4.3 用方程解决问题(3)同步作业

合集下载

2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步达标测评(附答案)

2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步达标测评(附答案)

2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步达标测评(附答案)一.选择题(共10小题,满分40分)1.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x元,根据题意可列出方程()A.0.7x﹣400=20%×400B.0.7x﹣400=20%×0.7xC.(1﹣20%)×0.7x=400D.0.7x=(1﹣20%)×4002.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱3.已知某商店有两个进价不同的计算器都卖了120元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元4.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90B.0.08x﹣10=90C.90﹣0.8x=10D.x﹣0.8x﹣10=905.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.100元B.150元C.200元D.250元6.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则出售这两台空调永辉超市()A.不赔不赚B.赚20元C.亏20元D.赚90元7.某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%.则这单买卖是()A.不赚不亏B.亏了C.赚了D.无法确定8.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元B.27元C.28元D.29元9.某商场销售一款服装,每件标价150元,若以八折销售,仍可获利30元,则这款服装每件的进价为()A.90元B.96元C.120元D.126元10.某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场()A.不赚不赔B.赚160元C.赚80元D.赔80元二.填空题(共4小题,满分20分)11.某商场在“庆元旦”的活动中将某种服装打折销售,如果每件服装按标价的6折出售将亏10元,而按标价的9折出售将赚50元,则每件服装的标价是元.12.某商品标价为220元,若以八折出售,仍可获利10%,则该商品的进价是元.13.一个书包进价为60元,打八折销售后仍获利20%,这个书包原价为元.14.某种商品的标价为220元,为了吸引顾客,按9折出售,这时仍可盈利10%,则这种商品的进价是元.三.解答题(共6小题,满分60分)15.商场经销甲、乙两种商品,甲种商品每件售价60元,利润率为50%,乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2100元,求购进甲种商品多少件?16.一家服装店在换季时积压了一批服装,为了缓解资金的压力,决定打折销售,其中一条裤子的成本为80元,按标价五折出售将亏30元.(1)求这条裤子的标价是多少元?(2)另一件上衣按标价打九折出售,和这条裤子合计卖了230元,两件衣服恰好不赢不亏,求这件上衣的标价是多少元?17.某商铺购进甲、乙两种商品,其中乙商品件数比甲商品件数的2倍少45件,甲、乙两种商品的进价和售价如表(利润=售价﹣进价):甲乙进价(元/件)2030售价(元/件)2540(1)如何进货,进货价恰好是3450元?(2)如何进货,商铺销售完两种商品时获利恰好是进货价的30%,此时利润为多少元?18.某公园门票价格规定如下:七年级两个班共101人去公园玩儿,其中一班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1207元,问:购票张数1﹣50张51﹣100张100张以上每张票的价格13元11元9元(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可省多少钱?(3)如果一班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱?19.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.20.某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A,B两家家具公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元,A公司的优惠政策为:每买一张办公桌赠送一把椅子,B公司的优惠政策为:办公桌和椅子都实行8折优惠.①若到A公司买办公桌的同时买m把椅子,则应付款多少元?②若规定只能选择一家公司购买桌椅,什么情况到任一家公司购买付款一样多?③如果买办公桌的同时买30把椅子,并且可到A,B任一家公司购买,请你设计一种购买方案,使所付款额最少.参考答案一.选择题(共10小题,满分40分)1.解:设这件商品的标价为x元,根据题意得:0.7x﹣400=20%×400,故选:A.2.解:设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,y(1﹣20%)=200,解得,x=160,y=250,∴(200+200)﹣(160+250)=﹣10,∴这家商店这次交易亏了10元,故选:A.3.解:设盈利的进价是x元.120﹣x=20%x,解得x=100.设亏本的进价是y元.y﹣120=20%y,解得y=150.120+120﹣100﹣150=﹣10元.故亏损了10元.故选:C.4.解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选:A.5.解:设商品的标价是x元,根据题意得x﹣80%x=50,解得x=250,250×80%=200.他购买这件商品花了200元.故选:C.6.解:设盈利10%的这台空调的进价为x元,亏损10%的这台空调的进价为y元,由题意,得x(1+10%)=990,y(1﹣10%)=990,解得:x=900,y=1100,所以这次销售的进价为:900+1100=2000元,∵售价和为:990+990=1980元,利润为:1980﹣2000=﹣20元.∴出售这两台空调永辉超市亏20元.故选:C.7.解:设两种衣服的进价分别为a元、b元,则有:a(1+20%)=300,b(1﹣20%)=300,解得:a=250,b=375;∴赚了20%的衣服盈利了:300﹣250=50元,亏损了20%的衣服亏本了:375﹣300=75元;∴总共亏本了:75﹣50=25元,故选:B.8.解:设电子产品的标价为x元,由题意得:0.9x﹣21=21×20%解得:x=28∴这种电子产品的标价为28元.故选:C.9.解:设这款服装的进价是x元,150×0.8﹣x=30,x=90,进价是90元.故选:A.10.解:设两台电子琴的原价分别为x与y,则第一台可列方程(1+20%)•x=960,解得:x=800.比较可知,第一台赚了160元,第二台可列方程(1﹣20%)•y=960,解得:y=1200元,比较可知第二台亏了240元,两台一合则赔了80元.故选:D.二.填空题(共4小题,满分20分)11.解:设每件服装的标价是x元,可得:0.6x+10=0.9x﹣50,解得:x=200,答:每件服装的标价是200元;故答案是:200.12.解:设该商品的进价是x元,根据题意列方程得:220×0.8﹣x=0.1x,176﹣x=0.1x,x=160.答:该商品的进价是160元.故答案为:160.13.解:设这个书包的原价是x元.则依题意得0.8x=60(1+20%),解可得:x=90,即标价为90元/个.故答案为:90.14.解:设进价为x元,则:x+x×10%=220×0.9解得x=180.三.解答题(共6小题,满分60分)15.解:(1)设甲种商品的进价为x元,由题意,得,解得:x=40,经检验,x=40是原方程的解.∴甲商品的进价为40元.乙商品的利润率为:=60%.故答案为:40,60%;(2)设甲种商品购进y件,则乙种商品购进(50﹣y)件,由题意,得40y+50(50﹣y)=2100,解得:y=40,答:购进甲种商品40件.16.解:(1)设标价为x元,则0.5x=80﹣30.解得x=100.即标价为100元.(2)设这件上衣的标价为y元,则0.9y+50=230,解得y=200即这件上衣的标价是200元.17.解:(1)设购进甲商品x件,则购进乙商品(2x﹣45)件,由题意得::30(2x﹣45)+20x=3450,解得:x=60,则2x﹣45=120﹣45=75,答:购进甲商品60件,购进乙商品75件,进货价恰好是3450元;(2)设购进甲商品m件,购进乙商品(2m﹣45)件,由题意得:(25﹣20)m+(40﹣30)(2m﹣45)=30%[20m+30(2m﹣45)],解得:m=45,则2m﹣45=45,此时利润为:(25﹣20)×45+(40﹣30)×45=675(元),答:购进甲商品45件,购进乙商品45件,商铺销售完两种商品时获利恰好是进货价的30%,此时利润为675元.18.解:(1)设七年级一班有x人,13x+11(101﹣x)=1207,解得,x=48,∴101﹣x=53,答:七年级一班有48人,二班53人;(2)1207﹣101×9=1207﹣909=298(元),答:两个班联合起来购票可省298元;(3)一班按实际人数购票花费为:48×13=624(元),一班购买51张票的花费为:11×51=561(元),∵561<624,∴购买51张票更合算,答:如果一班单独组织去公园玩儿,购票51张更省钱.19.解:(1)设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000,x=52,∴92﹣x=40,答:甲校有52人参加演出,乙校有40人参加演出.(2)乙:92﹣52=40人,甲:52﹣10=42人,两校联合:50×(40+42)=4100元,而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元,此时又比联合购买节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装,即比实际人数多买91﹣(40+42)=9套.20.解:①∵m≥20,∴A公司付款为20×210+(m﹣20)70=4200+70m﹣1400=70m+2800(元);②m≥20,B公司付款为:4200×0.8+0.8×70m=56m+3360(元);当70m+2800=56m+3360,解得m=40,答:当购40把椅子时两公司付款一样多.③当m=30时,第一种方案:A公司付款为70m+2800=70×30+2800=2100+2800=4900(元);第二种方案:B公司付款为56m+3360=56×30+3360=1680+3360=5040(元);第三种方案:到A公司买20张办公桌,用20×210=4200,赠20把椅子,还剩30﹣20=10把椅子,10把椅子到B公司买,用10×70×0.8=560,此时一共用560+4200=4760(元);∴第三种方案所付款额最少.。

苏科版初中数学七年级上册《4.3 用一元一次方程解决问题》同步练习卷

苏科版初中数学七年级上册《4.3 用一元一次方程解决问题》同步练习卷

苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.(1)若甲、乙两校联合起来购买服装,则比各自购买服装共可以节省多少元?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学被调去参加“著名苏区三好学生”书法绘画比赛,不能参加演出,请你为这两所学校设计一种最省钱的购买服装方案.11.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元,该月租出多少辆轿车?(2)已知11月份的保养费总开支为12900元,问该月租出了多少辆轿车?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点如果相遇,则相遇时的时间t=;相遇时在数轴上表示的数为;(3)A、B两点能否相距18个单位长度,如果能,求相距18个单位长度的时间t;如不能,请说明理由.13.“十一”期间人民商场回报顾客,实行“迎国庆,大酬宾”活动,具体要求如下:购物200以下不优惠,购物200~500元按9折优惠;购物500~1000元按8折优惠;1000元以上按7.5折优惠,活动期间某人两次购物分别用去168元和432元,如果改为一次性购物,那么可以比两次购物节省多少钱?14.为了节约用水,某市规定:每户居民每月用水不超过10立方米,按每立方米4元收费;超过10立方米,则超过部分按每立方米8元收费(1)小明家10月用水9立方米应交水费多少元?小强家10月用水11立方米应交水费多少元?(2)如果某户居民十月份缴纳水费72元,则该户居民十月份实际用水为立方米.15.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品.(1)求每箱装多少个产品.(2)3台A型机器和2台B型机器一天能生产多少个产品?16.随着移动互联网的快速发展,共享单车在余姚的大街小巷随处看见,解决了很多人的交通出行问题,李老师早上骑单车上班,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑单车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?17.某学校组织安全知识竞赛,共设20道分值相同的选择题,每题必答,下表中记录了5位参赛选手的竞赛得分情况.(1)若一选手答对17题,得分.(2)从表中你发现:得分规则是什么?(3)用方程知识解答:若某位选手F得64分,则他答对了几道题?(4)参赛选手G说他得78分,你认为可能吗?为什么?18.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元?(时间按整月计算)19.A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?20.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?21.某校组织学生走上街头宜传雾霾的危害,他们要复印一部分宣传资料(不少于20页),校门口有两家复印店甲店收费标准:复印页数不超过20时,每页收费0.2元,超过20时,超过部分每页收费将为0.09元乙店收费标准:不论复印多少页,每页收费01元(1)复印页数为多少时,两家店收费一样;(2)请你帮他们分析去哪家店比较合算.22.列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?23.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.24.甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?25.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?26.蒙城某中学组织学生去参加体检,队伍以8千米/小时的速度前进,在队尾的校长让一名学生跑步到队伍的最前面找带队老师传达一个通知(通知时间忽略不计),然后立即返回队尾,这位学生的速度是12千米/小时,从队尾赶到排头又回到队尾共用了9分钟,求队伍的长为多少千米?27.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.28.如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B 地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t 小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O多远?(3)经过几小时,两车相距50千米?29.甲、乙两人相距5千米,分别以2千米/时,4千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙处,遇到乙后立即掉头奔向甲,遇甲后又奔向乙…直到甲、乙相遇,求小狗所走的路程.(用方程解)30.节约用水保护水资源人人有责,为了节约用水自来水公司对自来水的收费标准作如下规定:每月每户用水不超过8吨的部分,按2.5元/吨收费;超过8吨的部分每吨加收1.5元.(1)若某用户5月份用水12吨,问应交水费多少元?(2)若某用户6月份交水费48元,问该用户6月份用水多少吨?(3)若某用户7月用水a吨,问应交水费多少元(用含a的代数式表示)?苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷参考答案与试题解析一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.【分析】(1)根据题意分别表示出成人与学生所付金额,进而得出方程求出答案;(2)直接求出购买15张门票所付钱数,进而比较得出答案.【解答】解:(1)设成年人去了x人,则学生去了(12﹣x)人,由题意得:35x+35×50%(12﹣x)=350,解得x=8,因此:成人去了8人,学生去了4人.(2)购买团票更省钱,∵35×60%×15=315<350,∴应采用购买团体票的方式才更省钱.【点评】此题主要考查了一元一次方程的应用,根据题意表示成人与学生购票所要付的钱数是解题关键.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.【分析】(1)根据“费用=灯的售价+电费”直接列出函数关系式即可;(2)根据“使用两种灯的费用一样多”可列方程49+0.0045x=18+0.02x,求出即可;根据“白炽灯费用低”,“节能灯费用低”列不等式求解即可;(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯费用是67+0.0045×2800+0.02×200=83.6元.通过比较可得费用最低的方案.【解答】解:(1)∵0.009千瓦×0.5元/千瓦=0.0045元,0.04千瓦×0.5元/千瓦=0.02元,∴用一盏节能灯的费用是(49+0.0045x)元,用一盏白炽灯的费用是(18+0.02x)元;(2)①设照明时间是x小时,由题意,得49+0.0045x=18+0.02x,解得x=2000,所以当照明时间是2000小时时,两种灯的费用一样多.②当节能灯费用>白炽灯费用时,49+0.0045x>18+0.02x,解得:x<2000.所以当照明时间<2000小时时,选用白炽灯费用低.当节能灯费用<白炽灯费用时,49+0.0045x<18+0.02x,解得:x>2000.所以当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.即照明时间大于2000小时且小于或等于2800小时,选用节能灯费用低.(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.费用是67+0.0045×2800+0.02×200=83.6元.综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.【点评】此题主要考查了一元一次方程的应用以及列代数式,以及考查学生对方案的设计与选择,通过数学计算来研究现实生活中遇到的数学问题,体会数学分类讨论思想在解题中的应用.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?【分析】(1)根据1、2、3月份的条件,当用水量不超过10吨时,每吨的收费2元.根据3月份的条件,用水12吨,其中10吨应交20元,则超过的2吨收费6元,则超出10吨的部分每吨收费3元.(2)题中存在的相等关系是:10吨的费用20元+超过部分的费用=29元【解答】解:(1)从表中可以看出规定用水量不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元.(2)设小明家6月份用水x吨,29>10×2,所以x>10.所以,10×2+(x﹣10)×3=29,解得:x=13.小明家7月份用水13吨.【点评】本题主要考查一元一次方程的应用,正确理解收费标准,列出符合题意的一元一次方程是解决本题的关键.4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?【分析】(1)小张比小李多走10千米,设经过t小时相遇,则根据他们走的路程相等列出等式,即可求出t;(2)设小张的车速为x,则根据两人相遇时所走的路程相等,可列出等式,即可求得小张的车速.【解答】解:(1)设经过t小时相遇,20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇;(2)设小张的车速为x,则相遇时小张所走的路程为+,小李走的路程为:10×=5千米,所以有:+=5+10,解得x=18千米.故小张的车速为18千米每小时.【点评】本题考查了一元一次方程的应用,难度一般,关键要根据题意找出等量关系,根据等量关系列出等式.5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5x,利用水的体积不变进而表示出三杯水的体积,进而得出方程求出即可【解答】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4(cm).答:甲杯内水的高度变为3×2.4=7.2(cm).【点评】此题主要考查了一元一次方程的应用,根据题意表示出水的体积是解题关键.7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元.根据题意得2(x+50)=3x.解得x=100.x+50=150.答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:100a+14000(元);到乙商场购买所花的费用为:80a+15000(元);(3)由100a+14000=80a+15000,得:a=50,所以:①当a=50时,两家花费一样;②当a<50时,到甲处购买更合算;③当a>50时,到乙处购买更合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?【分析】设商品的进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.【解答】解:设商品的进价为x元,依题意得:900×90%﹣40﹣x=10%x,整理,得770﹣x=0.1x解之得:x=700答:此商品的进价是700元.【点评】考查了一元一次方程的应用.应识记有关利润的公式:利润=销售价﹣成本价.9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.【分析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据优惠后购买甲、乙各一件共需100元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入100﹣a﹣b中即可找出结论.【解答】解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据题意得:(1﹣40%)x+(1﹣20%)(140﹣x)=100,解得:x=60,∴140﹣x=80.答:甲商品原销售单价为60元,乙商品的原销售单价为80元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1﹣25%)a=(1﹣40%)×60,(1+25%)b=(1﹣20%)×80,解得:a=48,b=51.2,∴100﹣a﹣b=100﹣48﹣51.2=0.8.答:商场在这次促销活动中盈利,盈利了0.8元【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.。

4.3.3 用方程解决问题(工程问题)

4.3.3 用方程解决问题(工程问题)

8( x 2 ) 4x 40 40 解之得: X=2

1
经检验x=2符合实际所求 答:应先安排2人工作4小时。
练一练
某中学的学生自己动手整修操场,如果让初 一学生单独工作,需要7.5小时完成;如果让初二 学生单独完成,需要5小时完成。如果让初一、初 二学生一起工作1小时,再由初二学生单独完成剩 余部分,共需多少时间完成? 解:设完成这项工作共需x小时,由题意可得:
1 15
1 9
3+x x
1 x 9
例1.一项工程,甲队单独施工15天完成,乙队单独 施工9天完成.现在由甲队先工作3天,剩下的由甲、 乙两队合作,还需要几天可以完成? 解:设还需要x天才能完成任务,根据题意列方 程得 1 1 (3+x)+ x =1 15 9 解之得 x=4.5
经检验x=4.5符合实际所求
1 甲乙合作 9
x天
1 ( 9
1 + 15 )x
1 + 9 )x=1
例1.一项工程,甲队单独施工15天完成,乙队单独 施工9天完成.现在由甲队先工作3天,剩下的由甲、 乙两队合作,还需要几天可以完成?
解:设还需要x天才能完成任务,根据题意列方 程得 3 1 1 +( + )x=1 15 15 9
解之得 x=4.5 经检验x=4.5符合实际所求 答:甲、乙两个队合作还需要4.5天才能完成任务。

实际问题的 答案


检验
数学问题的解 X=a
引例:
1.一项工作甲独做5天完成,乙独做10 天 1 完成,那么甲每天的工作效率是 , 5 1 乙每天的工作效率是 1 0 ,两人合 1 1 作3天完成的工作量是 ( 5 10) 3 ,此时 1 1 1 ( 剩余的工作量是 5 10) 3 。 2.一项工作甲独做a天完成,乙独做 b 天完 1 成,那么甲每天的工作效率是 , a 1 乙每天的工作效率是 b ,两人合 1 1 3( ) 作3天完成的工作量是 ,此 a b 1 1 1 3 ( ) 时剩余的工作量是 。 a b

九年级数学上册 43用一元二次方程解决问题教案(3) 教案

九年级数学上册 43用一元二次方程解决问题教案(3) 教案

PQ BCAD江苏省仪征市谢集中学九年级数学上册 4.3用一元二次方程解决问题教案(3)教学目标1.掌握列出一元二次方程解应用题;并能根据具体问题的实际意义,检验结果的合理性;2.理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题。

教学重点:学会用列方程的方法解决有关形积问题. 教学难点:如何找出形积问题中的等量关系 教学过程: 一、情境引入:问题:一根长22cm 的铁丝。

(1)能否围成面积是302cm cm2的矩形?(2)能否围成面积是32 2cm 的矩形?并说明理由。

二、探究学习:1.尝试:下面数量之间的关系吗?如果设这根铁丝围成的矩形的长是x cm ,你能用数学式子表示矩形的宽吗? 你能找出这个问题中的相等关系吗?相等关系: 。

2.概括总结.列方程的关系是找出相等关系。

3.典型例题: 例1如图所示(1)小明家要建面积为150m2的养鸡场,鸡场一边靠墙,另一边用竹篱笆围成,竹篱笆总长为35m 。

若墙的长度为18m ,鸡场的长、分别是多少?(2)如果墙的长为15m ,鸡场一边靠墙,竹篱笆总长为45m ,可围成的鸡场最大面积是多少平方米? (3) 如果墙的长为15m ,鸡场一边靠墙,竹篱笆总长为45m ,可围成的鸡场的面积能达到250m 2吗?通过计算说明理由。

(4)如果墙的长为15m ,鸡场一边靠墙,竹篱笆总长为45m ,可围成的鸡场的面积能达到100m 2吗?通过计算并画草图说明。

例2如图,在矩形ABCD 中,AB=6cm ,BC=3cm 。

点P 沿边AB 从点A 开始向点B 以2cm/s 的速度移动,点Q 沿边DA 从点D 开始向点A 以1cm/s 的速度移动。

如果P 、Q 同时出发,用t (s )表示移动的时间(0≤t ≤3)。

那么,当t 为何值时,△QAP 的面积等于2cm2?三、巩固练习:(1)用长为100 cm 的金属丝制作一个矩形框子。

苏科版七年级上册数学第四章4.3用方程解决问题(3)课时作业.docx

苏科版七年级上册数学第四章4.3用方程解决问题(3)课时作业.docx

4.3用方程解决问题(3)【基础反馈】1.汽车运送一批货物,若每辆车装3吨,则剩5吨,若每辆车装4吨,则可少用5辆车,问共有汽车________辆,货物有_______吨.2.某车间有工人100名,每人每天平均可加工螺栓18个或螺母24个,要使每天加工的螺栓和螺母配套(两个螺母配一个螺栓),应分配_______人加工螺栓,_______人加工螺母.3.某校师生参加挖渠劳动,原有27人挖土,19人运土,要使挖土人数和运土人数相等,那么需要从挖土人数中调多少人去运土?4.某工人原计划在规定的时间内加工一批零件,如果每小时加工10个零件,就可以超额完成3个;如果每小时加工11个零件,就可以提前1小时完成.问这批零件有多少个?按原计划需多长时间完成?5.为了合理利用电力资源,T市实行了分时计收电费制度,晚21:00时至早8:00时,电费价格为0.30元/千瓦时,早8:00至晚21:00时,电费价格为0. 55元/千瓦时.某户居民十月份用电98千瓦时,共支付电费42. 65元,问该户居民白天(早8:00至晚21:00)用电多少千瓦时?【拓展创新】6.用火车运送一批货物,如果每节车厢装34 t,还剩18 t装不下;如果每节多装4t,那么还可以多装26 t,共有几节火车车厢?7.一个工人在规定的时间内生产一批零件,如果每小时加工6个,则超产一个;如果每小时加工8个,则可提前半小时完成任务.求加工的零件个数和规定的加工时间.8.3月12日是植树节,初一年级170名学生去参加义务植树活动.如果男生平均每人一天能挖树坑3个,女生平均每人一天能种树7棵,正好使每个坑种上1棵树,问该年级的男、女生各有多少人?9.A市为打造“绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10 t前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品,因包装限制,每辆汽车满载时能装香菇1.5 t或茶叶2t,问装运香菇、茶叶汽车各要多少辆?10.某中学组织七年级部分同学春游,原计划租用45座客车若干辆,但有15人无座位,如果租用同样数量的60座客车,则少租一辆,且客车恰好坐满.已知45座客车日租金为每辆220元,60座客车日租金为每辆300元,试问:(1)七年级外出春游的学生人数为多少?原计划租用45座客车多少辆?(2)假如你是本次活动的组织者,你觉得怎样租用客车更合算?11.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你设计一下商场的进货方案.参考答案1.25 802.40 603.需要从挖土人数中调4人去运土4.这批零件有77个,按计划需要8/J、时完成5.该户居民白天用电5 3千瓦时6.共有11节火车车厢7.8个1.5小时8.男生有:119人,女生有51人9.装运香菇需要4辆汽车,装运茶叶需要2辆汽车10.(1)七年级外出春游的学生人数为240人,原计划租用45座客车5辆(2)租用45座客车4辆和60座客车1辆更合算11.甲25台,乙25台;甲35台,丙15台.初中数学试卷桑水出品。

苏教版七年级数学上册第四章用方程解决问题(3)同步测试题

苏教版七年级数学上册第四章用方程解决问题(3)同步测试题

第8课时 用方程解决问题(3)【基础巩固】1.甲、乙两人在一条环形跑道上练习赛跑,甲每分钟跑260m ,乙每分钟跑240m ,两人同时同地背向而行,经x min 第一次相遇,则环形跑道的长为_______m.2.从甲地到乙地,某人步行比乘公交车多用3.6 h ,已知步行速度为8 km/h ,公交车的速度为40 km/h ,设甲、乙两地相距x km ,则列方程为_______. 3.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲、乙两人合作x 天完成这项工程,则可列方程是 ( )A .41404050x +=+B .41404050x +=⨯ C .414050x+=D .41404050x x++=4.某工厂计划每天烧煤5t ,实际每天少烧2t ,m t 煤多烧了20天,则可列方程是 ( )A .252m m-= B .2053m m-= C .2057m m-=D .2035m m-=5.甲、乙两人同时从相距27 km 的A 、B 两地相向而行,3h 相遇,如果甲比乙每小时多走1km ,求甲、乙两人的速度.6.王华上学要经过张咪家,他们两家相距2 km,王华骑车上学比张咪步行上学少用10 min若王华骑车的速度是15 km/h,张咪步行的速度是6 km/h,则他们上学各需多长时间?7.甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400m,乙每秒钟跑6m,甲的速度是乙速度的43.(1)如果甲、乙两人在跑道上相距8m处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙的前面8m处同时同向出发,那么经过多少秒两人首次相遇?8.汽车以72 km/h的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4s后听到回响,问汽车按喇叭时离山谷多远?(声音的传播速度为340 m/s)9.在一段双轨铁道上,两列火车同方向行驶,甲火车在乙火车的前面,甲火车的车速为25 m/s,乙火车的车速为30 m/s,甲火车全长为240 m,乙火车全长为200m.两火车从首尾相接到完全错开要多长时间?10.—条山路,从山下到山顶,走了1h还差1km,从山顶到山下,用50 min 可以走完.已知下山速度是上山速度的1.5倍,问上山速度和下山速度各是多少,单程山路有多少千米?11.一件工作,甲单独做20 h完成,乙单独做12 h完成.现在先由甲单独做4h,剩下的部分由甲、乙合做.剩下的部分需要几小时完成?【拓展提优】12.甲、乙两人同时从A地出发去B地,甲速度保持不变,乙先用甲速度的2倍行了全程的一半,又用甲速度的一半走完全程,则最后结果是( ) A.甲、乙同时到达B.地B.甲先到B地C.乙先到B地D.无法确定13.某项工程由甲、乙两队完成,甲队单独完成需24天,乙队单独完成需16天,先由甲队做5天,然后两队合做,问再做几天完成工程的58?14.A、B两地的路程为360 km,甲车从A地出发开往B地,速度为72 km/h,甲车出发25 min后,乙车从B地出发开往A地,速度为93 km/h.(1)再过多长时间两车相遇?(2)两车相遇后,各自仍按原速度原方向继续行驶,再过多长时间以后两车相距99 km?15.一水池有一个进水管,5h可以注满空池,池底有一个出水管,10 h可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池注满?16.甲、乙两车从A、B两地相向而行,已知甲车速度为60 km/h,乙车速度是100 km/h,甲车比乙车早出发15min,相遇时,甲比乙少走65 km求A、B 两地的距离.17.轮船在两个码头之间航行,顺流航行需6h,逆流航行需8h,水流速度为3 km/h,求轮船在静水中航行的速度及两码头之间的距离?18.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2 h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.19.已知A港在B港上游,小船于凌晨3:00从A港出发开往B港,到达后立即返回,来回穿梭于A、B两港之间,若小船在静水中的速度为16 km/h,水流的速度为4 km/h,在当晚23:00时,有人看见小船在距离A港80 km处行驶,求A、B两港之间的距离.参考答案【基础巩固】1. 500x 2. 3.6840x x-= 3.D 4.D 5.甲5 km/h ,乙4 km/h 6.王华20 min ,张咪30 min 7.(1)28 s (2)196 s 8.720m 9.88 s 10.上山4 km/h ,下山6km/h ,山路5 km 11.6 h 【拓展提优】12.B 13.4天 14. (1)2h (2)35h 15.10h 16.335 km 17.速度21 km/h ,距离144 km 18.略19.A 、B 两港之间的距离为120 km 或200 km 或100 km.考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的根,则该等腰三角形的周长是( )A .12B .9C .13D .12或93.(罗田县期中)菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x +12=0的一个根,则菱形ABCD 的周长为( )A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A .m >52B .m ≤52且m ≠2C .m ≥3D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x2-2x-m=0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m<0,∴m<-1,∴m+1<1-1,即m+1<0,m-1<-1-1,即m-1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。

苏科版七年级上册数学同步练习:4.3用一元一次方程解决问题3.docx

苏科版七年级上册数学同步练习:4.3用一元一次方程解决问题3.docx

初中数学试卷
马鸣风萧萧
4.3 用方程解决问题3同步练习
姓名_____________班级____________学号____________分数_____________
1、七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张。

问:
(1)这个班共有多少名学生?
(2)展出的邮票共有多少张?
2、某人要在规定时间从甲到乙,如果每小时行18千米,可提前1小时到达;如果每小时行9千米,则要迟到1小时。

如果打算提前半小时到达,那么它的速度应为多少?
3、儿子今年6岁,妈妈今年33岁,几年后妈妈的年龄是儿子的4倍?
4、某班级领了一部分票来分摊给全班同学义务销售。

如果每人分9张则多24张;如果每人分10张
则少16张。

问该班有多少学生?共领了多少张票?
5、某文艺团的一场义演为“希望工程”募捐,门票共售出1000张,得票款6950元。

已知成人票8
元一张,学生票5元一张。

问:
(1)成人票与学生票各售出多少张?
(2)题中如果票价不变,那么售出1000张所得票款可能是7000元吗?
6、某电脑公司派甲、乙二人各携带两台电脑分别乘出租车送给同一客户,其中一辆出租车的起步价为4km,收费10元,然后每1 km,收费1.2元;另一辆出租车的起步价为3km,收费10元,然后每1 km,收费1.6元;当他们到达时,发现相差10元,则该电脑公司与客户住处相距多少km?。

苏科版-数学-七年级上册-苏科版七上4.3 用方程解决问题 同步练习(二)

苏科版-数学-七年级上册-苏科版七上4.3 用方程解决问题 同步练习(二)

初中-数学-打印版
4.3 用方程解决问题(2)(同步训练)
1、甲、乙两球队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分。

甲、乙两队共赛6场,甲队保持不败,共得14分。

甲队胜了多少场?
2、某厂去年有工人110名,今年有工人290名,已知女工今年比去年增加4倍,男工比去年增加60人,求今年男、女工人的人数是多少?
3、某车间每个工人能生产螺栓12个或螺母18个,每个螺栓要有两个螺母配套,现在有工人28人,怎样分配生产螺栓和螺母的工人数,才能使每天生产量刚好配套?
4、某同学做数学题,若每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而且多做了6题。

问原计划做几题?
初中-数学-打印版。

4.3用方程解决问题(3)

4.3用方程解决问题(3)

用火车运送一批货物,如果每节 车厢装34t,还剩18t装不下;如果每 节多装4t,那么还可以多装26t.问共 有几节火车车厢?
1、将一堆糖果分给幼儿园某班的小朋友,如果 每人2颗,那么就多8颗;如果每人3颗,那么就 少12颗.这个班共有多少名小朋友?
2、有宿舍若干间,如果每间住4人,还空一间;如 果每间住3人就有5人没床位,问有多少间房屋?多 少个人?
初中数学七年级上册 (苏科版)
4.3用方程解决问题(3)
仰化初中
某小组计划做一批“中国结”, 如果每人做5个,那么比计划多了9 个;如果每人做4个,那么比计划少 了15个.小组成员共有多少名?他们 计划做多少个“中 如果每人做5个,那么比计划多了9个“中国结”; (2)如果每人做4个,那么比计划少了15个“中 国结”。 设小组成员有x名,可以画出示意图来分析:
3、某班同学分组参加活动,原来 每组8 人,后来重新编组,每组6人,这样比原 来增加了2组.这个班共有多少人?
4、某工人原计划在规定的时间内 加工一批 零件.如果每小时加工10个零件,就可以超 额完成3个;如果每小时加工11个零件,就 可以提前1h完成.问这批零件有多少个?按 原计划需多长时间完成?
用绳子量井深,把绳三折来量, 井外余绳四尺,把绳四折来量,井 外余绳一尺.求井深及绳长.
练习 1、妈妈买了一篮苹果,分给家里人,每人3个还剩 3个;每人4个还差2个;问家有几口人?妈妈共买 了几个苹果?. 2、将一堆糖果分给幼儿园某班的小朋友,如果 每人2颗,那么就多8颗;如果每人3颗,那么就 少12颗.这个班共有多少名小朋友?
3、七年级(2)班举办了一次集邮展览,展出的邮 票张数比每人4张多14张,比每人5张少26张,问: 这个班共有多少名学生?展出的邮票共有 多少 张?

苏科版七年级上《4.3用一元一次方程解决问题》课时练习有答案

苏科版七年级上《4.3用一元一次方程解决问题》课时练习有答案

2018-2019学年度苏科版数学七年级上册课时练习4.3 用一元一次方程解决问题学校:___________姓名:___________班级:___________一.选择题(共12小题)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元3.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A.11 B.8 C.7 D.54.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时5.在如图的2018年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.72 B.69 C.51 D.276.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x立方米的水,下列方程正确的是()A.1.2×20+2(x﹣20)=1.5x B.1.2×20+2x=1.5xC.D.2x﹣1.2×20=1.5x7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场8.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.59.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D10.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm211.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.4412.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.25 B.16 C.34 D.61二.填空题(共6小题)13.三角形的周长是84cm,三边长的比为17:13:12,则这个三角形最短的一边长为cm.14.一项工作甲单独做20h可以做完,乙单独做12h可以做完,若甲、乙两人合作,要做h才能做完.15.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.16.按照一定规律排列的n个数﹣2,4,﹣8,16,﹣32,64,…,若最后三个数的和为768,则n=.17.一环形跑道长400米,小明跑步每秒行5米,爸爸骑自行车每秒15米,两人同时同地反向而行,经过秒两人首次相遇.18.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三.解答题(共4小题)19.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.20.A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距480米?21.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.22.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?参考答案一.选择题(共12小题)1.C.2.C.3.B.4.B.5.A.6.A.7.C.8.D.9.C.10.C.11.C.12.B.二.填空题(共6小题)13.24cm.14.7.5.15.486.16.10.17.20.18.或1或3或9.三.解答题(共4小题)19.解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.20.解:(1)设甲每分钟走x米,则乙每分钟走2x米,根据题意得:﹣=15,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:甲每分钟走80米.(2)设两人出发y分钟后恰好相距480米,根据题意得:|2400﹣80y﹣160y|=480,解得:y1=8,y2=12.答:两人出发8或12分钟后恰好相距480米.21.解:设老张家到单位的路程是x千米,依题意,得13+2.3(x﹣3)=8+2(x﹣3)+0.8x,解这个方程,得x=8.2,答:老张家到单位的路程是8.2千米.22.(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500元时不买卡合算;当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.。

4.3 用一元一次方程解决问题课时3 用线形示意图解决问题 苏科版数学七年级上册课件

4.3 用一元一次方程解决问题课时3 用线形示意图解决问题 苏科版数学七年级上册课件


5x-9=111.
• 答:小组成员共有24名,他们计划做111个“中国结”
• 小结:一种事情分成两种情况,这两种情况的总量不变。
当堂小练
• 1、某汽车对运送一批货物,每辆汽车装4吨还剩下8吨 未装,每辆汽车装4.5吨就恰好装完,该车队运送货物 的汽车共有多少辆?
• 解:设该车队运送货物的汽车共有x辆,根据题意,得: 4x+8=4.5x 解得: x=16
5x个
计划做“中国结”的个数
9个
由图可知,这个小组计划做“中国结”
个。
由(2)的数量关系可以画出如图的线段示意图:
计划做“中国结”的个数
4x个
1ቤተ መጻሕፍቲ ባይዱ个
可知,这个小组计划做“中国结”________个。
• 问题3、题目中的相等关系是什么? 计划做“中国结”的个数相等。
• 解:设小组成员共有x名. • 根据题意,得 5x-9=4x+15. • 解这个方程,得 x=24.
12(x )=39 x=3 答:原定的时间是3小时,他行的路程是39千米.
拓展与延伸
• 一件夹克衫先按成本提高50%标价,再以8折(标价的 80%)出售,结果获利28元,这件夹克衫的成本是多 少元?
• 如果利用线形示意图进行分析,你能求出结果吗?

标价(1+50%)x元
成本x元
28元
售价:(1+50%)x·80%元
• 答:该车队运送货物的汽车共有16辆。
当堂小练
• 2.一个邮递员骑自行车在规定时间内把特快专递送到单 位。他每小时行15千米,可以早到24分钟,如果每小 时行12千米,就要迟到15分钟。原定的时间是多少? 他去的单位有多远? 解:设原定的时间为x小时,由题意可得方程 15(x )=12(x+ )

七上数学4.3用方程解决问题

七上数学4.3用方程解决问题
分析:本题的等量关系为:
甲零件数+乙零件数=丙零件数+932 解 : 设甲、乙、丙每人每天分别生产零件3x、4x、5x个
根据题意得:3x+4x=5x+932 解之得 x=466 ∴3x=1398 4x=1864 5x=2330
答:甲、乙、丙每人每天分别生产零件1398个,1864个,2330个。
探索: 你发现了什么?
乘船,最后又步行了4km到达乙地,
甲、乙两地的路程是多少?
拓展延伸
1.有菜地975公顷,种青菜、西红柿和芹菜,种青菜 和西红柿的面积之比是3:2,种西红柿和青 菜的面积之比为5:7,三种蔬菜各种多少公顷?
2.有三个工程队修一条路,第一工程队修筑全路的
2 ,第二工程队修筑剩下的 2 ,第三工程队修筑
为1:2:6,这三种冰淇淋中咖啡
色、红色和白色配料分别是多少?
想一想: 可否用小学知识加以解决
咖啡色:45 1 45 1 5g
1 26
9
能否用我们近来所学的方程解决这 一问题呢?
合作交流
质量为45g的某种三色冰淇凌中,咖啡色、 红色和白色配料的比分别为1:2:6,这三种冰 淇凌中咖啡色、红色和白色配料分别是多少?
你能通过上面的例题说出列一元
一次方程解应用题的步骤吗?
列方程解应用题的一般步骤:
分析法
1、审题,找出等量关系。 2、设:设出未知数,有时直接设所求的量,有时
间接设未知数。 3、列:根据题中等量关系,列出方程。
4、解:解这个方程。 5、验:检验所求结果是否符合方程,是否符合题意。
一般情况下,口头检查即可。
解之得:x=100
答:共做了100张桌子。
才艺展示
1、某车间22名工人生产螺钉和螺母,每人每 天平均生产螺钉1200个或螺母2000个,一个 螺钉要配两个螺母.为了使每天生产的产品 刚好配套,应该分配多少名工人生产螺钉, 多少名工人生产螺母? 变:若2个螺钉要配3个螺母呢?

2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步练习题(附答案)

2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步练习题(附答案)

2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步练习题(附答案)1.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元2.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润()元.A.16B.18C.24D.323.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元4.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+40%)x×90%=x﹣38B.(1+40%)x×90%=x+38C.(1+40%x)×90%=x﹣38D.(1+40%x)×90%=x+385.小天使童装店一件童装标价80元,在促销活动中,该件童装按标价的6折销售,仍可获利20%,则这种童装每件的进价为()元.A.30B.40C.50D.606.某商品的标价为300元,打六折销售后获利50元,则该商品进价为()A.120元B.130元C.140元D.150元7.小明在深圳书城会员日当天购买了一本8折的图书,节约了17.2元,那么这本图书的原价是()A.86元B.68.8元C.18元D.21.5元8.某商品的进价为200元,标价为300元,打x折销售时后仍获利5%,则x为()A.7B.6C.5D.49.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是()A.100元B.105元C.110元D.115元10.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中()A.赚了10元B.亏了10元C.赚了20元D.亏了20元12.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110B.120C.130D.14013.一件上衣按成本价提高50%后,以105元售出,则这件上衣的利润为()A.20元B.25元C.30元D.35元14.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元15.李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为元.16.某商场把进价为160元的商品按照8折出售,仍可获利10%,则该商品的标价为元.17.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为元.18.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则该彩电的标价为元.19.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.20.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.21.2020年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书籍原价是500元,实际付款为元;(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?22.疫情后为了复苏经济,龙岗区举办了“春暖龙城,约惠龙岗”的促消费活动,该活动拿出1.1亿元,针对全区零售,餐饮,购车等领域出台优惠政策.为配合区的经济复苏政策,龙岗天虹超市同时推出了如下促销活动:龙岗天虹超市促销活动方案:①购物不足500元优惠15%(打8.5折);②超过500元,其中500元优惠15%(打8.5折),超过部分优惠20%(打8折).(1)小哲在促销活动时购买了原价为200元商品,他实际应支付多少元?(2)小哲在第一次购物后,在“龙岗发布”微信公众号中参与摇号抢到了一张满300减100的购物券(即微信支付300元以上自动减100元),又到龙岗天虹超市去购物,用微信实际支付了381元,他购买了原价多少元的商品?23.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店较省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?24.已知甲商品进价40元/件,利润率50%:乙商品进价50元/件,售价80元.(1)甲商品售价为元/件;(2)若同时采购甲、乙商品共50件,总进价2100元,求采购甲商品的件数;(3)元旦期间,针对甲、乙商品进行如下优惠活动:一次性购物总金额优惠措施少于等于450元无超过450元,但不超过600元9折超过600元其中600元部分8.2折,超过600元部分3折佳佳一次性购乙商品若干件,实付504元,求佳佳购乙商品的件数.25.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过300时,实际付款为元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书箱,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?26.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?参考答案1.解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.2.解:设原价为x元,根据题意列方程得:x×(1+30%)×80%=416解得x=400,416﹣400=16(元).答:这件商品卖出后获得利润16元.故选:A.3.解:设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据题意得:x﹣0.8x=50,解得:x=250,∴0.8x=0.8×250=200.故选:B.4.解:设这件夹克衫的成本是x元,根据题意,列方程得:(1+40%)x×90%=x+38.故选:B.5.解:这种童装每件的进价为x元,依题意,得:80×60%﹣x=20%x,解得:x=40.故选:B.6.解:设该商品进价为x元,依题意,得:300×0.6﹣x=50,解得:x=130.故选:B.7.解:设这本图书的原价是x元,依题意得:(1﹣0.8)x=17.2解得x=86.即:这本图书的原价是86元.故选:A.8.解:设商品是按标价的x折销售的,根据题意列方程得:(300×﹣200)÷200=5%,解得:x=7.则此商品是按标价的7折销售的.故选:A.9.解:设这种服装每件的成本价为x元,由题意得:(1+20%)•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本价为100元.10.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.11.解:设第一件衣服的进价为x元,第二件的进价为y元,根据题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴400﹣x﹣y=400﹣160﹣250=﹣10(元).答:商店在这次交易中亏了10元.故选:B.12.解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选:B.13.解:设成本为x元,由题意得:(1+50%)x=105,解得:x=70,105﹣70=35(元),故选:D.14.解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=150,解得:x=120,比较可知,第一件赚了30元第二件可列方程:(1﹣25%)x=150解得:x=200,比较可知亏了50元,两件相比则一共亏了20元.故选:C.15.解:设这件运动服的原价为x元,由题意得:0.9x﹣0.7x=30,解得x=150.故答案为:150.16.解:设该商品的标价为x元,则80%x=160×(1+10%),所以0.8x=176,解得x=220.答:该商品的标价为220元.故答案为:220.17.解:设这种商品每件的进价为x元,根据题意得:110×80%﹣x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为:80.18.解:设彩电标价是x元,根据题意得0.9x﹣2400=20%•2400,解得x=3200(元).即:彩电标价是3200元.故答案是:3200.19.解:设商店打x折,依题意,得:180×﹣120=120×20%,解得:x=8.故答案为:八.20.解:设标价是x元,根据题意有:0.8x=40(1+30%),解得:x=65.故标价为65元.故答案为:65.21.解:(1)由题意知,300×0.95+0.8(500﹣300)=445(元).故答案是:445;(2)设所购书籍的原价是x元,则x>300.根据题意得,300×0.95+0.8(x﹣300)=365,解得x=400.答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,300×0.95+0.8(b﹣300)+(600﹣b)=555,解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.22.解:(1)200×(1﹣15%)=170(元).故他实际应支付170元;(2)设他购买了原价x元的商品,依题意有500×(1﹣15%)+(1﹣20%)(x﹣500)﹣100=381,解得x=570.故他购买了原价570元的商品.23.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.24.解:(1)甲商品售价=40(1+50%)=60(元)故答案是:60;(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得佳佳在该商场购买乙种商品件7件或8件.25.解:(1)由题意知,300×0.95+0.8(a﹣300)=0.8a+45故答案是:(0.8a+45);(2)设所购书籍的原价是x元,由题意知,x>300.故0.8x+45=365.解得x=400答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,0.8b+45+(600﹣b)=555解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.26.解:(1)200×0.9=180(元).答:按活动规定实际付款180元.故答案为:180.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.。

苏科版七年级上册数学4.3用方程解决问题3

苏科版七年级上册数学4.3用方程解决问题3
底题面中半等径量为关R系,高是为:h圆的柱圆②柱的体体的积体=积圆是柱V①的体R积2h的3倍 分析:欲求未知数的值,不妨先把与之相关的量找出来。 根据下表R你是否能从中得到启发.
x
h
60
圆柱
①ቤተ መጻሕፍቲ ባይዱ

圆柱的高(mm)
x
60
底面直径(mm) 40
60

圆柱体积(mm3) ( 40)2 x (60)2 60
4.3用方程解决问题⑶
首先,我们通过解答以下问题,来回顾一下用方 程解决问题的一般步骤
一张桌子有一张桌面和四条桌腿,做一张桌面需要木材 0.03m3 ,做一条桌腿需要木材0.002m3 ,现做一批这 样的桌子,恰好用去木材3.8m3 ,共做了多少张桌子?
分析 :设共做了x张桌子, 这个问题中有这样的相等关系:
设 未知数
做桌面的木材 0.03x
+ 做桌腿的木材 0.002 × 4x
== 用去的木材 3.8
由题意得 0.03x+ 0.002×4x=3.8 列 方程
首先,我们通过解答以下问题,来回顾一下用方 程解决问题的一般步骤
一张桌子有一张桌面和四条桌腿,做一张桌面需要木材 0.03m3 ,做一条桌腿需要木材0.002m3 ,现做一批这 样的桌子,恰好用去木材3.8m3 ,共做了多少张桌子?
8 4
6

课堂小结:
1、用方程解实际问题的关键: 找出问题中的相等关系,并用方程表示相等关系。
2、在有些问题中画线形示意图,是帮助我们解决问题的 有效工具。
3、常见的面积、体积公式往往可以作为列方程的等量 关系
体铁盒, 其容积是45000㎝3.求原来正方形铁
皮的边长。

七年级数学上册 4.3 用方程解决问题(第4课时)同步练习苏科版.doc

七年级数学上册 4.3 用方程解决问题(第4课时)同步练习苏科版.doc

4.3 用方程解决问题(4)(同步训练)
1. 敌我两军相距25千米,敌军以每分钟20千米的速度逃跑,我军同时以每分钟24千米的速度追击,并在相距1千米处发生战斗,问战斗是在开始追击后几分钟发生的?
2.轮船在两个码头之间航行,顺流航行需6h,逆流航行需8h,水流速度为3km/h,求轮船在静水中航行的速度及两码头之间的距离?
3.飞机在两城市之间飞行,顺风需4h,逆风返回需5h,飞机在静风中速度为360km/h,求风速及两城市间的距离?
4.甲乙两人在10km环行公路上跑步,甲每分钟跑230m,乙每分钟跑170m。

(1)若两人同时同地同向出发,多长时间两人首次相遇?
(2)若两人同时同地反向出发,多长时间两人首次相遇?
(3)若甲先跑10min,乙再从同地同向出发,还需多长时间两人首次相遇?
(4)若甲先跑10min,乙再从同地反向出发,还需多长时间两人首次相遇?
用心爱心专心- 1 -。

五年级上册数学教案4.3:简易方程练习题

五年级上册数学教案4.3:简易方程练习题

五年级上册数学教案-4.3:简易方程练习题优选数学作为一门好玩的学科,对于许多学生来说,可谓是“爱恨交加”。

有些学生对于这门学科感到困惑和无力,无法感受到其中的美丽和奥妙;而对于一些学生来说,数学则是一道充满魅力的美食,让人无法抵挡。

本文将为大家介绍五年级上册数学教案-4.3:简易方程练习题的优选解答。

1. 练习题1有一个三角形,其中一条边的长度为10厘米,另一条边的长度比第一条边多4厘米,第三条边的长度是第一条边的两倍减去第二条边的长度。

请问这个三角形的周长是多少?解题思路:定义第一条边为x,则第二条边为x+4,第三条边为2x-(x+4)=x-4。

由于三角形的周长等于它的三条边的长度之和,可以得到以下式子:x+(x+4)+(x-4)=3x=?解方程可得,x=6,第一条边的长度为6cm,第二条边的长度为10cm,第三条边的长度为8cm。

这个三角形的周长是6+10+8=24(cm)。

2. 练习题2一本有144页的书,从第10页开始编页码,编到了第153页。

如果第一页和第148页是正面,则第几页是反面?解题思路:从第10页开始编码,当页码从奇数转变为偶数时,就是一张新的纸张。

第10页到第153页一共用了72张纸,也就是36张纸张被使用了。

如果第一页和第148页是正面,则纸张的数量就应该是偶数个,也就是18张。

第一页和第二页是同一张纸的正反面。

第三页和第四页也一样,依此类推。

一页的页码是152,第153页是书的一页的后一页,也就是153页上的反面,答案是152页的反面,即第151页。

3. 练习题3小明妹妹去超市买了3斤香蕉和2斤苹果,一共花费了12元钱。

如果香蕉和苹果的单价相同,每斤水果的价格是多少?解题思路:设香蕉和苹果的单价均为x,则3x+2x=12,解方程可得x=2元/斤。

每斤水果的价格是2元。

4. 练习题4有一道数学问题,它是由两个相同的数字组成的两位数,这道数学问题加上这个数字本身的结果是99。

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

学校七年级数学教案课题4.3用一元一次方程解决问题(3)课型新授课编号时间主备复备审核教学目标1.会利用公式或找规律列方程解决实际问题,通过结合实际问题,创造有趣的情境,提高学习兴趣.2.能够根据实际问题中的数量关系列方程解决问题,培养数学建模能力,分析问题、解决问题的能力.教学重难点重点:会利用公式或找规律列方程解决实际问题.难点:能够根据实际问题中的数量关系列方程解决问题.教学环节教学过程师生活动个人复备知学1.揭示课题2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P125、126 页,完成课本练习T1根据预学情况给各小组评分.互学如图,小明将一个正方形纸片剪去一个宽为4的长条后,再从剩下的长方形纸片上剪去一个宽为5的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积是多少?图形的公式构建等量关系.导学例1:已知三角形三个角的度数之比为2:3:5,判断这个三角形的形状.例2:用黑白两色棋子按如图所示的方式摆图形,依次规律,图形中黑色棋子的个数有可能是50吗?例3:制作一张桌子要用1个桌面和4条桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?利用三角形内角和定理得到等量关系.引导学生从“数”和“形”两个方面找规律,注意理解为什么不可能.小组交流.检学1.宋代数学家杨辉称幻方为纵横图,传说最早出现的幻方是夏禹时代的“洛书”,杨辉在他的著作《续占摘奇算法》中总结了“洛书”的构造,在如图所示的三阶幻方中,每行,每列、每条对角线上的三个数之和都相等,则m+n的值是()A.7 B.1 C.2(1)(2)2.如图,涂色部分是正方形,图中最大的长方形的周长是厘米.独立完成,课堂交流.总结谈谈你这一节课有哪些收获.各抒己见.课后作业板书设计教后记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 用方程解决问题(3)
感受·理解
1.食堂存有粮食,若每天用去140千克,按预计天数计算,就缺少50千克,若每天用去120
千克,那么到期后还可剩余70千克,问食堂存粮多少千克?预计用多少天?
2.有一批奖给数学竞赛的优胜者,如果每人得5本,则多余8本,如果每人得8本,则差7
本,问共有多少本和多少个竞赛优胜者?
3.某汽车厂要在预定期限内生产一批汽车,若按原计划每天生产20辆,则差100辆不能完
成任务,现在每天生产25辆,结果比原计划多生产50辆,问原计划生产多少辆?预定期限多少天?
4.某校七年级学生乘车去郊外春游,如果每辆汽车坐45人,那么就有16人坐不上汽车,
如果每辆汽车坐50人,那么将有一辆汽车空出9个座位,问该校七年级共有多少名学生?
有几辆汽车?
5. 某人将2 000元人民币按一年定期存入银行,到期后扣除20%的利息税得本息和2 160元,求这种存款方式的年利率.
思考·运用
6.一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/小时,求船在静水中的速度.
提示: 顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
7.一水池安有甲、乙、丙三入水管,甲独开12h 注满水池,乙独开8h 注满水池,丙独开24h 可排掉满池的水,如三管齐开多少小时后,刚好水池的水是满的?
探究·拓展
8. 小明的爸爸要到外地出差,他携带了35kg 的行李打算乘飞机前往.机场规定:每位旅客可以免费携带20kg 的行李,超重部分每千克需按机票价格的1.5℅购买行李票,结果小明的爸爸买了90元的行李票,请问他的飞机票价格是多少元?
9. 某工厂第一车间人数比第二车间人数的
54还少30人,如果从第二车间调10人到第一车间,那么第一车间的人数是第二车间人数的4
3,求各车间原有的人数.
10. 某中学组织七年级同学春游,如果租用45个痤位的客车,则有15个人没有座位,如果租用同样数量的60个座位的客车,则除多出一辆外,其余车恰好坐满.已知租用45个座位的客车每辆每日的租金为250元,60个座位的客车每辆每日租金为300元,问租用哪种客车更合算?租几辆车?。

相关文档
最新文档