指所有台式机及笔记本,一般为个 人所使用故得名PC(个人电脑)。 PC是一个具有广泛含义的词语,很多地方就是电脑的统称 。 ◆ IT---是Information Technology英文的缩写,全称含义为“信息技 术”涵盖的范围很广,主要包括:现代计算机、网络通讯等 信息领域的技术。 IT行业主要指包括计算机、网络通讯以及相关服务的行业。
集成电路图示
集成电路图示
• 集成电路是一种微型电子器件或部件。采用一 定的工艺,把一个电路中所需的晶体管、二极 管、电阻、电容和电感等元件及布线互连一起, 制作在一小块或几小块半导体晶片或介质基片 上,然后封装在一个管壳内,成为具有所需电 路功能的微型结构;其中所有元件在结构上已 组成一个整体,使电子元件向着微小型化、低 功耗和高可靠性方面迈进了一大步。
二、微机发展简史
5、第五代CPU(64位)
1993年推出Pentium(奔腾)处理器,即 80586,集成晶体管320万个,主频逐步提高 到166MHz ,实现了超标量体系结构,性能明 显提高;1995年Pentium Pro(多能奔腾)处 理器面世,俗称P6,集成550万个晶体管,主 频高达200MHz。
计算机的发展历史
计算机的发展历史计算机的发展历史可以追溯到古代的计算工具,如算盘和天平。
然而,现代计算机的起源可以追溯到20世纪40年代。
以下是计算机发展的里程碑和关键事件的详细介绍。
1. 第一台电子计算机 - ENIAC(1946年)ENIAC(Electronic Numerical Integrator and Computer)是世界上第一台大规模电子计算机。
它由美国宾夕法尼亚大学的约翰·普莱斯埃克特里克和约翰·W·莫奇利设计和建造。
ENIAC被用于执行复杂的数学和科学计算,它的运算速度相当于每秒大约5000次加法运算。
2. 早期计算机的进化 - UNIVAC I(1951年)UNIVAC I(Universal Automatic Computer I)是世界上第一台商用计算机。
它由美国电气公司(现为通用电气公司)开辟。
UNIVAC I被用于处理大量的商业数据,如人口普查和选举结果。
3. 集成电路的发明 - 计算机小型化(1958年)集成电路的发明使计算机变得更小、更快、更强大。
集成电路是将许多电子元件(如晶体管和电容器)集成到一个小型芯片上的技术。
这使得计算机可以变得更加便携,并且能够进行更复杂的任务。
4. 个人计算机的兴起 - IBM PC(1981年)IBM PC(International Business Machines Personal Computer)是第一台真正成功的个人计算机。
它由IBM公司推出,并采用了微软公司的操作系统MS-DOS。
IBM PC的成功标志着个人计算机的普及,为后来的计算机技术发展奠定了基础。
5. 互联网的普及 - 万维网(1991年)万维网(World Wide Web)的发明和普及使计算机的应用范围进一步扩大。
万维网是一种基于超文本的信息系统,通过互联网连接了全球各地的计算机。
它使得人们可以方便地共享和获取信息,推动了信息时代的到来。
微型计算机发展历程
微型计算机发展历程微型计算机是指体积小、性能高、功能强大的计算机。
它是计算机发展的重要里程碑,使计算机从庞大笨重的大型机走向了个人化、便携化。
微型计算机的发展可以追溯到20世纪70年代初。
当时,大型计算机依然是主导地位,价格昂贵,体积庞大,只有科研机构、大学和大型企业能够负担得起。
然而,计算机科学家们意识到,如果计算机能够变小并且成本相对较低,那么它们将对人们的生活和工作产生巨大影响。
于是,1971年,英特尔公司发布了第一款微型计算机的中央处理器,即8008芯片。
这款芯片重量轻、能耗低,并且可以用于各种日常应用。
随后,英特尔又推出了8080芯片,它成为了第一款应用广泛的微处理器。
这两种芯片的问世标志着微型计算机的诞生。
在芯片技术的进步推动下,微型计算机在20世纪70年代中期取得了飞速发展。
1975年,美国的Altair 8800微型计算机电路板发布,它采用了8080芯片,成为了第一款真正意义上的微型计算机。
随后,苹果公司也推出了Apple II微型计算机,这是一款非常受欢迎的家用电脑,对个人电脑的普及起到了重要作用。
1981年,IBM公司发布了第一款个人计算机,即IBM PC。
IBM PC采用了英特尔的8088微处理器,它的问世进一步推动了微型计算机的发展。
由于IBM PC的成功,微型计算机逐渐从科研机构和大型企业流入家庭和个人使用,成为了人们日常生活中不可或缺的工具。
随着技术的不断进步,微型计算机变得更加便携、功能更加强大。
1990年代初,笔记本电脑开始普及,成为人们出门工作和学习的必备工具。
2000年代初,随着移动电话的智能化,智能手机开始流行,人们可以在手机上完成很多与计算机相关的任务。
当前,微型计算机正不断演进和发展。
便携性更高、性能更强大的平板电脑和超级本已经成为人们生活中的必需品。
同时,云计算和物联网技术的快速发展也为微型计算机的未来带来了无限可能。
总之,微型计算机的发展历程是一段不断创新和突破的历程。
微型计算机发展史
自1981年美国IBM 公司推出第一代微型计算机IBM—PC/XT以来,微型机以其执行结果精确、处理速度怏捷、性价比高、轻便小巧等特点迅速进入社会各个领域,且技术不断更新、产品快速换代,从单纯的计算工具发展成为能够处理数字、符号、文字、语言、图形、图像、音频、视频等多种信息的强大多媒体工具。
如今的微型机产品无论从运算速度、多媒体功能、软硬件支持还是易用性等方面都比早期产品有了很大飞跃。
便携机更是以使用便捷、无线联网等优势越来
3微型计算机技术现状及发展趋势
微型计算机是当今发展速度最快、应用最为普及的计算机类型。
它可以细分为PC服务器、NT工作站、台式(也称桌上型)电脑、膝上型电脑、笔记本型电脑、掌上型电脑、可穿戴式计算机以及问世不久的平板电脑等多种类型。
习惯上将尺。
微型计算机发展历程
微型计算机发展历程微型计算机发展历程可以追溯到20世纪60年代末。
当时,计算机主要是由大型机和小型机组成的,体积庞大,价格昂贵,只有大型企业、政府机构和大学等少数机构才能购买和使用。
然而,随着集成电路技术的成熟和微处理器的发展,微型计算机逐渐崭露头角。
1971年,英特尔发布了世界上第一款商用微处理器Intel 4004。
这款微处理器仅有2,300个晶体管,时钟频率为740 kHz,但已经开创了微型计算机的先河。
不久之后,1974年英特尔推出了更加重要的产品Intel 8080,这款微处理器采用8位结构,速度更快,性能更强,成为第一款真正意义上的微型计算机处理器。
这标志着微型计算机的时代正式开始。
在1970年代后期和1980年代初期,出现了许多早期的微型计算机品牌,如Apple、Commodore、Atari等。
这些计算机的价格相对较低,性能不及大型机和小型机,但却具备了个人使用的能力。
此时,微型计算机广泛应用于个人办公、家庭娱乐和教育等领域。
随着技术的不断进步和竞争的加剧,微型计算机的性能和功能得到了大幅改善。
20世纪80年代中期,IBM推出了第一台个人电脑IBM PC,这款计算机配备了英特尔8088微处理器,并运行微软的MS-DOS操作系统。
IBM PC成为了微型计算机的代表,并开创了标准化的个人电脑平台。
进入1990年代,个人电脑的普及速度加快。
微处理器性能的提升、硬件设备的完善和操作系统的改进,使得微型计算机能够处理更加复杂的任务。
同时,互联网的普及也使得微型计算机连接到全球信息网络成为可能。
21世纪以来,微型计算机的发展更加迅猛。
移动计算设备如智能手机和平板电脑逐渐普及,人们已经可以随时随地进行计算和上网。
与此同时,人工智能、云计算和物联网等新技术的兴起,也为微型计算机带来了更广阔的发展空间。
总的来说,微型计算机的发展历程可以概括为从大型机和小型机向个人电脑和移动计算设备的转变,体积不断减小,性能不断提升,并逐渐成为人们生活和工作中必不可少的工具。
微机发展历史概述
80486DX4 主板
80486 PC机
3.个人计算机的发展历史 5)第五代微型机
• 1993年,Intel推出了Pentium(奔腾)CPU,即拉丁文5,习惯称586。 它含310万晶体管,频率高达200MHz,内置16K的一级缓存;并首 次引入了超频(Over Clock)技术,使系统能运行在更高的频率, 每秒执行1亿条指令。
3.个人计算机的发展历史
3)第三代微型机
• 1985年Intel推出32位CPU 80386DX。含27.5万晶体管,频率33MHz, 32根地址线可寻址4GB内存,首次使用外置高速缓存(Cache),速度 600万指令/秒。它还支持“虚拟86”工作模式,可以模拟多个8086来 提供多任务能力。接着,又推出了与286兼容的386SX、低功耗的 386DL以及80387协处理器等芯片。
• Apple 产 品 最 早 使 用 视 窗 操 作 系 统 , 在 90 年 代 初 的 苹 果 电 脑 Machintoch上配置了黑白视窗操作系统,很受欢迎。因机器太贵, 它未能得到发展。
• 1983 年 , 微 软 向 苹 果 购 买 了 Apple 视 窗 操 作 系 统 。 1985 年 , Windows 1.0问世,为16位PC机提供初步图形用户界面。
• 1986年9月Compaq公司开发出世界上第一台386计算机,配置20MB 硬盘,1.2M B软驱。
• 同时,微软发布了Windows操作系统,CD-ROM技术也问世了。用 386设计的32位PC机运算能力强大,应用扩展到了商业办公、工程 设计、数值计算、数据中心和个人娱乐等领域。
80386SL 80386DX
• 类似芯片还有AMD公司的K5、Cyrix公司的6x86。
微型计算机的发展历史
微型计算机的发展历史、现状及前景摘要自1981年美国IBM公司推出了第一代微型计算机IBM—PC/XT以来,以微处理器为核心的微型计算机便以其执行结果精确、处理速度快捷、小型、廉价、可靠性高、灵活性大等特点迅速进入社会各个领域,且技术不断更新、产品不断换代,先后经历了80286、80386、80486乃至当前的80586 (Pentium)微处理器芯片阶段,并从单纯的计算工具发展成为能够处理数字、符号、文字、语言、图形、图像、音频和视频等多种信息在内的强大多媒体工具。
如今的微型计算机产品无论从运算速度、多媒体功能、软硬件支持性以及易用性方面都比早期产品有了很大的飞跃,便携式计算机更是以小巧、轻便、无线联网等优势受到了越来越多的移动办公人士的喜爱,一直保持着高速发展的态势.关键词:微型计算机现状发展一微型计算机的发展历史第一台微型计算机-—1974年,罗伯茨用8080微处理器装配了一种专供业余爱好者试验用的计算机“牛郎星”(Altair)。
第一台真正的微型计算机——1976年,乔布斯和沃兹尼克设计成功了他们的第一台微型计算机,装在一个木盒子里,它有一块较大的电路板,8KB的存储器,能发声,且可以显示高分辨率图形。
1977年,沃兹尼克设计了世界上第一台真正的个人计算机—-AppleⅡ,并“追认”他们在“家酿计算机俱乐部”展示的那台机器为AppleⅠ。
1978年初,他们又为AppleⅡ增加了磁盘驱动器。
从微型计算机的档次来划分,它的发展阶段又可以分为以下几个阶段:第一代微机-—第一代PC机以IBM公司的IBM PC/XT机为代表,CPU是8088,诞生于1981年,如图1—3所示.后来出现了许多兼容机。
第二代微机——IBM公司于1985年推出的IBM PC/AT标志着第二代PC机的诞生.它采用80286为CPU,其数据处理和存储管理能力都大大提高。
第三代微机——1987年,Intel公司推出了80386微处理器。
现代计算机发展历史简述
现代计算机发展历史简述英文回答:The Evolution of Modern Computers.The evolution of modern computers can be traced back to the early 19th century, when Charles Babbage designed the Analytical Engine, considered the first mechanical computer. However, it was not until the mid-20th century that thefirst electronic computers were developed.The First Electronic Computers.The first electronic computer, the Atanasoff-Berry Computer (ABC), was developed in 1942 by John Atanasoff and Clifford Berry. It used vacuum tubes as logic elements and had a memory of 160 bits. A few years later, in 1946, the Electronic Numerical Integrator and Computer (ENIAC) was developed at the University of Pennsylvania. ENIAC was much larger and more powerful than the ABC, and it could performcomplex calculations at an unprecedented speed.The Development of Transistors and Integrated Circuits.A major breakthrough in computer development occurredin the late 1940s and early 1950s with the invention of the transistor. Transistors replaced vacuum tubes as logic elements, making computers smaller, faster, and more reliable. In the late 1950s, the development of integrated circuits (ICs) further miniaturized computers. ICs combine multiple transistors into a single package, reducing their size and cost.Personal Computers.The first personal computers (PCs) were introduced in the mid-1970s. These computers were designed for individual use, as opposed to business or scientific applications. The first PCs were based on microprocessors, which are single-chip computers. They were limited in their capabilities, but they paved the way for the development of more powerful PCs in the years to come.The Internet.The development of the Internet in the late 1980s and early 1990s revolutionized the way we use computers. The Internet allowed computers to communicate with each other, regardless of their location. This led to the development of new technologies, such as the World Wide Web, which made it possible for anyone to access information and share ideas.Cloud Computing.In the 2000s, cloud computing emerged as a new way of delivering computing resources. Cloud computing allows users to access software and storage over the Internet, instead of having to install them on their local computers. This makes it easier for businesses and individuals to scale their computing needs up or down, as required.Modern Computers.Today, modern computers are ubiquitous. They are used in all aspects of our lives, from work to play. Computers continue to evolve at a rapid pace, with new technologies and applications emerging all the time. It is difficult to say what the future holds for computers, but it is certain that they will continue to play an increasingly important role in our society.中文回答:现代计算机的发展历程。
《微型计算机发展》课件
微型计算机的未来应用场景
智能家居
微型计算机将成为智能家 居的核心,实现家庭设备 的互联互通和智能化控制 。
医疗健康
微型计算机将在医疗健康 领域发挥重要作用,如监 测生命体征、辅助诊断和 治疗等。
工业自动化
微型计算机将应用于工业 自动化领域,实现设备的 智能化控制和生产过程的 优化。
微型计算机的未来技术发展
02
64位微型计算机在21世纪初开 始出现,并逐渐普及。
03
64位微型计算机主要用于图像 处理、多媒体制作和复杂的计 算等,其代表性的产品有Core i7等。
03
微型计算机的应用领域
科学计算
总结词
科学计算是微型计算机的重要应用领 域之一,涉及数学建模、数值计算、 统计分析等方面。
详细描述
科学计算利用微型计算机强大的计算 能力和数据处理能力,进行各种复杂 的数学建模和数值计算,例如天气预 报、地震分析、航天器轨道计算等。
02
随着技术的发展和普及,微型计 算机逐渐进入家庭和学校,成为 个人电脑的代表,广泛应用于信 息处理、学习、娱乐等领域。
微型计算机的早期发展
微型计算机的发展经历了多个阶段,从 早期的PENTIUM到80年代的IBM PC 和兼容机,再到90年代的笔记本电脑 和21世纪初的平板电脑和智能手机。
随着技术的不断进步和应用需求的不断 增长,微型计算机的性能不断提高,体 积不断缩小,成本不断降低,应用领域
32位微型计算机的发展
32位微型计算机是16位微型计算机的 升级版,其性能更高,功能更强大。
32位微型计算机主要用于图像处理、 多媒体制作和复杂的计算等,其代表 性的产品有Pentium等。
32位微型计算机在20世纪90年代开始 出现,并逐渐普及。
计算机发展史英文
电子计算机
第一台电子计算机
电子计算机的出现标志着计算机时代的真正开始。第一台电子计算机是ENIAC( Electronic Numerical Integrator And Calculator),它于1946年问世。
晶体管计算机
随着晶体管技术的不断发展,人们开始使用晶体管代替电子管来制造计算机。晶 体管计算机比电子管计算机更小、更快、更可靠。
计算机发展史英文
xx年xx月xx日
目录
• 早期计算机 • 发展中的计算机 • 现代计算机 • 未来计算机
01
早期计算机
机械计算机
莱布尼茨的机械计算机
莱布尼茨发明了一种基于齿轮和杠杆的机械计算机,它可以执行基本的算术 和逻辑运算。
帕斯卡(Pascal)的计算机
帕斯卡设计了一种简单的机械计算机,它可以进行加法和减法运算,并具有 存储和读取数据的能力。
1981年,IBM PC推出,成为个人计算机的标准。
1991年,Linux操作系统诞生,成为开源软件的代表 。
云计算与大数据
2006年,Amazon Web Services推出,云计算服务 开始商业化。
2012年,Google BigQuery推出,大数据分析进入云 时代。
2009年,Hadoop分布式计算系统诞生,大数据处理 成为可能。
生物计算机的出现将带来巨大的变革,包括改变药物设计和治 疗的方式、加速生物科学研究等。
THANKS
谢谢您的观看
发展趋势
除了科学计算和数据处理,还广泛应用于工 业控制、航空航天等领域。
随着集成电路的发展,晶体管计算机逐渐被 淘汰,为微处理器所取代。
03
现代计算机
个人计算机
1977年,Apple II型计算机问世,成为第一台成功的 个人计算机。
计算机专业外文资料翻译----微机发展简史
附录外文文献及翻译Progress in computersThe first stored program computers began to work around 1950. The one we built in Cambridge, the EDSAC was first used in the summer of 1949.These early experimental computers were built by people like myself with varying backgrounds. We all had extensive experience in electronic engineering and were confident that that experience would standus in good stead. This proved true, although we had some new things to learn. The most important of these was that transients must be treated correctly; what would cause a harmless flash on the screen of a television set could lead to a serious error in a computer.As far as computing circuits were concerned, we found ourselves with an embarrass de riches. For example, we could use vacuum tube diodes for gates as we did in the EDSAC or pentodes with control signals on both grids, a system widely used elsewhere. This sort of choice persisted and the term famillogic came into use. Those who have worked in the computer field will remember TTL, ECL and CMOS. Of these, CMOS has now become dominant.In those early years, the IEE was still dominated by power engineering and we had to fight a number of major battles in order to get radio engineering along with the rapidly developing subject of electronics. dubbed in the IEE light current electrical engineering. properlyrecognized as an activity in its own right. I remember that we had some difficulty in organizing a co nference because the power engineers‟ ways of doing things were not our ways. A minor source of irritation was that all IEE published papers were expected to start with a lengthy statement of earlier practice, something difficult to do when there was no earlier practiceConsolidation in the 1960sBy the late 50s or early 1960s, the heroic pioneering stage was over and the computer field was starting up in real earnest. The number of computers in the world had increased and they were much more reliable than the very early ones . To those years we can ascribe the first steps in high level languages and the first operating systems. Experimental time-sharing was beginning, and ultimately computer graphics was to come along.Above all, transistors began to replace vacuum tubes. This change presented a formidable challenge to the engineers of the day. They had to forget what they knew about circuits and start again. It can only be said that they measured up superbly well to the challenge and that the change could not have gone more smoothly.Soon it was found possible to put more than one transistor on the same bit of silicon, and this was the beginning of integrated circuits. As time went on, a sufficient level of integration was reached for one chip to accommodate enough transistors for a small number of gates or flip flops. This led to a range of chips known as the 7400 series. The gates and flip flops were independent of one another and each had its own pins. They could be connected by off-chip wiring to make a computer or anything else.These chips made a new kind of computer possible. It was called a minicomputer. It was something less that a mainframe, but still very powerful, and much more affordable. Instead of having one expensive mainframe for the whole organization, a business or a university was able to have a minicomputer for each major department.Before long minicomputers began to spread and become more powerful. The world was hungry for computing power and it had been very frustrating for industry not to be able to supply it on the scalerequired and at a reasonable cost. Minicomputers transformed the situation.The fall in the cost of computing did not start with the minicomputer; it had always been that way. This was what I meant when I referred in my abstract to inflation in the computer industry …going the other way‟. As time goes on people get more for their money, not less.Research in Computer Hardware.The time that I am describing was a wonderful one for research in computer hardware. The user of the 7400 series could work at the gate and flip-flop level and yet the overall level of integration was sufficient to give a degree of reliability far above that of discreet transistors. The researcher, in a university orelsewhere, could build any digital device that a fertile imagination could conjure up. In the Computer Laboratory we built the Cambridge CAP, a full-scaleminicomputer with fancy capability logic.The 7400 series was still going strong in the mid 1970s and was used for the Cambridge Ring, a pioneering wide-band local area network. Publication of the design study for the Ring came just before the announcement of the Ethernet. Until these two systems appeared, users had mostly been content with teletype-based local area networks. Rings need high reliability because, as the pulses go repeatedly round the ring, they must be continually amplified and regenerated. It was the high reliability provided by the 7400 series of chips that gave us the courage needed to embark on the project for the Cambridge Ring.The RISC Movement and Its AftermathEarly computers had simple instruction sets. As time went on designers of commercially available machines added additional features which they thought would improve performance. Few comparative measureme nts were done and on the whole the choice of features depended upon the designer‟s intuition.In 1980, the RISC movement that was to change all this broke on the world. The movement opened with a paper by Patterson and ditzy entitled The Case for the Reduced Instructions Set Computer.Apart from leading to a striking acronym, this title conveys little of the insights into instruction set design which went with the RISC movement, in particular the way it facilitated pipelining, a system whereby several instructions may be in different stages of execution within the processor at the same time. Pipelining was not new, but it was new for small computersThe RISC movement benefited greatly from methods which had recently become available for estimating the performance to be expected from a computer design without actually implementing it. I refer to the use of a powerful existing computer to simulate the new design. By the use of simulation, RISC advocates were able to predict with some confidence that a good RISC design would be able to out-perform the best conventional computers using the same circuit technology. This prediction was ultimately born out in practice.Simulation made rapid progress and soon came into universal use by computer designers. In consequence, computer design has become more of a science and less of an art. Today, designers expect to have a roomful of, computers available to do their simulations, not just one. They refer to such a roomful by the attractive name of computer farm.The x86 Instruction SetLittle is now heard of pre-RISC instruction sets with one major exception, namely that of the Intel 8086 and its progeny, collectively referred to as x86. This has become the dominant instruction set and the RISC instruction sets that originally had a considerable measure of success are having to put up a hard fight for survival.This dominance of x86 disappoints people like myself who come from the research wings. both academic and industrial. of the computer field. No doubt, business considerations have a lot to do with the survival of x86, but there are other reasons as well. However much we research oriented people would liketo think otherwise. high level languages have not yet eliminated the use of machine code altogether. We need to keep reminding ourselves that there is much to be said for strict binary compatibility with previous usage when that can be attained. Nevertheless, things might have been different if Intel‟s major attempt to produce a good RISC chip had been more successful. I am referring to the i860 (not the i960, which was something different). In many ways the i860 was an excellent chip, but its software interface did not fit it to be used in aworkstation.There is an interesting sting in the tail of this apparently easy triumph of the x86 instruction set. It proved impossible to match the steadily increasing speed of RISC processors by direct implementation ofthe x86 instruction set as had been done in the past. Instead, designers took a leaf out of the RISC book; although it is not obvious, on the surface, a modern x86 processor chip contains hidden within it a RISC-style processor with its own internal RISC coding. The incoming x86 code is, after suitable massaging, converted into this internal code and handed over to the RISC processor where the critical execution is performed. In this summing up of the RISC movement, I rely heavily on the latest edition of Hennessy and Patterson‟s books on computer design as my supporting authority; see in particular Computer Architecture, third edition, 2003, pp 146, 151-4, 157-8.The IA-64 instruction set.Some time ago, Intel and Hewlett-Packard introduced the IA-64 instruction set. This was primarily intended to meet a generally recognized need for a 64 bit address space. In this, it followed the lead of the designers of the MIPS R4000 and Alpha. However one would have thought that Intel would have stressed compatibility with the x86; the puzzle is that they did the exact opposite.Moreover, built into the design of IA-64 is a feature known as predication which makes it incompatible in a major way with all other instruction sets. In particular, it needs 6 extra bits with each instruction. This upsets the traditional balance between instruction word length and information content, and it changes significantly the brief of the compiler writer.In spite of having an entirely new instruction set, Intel made the puzzling claim that chips based on IA-64 would be compatible with earlier x86 chips. It was hard to see exactly what was meant.Chips for the latest IA-64 processor, namely, the Itanium, appear to have special hardware for compatibility. Even so, x86 code runs very slowly.Because of the above complications, implementation of IA-64 requires a larger chip than is required for more conventional instruction sets. This in turn implies a higher cost. Such at any rate, is the received wisdom, and, as a general principle, it was repeated as such by Gordon Moore when he visited Cambridge recently to open the Betty and Gordon Moore Library. I have, however, heard it said that the matter appears differently from within Intel. This I do not understand. But I am very ready to admit that I am completely out of my depth as regards the economics of the semiconductor industry.Shortage of ElectronsAlthough shortage of electrons has not so far appeared as an obvious limitation, in the long term it may become so. Perhaps this is where the exploitation of non-conventional CMOS will lead us. However, some interesting work has been done. notably by HuronAmend and his team working in the Cavendish Laboratory. on the direct development of structures in which a single electron more or less makes the difference between a zero and a one. However very little progress has been made towards practical devices that could lead to the construction of a computer. Even with exceptionally good luck, many tens of years must inevitably elapse before a working computer based on single electron effects can be contemplated.微机发展简史第一台存储程序的计算开始出现于1950前后,它就是1949年夏天在剑桥大学,我们创造的延迟存储自动电子计算机(EDSAC)。
计算机发展史
Electronic Discrete Variabe Automatic Computer, or EDVAC, was the first machine whose design included all the characteristics of a computer.
One was the Electronic Delay Storage Automatic Computer, or EDSAC, which was developed in Cambridge, England. It first operated in May of 1949 and is probably the world’s first electronic stored-program, general-purpose computer t become operational.
1、主要特点:以电子管为主要逻辑元件
3、基本结构:运算器、控制器、存储器、输入器和输出器。运 算器和控制器采用电子管,主存储器采用汞延迟线或磁鼓;外 存储器采用磁鼓和磁带; 4、工作原理
9+9÷3=?
脑神经元的思考 大脑
(用四则运算规则和九九 乘法口诀 )
9÷3=3
中央处理器 9+3=12
大脑
收集信息 输入器 运算 9÷3=3 9+3=12 运算器
Another electromechanical computing machine was developed by Howard Aiken, with financial assistance from IBM, at Harvard University in 1943. It was called the Automatic Sequence Control Calculator Mark I, or simply the Harvard Mark I.
计算机的发展历史
1906年,美国的Lee De Forest发明了电子管,为电子计算机的发展奠定了基础。
在电子管的发明之前造出数字电子计算机是不可能的。
1939年11月,美国John V. Atanasoff和他的学生Clifford Berry 完成了一台16位的加法器,这是第一台真空管计算机。
1943年1月,自动顺序控制计算机在美国研制成功。
整个机器有51英尺长,重5吨,75万个零部件,使用了3304个继电器,60个开关作为机械只读存储器。
程序存储在纸带上,数据可以来自纸带或卡片阅读器。
被用来为美国海军计算弹道火力表。
1946年,美国研制成世界上第一台真正意义上的数字电子计算机- ENIAC (Electronic Numerical Integrator 和Computer)。
该项工作开始研制于1943年,完成于1946年。
研制负责人是John W. Mauchly和J. Presper Eckert。
整台计算机重30吨,使用了18000个电子管,功率25千瓦。
这台计算机当时主要用于计算弹道和氢弹的研制。
真空管时代的计算机尽管已经步入了现代计算机的范畴,但其体积之大、能耗之高、故障之多、价格之贵大大制约了它的普及应用。
直到晶体管发明,电子计算机才找到了腾飞的起点,1947年,Bell实验室的William B. Shockley、John Bardeen和Walter H. Brattain发明了晶体管,从此开辟了电子时代新纪元。
1951年,第一台晶体管商用计算机系统在美国问世。
设计者:J. Presper Eckert 和John Mauchly。
被美国人口普查部门用于人口普查,标志着计算机的应用进入了一个新的、商业应用的时代。
1958年9月12日,在Robert Noyce(Intel公司的创始人)的领导下,发明了集成电路。
1971年11月15日,Marcian E. Hoff在Intel公司开发成功第一块微处理器4004,它只有2300个晶体管,是个4位系统,时钟频率108KHz ,每秒执行6万条指令。
一、计算机(computer)发展简史
运算速度为 5000 次 / 秒加
法运算,占地面积170m2, 重 量 为 30 吨 , 耗 电 量 为 140千瓦/小时
二、个人电脑的发展
个人电脑简称PC 1981年IBM公司设
计出第一台个人电脑, 以后经过几十年的发 展,到现在的台式电 脑、笔记本电脑、掌 上电脑等。
三、电脑体系结构
名字叫爱尼亚克eniac运算速度为5000次秒加法运算占地面积170m重量为30吨耗电量为140千瓦小时二个人电脑的发展1981年ibm公司设计出第一台个人电脑以后经过几十年的发展到现在的台式电脑笔记本电脑掌上电脑等
一、计算机(computer)发展简史
人类历史上第一台电子计
算机于 1946 年 2 月在美国 宾西法尼亚州问世。名字 叫爱尼亚克(ENIAC)
主机
硬件系统
显示器 键盘 鼠标
系统软件
软件系统
(系统软件:是当计算机在执行各类信息,处理任务时,那些分类、
开发、管理与支持计算机系统资源及操作的程序:例WIND解决学习、生活、工作中实际问题的软件: 指法练习软件,Word,Excl,CAD等。)
四、电脑开机与关机
开机:先开显示器,后开主机 关机:
死机:CTRL+ALT+DEL键复位 冷起动:按主机电源直至关机再开机
五、认识键盘
Enter(回车):确定
ESC:取消
Caps Lock:锁定大写
Shift(上档):输入上面字符 Delete:删除后一个
Num Lock:锁定数字
Backspace:删除前一个
微型计算机发展史
微型计算机发展史微处理器(Microprocessor),简称µP或MP,是由一片或几片大规模集成电路组成的具有运算器和控制器的中央处理机部件,即CPU(Certal Processing Unit)。
微处理器本身并不等于微型计算机,它仅仅是微型计算机中央处理器,有时为了区别大、中、小型中央处理器(CPU)与微处理器,把前者称为CPU,后者称为MPU(Microprocessing Unit)。
微型计算机(Microcomputer),简称µC或MC,是指以微处理器为核心,配上由大规模集成电路制作的存储器、输入/输出接口电路及系统总线所组成的计算机(简称微型机,又称微型电脑)。
有的微型计算机把CPU、存储器和输入/输出接口电路都集成在单片芯片上,称之为单片微型计算机,也叫单片机。
微型计算机系统(Microcomputer System),简称µCS或MCS,是指以微型计算机为中心,以相应的外围设备、电源、辅助电路(统称硬件)以及控制微型计算机工作的系统软件所构成的计算机系统。
20世纪70年代,微处理器和微型计算机的生产和发展,一方面是由于军事工业、空间技术、电子技术和工业自动化技术的迅速发展,日益要求生产体积小、可靠性高和功耗低的计算机,这种社会的直接需要是促进微处理器和微型计算机产生和发展的强大动力;另一方面是由于大规模集成电路技术和计算机技术的飞速发展,1970年已经可以生产1KB的存储器和通用异步收发器(UART)等大规模集成电路产品并且计算机的设计日益完善,总线结构、模块结构、堆栈结构、微处理器结构、有效的中断系统及灵活的寻址方式等功能越来越强,这为研制微处理器和微型计算机打下了坚实的物质基础和技术基础。
因而,自从1971年微处理器和微型计算机问世以来,它就得到了异乎寻常的发展,大约每隔2~4年就更新换代一次。
至今,经历了三代演变,并进入第四代。
微型计算机的换代,通常是按其CPU字长和功能来划分的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.外文资料原文Progress in ComputersPrestige Lecture delivered to IEE, Cambridge, on 5 February 2004Maurice WilkesComputer LaboratoryUniversity of CambridgeThe first stored program computers began to work around 1950. The one we built in Cambridge, the EDSAC was first used in the summer of 1949.These early experimental computers were built by people like myself with varying backgrounds. We all had extensive experience in electronic engineering and were confident that that experience would stand us in good stead. This proved true, although we had some new things to learn. The most important of these was that transients must be treated correctly; what would cause a harmless flash on the screen of a television set could lead to a serious error in a computer.As far as computing circuits were concerned, we found ourselves with an embarass de richess. For example, we could use vacuum tube diodes for gates as we did in the EDSAC or pentodes with control signals on both grids, a system widely used elsewhere. This sort of choice persisted and the term families of logic came into use. Those who have worked in the computer field will remember TTL, ECL and CMOS. Of these, CMOS has now become dominant.In those early years, the IEE was still dominated by power engineering and we had to fight a number of major battles in order to get radio engineering along with the rapidly developing subject of electronics.dubbed in the IEE light current electrical engineering.properlyrecognised as an activity in its own right. I remember that we had some difficulty in organising a conference because the power engineers‟ ways of doing things were not our ways. A minor source of irritation was that all IEE published papers were expected to start with a lengthy statement of earlier practice, something difficult to do when there was no earlier practiceConsolidation in the 1960sBy the late 50s or early 1960s, the heroic pioneering stage was over and the computer field was starting up in real earnest. The number of computers in the world had increased and they were much more reliable than the very early ones . To those years we can ascribe the first steps in high level languages and the first operating systems. Experimental time-sharing was beginning, and ultimately computer graphics was to come along.Above all, transistors began to replace vacuum tubes. This change presented a formidable challenge to the engineers of the day. They had to forget what they knew about circuits and start again. It can only be said that they measured up superbly wellto the challenge and that the change could not have gone more smoothly.Soon it was found possible to put more than one transistor on the same bit of silicon, and this was the beginning of integrated circuits. As time went on, a sufficient level of integration was reached for one chip to accommodate enough transistors for a small number of gates or flip flops. This led to a range of chips known as the 7400 series. The gates and flip flops were independent of one another and each had its own pins. They could be connected by off-chip wiring to make a computer or anything else.These chips made a new kind of computer possible. It was called a minicomputer. It was something less that a mainframe, but still very powerful, and much more affordable. Instead of having one expensive mainframe for the whole organisation, a business or a university was able to have a minicomputer for each major department.Before long minicomputers began to spread and become more powerful. The world was hungry for computing power and it had been very frustrating for industry not to be able to supply it on the scale required and at a reasonable cost. Minicomputers transformed the situation.The fall in the cost of computing did not start with the minicomputer; it had always been that way. This was what I meant when I referred in my abstract to inflation in the computer industry …going the other way‟. As time goes on people get more for their money, not less.Research in Computer Hardware.The time that I am describing was a wonderful one for research in computer hardware. The user of the 7400 series could work at the gate and flip-flop level and yet the overall level of integration was sufficient to give a degree of reliability far above that of discreet transistors. The researcher, in a university or elsewhere, could build any digital device that a fertile imagination could conjure up. In the Computer Laboratory we built the Cambridge CAP, a full-scale minicomputer with fancy capability logic.The 7400 series was still going strong in the mid 1970s and was used for the Cambridge Ring, a pioneering wide-band local area network. Publication of the design study for the Ring came just before the announcement of the Ethernet. Until these two systems appeared, users had mostly been content with teletype-based local area networks.Rings need high reliability because, as the pulses go repeatedly round the ring, they must be continually amplified and regenerated. It was the high reliability provided by the 7400 series of chips that gave us the courage needed to embark on the project for the Cambridge Ring.The RISC Movement and Its AftermathEarly computers had simple instruction sets. As time went on designers of commercially available machines added additional features which they thought would improve performance. Few comparative measurements were done and on the whole the choice of features depended upon the designer‟s intuition.In 1980, the RISC movement that was to change all this broke on the world. The movement opened with a paper by Patterson and Ditzel entitled The Case for the Reduced Instructions Set Computer.Apart from leading to a striking acronym, this title conveys little of the insights into instruction set design which went with the RISC movement, in particular the way it facilitated pipelining, a system whereby several instructions may be in different stages of execution within the processor at the same time. Pipelining was not new, but it was new for small computersThe RISC movement benefited greatly from methods which had recently become available for estimating the performance to be expected from a computer design without actually implementing it. I refer to the use of a powerful existing computer to simulate the new design. By the use of simulation, RISC advocates were able to predict with some confidence that a good RISC design would be able to out-perform the best conventional computers using the same circuit technology. This prediction was ultimately born out in practice.Simulation made rapid progress and soon came into universal use by computer designers. In consequence, computer design has become more of a science and less of an art. Today, designers expect to have a roomful of, computers available to do their simulations, not just one. They refer to such a roomful by the attractive name of computer farm.The x86 Instruction SetLittle is now heard of pre-RISC instruction sets with one major exception, namely that of the Intel 8086 and its progeny, collectively referred to as x86. This has become the dominant instruction set and the RISC instruction sets that originally had a considerable measure of success are having to put up a hard fight for survival.This dominance of x86 disappoints people like myself who come from the research wings.both academic and industrial.of the computer field. No doubt, business considerations have a lot to do with the survival of x86, but there are other reasons as well. However much we research oriented people would like to think otherwise. high level languages have not yet eliminated the use of machine code altogether. We need to keep reminding ourselves that there is much to be said for strict binary compatibility with previous usage when that can be attained. Nevertheless, things might have been different if Intel‟s major attempt to produce a good RISC chip had been more successful. I am referring to the i860 (not the i960, which was something different). In many ways the i860 was an excellent chip, but its software interface did not fit it to be used in a workstation.There is an interesting sting in the tail of this apparently easy triumph of the x86 instruction set. It proved impossible to match the steadily increasing speed of RISC processors by direct implementation of the x86 instruction set as had been done in the past. Instead, designers took a leaf out of the RISC book; although it is not obvious, on the surface, a modern x86 processor chip contains hidden within it a RISC-style processor with its own internal RISC coding. The incoming x86 code is, after suitable massaging, converted into this internal code and handed over to the RISC processor where the critical execution is performed.In this summing up of the RISC movement, I rely heavily on the latest edition of Hennessy and Patterson‟s books on computer design as my supporting authority; see in particular Computer Architecture, third edition, 2003, pp 146, 151-4, 157-8.4.外文资料译文微机发展简史EEE的论文剑桥大学,2004/2/5莫里斯威尔克斯计算机实验室剑桥大学I用第一台存储程序的计算开始出现于1950前后,它就是1949年夏天在剑桥大学,我们创造的延迟存储自动电子计算机(EDSAC)。