计量经济学复习要点
计量经济学重点复习资料
计量经济学1、 P5 计量经济学的研究步骤① 模型设定 ②估计参数 ③模型检验 ④模型应用2、 P11 数据类型① 时间序列数据(同一空间不同时间)② 截面数据(同一时间不同空间) ③面板数据 ④虚拟变量数据3、P18 回归分析① 回归的现代意义:一个被解释变量对若干个解释变量依存关系的研究。
② 回归的实质:由解释变量去估计被解释变量的平均值。
4、P22-25总体和样本 总体回归函数:12()i i i E Y X X ββ=+ 样本回归函数:12ˆˆˆi i Y X ββ=+总体回归模型:12ii i Y X u ββ=++样本回归模型:12ˆˆi i iY X e ββ=++ 5、P22 “线性”的两种解释① 就变量而言是线性的——Y 的条件期望(均值)是X 的线性函数12()i i i E Y X X ββ=+:对参数“线性”,对变量“非线性” ② 就参数而言是线性的——Y 的条件期望(均值)是参数β的线性函数12()ln i i i E Y X X ββ=+:对变量“线性”,对参数“非线性”6、P22 随机扰动项随机扰动项是被解释变量实际值与条件均值的偏差,实际代表了排除在模型以外的所有因素对Y 的影响,i u 是其期望为0有一定分布的随机变量。
7、P23 总体回归线、样本回归线的意义① 样本回归线随抽样波动而变化:每次抽样都能获得一个样本,就可以拟合一条样本回归线。
(SRF 不唯一)② 样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。
③ 样本回归线只是样本条件均值的轨迹,还不是总体回归线,它至多只是未知的总体回归线的近似表现。
8、P25i e :剩余项或残差项① 表达式:ˆi ii e Y Y =- 或 12ˆˆi i iY X e ββ=++ ② 经济含义:被解释变量Y 的实际观测值不完全等于样本条件均值,二者之差用i e 表示 ③ 与随机扰动项的联系:i e 在概念上类似总体回归函数中的i u ,可视为对i u 的估计。
计量经济学复习笔记要点
计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学重点
计量经济学重点计量经济学复习资料一、名词解释1.广义计经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
2.狭义计经济学以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
3.总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
4.样本回归函数:指从总体中抽出的关于Y, x的若干组值形成的样本所建立的回归函数。
6、随机的总体回归函数:含有随机千扰项的总体回归函数(是相对于条件期望形式而言的)。
5.线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的I次方出现。
6.随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
9、残差项:是一随机变量,是针对样本回归函数而言的。
7.条件期望:即条件均值,指X取特定值Xi时Y的期望值。
8.回归系数:回归模型中βo, β1等未知但却是固定的参数。
9.回归系教的估计量:指用β 0^ β1^等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10.最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11.最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12.估计的标准差:度量一个变量变化大小的测量值。
13.总离差平方和:用TSS表示,用以度量被解释变量的总变动。
14.回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。
15.残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16.协方差:用Cov(X, Y)表示,度量XY两个变量关联程度的统计量。
17.拟合优度检验:检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样木观测值拟合得越好。
计量经济学复习知识点重点难点
计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。
2、计量经济学是统计学、经济学和数学的结合。
3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。
4、计量经济学是经济学的一个分支学科。
第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。
2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。
3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。
4、参数估计量的评价标准:无偏性、有效性、一致性。
5、OLS估计量的统计特征:线性特性、无偏性、有效性。
6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。
第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。
2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。
3、参数最小二乘估计的性质:线性性质、无偏性、有效性。
4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。
5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。
6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。
计量经济学复习重点
1、统计检验是利用统计推断的原理,对参数估计的可靠程度、观察数据的拟合程度进行检验;主要方法有拟合优度检验、变量和方程的显著性检验2、计量经济学检验:检验模型的计量经济学性质,即检验模型基本假设的满足程度、各种经济计量假设的合理性。
主要检验准则:序列相关检验、异方差检验和多重共线检验。
3、模型预测检验:检验模型参数估计量的稳定性以及相对样本容量变化时的灵敏度,确定所建立的模型是否可以用于观察值以外的范围。
具体检验方法:(1)利用扩大了的样本 重新估计参数,检验两次估计结果的差异显著性;(2)将所建立的模型用于样本以外某一时期的实际预测,预测值与实际值进行比较并检验差异显著性。
4、建立计量经济模型的步骤5、样本回归模型回归分析是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。
由于总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一组样本样本散点图近似于一条直线,画一条直线以尽可能好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。
该线称为样本回归线,其函数形式记为:6、随机扰动项U :理论经济学和数理经济学一般假定经济变量之间存在确定性的规律,从而建立确定性的模型。
引入随机扰动项是为了更准确地描述社会经济系统。
随机扰动项是不可观察的,只能通过残差——实际值与拟合值的差——进行估计7、Gauss —Markov 定理(高斯-马克):满足性质1、2、3的最小二乘估计量是最优线性无偏估计量 最小二乘法求出参数估计量达到最小值。
性质1:线性特性;估计量a,b 均可由被解释变量Y 线性表示出来。
性质2:无偏性E (a )= E (b )= β 性质3:在a 、β的各种线性无偏估计中,最小二乘估计量a,b 具有最小方差。
8、完全共线性:如果存在 c 1X 1i +c 2X 2i +…+c k X ki =0 i=1,2,…,nii i X X f Y 10ˆˆ)(ˆββ+== (2.1.4)称为样本回归函数(sample regression function )SRF 。
(完整版)计量经济学重点知识归纳整理
1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
计量经济学复习要点
计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
计量经济学复习重点
1、经济变量:用来描述经济因素数量水平的指标。
2、解释变量:用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变额为发热所引5动做出解释。
3、被解释变量:是作为研究对象的变量。
它的变动是由解释变量做出解释的4、控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量。
5、计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型。
6、相关关系:如果一个变量y 的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y 与这个变量或这组变量之间的关系就是相关关系。
7、最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法。
8、拟合优度:样本回归直线与样本观测数据之间的拟合程度。
9、残差:样本回归方程的拟合值与观测值的误差。
10、显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检验程序。
11、偏相关系数:在Y 、X 1、X 2三个变量中,当X 1 既定时,表示Y 与X 2之间相关关系的指标。
12、异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称随机项U1具有异方差性。
13、序列相关性:对于模型01122i i k ki i y x x x i ββββμ=+++++… 1,2,,i n =…随机误差项互相独立的基本假设表现为(,)0i j Cov μμ= ,,1,2,,i j i j n ≠=…(1分)如果出现 (,)0i j Cov μμ≠ ,,1,2,,i j i j n ≠=…即对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。
14、自回归模型:t t t y y μρ+=-115、广义最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。
16、相关系数:度量变量之间相关程度的一个系数,一般用ρ表示。
计量经济学知识点(超全版)
1.经济变量:经济变量是用来描述经济因素数量水平的指标。
(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。
(1分)3.被解释变量:是作为研究对象的变量。
(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。
(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。
(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。
(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。
(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。
(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。
(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。
(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。
(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。
(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。
(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。
(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。
计量经济学复习知识要点
第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。
第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。
2、按研究内容分为理论计量经济学和应用计量经济学。
理论计量经济学的核心内容是参数估计和模型检验。
应用计量经济学的核心内容是模型设定和模型应用。
第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。
2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。
4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。
计量经济学复习要点
计量经济学复习要求(2011专升本)一、基本概念: 1、名词:3)內生变量:内生变量是具有一定概率分布的随机变量,它的数值是由模型本身决定的。
4)外生变量:是指非随机变量,它的取值是在模型之外决定的,是求解模型时的已知数。
5)滞后变量:是指内生变量和外生变量的时间滞后量(前期量)。
6)前定变量:外生变量与滞后内生变量统称为前定变量。
7)虚拟变量:虚拟变量又称虚设变量、名义变量或哑变量,用以反映质的属性的一个人工变量,是量化了的质变量,通常取值为0或1。
8)工具变量:某一个变量与模型中随机解释变量高度相关,但却不与随机误差项相关,那么就可以用此变量与模型中相应回归系数的一个一致估计量,这个变量就称为工具变量 9)相关系数:相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
定义;若随机变量X 与Y 的EX ,EY ,及DX ,DY 存在,称为X 与Y 的相关系数10)协方差:E[(X-E(X))(Y-E(Y))]称为随机变量X 和Y 的协方差,记作COV(X ,Y),即COV(X ,Y)=E[(X-E(X))(Y-E(Y))]。
定义:Cov(X,Y) =E( X - EX)(Y-EY)=E(XY) - (EX)(EY) 当Y=X ,Cov(X,X) =E(X 2) - (EX)2 = D(X)11)回归方程: 解:X 与Y 相关关系,设Y= a+ bX+ε其中:X 是可控变量,Y 和ε是随机变量, ε~N(0,σ2),a 、b 未知,当X 取值:x 1, x 2,… x n 时,对Y 观察,得到一组样本: (x 1, y 1),(x 2, y 2), …,(x n , y n ), 满足:y i = a+ bx i +εiεI ~ N(0,σ2), εi .εj 相互独立 E(y i )= a+ bx i +0ˆˆˆY a bX=+12)异方差性:13)序列相关性:14)多重共线性:2、概念:1)数据类型:时间序列数据、横截面数据、合并数据2)计量经济研究的步骤:a. 建立理论模型(模型设定),包括模型的总体设计和个体设计;(1)确定模型中的变量(2)确定模型的函数形式(3)确定统计指标并搜集整理数据b. 估计模型的参数c. 模型的检验d. 模型的应用可进一步概括成:3)回归系数的经济意义:自变量每增加一个单位,因变量增加的平均值。
计量经济学必备知识点总结
计量经济学必备知识点总结一、基本概念1. 变量与参数:在计量经济学中,经济模型通常会涉及到各种变量和参数,其中变量是指可以随着时间或其他因素而变化的量,而参数是指在模型中不变的常量。
2. 线性关系与非线性关系:线性关系是指两个变量之间的关系可以用一条直线来表示,而非线性关系则不符合这一特点。
3. 动态关系与静态关系:动态关系是指变量之间的关系随着时间的推移而变化,而静态关系则在一个时间点上成立。
二、假设检验1. 假设检验的基本逻辑:假设检验是计量经济学中最基本的一种统计推断方法,其基本逻辑是通过对样本数据进行分析,判断某一经济理论假设的合理性。
2. 一类和二类错误:在假设检验中,如果我们拒绝了一个实际上是真实的假设,就犯了一类错误;而如果我们接受了一个实际上是错误的假设,就犯了二类错误。
三、最小二乘法1. 最小二乘估计的基本原理:最小二乘法是一种常用的参数估计方法,其基本原理是选择使得残差平方和最小的参数值作为估计值。
2. 普通最小二乘法和加权最小二乘法:普通最小二乘法是指在残差的平方和最小化的情况下对参数进行估计,而加权最小二乘法则是在普通最小二乘法的基础上引入了加权因素。
3. 最小二乘估计的性质:最小二乘估计具有无偏性、有效性和一致性等重要性质。
四、多元回归分析1. 多元回归模型的建立:在多元回归分析中,我们通常会建立包括多个自变量和一个因变量的回归模型,用来描述自变量对因变量的影响。
2. 多元回归模型的识别:在多元回归分析中,识别问题是指通过样本数据估计出的回归系数能否代表总体数据中的真实关系。
五、时间序列分析1. 时间序列数据的特点:时间序列数据是指在一段时间内观察到的一系列数据,其特点包括趋势、季节性和周期性等。
2. 平稳性的检验:在时间序列分析中,平稳性是一个重要的假设,其检验包括单位根检验和差分平稳性检验等方法。
3. ARMA模型和ARCH模型:ARMA模型是时间序列数据的经典模型,用来描述时间序列数据的自回归和移动平均关系;而ARCH模型则是用来描述时间序列数据的异方差性。
计量经济学知识点汇总
计量经济学知识点汇总1. 计量经济学概念
- 定义和作用
- 理论基础和研究方法
2. 数据处理
- 数据收集和探索性分析
- 异常值处理和缺失值处理
- 数据转换和规范化
3. 回归分析
- 简单线性回归
- 多元线性回归
- 回归假设和诊断
4. 时间序列分析
- 平稳性和单位根检验
- 自相关和偏自相关
- ARIMA模型和Box-Jenkins方法
5. 面板数据分析
- 固定效应模型和随机效应模型
- hausman检验
- 动态面板数据模型
6. 内生性和工具变量
- 内生性问题及其检验
- 工具变量法
- 两阶段最小二乘法
7. 离散选择模型
- 二项Logit/Probit模型
- 多项Logit/Probit模型
- 计数数据模型
8. 模型评估和选择
- 模型适合度检验
- 信息准则
- 交叉验证和预测评估
9. 计量经济学软件应用
- R/Python/Stata/EViews等软件使用 - 数据导入和清洗
- 模型构建和结果解释
10. 实证研究案例分析
- 经典文献阅读和评析
- 实证研究设计和实施
- 结果分析和政策建议
以上是计量经济学的主要知识点汇总,每个知识点都包含了相关的理论基础、模型方法和实践应用,可根据具体需求进行深入学习和研究。
计量经济学复习要点
计量经济学复习要点 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。
简单线性回归模型是只有一个解释变量的线性回归模型。
回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。
2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。
3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。
4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。
总体回归模型与样本回归模型的主要区别是:①描述的对象不同。
总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。
②建立模型的依据不同。
总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。
③模型性质不同。
总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。
总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。
计量经济学复习重点
计量经济学复习重点第一章1. 计量经济学的性质计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论(计量经济研究的基础)数据:对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)方法:模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段2. 计量经济学与相关学科的联系与区别联系:●计量经济学研究的主体—经济现象和经济系的数量规律●计量经济学必须以经济学提供的理论原则和经济运行规律为依据●经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容3. 学习计量经济学的必要性4. 计量经济学研究的基本思路和步骤模型设定(选择变量和数学关系式)、估计参数(确定变量间的数量关系)、模型检验(检验所得结论的可靠性)、模型应用(作经济分析和经济预测)5。
模型的设定、参数估计、模型检验的要求模型设定要求●要有科学的理论依据●选择适当的数学形式(单一方程、联立方程线性形式、非线性形式)●模型要兼顾真实性和实用性●包含随机误差项●方程中的变量要具有可观测性参数估计要求参数的估计值:所估计参数的具体数值参数的估计式:估计参数数值的公式6. 模型中的变量及其类型从变量的因果关系区分:被解释变量(应变量)—-要分析研究的变量解释变量(自变量)—说明应变量变动主要原因的变量(非主要原因归入随机误差项)从变量的性质区分内生变量—其数值由模型所决定的变量,是模型求解的结果外生变量—其数值由模型以外决定的变量(相关概念:前定内生变量、前定变量) 注意:外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量7. 计量经济研究中数据的类型时间数列数据(同一空间、不同时间)、截面数据(同一时间、不同空间)、混合数据(面板数据 Panel Data)、虚拟变量数据8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、什么是计量经济学?计量经济学(Econometrics)意为“经济测量”,它是利用经济理论、数学、统计推断等工具,对经济现象进行分析的一门社会科学。
2、计量经济学分析经济问题的经典步骤Step1 理论或假说的陈述Step2 建立数学模型Step3 建立相应的计量经济学模型Step4 获取数据Step5 计量模型的参数估计Step6 检验模型设定是否正确Step7 假设检验(检验来自模型的假说)Step8 预测或控制◆关于数据1、数据分类(1)时间序列数据(Time Series Data):对一个变量在不同时间取值的一组观测结果。
如每年、每月、每季度等(2)横截面数据(Cross Section Data):对一个变量在同一个时间点上搜集的数据。
如同一年的分国别、分省、分厂家数据(3)混合数据(Pooled Data):时序和横截面的混合数据,既有分时,每一时点的观察对象又有不同(多个横截面单元) 广泛运用的一类特殊的混合数据——面板数据/综列数据/合成数据(Panel Data):在时间轴上对相同的横截面单元跟踪调查得到的数据。
如每年对各省GDP的报告。
2、研究结果永远不可能比数据的质量更好观测误差、近似进位计量、高度加总、选择性偏误3、数据来源:网站、统计年鉴、商业数据库等(1)统计局、央行、证券交易所、世行、IMF等官方网站(2)图书馆(纸质、电子版年鉴)(3)商业数据库◆例子例1:凯恩斯消费理论①人们倾向于随他们收入的增加而增加消费,但消费的增加不如收入的增加那么多。
②C=a+bI →确定性关系③Y=β1+β2X+μ→μ为扰动项,非确定性关系④搜集80~91年美国消费及收入数据⑤估计参数:解释:平均而言,收入↑1美元,消费↑72美分⑥检验模型设定的正确性:是否应当加入别的可能影响消费额的变量,如就业等。
⑦假设检验:H0 : β 2 < 1 (边际消费倾向<1)⑧预测:给定X,算Y控制:给定Y ,算X◆ 基本的统计学术语和概念 1、随机变量 (r.v)以一定的概率取到各种可能值的变量,取值由抽样或试验结果决定。
若取这些数值的概率为p,则p 属于[0, 1]。
r.v.通常用大写字母X ,Z…表示。
如:人的年龄、身高、体重、肺活量;猪肉价格; 抛两枚硬币,正面朝上的个数按其取值情况随机变量可分为两类: 离散型r.v :只可能取到有限或可列个结果 连续型r.v :可以取某一区间范围内的任意值 2、总体、个体、样本• 总体(样本空间),它是所有可能结果的集合.通常情况下,它=研究对象。
例:广西男青年的身高、南宁市猪肉价格、 东盟国家的出口额• 个体,它是组成总体的基本单位,代表了样本空间中的某一种结果。
例:男青年甲的身高、某摊贩的猪肉价格、越南出口额• 总体具有同质性:同一总体中的每个个体具有某些共同的特征,因而与其它总体相区别• 抽样:通常情况下总体难以被穷举,因此难以直接观测其性质。
需要通过抽取样本的方法来研究其性质。
• 样本,是总体中抽出若干个个体(样本点)组成的集合。
样本中包含的个体个数称为样本的容量,又称为样本的大小。
• 注意:抽样是按随机原则选取的,即总体中每个个体有同样的机会被选入样本。
•3、描述性统计量期望值/均值:度量r.v.取值的集中趋势(Expected value/Mean )• 方差、标准差:度量对均值的偏离程度(Variance 、Standard Deviation / S.d.)第二章 一元线性回归模型 §1. 回归分析概述◆ 回归分析:一种统计技术在计量经济学中被大量使用◆ 主要用意:分析一个叫做被解释变量的变量对另外一个(或多个)叫做解释变量 的变量的统计依赖性术语和符号1、被解释变量与解释变量的多种叫法被解释变量 Explained variable 解释变量 Explanatory variable 应变量 Dependent variable 自变量 Independent variable 内生变量 Endogenous 外生变量 Exogenous variable11nii X X n ==∑2211()1n x i i S X X n ==--∑2、符号约定被解释变量—— Y 解释变量——X横截面数据——下标 i 时间序列数据—下标 t§2. 一元线性回归的基本概念总体回归线(Population Regression Line )在几何意义上,总体回归线就是解释变量取给定值时,被解释变量的条件均值或期望值的轨迹。
(X 取遍所有可能值,然后把 的点连起来)总体回归函数(PRF )→它是总体回归线的数学表达式(Population Regression Function )总体回归函数的随机设定离差(Deviation),表述如下:总体回归函数的随机表达其中,ui 是一个可正可负的的随机变量,称为随机干扰项/扰动项/误差项(Stochastic disturbance/ Stochastic error )随机干扰项的性质和意义:它是从模型中省略下来,但又集体地影响着Y 的全部变量的替代物。
3、样本回归线/样本回归函数由于总体往往不能直接观测,因而要在样本信息的基础上,用SRF 来估计PRF样本回归函数(SRF )也有两种表述形式。
SRF 的均值形式注:估计量,也称统计量,它是一种运算规则或方法,告诉人们怎样运用手中样本所提供的信息去估计总体参数。
SRF 的随机形式:B 1 、B 2的估计量12ˆY X i ib b =+的估计量)X Y (i E 12E Y X i i B B X ()=+)X Y (Y i i i E u -=12i i i Y B B X u=++12E Y X i iB B X ()=+12X i i iY B B u =++样本残差/回归残差/剩余项(residual )ui 的估计量。
它表示样本点与SRF 之间的差距:回归分析的目的是通过SRF 来估计PRF思考:既然SRF 只不过是PRF 的一个近似,能不能设计一种规则或方法,使得这种近似尽可能地做得好一些?或者说,尽管真实的B 值永远不得而知,怎样构造SRF 才能使B 的估计值尽可能地“接近”真实的B ?§3. 参数估计:普通最小二乘法由于样本是从总体中抽出来的,一定程度上代表了总体的形状,因此找好的SRF 使之与 PRF 最接近,首先要画出与样本拟合得好的样本回归线 怎么画?=》普通最小二乘法 1、普通最小二乘法(OLS )普通最小二乘法(Method of Ordinary Least Squares), 由高斯提出。
(1)最小二乘原理要使SRF 与样本的拟合效果最好,必须使实际的Y 值与估计的Y 的均值之间的差距最小:由于残差值有正有负,这里可能会出现抵消的问题(实际的Yi 离开SRF 很远,但残差的和却很小)。
如果采取最小二乘准则,使残差平方和最小,就能解决抵消的问题。
12Y X i i i b b e=++ˆY Y i i ie =-ˆY Y i i i e =+12ˆmin ()i i ib b i i e Y Y -∑∑,最小一乘原则:=12222i 12ˆmin ()(Y X )i i i ib iiie Y Y b --∑∑∑,b ==-b(2)B1、B2的估计对于上式,给定一组X 、Y 的数据,b1、b2选得不同,残差平方和的值就不同。
因此, 我们用微分法来解该问题。
12222i 12ˆmin ()(Y X )i i i i b i i ie Y Y b --∑∑∑,b==-b对博彩支出回归结果的解释斜率系数0.0814表示:周可支配收入每增加一个单位(1美元),平均而言,周博彩支出增加0.0814个单位(8美分)截距系数7.6182的含义:当样本取值包含0时,它表示X=0时Y的均值当样本取值不包含0时,它代表了回归模型中所有省略变量对Y的平均影响通过例子进一步体会采用OLS法得到SRF的过程总体回归线/ 函数样本回归线/ 函数PRL / PRF SRL / SRF怎样构造SRL / SRF,使这个估计做得尽量好?(b1 、b2尽可能地接近B1、B2)OLS法2、OLS 估计量的性质 高斯—马尔柯夫定理:在满足古典线性回归模型( CLRM )假定的条件下,OLS 估计量是BLUE 。
(Best Linear Unbiased Estimator ) 三层含义:首先,OLS 估计量是线性的。
即 是关于 的线性组合。
其次,OLS 估计量是无偏的。
重复抽样,做很多次OLS 估计,估计量的均值可以十分逼近真实值(即SRF 十分接近PRF )。
最后,在所有线性无偏估计量中,OLS 估计量的方差最小(最优,精度最高,最有效率) 最小二乘法的基本假定——古典线性回归模型(CLRM ) 假定1 :线性模型。
回归模型对参数而言是线性的。
如: 假定2:解释变量X 与扰动误差项u 不相关。
(X 是非随机的比这一假定更强 假定3:对给定的X 值,随机干扰项u 的条件均值为零: 假定4:同方差性。
给定X 值,对所有的观测,u i 的方差都是相同的。
即u i 的条件方差 是一常数:假定5:各个干扰之间无自相关。
给定任意两个X 值:Xi 和X j , u i 和u j 之间的相关为 i 和 j 为两次不同的观测,而cov 表示协方差。
假定6:回归模型是正确设定的。
即在实证分析中所使用的模型不存在设定偏误。
不难看出,上述6大假定全是针对解释变量X 及误差项u 所作的,实际上是对总体回归函数PRF 的假定。
• 为什么假定?现实意义?如不满足会怎样?如何知道这些假定是否满足?(1,2)i b i =i Y () (1,2)i i E b B i ==()X E =i i u ()2var X i i u σ=()()()X X X ,X ,c ==j j i i j i j i u u E u u ov对任何一门学科的探求,都需要做一些假定√有助于逐步明确问题×这些假定是现实所必需3、OLS估计的精度——估计量的方差与标准误由于Y是随机变量,而b1和b2是它的函数,因此b1和b2也是随机变量。
当数据从一个样本变到另一个样本时,它们的值会出现摆动。
因此,需要找一个量来度量这种摆动的大小,即衡量估计量b1和b2的精度/可靠性。
——这个量就是估计量的方差及标准误。
通过计算,线性回归OLS估计量的标准误为:其中,σ2为常数,是假定4中ui的共同方差上述表达式中,除了σ之外,其他量的值均可从样本数据直接得到,σ需要通过样本来估计:其中,分子为回归的残差平方和(RSS),分母为回归的自由度(d.f.)。