2018年安徽省初中学业水平考试数学仿真卷一(扫描版)
2018安徽省初中毕业学业考试模拟卷(含答案解析)
2018安徽省初中毕业学业考试模拟卷数学时间120分钟满分150分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下面四个数中比-3大的数是()A.-B.-2C.-6D.-42.下列计算正确的是()A. B. C. D.=-33.据《合肥晚报》报道,合肥地铁6号线一期建设总投资估算201亿元,将201亿用科学记数法表示应为() A.201×108 B.2.01×1010 C.0.201×1011 D.2.01×1084.图中所示几何体的俯视图是()5.下列实数中,介于5和6之间的是()A. B. C. D.6.2017年5月,20国青年评选出了中国的“新四大发明”:高铁、支付宝、共享单车和网购.某共享单车公司计划2018年连续3个月对合肥投放新型共享单车,计划第一个月投放3000台,第3个月投放6000台,每月按相同的增长率投放,设增长率为x,则可列方程()A.3000(1+x)2=6000B.3000(1+x)+3000(1+x)2=6000C.3000(1-x)2=6000D.3000+3000(1+x)+3000(1+x)2=60007.在《朗读者》节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生的读书情况,:册数01234人数31316171关于这组数据,下列说法正确的是()A.中位数是2B.众数是17C.平均数是3D.方差是28.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD,若四边形BEDF 是菱形,且EF=AE+FC,则边BC的长为()A.2B.C.6D.39.如图是在同一平面直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象,正确的是()10.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P是斜边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,EF与AP相交于点O,则OF的最小值为() A.4.8 B.1.2C.3.6D.2.4二、填空题(本大题共4小题,每小题5分,满分20分)11.-的立方根是.12.如图,BD为☉O的直径,AB与☉O相切于点B,连接AO,AO与☉O交于点C,若∠A=30°,☉O的半径为2,则的长为.(结果保留π)13.“杨辉三角形”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了三百多年,如图是三角形数阵,记a n为图中第n行各个数之和,则a5+a11的值为.14.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为.三、(本大题共2小题,每小题8分,满分16分)15.计算:23-sin 45°+(π-3.14)0-.16.先化简,再求值:,其中m=.四、(本大题共2小题,每小题8分,满分16分)17.《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”请解答上述问题.18.如图,在△ABC中,A(-4,4),B(-4,-2),C(-2,2).(1)请画出将△ABC向右平移8个单位长度后得到的△A1B1C1;(2)以O为位似中心,将△A1B1C1缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2.五、(本大题共2小题,每小题10分,满分20分)19.如图,坡AB的坡比为1∶2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H,A,T在同一地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物CH的高度.(结果精确到米,参考数据:≈1.73,≈1.41)20.如图,反比例函数y1=的图象与一次函数y2=x的图象交于点A,B,点B的横坐标是4,点P(1,m)在反比例函数y1=的图象上.(1)求反比例函数的表达式;(2)观察图象,找出当y1>y2时,x的取值范围;(3)求△PAB的面积.六、(本题满分12分)21.在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,如图是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.七、(本题满分12分)22.在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为BC边上的一个动点(不与点B,C重合).点P关于直线AC,AB的对称点分别为M,N,连接MN交AC于点E,交AB于点F.(1)当点P为线段BC的中点时,求∠M的正切值.(2)当点P在线段BC上运动时(不与B,C重合),连接AM,AN,求证:①△AMN为等腰直角三角形;②△AEF∽△BAM.八、(本题满分14分)23.若二次函数y=a1x2+b1x+c1的图象记为C1,其顶点为A,二次函数y=a2x2+b2x+c2的图象记为C2,其顶点为B,且满足点A在C2上,点B在C1上,则称这两个二次函数互为“共同体二次函数”.(1)写出二次函数y=x2的一个“共同体二次函数”;(2)设二次函数y=x2-2x+3与y轴的交点为P,求以P为顶点的二次函数y=x2-2x+3的“共同体二次函数”;(3)若二次函数y=2x2-1与其“共同体二次函数”的顶点不重合,试求该“共同体二次函数”的二次项系数.2018安徽省初中毕业学业考试模拟卷数学时间120分钟满分150分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下面四个数中比-3大的数是(B)A.-B.-2C.-6D.-4【解析】根据有理数比较大小的方法,可得-<-3,-2>-3,-6<-3,-4<-3,故四个数中比-3大的数是-2.2.下列计算正确的是(C)A. B. C. D.=-3【解析】=2-,故A选项错误;,故B选项错误;,故C 选项正确;=3,故D选项错误.3.据《合肥晚报》报道,合肥地铁6号线一期建设总投资估算201亿元,将201亿用科学记数法表示应为(B) A.201×108 B.2.01×1010 C.0.201×1011 D.2.01×108【解析】将201亿用科学记数法表示应为2.01×1010.4.图中所示几何体的俯视图是(D)【解析】俯视图是矩形,并且中间有1条实线和1条虚线,虚线靠右侧,观察知D项正确.5.下列实数中,介于5和6之间的是(B)A. B. C. D.【解析】∵25<30<36,∴5<<6.6.2017年5月,20国青年评选出了中国的“新四大发明”:高铁、支付宝、共享单车和网购.某共享单车公司计划2018年连续3个月对合肥投放新型共享单车,计划第一个月投放3000台,第3个月投放6000台,每月按相同的增长率投放,设增长率为x,则可列方程(A)A.3000(1+x)2=6000B.3000(1+x)+3000(1+x)2=6000C.3000(1-x)2=6000D.3000+3000(1+x)+3000(1+x)2=6000【解析】设增长率为x,由题意得3000(1+x)2=6000.7.在《朗读者》节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生的读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册01234数人31316171数关于这组数据,下列说法正确的是(A) A.中位数是2 B.众数是17 C.平均数是3 D.方差是2【解析】观察表格,可知这组样本数据的平均数为(0×3+1×13+2×16+3×17+4×1)÷50=2;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2;方差为×[3×(0-2)2+13×(1-2)2+16×(2-2)2+17×(3-2)2+1×(4-2)2]=.8.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD,若四边形BEDF 是菱形,且EF=AE+FC,则边BC的长为(D)A.2B.C.6D.3【解析】∵四边形ABCD是矩形,∴∠A=90°,∠ABC=90°,AD=BC,∵四边形BEDF是菱形,∴BF=DE,EO=FO,∠BOE=90°,∠EBO=∠DBF,∵AE=AD-DE,CF=BC-BF,∴AE=CF,∵EF=AE+FC,EF=EO+FO,∴AE=EO=CF=FO,∴Rt△ABE≌Rt△OBE,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE==2,∴BF=BE=2,∴CF=AE=BE=,∴BC=BF+CF=3.9.如图是在同一平面直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象,正确的是(C)【解析】令ax2+(a+c)x+c=ax+c,解得x1=0,x2=-,∴二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的交点为(0,c),.选项A,二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a<0,c>0,不符合题意;选项B,二次函数y=ax2+(a+c)x+c中a>0,c<0,一次函数y=ax+c中a>0,c<0,但两个函数的交点不符合求得的交点的特点,不符合题意;选项C,二次函数y=ax2+(a+c)x+c中a<0,c>0,一次函数y=ax+c中a<0,c>0,且交点符合求得的交点的情况,符合题意;选项D,二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a>0,c<0,不符合题意.10.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P是斜边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,EF与AP相交于点O,则OF的最小值为(D) A.4.8 B.1.2C.3.6D.2.4【解析】由题意,知四边形AEPF是矩形,∴EF,AP互相平分,且EF=AP,OE=OF,∵当AP的值最小时,OF 的值就最小,∴当AP⊥BC时,AP的值最小,即OF的值最小.∵AP·BC=AB·AC,∴AP·BC=AB·AC.在Rt△ABC中,由勾股定理得BC==10.∴10AP=6×8,得AP=,∴OF=EF=AP=.二、填空题(本大题共4小题,每小题5分,满分20分)11.-的立方根是-.【解析】-的立方根是-.12.如图,BD为☉O的直径,AB与☉O相切于点B,连接AO,AO与☉O交于点C,若∠A=30°,☉O的半径为2,则的长为π.(结果保留π)【解析】∵AB与☉O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠COD=∠A+∠ABO=30°+90°=120°,∴的长度=π.13.“杨辉三角形”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了三百多年,如图是三角形数阵,记a n为图中第n行各个数之和,则a5+a11的值为1040.【解析】第一行数字之和为1=21-1,第二行数字之和为2=22-1,第三行数字之和为4=23-1,第四行数字之和为8=24-1,…,第n行数字之和为2n-1,∴a5+a11=24+210=16+1024=1040.14.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为3或4.【解析】过点A1作A1M⊥BC于点M.∵点A的对应点A1恰落在∠BCD的平分线上,∴设CM=A1M=x,则BM=7-x.又由折叠的性质知AB=A1B=5,∴在直角△A1MB中,由勾股定理得A1M2=A1B2-BM2=25-(7-x)2,∴25-(7-x)2=x2,解得x1=3,x2=4,∵在等腰Rt△A1CM中,CA1=A1M,∴CA1=3或4.三、(本大题共2小题,每小题8分,满分16分)15.计算:23-sin 45°+(π-3.14)0-.解:原式=8-+1-4 ........................................................................................................................... 4分=8-1+1-4 ................................................................................................................................................... 6分=4............................................................................................................................................................... 8分16.先化简,再求值:,其中m=.解:原式===.......................................................................................................................................................... 4分当m=时,原式==-..................................................................................................................................... 8分四、(本大题共2小题,每小题8分,满分16分)17.《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”请解答上述问题.解:设绳长x尺,则长木为(x-4.5)尺.依题意可得(x-4.5)-x=1. .......................................................................................................................... 6分解得x=11,则x-4.5=6.5.答:长木长6.5尺. ...................................................................................................................................... 8分18.如图,在△ABC中,A(-4,4),B(-4,-2),C(-2,2).(1)请画出将△ABC向右平移8个单位长度后得到的△A1B1C1;(2)以O为位似中心,将△A1B1C1缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2.解:(1)如图所示,△A1B1C1即为所求......................................................................................................... 4分(2)如图所示,△A2B2C2即为所求.............................................................................................................. 8分五、(本大题共2小题,每小题10分,满分20分)19.如图,坡AB的坡比为1∶2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H,A,T在同一地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物CH的高度.(结果精确到米,参考数据:≈1.73,≈1.41)解:(1)在△ABT中,∠ATB=90°,BT∶AT=1∶2.4,AB=130米,令TB=h,则AT=2.4h,有h2+(2.4h)2=1302,解得h=50(舍负),答:坡AB的高BT为50米....................................................................................................................... 4分(2)作DK⊥MN于点K,作DL⊥CH于点L,在△ADK中,AD=AB=65,KD=BT=25,得AK=60,在△DCL中,∠CDL=30°,令CL=x,得LD=x,易知四边形DLHK是矩形,则LH=DK,LD=HK. .................................................................................... 7分在△ACH中,∠CAH=60°,CH=x+25,得AH=,所以x=60+,解得x=30+12.5≈64.4,则CH=64.4+25=89.4≈89.答:建筑物CH的高度为89米............................................................................................................... 10分20.如图,反比例函数y1=的图象与一次函数y2=x的图象交于点A,B,点B的横坐标是4,点P(1,m)在反比例函数y1=的图象上.(1)求反比例函数的表达式;(2)观察图象,找出当y1>y2时,x的取值范围;(3)求△PAB的面积.解:(1)把x=4代入y2=x,得到点B的坐标为(4,1),把点B(4,1)代入y1=,得k=4.反比例函数的表达式为y1=................................................................................................................... 2分(2)∵点A与点B关于原点对称,∴点A的坐标为(-4,-1),观察图象得,当x<-4或0<x<4时,y1>y2.................................................................................................. 4分(3)过点A作AR⊥y轴于点R,过点P作PS⊥y轴于点S,连接PO,设AP与y轴交于点C.∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.当x=1时,y=4,∴P(1,4). ........................................................................................................................... 6分设直线AP的函数关系式为y=mx+n,把点A(-4,-1),P(1,4)代入y=mx+n,得解得∴直线AP的函数关系式为y=x+3,∴点C的坐标为(0,3),OC=3,∴S△AOP=S△AOC+S△POC=OC·AR+OC·PS=×3×4+×3×1=,∴S△PAB=2S△AOP=15................................................................................................................................ 10分六、(本题满分12分)21.在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,如图是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.解:(1)由题意可知该班的总人数=15÷30%=50. .................................................................................... 2分(2)足球项目所占的人数=50×18%=9,所以其他项目所占人数=50-15-9-16=10,补全条形统计图如图所示........................................................................................................................ 6分(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°. ................................................................ 8分(4)画树状图如下:由图可知,共有20种等可能的结果,恰为一男一女的结果有12种,所以P(恰好选出一男一女)=. ..................................................................................................... 12分七、(本题满分12分)22.在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为BC边上的一个动点(不与点B,C重合).点P关于直线AC,AB的对称点分别为M,N,连接MN交AC于点E,交AB于点F.(1)当点P为线段BC的中点时,求∠M的正切值.(2)当点P在线段BC上运动时(不与B,C重合),连接AM,AN,求证:①△AMN为等腰直角三角形;②△AEF∽△BAM.解:(1)连接NB.∵在Rt△ABC中,∠ACB=90°,AC=BC,∴△ACB为等腰直角三角形,∴∠A=∠CBA=45°. ............................................................................................................................... 2分∵点P关于直线AB的对称点为N,关于直线AC的对称点为M,∴AB垂直PN,BN=BP,∴∠NBA=∠PBA=45°,∴∠PBN=90°,∵P为BC的中点,BC=2,∴MC=CP=PB=NB=1,∴tan ∠M=. .................................................................................................................................. 6分(2)①连接AP,如图.∵点P关于直线AC,AB的对称点分别为M,N,∴AP=AM=AN,∠1=∠2,∠3=∠4,∵∠CAB=∠2+∠3=45°,∴∠MAN=90°,∴△AMN为等腰直角三角形. ................................................................................................................. 9分②∵△AMN为等腰直角三角形,∴∠5=∠6=45°,∴∠AEF=∠5+∠1=45°+∠1,∵∠EAF=45°,∴∠BAM=∠EAF+∠1=45°+∠1,∴∠AEF=∠BAM,又∵∠B=∠EAF=45°,∴△AEF∽△BAM.......................................................................................... 12分八、(本题满分14分)23.若二次函数y=a1x2+b1x+c1的图象记为C1,其顶点为A,二次函数y=a2x2+b2x+c2的图象记为C2,其顶点为B,且满足点A在C2上,点B在C1上,则称这两个二次函数互为“共同体二次函数”.(1)写出二次函数y=x2的一个“共同体二次函数”;(2)设二次函数y=x2-2x+3与y轴的交点为P,求以P为顶点的二次函数y=x2-2x+3的“共同体二次函数”;(3)若二次函数y=2x2-1与其“共同体二次函数”的顶点不重合,试求该“共同体二次函数”的二次项系数.解:(1)∵y=x2,∴顶点坐标为(0,0)且经过点(2,4).设以(2,4)为顶点且经过点(0,0)的抛物线的函数关系式为y=a(x-2)2+4,将x=0,y=0代入y=a(x-2)2+4,得0=a(0-2)2+4,解得a=-1.∴二次函数y=x2的一个“共同体二次函数”为y=-(x-2)2+4. ................................................................. 4分(2)令x=0,则y=x2-2x+3=3,∴二次函数y=x2-2x+3与y轴的交点P的坐标为(0,3).∵y=x2-2x+3=(x-1)2+2,∴顶点坐标为(1,2). ............................................................................................ 6分设以(0,3)为顶点且经过(1,2)的抛物线的函数关系式为y=ax2+3,将x=1,y=2代入y=ax2+3,得2=a·12+3,解得a=-1.∴以P为顶点的二次函数y=x2-2x+3的“共同体二次函数”为y=-x2+3.............................................. 9分(3)对于y=2x2-1,其顶点为(0,-1),设y=a(x+h)2+k,其顶点为(-h,k),∵二次函数y=2x2-1与其“共同体二次函数”的顶点不重合,∴h=0时k≠-1. ........................................................................................................................................ 12分根据“共同体二次函数”的定义可得-1=ah2+k,k=2h2-1,∴ah2=-2h2,∴a=-2,∴该“共同体二次函数”的二次项系数为-2........................................................................................... 14分。
安徽省2018年初中毕业学业考试数学模拟卷(1)(含答案)
2018年安徽省初中毕业学业考试数学模拟卷一(卷Ⅰ)本卷共计3大题,时间45分钟,满分92分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列四个数中,最小的数是········································( ) A.2B.-2 C.0 D.- 22.根据第六次全国人口普查结果,目前合肥市滨湖新区常住人口已达36万人,36万人用科学记数法表示为·······( ) A.3.6×104人B.36×104人C.3.6×105人D.0.36×105人3.下列运算正确的是············································( ) A.(-a)2·a3=a5B.a3÷a=a3C.(a2)3=a5D.(-3a2)3=-9a64.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是······················( ) A.12 cm2B.8 cm2C.6 cm2D.4 cm25.如图所示,已知直线AB∥CD,∠A=45°,∠C=125°,则∠E的度数为·····················( ) A.70°B.80°C.90°D.100°6.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形图(两图都不完整),则下列结论中错误..的是···( ) A.该班总人数为50人B.骑车人数占总人数的20%C.步行人数为30人D.乘车人数是骑车人数的2.5倍7.某地震灾区开展灾后重建,桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.请问这次采购派男女村民各多少人?·······························( ) A.男3人,女12人B.男5人,女10人C.男6人,女9人D.男7人,女8人8.已知⊙O的半径为R,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连结AC,若∠CAB=30°,则BD的长为·················································( ) A.2R B.3R C.R D.32R9.已知M、N两点关于y轴对称,且点M在反比例函数y=12x的图像上,点N在一次函数y=x+3的图像上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x·········································( ) A.有最小值92B.有最大值-92C.有最大值92D.有最小值-9210.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC =2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是·······················( )二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:2x3y-8xy = .12.已知关于x的方程ax+1x-2=-1的解是正数,则a的取值范围是.13.已知一个圆锥的母线长为10cm,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是cm.14.如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若AE=AP=1,PB=5,下列结论:第4题图第6题图第8题图第5题图②EB ⊥ED ;③点B 到直线AE 的距离为2;④正方形ABCD 的面积为4+6; 其中正确结论的序号是 . 三、本大题共2小题,每小题8分,满分16分 15.计算:(3-2)0+(13)-1+4cos30°-|-12|16.先化简,再求值:),其中m =3-2.四、本大题共2小题,每小题8分,满分16分17.如图,已知△ABC 三个顶点的坐标分别是A (1,3),B (4,1),C (4,4). (1)请按要求画图:①画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1; ②画出△ABC 绕着原点O 顺时针旋转90°后得到的△A 2B 2C 2. (2)请写出直线B 1C 1与直线B 2C 2的交点坐标.18.如图,直线y =kx +b 与反比例函数y =mx (x <0)的图象交于点A ,B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B的横坐标为-4.(1)求一次函数和反比例函数的关系式; (2)求△AOB 的面积. 111(11222+---÷-+-m m m m m m2018年安徽省初中毕业学业考试数学模拟卷一(卷Ⅱ)本卷共计4大题,时间50分钟,满分58分五、本大题共2小题,每小题10分,满分20分19.如图,平行四边形ABCD中,∠BAD=32°,分别以BC、CD为边向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连结AE、AF.(1)求证:△ABE≌△FDA;(2)当AE⊥AF时,求∠EBG的度数.20.如图,放置在水平桌面上的台灯的灯臂AB长为40 cm,灯罩BC长为30 cm,底座厚度为2 cm,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少厘米?(结果精确到0.1 cm,参考数据:3≈1.732)六、本大题满分12分21.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.七、本大题满分12分22.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃一边AB的长为x m,面积为y m2.(1)求y与x的函数关系式并指出自变量的取值范围;(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.八、本大题满分14分23.如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠F AH=45°,证明:AG+AE=FH;(3)若RtΔGBF的周长为1,求矩形EPHD的面积.2018年安徽省初中毕业学业考试数学模拟卷一参考答案一、选择题答案题号 1 2 3 4 5 6 7 8 9 10 答案BCAABCBCDC题号 11 1213 14 答案2xy (x -2)(x +2)a >-1且a ≠-124①②④三、简答题答案 15.答案:4 ;16.答案:(1) 原式=1m ,当m =3-2时,原式=-3-2 ;17.答案:(1) 图略; (2) (-1,-4) ;18.答案:(1) y =-8x y =x +6 ; (2) 6 ;19.答案:(1) 证明略 ; (2) 58°;20.答案:(1) 51.6 cm ;22.答案:(1) y=-3x2+30x 203≤x<10 ;(2)AB=7 m ;(3)能最大面积是2003;23.答案:(1) 证明略;(2)证明略;(3) 1 2;。
2018年安徽省中考模拟试卷-(数学)-有答案
2018年安徽中考模拟卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.-5的绝对值是( )A .-5B .5C .±5D .-152.计算2a 2+a 2,结果正确的是( ) A .2a 4 B .2a 2 C .3a 4 D .3a 23.如图所示的工件,其俯视图是( )4.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .0.1×1085.不等式组⎩⎪⎨⎪⎧2x -1≥1,x -2<0的解集在数轴上表示为( )6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°第 6题图 第7题图7.某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A .样本中位数是200元B .样本容量是20C .该企业员工捐款金额的平均数是180元D .该企业员工最大捐款金额是500元8.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入为200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x ,可列方程为( )A .200(1+2x )=1000B .200(1+x )2=1000C .200(1+x 2)=1000D .200+2x =10009.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +a 与反比例函数y =a +b +cx在同一坐标系内的图象大致为( )10.如图,在矩形ABCD 中,AD =6,AE ⊥BD ,垂足为E ,DE =3BE ,点P ,Q 分别在BD ,AD 上,则AP +PQ 的最小值为( )A .2 2 B. 2 C .2 3 D .3 3二、填空题(本大题共4小题,每小题5分,满分20分) 11.16的算术平方根是________.12.分解因式:2x 2-8y 2=__________________. 13.如图,已知AB 是⊙O 的直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD =3,则劣弧AD ︵的长为________.第13题图 第14题图14.如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD =________________.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2-1+3·tan30°-38-(2018-π)0.16.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?四、(本大题共2小题,每小题8分,满分16分)17.小明、小华利用五一假期结伴游览某旅游景点,他们想测量景点内一条小河的宽度,如图,已知观测点C 距离地面高度CH =40m ,他们测得正前方河两岸A 、B 两点处的俯角分别为45°和30°,请计算出该处的河宽AB 约为多少(结果精确到1m ,参考数据:2≈1.414,3≈1.732).18.如图,在边长均为1的正方形网格中有一个△ABC ,顶点A 、B 、C 及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC 向上平移4个单位,得到△A 1B 1C 1(不写作法,但要标出字母); (2)将△ABC 绕点O 旋转180°,得到△A 2B 2C 2(不写作法,但要标出字母); (3)求点A 绕着点O 旋转到点A 2所经过的路径长l .五、(本大题共2小题,每小题10分,满分20分)19.图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n =n (n +1)2.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在图④的每个圆圈中填上一串连续的整数-23,-22,-21,-20,…,则最底层最右边这个圆圈中的数是________;(3)求图④中所有圆圈中各数之和(写出计算过程).20.如图,在四边形ABCD 中,AD =BC ,∠B =∠D ,AD 不平行于BC ,过点C 作CE ∥AD 交△ABC 的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE .六、(本题满分12分)21.“热爱劳动,勤俭节约”是中华民族的光荣传统.某小学为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图①)和扇形统计图(图②).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”“经常做”“偶尔做”都统计成帮助父母做家务,那么该校三至六年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.七、(本题满分12分)22.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y (单位:分钟)是关于x 的一次函数,其关系如下表:(1)求y 1关于x (2)李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图①,点G 为线段CM 上的一点,且∠AGB =90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F . ①求证:BE =CF ; ②求证:BE 2=BC ·CE .(2)如图②,在边BC 上取一点E ,满足BE 2=BC ·CE ,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.参考答案与解析1.B 2.D 3.B 4.A 5.C 6.A 7.A 8.B9.D 解析:观察二次函数图象可知开口方向向上,对称轴直线x =-b2a>0,当x =1时y =a +b +c<0,∴a >0,b <0,∴一次函数y =bx +a 的图象经过第一、二、四象限,反比例函数y =a +b +cx的图象在第二、四象限,只有D 选项图象符合.故选D.10.D 解析:设BE =x ,则DE =3x .∵四边形ABCD 为矩形,∴∠BAD =90°,∴∠BAE +∠DAE =90°.∵AE ⊥BD ,∴∠AED =∠BEA =90°,∴∠ABE +∠BAE =90°,∴∠ABE =∠DAE ,∴△ABE ∽△DAE ,∴AE 2=BE ·DE ,即AE 2=3x 2,∴AE =3x .在Rt △ADE 中,由勾股定理可得AD 2=AE 2+DE 2,即62=(3x )2+(3x )2,解得x =3,∴AE =3,DE =3 3.如图,设A 点关于BD 的对称点为A ′,连接A ′D ,P A ′,则A ′A =2AE =6,A ′D =AD =6,∴△AA ′D 是等边三角形.∵AP =A ′P ,∴AP +PQ =A ′P +PQ ,∴当A ′,P ,Q 三点在一条线上时,AP +PQ 的值最小.由垂线段最短可知当PQ ⊥AD 时,AP +PQ 的值最小,∴AP +PQ =A ′P +PQ =A ′Q =DE =3 3.故选D.11.4 12.2(x +2y )(x -2y ) 13.2π314.4+23或2+3 解析:如图①,当四边形ABCE 为平行四边形时,作AE ∥BC ,延长AE 交CD于点N ,过点B 作BT ⊥EC 于点T .∵AB =BC ,∴四边形ABCE 是菱形.∵∠BAD =∠BCD =90°,∠ABC =150°,∴∠ADC =30°,∠BAN =∠BCE =30°,∴∠NAD =60°,∴∠AND =90°.设BT =x ,则CN =x ,BC =EC =2x .∵四边形ABCE 面积为2,∴EC ·BT =2,即2x ×x =2,解得x =1,∴AE =EC =2,EN =22-12=3,∴AN =AE +EN =2+3,∴CD =AD =2AN =4+2 3.如图②,当四边形BEDF 是平行四边形,∵BE =BF ,∴平行四边形BEDF 是菱形.∵∠A =∠C =90°,∠ABC =150°,∴∠ADB =∠BDC =15°.∵BE =DE ,∴∠EBD =∠ADB =15°,∴∠AEB =30°.设AB =y ,则DE =BE =2y ,AE =3y .∵四边形BEDF 的面积为2,∴AB ·DE =2,即2y 2=2,解得y =1,∴AE =3,DE =2,∴AD =AE +DE =2+ 3.综上所述,CD 的值为4+23或2+ 3.15.解:原式=12+1-2-1=-32.(8分)16.解:设鸡有x 只,兔有y 只,根据题意得⎩⎪⎨⎪⎧x +y =35,2x +4y =94,(4分)解得⎩⎪⎨⎪⎧x =23,y =12.(7分) 答:笼中有鸡23只,兔12只.(8分) 17.解:由题意得∠CAH =45°,∠CBH =30°.(2分)在Rt △ACH 中,AH =CH =40m ,在Rt △CBH 中,BH =CHtan ∠CBH=403m ,∴AB =BH -AH =403-40≈29(m).(7分)答:河宽AB 约为29m.(8分)18.解:(1)△A 1B 1C 1如图所示.(3分) (2)△A 2B 2C 2如图所示.(6分)(3)l =180π×4180=4π.(8分) 19.解:(1)79(3分) (2)67(6分)(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,所以图④中所有圆圈中各数的和为(-23)+(-22)+…+(-1)+0+1+2+…+67=-(1+2+3+…+23)+(1+2+3+…+67)=-23×242+67×682=2002.(10分) 20.证明:(1)由圆周角定理的推论1得∠B =∠E .又∵∠B =∠D ,∴∠E =∠D .∵CE ∥AD ,∴∠D +∠ECD =180°,∴∠E +∠ECD =180°,∴AE ∥CD ,∴四边形AECD 为平行四边形.(5分)(2)过点O 作OM ⊥BC 于M ,ON ⊥CE 于N .(6分)∵四边形AECD 为平行四边形,∴AD =CE .又∵AD =BC ,∴CE =CB ,∴OM =ON .又∵OM ⊥BC ,ON ⊥CE ,∴CO 平分∠BCE .(10分)21.解:(1)中位数为12(45+55)=50.(3分)(2)3000×(1-25%)=2250(人).(5分)答:该校三至六年级学生帮助父母做家务的大约是2250人.(6分) (3)画树状图如下:(10分)由树状图可知共有12种等可能结果,其中抽中甲和乙的结果有2种,所以P (抽取的两人恰好是甲和乙)=212=16.(12分) 22.解:(1)设y 1=kx +b ,将(8,18),(9,20)代入得⎩⎪⎨⎪⎧8k +b =18,9k +b =20,解得⎩⎪⎨⎪⎧k =2,b =2.故y 1关于x 的函数解析式为y 1=2x +2.(5分)(2)设李华从文化宫回到家所需的时间为y 分钟,则y =y 1+y 2=2x +2+12x 2-11x +78=12x 2-9x +80=12(x-9)2+39.5,(8分)∴当x =9时,y 有最小值,y min =39.5.(10分)故李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.(12分)23.(1)证明:①∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =∠BCF =90°,∴∠ABG +∠CBF =90°.∵∠AGB =90°,∴∠ABG +∠BAG =90°,∴∠BAG =∠CBF ,∴△ABE ≌△BCF ,∴BE =CF .(4分)②∵∠AGB =90°,点M 为AB 的中点,∴MG =MA =MB ,∴∠GAM =∠AGM .∵∠CGE =∠AGM ,∴∠GAM =∠CGE .由①可知∠GAM =∠CBG ,∴∠CGE =∠CBG .又∵∠ECG =∠GCB ,∴△CGE ∽△CBG ,∴CE CG =CGCB,即CG 2=BC ·CE .∵MG =MB ,∴∠MGB =∠MBG .∵四边形ABCD 是正方形,∴AB ∥CD ,∴∠MBG =∠CFG .又∵∠CGF =∠MGB ,∴∠CFG =∠CGF ,∴CF =CG .由①可知BE =CF ,∴BE =CG ,∴BE 2=BC ·CE .(9分)(2)解:延长AE ,DC 交于点N .(10分)∵四边形ABCD 是正方形,∴AB =BC ,AB ∥CD ,∴△CEN ∽△BEA ,∴CE BE =CNBA,即BE ·CN =AB ·CE .∵AB =BC ,BE 2=BC ·CE ,∴CN =BE .∵AB ∥DN ,∴△CGN ∽△MGA ,△CGF ∽△MGB ,∴CN MA =CG MG ,CG MG =CF MB ,∴CN MA =CFMB.∵点M 为AB 的中点,∴MA =MB ,∴CN =CF ,∴CF=BE .设正方形的边长为a ,BE =x ,则CE =BC -BE =a -x .由BE 2=BC ·CE 可得x 2=a ·(a -x ),解得x 1=5-12a ,x 2=-5-12a (舍去),∴BE BC =5-12,∴tan ∠CBF =CF BC =BEBC =5-12.(14分)。
2018年安徽省初中毕业学业水平考试数学试题及答案
数学试题注意事项:1.你拿到的试卷满分150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分。
“试题卷"共4页,“答题卷”共6页. 3。
请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4。
考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1。
—8的绝对值是 A.-8B.8C.±8D 。
812.2017年我省粮食总产量为695。
2亿斤,其中695。
2亿用科学记数法表示为 A 。
6。
952×106 B 。
6。
952×108 C.6.952×1010 D.695。
2×108 3。
下列去处正确的是 A 。
(a 2)3=a 5 B 。
a 4·a 2=a 8 C.a 6÷a 3=a 2 D 。
(ab)3=a 3b 3 4。
一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为第4题图 A 。
B 。
C. D 。
5.下列分解因式正确的是 A 。
—x 2+4x=—x (x+4) B 。
x 2+xy+x=x(x+y) C.x(x —y)+y(y-x)=(x —y )2 D 。
x 2-4x+4=(x+2)(x —2)6.据省统计局发布,2017年我省有效发明专利数比2016年22。
1%.假定2018年的增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则 A.b=(1+22。
1%×2)a B.b=(1+22。
1%)2a C 。
b=(1+22。
1%)×2a D.b=22。
1%×2a7。
若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为 A 。
-1 B.1 C.—2或2 D 。
-3或18。
为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲 2 6 7 7 8 乙23488关于以上数据,说法正确的是 A 。
2018安徽中考数学模拟试卷
2018安徽中考数学模拟试卷22017-2018学年第二学期九年级中考模拟考试 数学试卷 2018年5月考生注意:本卷共八大题,23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分) 1.在0,,3,1π--四个数中,绝对值最大的数是( ).A .0B .π-C .3D .-12.下列计算结果等于5a 的是( ).A .32a a + B .32a a C .32()a D .102a a ÷3.经济学家马光远在2017新消费论坛上表示,因为新技术引发新产生、新业态、新模式,新兴消费增长速度超过40%,将会影响到5亿人左右.受此影响,到2020年,中国个人消费总规模有望达到5.6万亿美元.其中5.6万亿用科学记数法表示为( ).A .95.610⨯ B .105610⨯ C .125.610⨯ D .135.610⨯4.如图所示的几何体中,其俯视图是( ).5.把多项式228xy x -因式分解,结果正确的是( ).A.2x y-2(4) B.(2)(24)y xy x+-C.(22)(2)+-xy x y D.2(2)(2)+-x y y6.如图,AB∥CD,AC⊥BE于点C,若∠1=140°,则∠2等于().A.40°B.50°C.60°D.70°7 若关于x的一元二次方程2440-+=有两个相等的x x c实数根,则c的值为().A.1 B.-1 C.4 D.-48.合肥市主城区2017年8月10至8月19日连续10天的最高气温统计如下表:最高气38 39 40 41温(°C)天数 1 3 4 2则这组数据的中位数和平均数分别为().A.40,39.5 B.39,39.5 C.40,39.7 D.39,39.7345为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,直线与AC 交于点N ,使点N 落在直线BC 的点D 处,且BD :DC =1:4,设折痕为MN ,则CN 的值为 .三、(本大题共2小题,每小题8分,满分16分) 15.计算:21o 131()sin 60122--+---.16.高迪同学在一本数学课外读物中看到这样一则信息:1925年,数学家莫伦发现了如图(1)所示的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形.高迪同学仔细研究了此图后,设计出了一个如图(2)所示的“准完美长方形”,其中标号“3与4”的正方形完全相同,若中间标号为“1”的正方形的边长为1cm ,求这个“准完美长方形”DCA BMN第14第136的面积.四、(本大题共2小题,每小题8分,满分16分) 17.(1)计算(直接填写结果)2222121⨯=++ ;33333312321⨯++++= .(2)先猜想结果,再计算验证:444444441234321⨯++++++= ;5555555555123454321⨯++++++++= .(3)归纳:设N 是各位数字都是n 的n 位数(n 是小于10的正整数),那么123(1)21N Nn n ⨯+++++-+++是 位数,其正中的一个数字是 .654321((718.某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB =OD ,支架CD 与水平线AE 垂直,∠BAC =∠CDE =30°,DE =80cm ,AC =165cm . (1)求支架CD 的长;(2)求真空热水管AB 的长.(结果保留根号).五、(本大题共2小题,每小题10分,满分20分)19.在边长为1个单位长度的小正方形网格中,给出了格点△ABC (顶点为网格线的交点),以及过格点的的直线l .(1)将△ABC 向左平移3个单位长度,再向下平移两个单位长度,画出平移后的△DEF (点A 与点D ,点B 与点E ,点C 与点F 为对应点);(2)画出△ABC 关于直线l 对称的△GMN (点A 与点G ,点B 与点M ,点C 与点N 为对应点;(3)若DF 与MG 相交于点P ,则tan ∠MPF = .CODAB20.如图,四边形ABCD是⊙O的内接四边形, ,AC为直径,DE⊥BC,垂足为E.AD BD(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.六、(本题满分12分)21.小明、小强和小亮三个小朋友在一起玩“手心,手背”游戏,游戏时,每人每次同时随机伸出一只手,手心向上简称“手心”,手背向上简称“手背”(1)请你列出三人玩“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,用B表示手背)(2)求他们同时随机出手,都是“手心”的概率;(3)若小明出手为“手心”,则三人中只有一人出手为“手背”的概率为七、(本题满分12分)22.某工艺厂生产一种装饰品,每件的生产成本为20元,销售8价格在30元/件至80元/件之间(含30元/件和80元/件),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万件)与销售价格x(元/件)之间的函数关系如图所示.(1)当30≤x≤60时,求y与x之间的函数关系式.(2)求出该厂生产销售这种产品获得的利润w(万元)与销售价格x(元/件)之间的函数关系式.(3)当销售价格定为多少元/件时,获得的利润最大?最大利润是多少?八、(本题满分14分)23.我们知道:三角形三条角平分线的交点叫做三角形的内心,已知点I为△ABC的内心(1)如图1,连接AI并延长交BC于点D,9若AB=AC=3,BC=2,求ID的长(2)过点I作直线交AB于点M,交AC于点N.①如图2,若MN⊥AI,求证:2MI BM CN=②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求11AM AN+的值.2017-2018学年第二学期九年级第一次月考数学答案 2018年4月一、选择题题号1 2 3 4 5 6 7 8 9 1010答案B B C BDB AC C B二、填空题11.3x<12.13 13.23π14.92三、15.原式=016.设标号为“3”的正方形边长为x cm,由题意,得2531x x+=+,解得4x=,所以(25)(23)1311143x x++=⨯=2cm答:这个“准完美长方形”的面积为143cm2.四、17.(1)121 12321 (2)1234321123454321(3)21n-n18.(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=o3=⨯=(cm)80cos3080403(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC o3tan30165553=⨯=(cm)∴OD=OC-CD=553403153-=(cm).∴AB=AO-OB=AO-OD=5532153953⨯-=(cm).五、19.(1)(2)如图所示(3)220.(1)证明:∵四边形ABCD是⊙O内接四边形,∴∠DCE=∠BAD.∵AD BD=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,即CD平分∠ACE.(2)∵AC为直径,∠ADC=90°.∵DE ⊥BC ,∴∠DEC =90°,∠DEC =∠ADC ∵∠DCE=∠ACD ,∴△DCE ∽△ACD∴CE CD CD CA =,即39CD CD =∴CD =33 六、21.(1)画树状图,得∴共有8种等可能的结果:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB(2)∵他们同时随机出手,都是“手心”的只有1种情况,∴他们同时随机出手,都是“手心”的概率是18(3)12七、22.(1)当60x =时,120260y == ∴当30≤x ≤60时,图象过(60,2)和(30,5)设y kx b =+,则305602k b k b +=⎧⎨+=⎩,解得0.18k b =-⎧⎨=⎩, ∴0.18(3060)y x x =-+≤≤ (2)当30≤x ≤60时2(20)50(20)(0.18)500.110210w x y x x x x =--=--+-=-+-当60<x≤80时1202400(20)50(20)5070w x y x x x=--=-⨯-=-+综述:20.110210(3060)240070(6080) x x x w x x ⎧-+-≤≤⎪=⎨-+<≤⎪⎩(3)当30≤x ≤60时,220.1102100.1(50)40w x x x =-+-=--+当50x =时,w 最大=40(万元)当60<x≤80时,w 随x 的增大而增大,∴当80x =时,w 最大=2400704080-+=(万元) 所以当销售价格定为50元/件或80元/件时,获得的利润最大,最大利润是40万元. 八、23.(1)作IE ⊥AB 于E .设ID =x ,∵AB =AC =3,I 点为△ABC 的内心,∴AD ⊥BC ,BD =CD =1.在Rt △ABD 中,由勾股定理,得AD =22 ∵∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2 在Rt △AEI 中,222AEEI AI +=,即2222(22)x x +=-,∴22x =.(2)如图,连接BI ,CI∵I 是△ABC 的内心,∴∠MAI =∠NAI .∵AI ⊥MN ,∴AM =AN∴∠AMN =∠ANM ,∠BMI =∠CNI∵∠NIC =180°-∠IAC -∠ACI -∠AIM =90°-∠IAC -∠ACI∠ABC =180°-∠BAC -∠ACB =180°-2∠IAC -2∠ACI∴∠ABI =90°-∠IAC -∠ACI ,即∠NIC =∠ABI∴△BMI ∽△INC ,BM MI IN NC=又MI =NI ,∴2MIBM CN=.(3)过点N 作NG ∥AD 交MA 的延长线于点G , ∵∠BAD =∠CAD ,∠BAC =60°,∴AN =AG ,∠ANG =∠AGN =30°,NG 3由AI ∥NG ,得AM AIMG NG =,3AM AM AN AN=+∴113AMAN+=。
合肥市2018年中考一模数学试卷
第 17 题图
18. 观察下面的点阵图和相应的等式,探究其中的规律: (1)认真观察,在④后面的横线上写出相应的等式 .
23.(1)∵AC 平分∠DAB,∴∠DAC=∠BAC.
ì AD = AB, 在△ADC 和△ABC 中, ïíÐDAC = ÐBAC, ∴△ADC≌△ABC,∴CD=CB.
ïî AC = AC,
∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;
(4 分)
(2)∵△ADC≌△ABC,∴∠ADC=∠B.
2018 年安徽省初中学业水平模拟考试
数学
(试题卷)
注意事项: 1.你拿到的试卷满分为 150 分,考试时间为 120 分钟。 2.本试卷包括“试题卷”和“答题卷”两部分。 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。 4.考试结束后,请将“答题卷”交回,“试题卷”不交。
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 每小题都给出 A、B、C、D 四个选项,其中只有一个是正确的.
∵∠DCG=∠ACD,∴△DGC∽△ADC;
(8 分)
(3)∵△DGC∽△ADC,∴∠DGC=∠ADC, CG = DG . CD AD
∵∠ADC=2∠HAG,AD=3,DC=2,∴∠HAG= 1 ∠DGC, CG = DG ,
2
23
∴∠HAG=∠AHG, CG = 2 , DG 3
∴HG=AG.
∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∽△AGF,
安徽省合肥市2018年中考模拟数学试题及答案
2018年安徽省合肥市中考模拟测试数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四题号 1 2 3 4 5 6 7 8 9 10答案1.在算式(-2)□(-3)的□中填上运算符号,使结果最小,运算符号是()A. 加号B. 减号C. 乘号D. 除号2.如图所示的几何体的俯视图是()A B C D3.下列计算中正确的是()A. a·a2=a2B. 2a·a=2a2C. (2a2)2=2a4D. 6a8÷3a2=2a44.二次根式x x3中x的取值范围是()A.x>3 B.x≤3且x≠0C.x≤3 D.x<3且x≠05.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°第5题图第8题图第10题图6.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+17.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度得分评卷人数为()A.15°B.75°或15°C.105°或15°D.75°或105°8.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间等于9小时的人数是()A. 5B. 18C. 10D. 49.若关于x的一元二次方程ax2+bx+1=0(a≠0)的解是x=1,则2015-a-b的值是()A. 2014B. 2015C. 2016D. 201710.如图,动点S从点A出发,沿线段AB运动至点B后,立即按原路返回,点S在运动过程中速度不变,则以点B为圆心,线段BS长为半径的圆的面积m与点S的运动时间t之间的函数关系图象大致为()A.B.C.D.得分评卷人二、填空题(每题5分,共20分)11.据安徽省旅游局信息,2018年春节假日期间全省旅游总收入约为196.19亿元,196.19亿用科学记数法表示为.12.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则弧BC的长为(结果保留π).第12题图第13题图第14题图13.根据图中的程序,当输入x=2时,输出的结果y=.14.如图,正五边形的边长为2,连接对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,给出下列结论:①∠AME=108°,②AN2=AM•AD;③MN=3-5;④S△EBC=25-1,其中正确的结论是(把你认为正确结论的序号都填上).得分评卷人三、解答题(共90分)15.(8分)先化简:(2x -x x 12+) ÷ xx x 122+-,然后从0,1,-2中选择一个适当的数作为x 的值代入求值.16.(8分)观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256,…. 通过观察,能用你所发现的规律写出232的个位数字是多少吗?那32018的个位数字呢?17.(8分)如图,在边长为1个单位长度的小正方形网格中. (1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.18.(8分)如图①,②分别是某吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角. 吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A距地面的高度是多少米?(精确到0.1米. 参考数据:sin10°=cos80°≈0.17,cos10°=sin80°≈0.98,sin20°=cos70°≈0.34,tan70°≈2.75,sin70°≈0.94)19.(10分)目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利润多少元?20.(10分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A 、B 、C 三个班,他俩希望能再次成为同班同学. (1)请你用列举法,列出所有可能的结果; (2)求两人再次成为同班同学的概率.21.(12分)已知,如图,反比例函数y=xk的图象与一次函数y=x+b 的图象交于点A (1,4),点B (m ,-1),(1)求一次函数和反比例函数的解析式; (2)求△OAB 的面积;(3)直接写出不等式x+b >x k的解.22.(12分)已知,抛物线y=ax2+bx-2与x轴的两个交点分别为A(1,0),B(4,0),与y轴的交点为C.(1)求出抛物线的解析式及点C的坐标;(2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.(14分)已知,如图1,AD是△ABC的角平分线,且AD=BD,(1)求证:△CDA∽△CAB;(2)若AD=6,CD=5,求AC的值;(3)如图2,延长AD至E,使AE=AB,过E点作EF∥AB,交AC于点F,试探究线段EF 与线段AD的大小关系.2018年安徽省合肥市中考模拟测试数学试题参考答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
(真题)安徽省2018年中考数学试题(有答案)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键. 17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
2018年初中学业水平模拟考试(数学)试卷+答案
2018年初中学业水平模拟考试数学试卷(全卷三个大题,共23个小题,满分120分.考试用时120分钟)一、填空题(本大题共6个小题,每小题3分,共18分)1.8的算术平方根是.2.要使式子在实数范围内有意义,则x的取值范围是.3.分解因式:x﹣2xy+xy2= .4.已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣1时,y= .5.某班的中考英语口语考试成绩如表:则该班中考英语口语考试成绩的众数比中位数多分.6.若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是cm2(结果保留π).二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7.2的相反数是()A.2 B.C.﹣2 D.﹣8.氢原子的半径大约是0.000 0077m,将数据0.000 0077用科学记数法表示为()A.0.77×10﹣5B.0.77×10﹣6C.7.7×10﹣5D.7.7×10﹣69.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件10.下列运算正确的是()A.B.C. D.11.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.12.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分13.如图是一个几何体的三视图,这个几何体是()A.四棱柱B.三棱柱C.三棱锥D.圆锥14.如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S (cm 2),点P 的运动时间为t (s ),下列能反映S 与t 之间函数关系的大致图象是( )A .B .C .D .三、解答题(本大题共9个小题,共70分)15.(本小题5分)解不等式组并把它的解集在数轴上表示出来.16.(本小题6分)先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的数代入求值.17.(本小题8分)某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图. 上网查找学习资源方式频数分布表(1)频数分布表中a ,b 的值:a= ;b= ; (2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?18.(本小题7分)从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生的概率为;(2)抽取2名,恰好是1名男生和1名女生.19.(本小题8分)如图,AB 是半圆O 的直径,点C 是半圆O 上一点,∠COB=60°,点D 是OC 的中点,连接BD ,BD 的延长线交半圆O 于点E ,连接OE ,EC ,BC . (1)求证:△BDO ≌△EDC .(2)若OB=6,则四边形OBCE 的面积为 .20.(本小题7分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元? 21.(本小题8分)如图,小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B ,C 两点的俯角分别为60°和35°,已知大桥BC 的长度为100m ,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈,≈1.7)22.(本小题9分)已知二次函数y=x 2﹣(a ﹣1)x+a ﹣2,其中a 是常数. (1)求证:不论a 为何值,该二次函数的图象与x 轴一定有公共点;(2)当a=4时,该二次函数的图象顶点为A ,与x 轴交于B ,D 两点,与y 轴交于C 点,求四边形ABCD 的面积.23.(本小题12分)在△ABC 中,∠ACB 是锐角,点D 在射线BC 上运动,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到AE ,连接EC .(1)操作发现:若AB=AC ,∠BAC=90°,当D 在线段BC 上时(不与点B 重合),如图①所示,请你直接写出线段CE 和BD 的位置关系和数量关系是 , ;(2)猜想论证:在(1)的条件下,当D 在线段BC 的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸:如图③,若AB ≠AC ,∠BAC ≠90°,点D 在线段BC 上运动,试探究:当锐角∠ACB 等于 度时,线段CE 和BD 之间的位置关系仍成立(点C 、E 重合除外)?此时若作DF ⊥AD 交线段CE 于点F ,且当AC=3时,请直接写出线段CF 的长的最大值是2018年初中学业水平模拟考试数学参考答案一、填空题1.2.2.x≥2 .3.x(y﹣1)2.4. 6 .5. 1 .6.60π.二、选择题7.C 8. D 9.A 10.D 11.C 12.D 13.B 14.C 三、解答题15.解:(1),解不等式① ,得x≤1,解不等式 ②,得x>﹣1,则不等式组的解集是﹣1<x≤1;16.解:1﹣÷==1﹣==,当x=3时,原式=﹣.17.解:(1)16÷32%=50,a=×100%=30%,b=50×10%=5,故答案为30%;5;(2)频数分布直方图,如图所示,(3)1000×32%=320(名)答:该校利用搜索引擎查找学习资源的学生有320名.18.解:(1)P(女)=;故答案为:;(2)画出树状图如下:共有20种情况,其中“恰好是1名男生和1名女生”的情况有12种,所以,P(恰好是1名男生和1名女生B)==.19.(1)证明:∵∠COB=60°且OB=OC,∴△BOC为等边三角形,∠OBC=60°,又∵点D是OC的中点,∴OD=CD,∠OBD==30°,又∵点C是半圆上一点且∠COB=60°,∴∠CEB==30°,∴∠OBD=∠CEB,在△BDO与△EDC中,,∴△BDO≌△EDC(AAS);(2)∵∴△BDO≌△EDC,∴EC=OB,∵△OBC是等边三角形,∴OB=BC=EC=EO,∴四边形OBCE是菱形,∴S菱形OBCE=•OC•EB=•6•6=18.20.解:设衬衫的单价降了x元.根据题意,得(20+2x)(40﹣x)=1250,解得:x1=x2=15,答:衬衫的单价降了15元.21.解:作AD⊥CB交CB所在直线于点D,由题知,∠ACD=35°,∠ABD=60°,∵在Rt△ACD中,∠ACD=35°,tan35°=≈,∴CD=AD.∵在Rt△ABD中,∠ABD=60°,tan60°==≈1.7,∴BD=AD,∴BC=CD﹣BD=AD﹣AD,∴AD﹣AD=100,解得AD=119m.答:热气球离地面的高119m.22.(1)证明:y=x2﹣(a﹣1)x+a﹣2.因为[﹣(a﹣1)]2﹣4(a﹣2)=(a﹣3)2≥0.所以,方程x2﹣(a﹣1)x+a﹣2=0有实数根.所以,不论a为何值,该函数的图象与x轴总有公共点;(2)由题可知:当a=4时,y=x2﹣3x+2,因为y=x2﹣3x+2=(x﹣)2﹣,所以A(,﹣),当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以B(1,0),D(2,0),当x=0时,y=2,所以C(0,2),所以S四边形ABCD=S△ABD+S△BDC=+1=.23.解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴线段CE,BD之间的位置关系和数量关系为:CE=BD,CE⊥BD;故答案为:CE=BD,CE⊥BD;(2)(1)中的结论仍然成立.理由如下:如图2,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,所以线段CE,BD之间的位置关系和数量关系为:CE=BD,CE⊥BD;(3)45°;;过A作AM⊥BC于M,过E点作EN垂直于MA延长线于N,如图3,∵线段AD绕点A逆时针旋转90°得到AE,∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵CE⊥BD,即CE⊥MC,∴∠NEC=90°,∴四边形MCEN为矩形,∴NE=MC,∴AM=MC,∴∠ACB=45°,∵四边形MCEN为矩形,∴Rt△AMD∽Rt△DCF,∴=,设DC=x ,∵在Rt △AMC 中,∠ACB=45°,AC=3,∴AM=CM=3,MD=3﹣x ,∴=,∴CF=﹣x 2+x=﹣(x ﹣)2+, ∴当x=时有最大值,最大值为. 故答案为:45°,.。
安徽省2018年中考数学真题(word版含解析)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A 与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积. 【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,【解析】通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A 与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键. 22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元. 【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x 的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD 中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
精品解析:2018届安徽省中考数学模拟试卷一(解析版)
2018届安徽省中考数学模拟试卷一一、选择题(本大题共10小题,每小题4分,满分40分)1. ﹣2017的倒数是()A. B. ﹣ C. 2017 D. ﹣2017【答案】B【解析】根据乘积为1的两数互为倒数,可知-2017的倒数为﹣.故选:B.2. 地球的表面积约为510000000km2,将510000000用科学记数法表示为()A. 0.51×109B. 5.1×108C. 5.1×109D. 51×107【答案】B【解析】试题分析:510 000 000=5.1×108.故选C.考点:科学记数法—表示较大的数.视频3. 下列运算正确的是()A. x+y=xyB. 2x2﹣x2=1C. 2x•3x=6xD. x2÷x=x【答案】D【解析】A、x和y不是同类项,不能合并,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项错误;C、2x•3x=6x2,原式计算错误,故本选项错误;D、x2÷x=x,原式计算正确,故本选项正确.故选:D.4. 九年级(1)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,16【答案】A【解析】这组数据4,6,8,16,16的中位数为:8,众数为:16.故选:A.5. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A. B. C. D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。
选项C左视图与俯视图都是,故选C.6. 某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A. x(x+1)=1035B. x(x﹣1)=1035×2C. x(x﹣1)=1035D. 2x(x+1)=1035【答案】C【解析】∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.7. 方程组的解x,y满足x>y,则m的取值范围是()A. m>B. m>C. m>D. m>【答案】D【解析】试题分析:先由方程组得到用含m的代数式表示的x和y,再根据>即可得到关于m的不等式,解出即可.由方程组解得,,,解得,故选D.考点:本题考查的是解二元一次方程组,解一元一次不等式点评:解答本题的关键是由方程组得到用含p的代数式表示的x和y.8. 如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A. 2cmB. 4cmC. cmD. cm【答案】B【解析】解:如图所示,连接AO,过O作OD⊥AB,交弧AB于点D,交弦AB于点E,∵弧AB折叠后恰好经过圆心,∴OE=DE,∵⊙O的半径为4,∴OE=OD=×4=2,∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE===,∴AB=2AE=.故选A.点睛:本题考查的是垂径定理在实际生活中的运用及翻折变换的性质,根据题意画出图形,作出辅助线利用数形结合解答.9. 如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=66°,则∠FEG等于()A. 47°B. 46°C. 11.5°D. 23°【答案】D【解析】∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,又∵AD=BC,∴GF=GE,∠FGC=∠DAC=20°,∠AGE=∠ACB=66°,∴∠FGE=∠FGC+∠EGC=20°+(180°﹣66°)=134°,∴∠FEG=(180°﹣∠FGE)=23°.故选:D.10. 如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm ,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B. C. D.【答案】A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴,即,解得:EH=x,所以y=•x•x=x2,∵x、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选:A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11. 分解因式:ba2+b+2ab=_____.【答案】b(a+1)2【解析】先提公因式,再运用完全平方公式即可.解:.故答案为:.12. 如图,一个圆作滚动运动,它从A位置开始,滚过与它相同的其他六个圆的上部,到达B位置.则该圆共滚过_____圈.【答案】【解析】如图1所示,当⊙A旋转到⊙A′位置时,∠COD=90°,这个圆已经旋转180°,即⊙A旋转的度数是∠COD的两倍.学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...所邓120°×2+60°×4=480°,而480°×2=960°,960°÷360°=(圈)故答案是.13. 数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为_____个单位长度.【答案】3【解析】根据数轴上点的坐标特点及平移的性质解答即可.解:根据题意:数轴上-1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为-1+4-6=-3,故此时A点距原点的距离为3个单位长度.14. 如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是_____.【答案】①②③④【解析】①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ;④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1: ,∴.故答案为:①②③④三、(本大题共2小题,每小题8分,满分16分)15. 计算:(tan60°)﹣1×﹣|﹣|+23×0.125.【答案】1【解析】按实数的混合运算顺序进行计算即可.解:原式=()﹣1•﹣+8×0.125,=,=1.16. 已知x2+x﹣6=0,求的值.【答案】【解析】先解一元二次方程,再化简求值即可.解:∵x2+x﹣6=0,,∴x=2或x=﹣3;原式=()÷﹣,=•﹣,=﹣,=;当x=2时,原式中分母为零,所以x=2不符题意舍去;当x=﹣3时,原式=.四、解答题(本大题共2小题,每小题8分,满分16分)17. 两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.【答案】见解析【解析】(1)两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);(2)验证写出的等式左、右两边是否相等即可.解:(1)上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n);(2)∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立.18. 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.【答案】(1)见解析;(2)见解析,C2的坐标为(﹣6,4).【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).五、解答题(本大题共2小题,每小题10分,满分20分)19. 如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.【答案】该建筑物的高度为:(+n)米.【解析】试题分析:首先由题意可得,由AE−BE=AB=m米,可得,继而可求得CE的长,又由测角仪的高度是米,即可求得该建筑物的高度.试题解析:由题意得:∵AE−BE=AB=m米,(米),(米),∵DE=n米,(米).∴该建筑物的高度为:米20. (10分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B 作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.【答案】(1)y=,y=x+1;(2)﹣3<x<0或x>2;(3)P的取值范围是p≤﹣2或p>0.【解析】试题分析:(1)首先把B(-3,-2)代入反比例函数解析式中确定k2,然后把A(2,m)代入反比例函数的解析式确定m,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)根据函数的图象即可求得;(3)分两种情况结合图象即可求得.试题解析:(1)把B(-3,﹣2)代入y=得:k2=6,即反比例函数的解析式是y=;又点A(2,m)在反比例函数y=图象上,∴m=3(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1>y2,实数p的取值范围是p<﹣2,当点P在第一象限时,要使y1>y2,实数p的取值范围是p>0【点睛】此题考查了用待定系数法确定反比例函数和一次函数的解析式,也考查了反比例函数和一次函数的交点问题,函数和不等式的关系.六、解答题(本大题满分12分)21. 某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【答案】(1);(2).【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是.七、解答题(本大题满分12分)22. 如图1,△ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB.(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;(2)若将“点D在线段AB上,点E在线段CB延长线上”改为“点D在线段BA延长线上,点E在线段BC延长线上”,其他条件不变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.【答案】(1)见解析;(2)6【解析】(1)先证△CBD∽△ABC,再转化比例线段即可得出答案;(2)利用平行线的性质、30度角所对的直角边等于斜边的一半、三角形中位线定理即可得出答案. 解:(1)AC=BF.证明如下:如图1,∵∠ADP=∠ACD+∠A,∠ACB=∠ACD+∠BCD,∠ADP=∠ACB,∴∠BCD=∠A,又∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,①∵FE∥AC,∴,②由①②可得,,∵BE=CD,∴BF=AC;(2)如图2,∵∠ABC=90°,∠BAC=60°,∴∠ACB=30°=∠ADP,∴∠BCD=60°,∠ACD=60°﹣30°=30°,∵PE∥AC,∴∠E=∠ACB=30°,∠CPE=∠ACD=30°,∴CP=CE,∵BE=CD,∴BC=DP,∵∠ABC=90°,∠D=30°,∴BC=CD,∴DP=CD,即P为CD的中点,又∵PF∥AC,∴F是AD的中点,∴FP是△ADC的中位线,∴FP=AC,∵∠ABC=90°,∠ACB=30°,∴AB=AC,∴FP=AB=2,∵DP=CP=BC,CP=CE,∴BC=CE,即C为BE的中点,又∵EF∥AC,∴A为FB的中点,∴AC是△BEF的中位线,∴EF=2AC=4AB=8,∴PE=EF﹣FP=8﹣2=6.点睛:本题考查了相似及三角形中位线等知识.综合利用所学知识并进行推理判断是解题的关键.八、(本大题满分14分)23. 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】(1)抛物线顶点D的坐标为(﹣,﹣);(2)s=;(3)t=【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.试题解析:(1)∵抛物线有一个公共点M(1,0),∴a+a+b=0,即b=−2a,∴抛物线顶点D的坐标为(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=−2,∴y=2x−2,则得∴(x−1)(ax+2a−2)=0,解得x=1或∴N点坐标为∵a<b,即a<−2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为设△DMN的面积为S,(3)当a=−1时,抛物线的解析式为:有解得:∴G(−1,2),∵点G、H关于原点对称,∴H(1,−2),设直线GH平移后的解析式为:y=−2x+t,−x2−x+2=−2x+t,x2−x−2+t=0,△=1−4(t−2)=0,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=−2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是。
(完整)2018年安徽中考数学试卷及答案,推荐文档
2018 年安徽省初中学业水平考试数 学 (试题卷)注意事项:1. 你拿到的试卷满分为 150 分,考试时间为 120 分钟。
2. 试卷包括”试题卷“和“答题卷”两部分,“试题卷”共 4 页,“答题卷“共 6 页;3. 请务必在“答题卷”上答题,在“试题卷”上答题是无效的;4. 考试结束后,请将”试题卷”和“答题卷”一井交回。
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分) 每小超都给出 A,B,C,D 四个选项,其中只有一个是正确的。
1. - 8 的绝对值是( )A. -8B.8C. ±8D. - 182.2017 年我赛粮食总产量为 635.2 亿斤,其中 635.2 亿科学记数法表示( )A. 6.352 ⨯106B. 6.352 ⨯108C. 6.352 ⨯1010D. 635.2 ⨯1083. 下列运算正确的是(A. (a2 )3= a5)B. a 2 • a 4 = a 8C. a 6 ÷a 3 = a 2D. (ab )3= a 3b 34. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()5. 下列分解因式正确的是( )A. - x 2 + 4x = -x (x + 4)B. x 2 + xy + x = x (x + y )C. x (x - y ) + y ( y - x ) = (x - y )2D. x 2 - 4x + 4 = (x + 2)(x - 2)6. 据省统计局发布,2017 年我省有效发明专利数比 2016 年增长 22.1%假定 2018 年的平均增长率保持不变,2016 年和 2018 年我省有效发明专利分别为 a 万件和 b 万件,则( ) A. b = (1+ 22.1% ⨯ 2)a B. b = (1+ 22.1%)2 a C. b = (1+ 22.1%) ⨯ 2aD. b = 22.1% ⨯ 2a7. 若关于 x 的一元二次方程 x (x +1)+ax =0 有两个相等的实数根,则实数 a 的值为( )A. -1B.1C. - 2或2D. - 3或13 8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是( )A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9. □ABCD 中,E 、F 是对角线 BD 上不同的两点,下列条件中,不能得出四边形 AECF 一定为平行四边形的是()A.BE=DFB.AE=CFC.AF//C ED.∠BAE =∠DCF10. 如图,直线l 1、l 2 都与直线 l 垂直,垂足分别为 M,N,MN =1 正方形 ABCD 的边长为 ,对角线 AC 在直线 l 上,且点 C 位于点 M 处,将正方形 ABCD 沿 l 向右平移,直到点 A 与点 N 重合为止,记点 C 平移的距离为 x ,正方形 ABCD 的边位于l 1、l 2 之间分的长度和为 y ,则 y 关 于 x 的函数图象太致为( )2、填空题(本大共 4 小题,每小题 5 分,满分 30 分)x - 811. 不等式 > 1的解集是。
安徽省2018届九年级数学学业水平考试(仿真)试题(八)(扫描版)(1)
最大最全最精的教育资源网
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
需要更完好的资源请到新世纪教网学校租用教师免费下载
最大最全最精的教育资源网
最大最全最精的教育资源网
安徽省2018届九年级数学学业水平考试(仿真)试题
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
(八)
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
需要更完好的资源请到新世纪教育网学校租用教师免费下载
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网
需要更完好的资源请到新世纪教育网学校租用教师免费下载
最大最全最精的教育资源网