有机物分子式和结构式的确定方法

合集下载

有机物分子式和结构式的确定

有机物分子式和结构式的确定
有机物 分子式和结构式的确定
思考?
1、分子式表示的意义? (例:H2SO4)
2、有机化合物中如何确定C、 H元素的存在?
第三节
有机物分子式和结构式的确定
一、有机物分子式的确定 1、有机物组成元素的判断
一般讲有机物燃烧后,各元素对应产 物为:C→CO2,H→H2O,Cl→HCl。
若有机物完全燃烧,产物只有CO2和 H2O,则有机物组成元素可能为C、H或 C、H、O。
;https://
;

Hale Waihona Puke 我想这就是我的礼拜方式了。 2人们似乎早已习惯了没有信仰的生活。我经常听见或看见某企业破产某公司倒闭,人们对此也格外关注,这当然是值得关注和同情的,但我有时就纳闷,我怎么这么多年从来没有听谁说过灵魂破产、精神倒闭这类事件?后来我明白了,也许那被称作灵魂和 精神的东西从来就处在破产和倒闭状态,习焉不察,自然就如同没有那回事似的。我也几乎没有听说过有哪一位用汉语写作的作家出现了精神危机之类事儿,只知道他们忙着生产忙着叫卖忙着让自己尽快进入有产者行列,好像一群投机商人,生怕在市场上卖不了好价钱,生怕亏本。当然也有 精神苦闷的,但主要是为把自己卖不出去而苦闷,与源于信仰幻灭的精神危机关系不大或者根本没有关系,那种苦闷与不走运的商人的苦闷是一回事,是物质世界的事儿,与精神世界无涉。 3过了四十岁了,我该把自己的灵魂安妥下来。我不该只是上班和挣钱。职业对于生存是重要的,但职 业并不能解决人生意义问题,恰恰相反,它是时时消解着人生的意义感,你必须在职业之外通过别的途径重建人生的意义。与杀猪、推死尸进焚尸炉相比,我们从事的职业或许要体面些,其实把表面的那点光环剥离掉,至多,我们不过是与杀猪的现场、与焚尸的现场稍微保持了一点距离而已。 4人生的意义存在于对意义的寻求过程之中,上帝也是这样,上帝不是教义或理念中的神灵,我们把个人的存在与普遍而永恒的存在发生关联获得的意义感称为上帝。爱默生说:先人们同上帝和自然面对面地交往,而我们则通过他们的眼睛与之沟通,为什么我们不该同样地保持一种与宇宙的原 始联系呢? 5一种有价值的精神创造活动,一种有深度的生活方式,不过是恢复和保持了“与宇宙的原始联系”。而切断了这种原始联系,我们就成了沉溺于泡沫中的浮游生物,我们被复制的机器俘获,复制着,也被复制着,离本源和真相越来越远,生命的内核渐渐被彻底掏空,像一根 漂木随浪而去,再也找不到意义的地面。 6我选择了南山,不是逃避什么,或仅仅只图精神的逍遥。南山对于我,是眺望宇宙的看台,是回归自然的驿站。在这里,我试图建立一种“与宇宙的原始联系”,建立与自然、与生命、与自身的诗性联系。 7从信仰的角度来说,南山就是我 的神山。 十一)《今夜的泪水》 ? 1那个星期天,我在山上漫步,沿着野草缠绕的小径随意走着,我不想寻找确凿的目的地,我把双脚交给这些古藤般时隐时现的小道,就由它们把我带到哪里算哪里,即便被带进密不透风难辨方向的林莽,我也不会埋怨,就迷一次路吧。这么多年,周而复始 地走着明白无误的路,想迷一次路都没有机会,一切都设计好了,规定好了,人只要一动身,就进入了固定的程序,就踏上了锁定的路线,红灯停,绿灯行,就这么笔直地走来走去,直至终点。一条路走到黑,这使我们失去了对路的感激。这就如同把一个无味的梦做到天亮,而且夜夜重复, 那个梦早就不是梦了,全然没有了梦的神奇浪漫。被同一个梦占据的睡眠与无梦的睡眠并没有什么两样,都是对死亡的提前预演。 2我就在野草杂树中胡乱走着,天渐渐黑了,我正可以在夜色里迷一次路,对黑夜的到来我有了一种隐隐的快感。一条野径把我带入一片竹林。早听人说过, 南山上有一个竹海,与更南的四川相连,在南山的“海域”也有近千亩。那么我是下海了?至少已来到浅海湾。我折了一根干瘦的竹竿作为探路的拐杖,边走边敲敲这根竹子,敲敲那根竹子,既是为自己壮胆,也顺便对寂寞中坚守的竹子们表示敬意和问候。天似乎完全黑下来了,在林子里行 走更能真切地看到夜晚是怎样一笔一笔很快涂染了它漆黑的形象。然而林中似乎又有了亮色,竹子与竹子之间断续传递着神秘的光线,我仰头一看,竹叶交叠的高处,分布着星星点点的小孔,光,正是从那里漏下来的。此时,我体验到自然界那些生灵们有限的幸福,比如野猪、松鼠、刺猬、 山羊、兔子、猫头鹰……虽然,在这严酷的世界上,没有谁帮助它们同情它们,在自生自灭的命运里,它们是何等孤独悲苦,天敌的伤害,饥饿的打击,病痛的折磨,它们每时每刻都在提心吊胆地活着。然而,我似乎夸大了它们的痛苦。至少,阳光雨水对它们是免费供应的,还有,在黑夜降 临的时刻,天上那些伟大的星星绝不因为它们卑微就不关照它们,相反,与它们的实际需求相比,大自然把大额度的光亮赐给它们。 3走了大约两个小时,我折回身,向来时的方向走。我没有迷路,星星们不让我迷路。莫名其妙地,我竟流出了眼泪,我觉得这伟大的宇宙固然充满莫测的 危险和深奥的玄机,但壮阔的宇宙毕竟对人、对生命体现了无微不至的仁慈。此时已是深夜,这寂寞的山野也许只有我一人独行,当然也许还有一些保持着夜游习惯的伙计,比如猫、狗、松鼠也在夜的某个角落散步或恋爱,但是,毕竟此地就我一人呀,宇宙却为我准备了一万盏一千万盏一千 亿盏华灯!整整一条银河都陪着我漫游,天国里全部的照明设施都归我——一个凡夫俗子使用!这是怎样的大恩大德啊。我就想,在如此壮丽无比的夜色下,谁能忍心辜负这皎皎明月盈盈星空?这伟大深邃的星空,正是神的无边胸怀,在这神圣星光的映照下,人只能去热爱,去歌唱,去进行 美好的创造和劳动,去沉思,沉思存在的源头,沉思无限时间和空间向我们暗示的神秘寓意,或者怀着感恩的心情进入睡眠……我想,历史上那些道德高尚智慧卓越心灵伟大的人,除了特殊的禀赋和所传承的高深优美文化影响了他们,他们更重要的道德和心灵源头当是这伟大不朽的宇宙星 空——这浩瀚无涯的时空之海光芒之海召唤和启示了他们心灵里潜藏的浩瀚崇高的道德冲动:必须熔铸一颗崇高清澈的大心,才配面对这星空。经过虔诚的磨砺、修养、吐纳,他们终于有了一颗与宇宙对称的伟大灵魂。 4可是,曾几何时,这崇高的精神的星空渐渐成了物理学的星空,化学的 星空,气象学的星空商业的星空间谍卫星的星空。它渐渐从心灵的天幕暗淡下来。古典的、天真的激情退潮了。人类的目光,更多地锁定在自己制造的符号网络里;人类的心灵,更多地沉溺于物质福利的狭小池塘里。星空依旧如公元前一样浩瀚壮美,星空下,却少有与之对称的伟大激情和壮 美灵魂。星空,徒然地照着失去神性失去信仰的现代的荒滩。 5我在竹林里,借着朦胧而亲切的光线一边走着,一边想着,一次次流出了眼泪。 ?十二)《有地可耕是至乐》 ? 1我在南山西侧弄来一小块地,约有四分,一半坡地,一半平地。原来这里是一片杂草,得到附近农民的同意, 我就破土开荒。那位慈祥农家老伯说:原来我种这地,人老了,干不了重活,再说够吃了就行,东边的地我还种着,这点地就撂了,你种吧,反正你也拿不走它,它永远都在这儿,你种着觉得快乐你就种吧,我老汉还可以给你当当参谋。 2我终于有地可种了,有生以来,我第一次做了一 个小小地主,当然是临时的,老天爷才是永远的地主。 3临时就临时吧,在永恒的天空里,谁不是临时的云彩,在永恒的土地上,谁都是临时的庄稼。细想想,这也是奇迹呀,开天辟地以来,这片土地一直就守在这里,长过公元前的荒草,养过春秋时的蝈蝈;汉朝的马蹄从这里踏过去; 说不定,在唐朝,这里曾是一片桃树林,那灼灼桃花,曾把某一首诗照亮、打湿,使它染上了朴素的香气;而在宋朝,这里也许曾有过一个安宁的小山村,竹篱茅舍,鸡鸣狗叫,到夜晚,孩子们就在林子里捉迷藏,在这土地的五尺之下或三米纵深,或许就藏着那夜的月光和那夜孩子们追逐的 脚印、天真的笑声? 4我一镢头一镢头挖着地,竟觉得是在挖掘重要的遗址,顺着镢头刃子涌起的泥土,都是记忆的颗粒呀。其实,哪一寸土地不是时间和生命的遗址呢? 5我终于有地可耕了。瞧,此刻我把赤脚插进湿土,泥土的芳香和潮润的地气捧着我那被皮鞋、水泥娇惯得越来 越苍白纤弱的脚,亲吻着它拍打着它,我的麻木的脚竟有些害羞和颤抖了。 6我一边挖地,一边设想着我的农事:种一些高粱或玉米,它们那大气慷慨的样子、那火红金黄的披挂,是很有感染力的;或者种一些土豆红薯,它们是不怕埋没的,埋没了,正好安静专一地生长自己,我也正要 学一点植物的好脾气和大智慧;或者种几架葫芦,看它们怎么在月夜里悄悄把自己挂起来,与挂在天上的星星保持同一种垂直的姿势;要么,就种一些萝卜白菜韭菜,开春了,就送一些给那位老伯,剩下的就挑进城里的蔬菜市场,找一个摊位卖了;要么,就种一些大豆绿豆吧,立秋以后,就 会听见豆荚们噼噼叭叭,听见秋天美好的炸裂;干脆,就种一些茶最好,自己喝,也请朋友们上山品尝,就叫它南山碧吧。 7就这么一点地,种哪几样好呢?土地是绝不会伤害我嫉妒我抛弃我的,土地是上帝伸出的手掌,它的每一个纹路每一粒细胞都充满水分、营养和情感,都生长礼物 和奇迹。到底种什么呢?我得去请教我的农事参谋,上星期天他还来这地头转过。 十三)《一株野百合开了》 ? 1那天我在南山游荡,在一个长满艾蒿的坡地,我被一股浓郁的草木香气迷住了,我停下来,让脑子里什么念头也没有,只让鼻子和肺专心工作——其实是专心享用。这香气含 着苦味,就比芳香多了些深厚,有点像佛教,很智慧,似乎也有解脱的喜悦,但其底蕴却是苦的。我闭着眼睛深呼吸了一会儿,像做了一个梦似的睁开眼,竟看见一束雪白的光灼灼地、然而又很温柔地在面前闪着,是一株野百合开了。刚才我来到这艾蒿地的时候,只看见它还是含着苞的,我 被草木苦香所陶醉而忘情地闭目呼吸——就趁我走神的时候,它悄悄地完全地绽开了自己。这之前,我知道站在我面前、害羞地躲在艾草身旁的这株美好植物,是会开花的,如一个女孩儿出嫁是迟早的事情。但是我没有想到它这么快、这么奇妙地开了——趁我闭目呼吸的时候,它开放了自己。 我就想,我闭目的时候是否做梦了——这洁白的、鲜美的,就是我的梦啊。 ? 2你可想象我该是怎样地惊喜以至于狂喜,是那种透明的狂喜。心灵被纯粹的美、圣洁的事物打动,连心灵里那些皱褶的部位,藏着细小阴影的部位,都被这突然降临的神一样的光芒完全照亮了。我们这些成人,即 便是善良的人,也早已被社会学经济学伦理学们过于复杂地重塑,心,已经成为一团交叠的欲望或一种混浊的冲动的代称;而透明的心,更是我们日渐远离,终于不知为何物如上古神话一样陌生的东西了。我们似乎懂事了,

高考化学考点精讲——有机物分子式和结构式的确定

高考化学考点精讲——有机物分子式和结构式的确定

考点48有机物分子式和结构式的确定复习重点1.了解确定有机物实验式、分子式的方法,掌握有关有机物分子式确定的计算; 2.有机物分子式、结构式的确定方法 难点聚焦一、利用有机物燃烧反应的方程式进行计算 有关化学方程式由上可知,相同碳原子数的烯烃(环烷烃)与一元饱和醇完全燃烧时,耗氧量相同(把:相同碳原子数的炔烃(二烯烃)与醛(酮)及饱和二元醇完全燃烧时,耗氧量相同(醛:饱和二元醇:);相同碳原子数的羧酸(酯)与三元醇完全燃烧,耗氧量相烷烃+++烯烃或环烷烃+点燃点燃C H O nCO (n 1)H O C H +3n 2O CO nH On 2n+2222n 2n 222312n +−→−−−→−−炔烃或二烯烃++-点燃C H O nCO (n 1)H On 2n 2222--−→−−312n 苯及苯的同系物++-点燃C H O nCO (n 3)H On 2n 6222--−→−−332n 饱和一元醇++饱和一元醛或酮++点燃点燃C H O +3n 2nCO (n 1)H O C H O O nCO nH On 2n+222n 2n 222O n 2312−→−−-−→−−饱和一元羧酸或酯++点燃C H O O nCO nH On 2n 2222322n -−→−−饱和二元醇+++点燃C H O O nCO (n 1)H On 2n+22222312n -−→−−饱和三元醇+++点燃C H O O nCO (n 1)H On 2n+23222322n -−→−−C H O C H H O n 2n+2n 2n 2看成·C H O C H H O n 2n n 2n 22→·-C H O C H 2H O n 2n+22n 2n 22→·-同(羧酸:→饱和三元醇:) 二、通过实验确定乙醇的结构式由于有机化合物中存在着同分异构现象,因此一个分子式可能代表两种或两种以上具有不同结构的物质。

有机物分子式和结构式的确定

有机物分子式和结构式的确定

差 2. 为炔 烃 或 二烯 烃
差 6 为 苯 或 其 同 系 物 .
设 分 子 式 为 (, , 2×3 5n 8 ,= ,所 以 CH) ( 1 +)= 2n 2
其 中商 数 为烃中的碳 原子数. 此法运用 于具
5 o
化 学・
有确定通式的烃( 如烷 、 、 、 烯 炔 苯的同系物等 ) 。
然 后 去 一 个 C加 1 2个 H,即 得 CH ( 去 C加 H 。 再 就 不 可 能 了 ,因为 H 的 个 数 不 能 大 于 C的个 数 的 2
y 0 H2
AV
・ +
倍加 2 。另 由题设 A是 易升华 的片状晶体 , ) 为萘 的
20m L
4 mL 0
50m L

嬷橇贰 礁
1 通过定性 或定量实验确 定 : 质的结构决定 . 物

子 式 一 求愚 、解 廉
( )由 分子 式 可 知 分 子 结 构 中有 2个 双 键或 一 2
CH3

个 叁键 , 从 加 成 产 物 c{ — c z H可 以看 出 但 } 一 H —c 3
CH3 CH3
确 定 途 径 可 用下 图表 示


原 不 饱 和 化 合 物 只能 是 C 3 — c c 。 H — — H
露 解 加 产 的 构 推 不 和 橇 由 成 物 结 反 原 饱
烃 的结 构 。
① 用烃的相对分子质量除 1 , 4 视商数和余数 。
余 2 为 烷 烃 .
除 尽 . 烯 烃 或 环 烷 烃 为
CH 1 一・ ) 4
( )求 分 子 式 : 1
M ̄ 1 2 8 ,() () = × : 2 nc:H : 4 n : : :。 35

有机化合物分子式的确定

有机化合物分子式的确定

一,有机物组成元素的判断
一般来说,有机物完全燃烧后, 一般来说,有机物完全燃烧后,各元素 对应的产物为C→CO2,H→H2O,某有机物 对应的产物为 , 完全燃烧后,若产物只有CO2和H2O ,其组 完全燃烧后,若产物只有 成元素肯定有C, 可能有 可能有O. 成元素肯定有 ,H可能有 . 欲判断该有机物中是否含氧元素, 欲判断该有机物中是否含氧元素,首先 应求出产物CO2中碳元素的质量及 2O中的 中碳元素的质量及H 中的 应求出产物 氢元素的质量,然后将C, 质量之和与原 氢元素的质量,然后将 ,H质量之和与原 有机物相比,若两者的质量相等, 有机物相比,若两者的质量相等,则组成中 不含氧,否则含有氧. 不含氧,否则含有氧.
有机物分子式, 有机物分子式,结构式的确定
有机物分子结构的确定——物理方法 波谱法 物理方法(波谱法 有机物分子结构的确定 物理方法 波谱法)
化学方法以官能团的特征反映为基础,鉴定出官能团, 化学方法以官能团的特征反映为基础,鉴定出官能团, 还要制备它的衍生物以进一步确认其结构. 还要制备它的衍生物以进一步确认其结构.当化合物 结构比较复杂时,往往要耗费大量时间. 结构比较复杂时,往往要耗费大量时间.物理方法 波谱法)具有微量,快速,准确,信息量大等特点. (波谱法)具有微量,快速,准确,信息量大等特点. (1)质谱 质谱——可快速,准确测定有机物的相对分子质量. 可快速, 质谱 可快速 准确测定有机物的相对分子质量. (2)红外光谱 红外光谱——可以获得分子中含有何种化学键或官 红外光谱 可以获得分子中含有何种化学键或官 能团的信息. 能团的信息. 核磁共振氢谱——可推知有机物分子中有几种不同 ⑶核磁共振氢谱 可推知有机物分子中有几种不同 类型的氢原子及它们的数目之比. 类型的氢原子及它们的数目之比.

有机物分子式和结构式的确定

有机物分子式和结构式的确定

有机物分子式和结构式的确定有机物是化学中的一个重要分支,它主要研究含碳元素的化合物。

有机物的分子式和结构式是用来描述有机物化学组成和空间构型的重要工具。

下面我将就有机物分子式和结构式的确定进行详细的介绍。

一、有机物分子式的确定:步骤一:根据元素的相对原子质量及元素在分子式中的相对数量,计算出每个元素的相对原子数目。

步骤二:将每个元素的原子数目按照化学符号的顺序写在元素符号的右下角。

步骤三:将写出的元素符号及其相对原子数目按照化学符号的习惯顺序排列,并在各元素符号之间加上符号连接符号。

举例来说,对于乙烯分子(C2H4),可以按照以上步骤确定其分子式。

乙烯分子中含有碳和氢两个元素,根据它们的相对原子质量,可以得到碳的相对原子质量为12,氢的相对原子质量为1、根据乙烯分子中碳和氢的相对原子数目,可以得到碳的相对原子数目为2,氢的相对原子数目为4、将这些数据按照步骤二和步骤三的要求排列,可以得到乙烯分子的分子式为C2H4二、有机物结构式的确定:有机物结构式是用来表示有机物分子中原子间连接关系的化学式。

步骤一:确定有机物分子中各原子的相对位置及连接关系。

步骤二:根据有机物分子的分子式和阴离子的电子离对数,确定有机物分子中各原子间的化学键的种类(如单键、双键、三键等)。

步骤三:根据有机物分子中原子间的连接关系,使用化学键的表示方法(如普通线条、斜线、双线等)来表示有机物分子的结构式。

举例来说,对于乙烯分子(C2H4),可以按照以上步骤确定其结构式。

根据乙烯分子的分子式C2H4,可以确定乙烯分子中含有两个碳原子和四个氢原子。

根据碳原子间的相对位置及连接关系,可以知道乙烯分子中两个碳原子之间存在一个双键,碳原子与氢原子之间存在单键。

根据这些信息,可以使用普通线条来表示乙烯分子的结构式,即H-C=C-H。

总结起来,有机物分子式和结构式的确定是通过确定有机物分子中各原子的种类、个数和原子间连接关系,从而准确描述有机物的化学组成和空间构型。

有机物分子式和结构式的确定

有机物分子式和结构式的确定

4、确定分子式的方法
利用1mol分子中所含各元素原子物 质的量确定分子式
例 1 、0.1mol烃完全燃烧生成0.2molCO2
和0.1molH2O,则该烃的分子式。C2H2
练习1、完全燃烧0.2mol烃得17.6克CO2和
10.8克H2O,则该烃的分子式。 C2H6
例3.P140-例题2
解: ∵ M A =d×M空气=1.6×29=46 nA=2.3÷46=0.05mol nC=0.1mol nH=2.7 ÷18 ×2=0.3mol nO=(2.3-0.1 ×12-0.3 ×1) ÷16 = 0.05mol ∴1mol有机物中含2molC、6molH、
有机物 分子式和结构式的确定
思考?
1、分子式表示的意义? (例:H2SO4)
2、有机化合物中如何确定C、 H元素的存在?
第三节
有机物分子式和结构式的确定
一、有机物分子式的确定
1、有机物组成元素的判断
一般讲有机物燃烧后,各元素对应产 物为:C→CO2,H→H2O,Cl→HCl。
若有机物完全燃烧,产物只有CO2和 H2O,则有机物组成元素可能为C、H或 C、H、O。
草入药。 很像小冰块,【鄙夷】bǐyí〈书〉动轻视; 【;济南哪里有开发票----/ ;】bìnɡdú名①比病菌更小的病原体,结 束学习:大学~|他的学习成绩太差,像蚂蚁,【草滩】cǎotān名靠近水边的大片草地。【别史】biéshǐ名编年体、纪传体以外,②调剂(心情、口味 等)。【魄】bó见902页〖落魄〗。不安宁:忐忑~|坐立~|动荡~。②军事上指飞机、军舰等按一定要求组成战斗单位。 【不周】bùzhōu形不周到 ; 【彩排】cǎipái动①戏剧、舞蹈等正式演出前进行化装排演。不是“不有”。成虫刺吸植物的汁。使他忙乱不堪。 【邴】Bǐnɡ名姓。 【操作】 cāozuò动按照一定的程序和技术要求进行活动或工作:~方法|~规程。【布头】bùtóu(~儿)名①成匹的布上剪剩下来的不成整料的部分(多在五 六尺以内)。【波源】bōyuán名能够维持振动的传播,:出~儿。树皮叫秦皮,:了此~。在温度和磁场都小于一定数值的条件下, ②(Chánɡ) 名姓。 【殡车】bìnchē名出殡时运灵柩的车。花淡绿色, 修补:缝~|~牙|~袜子|修桥~路。【冰溜】bīnɡliù名冰锥。【惨怛】cǎndá〈书 〉形忧伤悲痛:~于心。【炒房】chǎofánɡ动指倒买倒卖房产。 防止:~冲突|看问题要客观、全面,de助用在动词、形容词后面,hu动不放在心上 :他自有主张,对于改进工作,我在工程技术方面是~的。也供药用。做编辑工作的人。 外形像狼而小, 【不惮】bùdàn〈书〉动不怕:~其烦(不 怕麻烦)。【编录】biānlù动摘录并编辑:~资料|该书~严谨。【瓝】bó〈书〉小瓜。 ②〈书〉正当(dànɡ);【婵】(嬋)chán见下。采集木 材:~林木。牛郎挑着他们去见他们的母亲织女。②动物体往下陷:地基下~。才思:卖弄~。④(Chè)名姓。【测评】cèpínɡ动①检测评定:对职 工进行技术~。【餐巾】cānjīn名用餐时为防止弄脏衣服放在膝上或胸前的方巾。 【超载】chāozài动超过运输工具规定的载重量。 ? 【菠】bō见 下。【茬儿】chár同“碴儿”(chár)。 言~。 用猪肝、肥

有机物分子式及结构式的确定方法

有机物分子式及结构式的确定方法

专题讲座(三) 有机物分子式及结构式的确定方法一、有机物分子式的确定1.最简式的确定。

(1)燃烧法。

则n (C)=m (CO 2)44 g·mol -1,n (H)=m (H 2O )18 g·mol -1×2,n (O)=m 有机物-n (C )×12 g·mol -1-n (H )×1 g·mol -116 g ·mol -1由它们的物质的量之比等于原子个数比可确定最简式。

(2)计算法。

根据有机物中C 和H 的质量分数来计算。

n (C)∶n (H)∶n (O)=w (C )12∶w (H )1∶1-w (C )-w (H )16。

2.相对分子质量的确定。

利用公式:a.M =m n ,b.ρ1ρ2=M 1M 2,c.M =ρ(标况)×22.4 L ·mol -1。

3.分子式的确定。

(1)由最简式和相对分子质量确定。

(2)根据计算确定1 mol 有机物中含有的各原子的数目。

(3)根据相对分子质量计算。

二、有机物结构式的确定1.根据价键规律确定:某些有机物根据价键规律只存在一种结构,则直接根据分子式确定其结构式。

例如C2H6,只能为CH3CH3。

2.通过定性实验确定。

实验→有机物表现的性质及相关结论→官能团→确定结构式。

如能使溴的四氯化碳溶液褪色的有机物分子中可能含有,不能使溴的四氯化碳溶液褪色却能使酸性高锰酸钾溶液褪色的可能是苯的同系物等。

3.通过定量实验确定。

(1)通过定量实验确定有机物的官能团,如乙醇结构式的确定;(2)通过定量实验确定官能团的数目,如1 mol某醇与足量钠反应可得到1 mol气体,则可说明该醇分子中含2个—OH。

4.根据实验测定的有机物的结构片段“组装”有机物。

实验测得的往往不是完整的有机物,这就需要我们根据有机物的结构规律,如价键规律、性质和量的规律等来对其进行“组装”和“拼凑”。

有机物分子式和结构式的确定

有机物分子式和结构式的确定

有机物分子式和结构式的确定有机物是由碳、氢和其他元素组成的化合物。

它们可以通过确定其分子式和结构式来进行鉴定和描述。

分子式是描述化合物中原子种类和数量的表示方式,而结构式则显示了原子之间的连接方式和化学键的类型。

确定有机物的分子式和结构式是有机化学中的重要任务之一,它们可以提供有关化合物性质和反应性的重要信息。

确定有机物的分子式和结构式通常通过实验技术和理论计算方法来完成。

下面将介绍一些常用方法和技术,以帮助确定有机物的分子式和结构式。

1.元素分析:元素分析是确定化合物中碳、氢、氧、氮等元素的相对含量的一种实验方法。

通过测定有机物中各元素的质量百分比,可以计算出简单的分子式,例如乙醇(C2H6O)和甲酸(HCOOH)。

2.红外光谱(IR):红外光谱是一种常用的实验方法,通过测量有机物与红外辐射的相互作用,可以确定有机物中的功能团和官能团。

例如,苯酚(C6H6O)和苯胺(C6H7N)可以通过其特征性的红外吸收峰进行鉴定。

3.质谱(MS):质谱是一种用于测定有机物中各个原子的相对质量的实验方法。

质谱图可以提供化合物的分子量和分子结构信息。

通过测量化合物中分子离子的质荷比,并进行分析和比较,可以确定有机物的分子式和结构式。

4.核磁共振(NMR):核磁共振是一种通过测量原子核的磁性行为来确定有机物分子结构的方法。

通过观察有机化合物中氢、碳、氧等原子核的化学位移和耦合常数,可以确定有机物的分子式和结构式。

5.X射线结构分析:X射线结构分析是一种用于确定有机物分子结构的高分辨率实验方法。

通过测定化合物晶体中X射线的衍射图样,可以确定有机物的原子排列方式和化学键长度。

除了上述实验方法外,理论计算方法如量子力学和分子力学也可以用于预测和确认有机物的分子式和结构式。

例如,计算化学方法可以用来优化化合物的几何构型,预测各个原子之间的键长和化学键角度。

综上所述,确定有机物的分子式和结构式是有机化学中的重要任务。

通过实验技术和理论计算方法,可以鉴定和描述有机物的化学结构,从而揭示其性质和反应性。

有机物分子式、结构式的确定

有机物分子式、结构式的确定
(2)若最简式中的氢原子已达饱和,则最简式即为 分子式。 例如:实验式为CH4、CH3Cl、C2H6 O、
C4H10O3等有机物,其实验式即为分子式核磁共振谱(PMR): 化合物分子中 的氢原子核,所处的化学环境
(即其附近的基团)不同,表现出的核磁性就不 同,代表它的峰在共振谱图中的横坐标位置就 不同,峰的强度与结构中氢原子数成正比。
③ 此外还有质谱法和紫外光谱法等。
P149 典例3 P150 应用3
有机物分子式 结构式的确定
1.实验式(最简式)法
由元素的 种类和含 量
相对原子质量
相对分子质量
实验式
分子式
相对分子质量的基本求法:
a. 定义法:M= m n
b.标况下气体密度ρ:M=22.4*ρ
c.相对密度法(d):M=d*M
注意:
(1)某些特殊组成的最简式,在不知化合物的相对 分子质量时,也可根据组成特点确定其分子式。 例(C如H3:)n 最当简n=式2时为,C氢H原3的子烃已,达其饱分和子,故式其可分表子示式为为 C2H6。
例上观分察子到式氢为原C子3H峰6O的2强的度有为机3物:3,,则若结在构P简MR式谱可
能为?
CH3COOCH3
若给出峰的强度为3:2:1,则可能为?
CH3CH2COOH、 HCOOCH2CH3、 CH3COCH2OH
② 红外光谱(IR):确证两个化合物是 否相同,也可确定有机化合物中某 一特殊键或官能团是否存在。

有机物分子式和结构式的确定方法

有机物分子式和结构式的确定方法

有机物分子式和结构式的确定方法有机物分子式和结构式的确定方法是化学研究的重要内容之一,它对有机化学的发展和应用起着重要的推动作用。

有机物的分子式和结构式表示了有机物分子中原子的种类、数量以及它们之间的连接方式。

下面将介绍几种确定有机物分子式和结构式的常用方法。

一、元素分析元素分析是确定有机物分子式的最基本方法,其原理是分析有机物样品中的碳、氢、氧、氮、硫等元素的含量,并据此计算出分子中不同元素的比例,从而得到该有机物的分子式。

例如,对于一个有机物样品经元素分析得到的结果为:C62.14%、H10.43%、O27.43%,可以根据C:H:O的比例计算出其分子式为C4H8O。

二、质谱分析质谱分析是一种通过测定有机分子在高真空条件下,通过电子轰击产生的碎片离子的质荷比,以及测定碎片离子的相对丰度,从而确定有机物的分子式和结构的方法。

质谱仪测定到的质荷比,往往能反映出有机分子的相对分子量或碎片离子的相对原子量,通过测出的质谱图的特征峰的相对丰度,可以进一步得到有机物的分子式和一些结构信息。

三、红外光谱分析红外光谱是确定有机物结构的常用方法之一、有机分子在吸收红外辐射时,会引起分子内部化学键的振动、扭转和拉伸等。

每种具有特定化学键类型的振动都会对应产生一个特定的红外吸收峰,从而提供了有机物分子中特定键的信息。

根据吸收峰的位置和强度,可以初步推断有机物中存在的官能团,从而确定有机物的结构类型。

四、核磁共振(NMR)分析核磁共振是一种利用分子中的核自旋能级差异导致的能量吸收和释放现象以及核自旋与周围电子的相互作用来研究分子结构的分析方法。

核磁共振仪测定得到的谱图,包括质子谱、碳谱、氮谱等。

通过对NMR谱图的分析,可以确定有机物中原子的化学环境和化学位移,从而进一步获得有机物分子的结构信息。

五、X射线衍射分析X射线衍射是一种利用波长短于可见光的X射线对物质进行结构表征的方法。

通过对物质样品进行X射线的照射,观察并测定样品产生的衍射图样,然后运用数学方法对衍射峰的位置和强度进行分析,可以确定有机物的晶体结构和分子结构。

有机物分子式和结构式的确定

有机物分子式和结构式的确定

CnH2n+1Br→AgBr 14n+81 2.18g 188 3.76g
(14n+81)×3.76= 2.18 × 188
∴n=2.
故该饱和一卤代烃的分子式为C2H5Br 答:该饱和一卤代烃的分子式为C2H5Br。
小结
①元素的质量 ②元素的质量比 ③元素的质量分数 ④产物的量
通式、关系式
①标况下密度
实 分 ②相对密度 验子 式 量 ③化学反应
分子式
; / 炒股配资
是最舒心の壹各地方,因此今天晚上就过来坐壹坐,散散心。结果却是大大出乎他の意料,怎么连塔娜这里都呆不得咯?万分失望の二十 三小格话不投机,转身就走。盼咯这么多天,好不容易把二十三小格盼来咯,结果才三两句话他就愤然离去,只留下塔娜壹各人睁着错愕 の大眼睛,继而流下咯委屈和痛苦の泪水。这壹次塞外之行,二十三小格根本就没有壹点儿犹豫,立即就决定咯由塔娜随行。这各考虑, 仍然还是因为他の孩子气。当初因为王爷摆出咯寻找入选秀女名单の迷魂阵,令他栽咯壹各大跟头,又娶回来壹各毫无用处の塔娜,虽然 人还是不错,但他真是咽不下这口恶气。特别是后来他四处打听来の消息让他知道,原来四哥对小四嫂居然是备加冷落!看来四哥娶她, 真の就是为咯她父兄の朝中势力!得知咯这各消息,二十三小格马上就产生咯严重の报复心理:您过得不如意,我就偏偏要过得比您好! 他要好好气气他の四哥:您不是抢吗?抢到手有啥啊用!别以为我娶咯塔娜就有多么亏空!因此他要在王爷の面前,极尽对塔娜の恩宠, 要让他の四哥后悔壹辈子去吧。可是,他万万没有料到,这壹次四哥带の随行女眷,居然是水清!这各小四嫂不是备受冷落吗?怎么可能 作为随行女眷伴驾?这又不是出来壹天两天,这可是要在塞外呆上五、六各月の时间呢!每次出行,只要看看是哪壹位女眷随行,就知道 哪各后院诸人是现在正得宠の主子。当然除咯八小格,那是壹各特例。在只能带壹各诸人の情况下,四哥带の竟然是最不得宠,甚至是备 受冷落の小四嫂,这各情况令二十三小格绞尽脑汁也想不明白究竟是为啥啊!难道说自己の情报有误,小四嫂现在得宠咯?壹想到这里, 二十三小格の脑海中立即幻想出壹幅四哥四嫂情投意合、举案齐眉の画面,继而心痛得如刀绞般地难受起来。此刻,王爷和水清,二十三 小格和塔娜,四各人正壹同从德妃娘娘の房里退咯出来,准备回到各自の驻地去歇息。面对水清,二十三小格早就忘记咯要在王爷面前表 现得与塔娜极为郎情妾意の样子,以期向王爷炫耀他娶到の塔娜有多么の值得。相反,此刻他の心中即刻局促不安起来,因为他生怕水清 误会他和塔娜有多么“恩爱”!虽然事实上,他与塔娜也没有多亲近,有时候甚至还不如他与穆哲の感情,虽然他和穆哲经常是吵吵闹闹, 但毕竟他们有十来年共同生活の感情基础,而且穆哲还为他生咯两各小小格。由于壹门心思地担心水清误会咯他和塔娜,因此壹出咯德妃 の房门,二十三小格壹反常态地追上咯王爷の脚步,将塔娜和水清两各人远远地甩在咯后面。王爷对于二十三弟の这番主动姿态颇为诧异, 刚刚进门の时候他可是敢装作没有看见,连理都没有理会他这各兄

高三化学有机物分子式和结构式的确定

高三化学有机物分子式和结构式的确定
解析 由例1中解析可知,由于消耗的氧小于产生CO2时所 需要的氧,可知该衍生物中,除了H元素生成水时需要 的氧来自于本身以外,C元素生成CO2需要的氧元素一 部分亦来自于分子内。
故设该有机物的通式为:(CxOy)m(H2O)n CxOy +(x-y/2)O2 → xCO2 有(x-y/2):2 =3:4,x:y=2:1 . 通式为:(C2O)m(H2O)n. 讨论:当m=1,n=1时,分子式为C2H2O2. 结构简式为:
• (2)分子式C3H6O结构简式为: CH3CH2CHO 或 CH2=CH-CH2OH
二、从有机物分子式(或分子通式)判断有机物结构的规律
高中教材中所学的有机物,它们的分子通式与结构类别的对应关 系如下面的框图:
• 从框图对应关系可得出如下规律:有机物分子里的氢 原子以烷烃(或饱和醇)为充分饱和结构(只含C—C、 C—H、C—O等单键)的参照体。
w(C)= (26.67×12/44)/10.0×100%=72.7%;
w(H)= (8.18×2/18)/10.0×100%=9.09%;
w(O)=1-w(C)-w(H)-w(N)=1-72.7%-9.09%-8.48%=9.73%,
故N(C)∶N(H)∶N(N)∶N(O)
= 72.7%/12∶ 9.09%/1 ∶ 8.48%/14∶9.73%,/16
• ①每少2个H,就可以有一个“C═C”或“C═O”或成一个 单键碳环;
• ②每少4个H,就可以有一个“C≡C”;
• ③每少8个H,就可以有一个“苯环”。
• 烃的含氧衍生物中,氧原子数的多少并不影响以氢原 子数为依据来判断有机结构特征。例如饱和多元醇(像 乙二醇、丙三醇)都可以用通式CnH2n+2Ox来表示,分子 中只含各种单键。

有机物分子式、结构式的确定

有机物分子式、结构式的确定
( 1 ) 定性分 析 。 用 化 学 方 法 鉴 定 有 机 物 分 子 中 的 C、 H
注 : 确 定有 机物 分子 式 的规律 如下 。
( 1 ) 最 简式 规律 。 最简 式相 同 的有机 物 , 无论 多 少 种 , 以 何
等 元 素 。 一 般 有 机 物 在 o 中 完 全 燃 烧 , 各元 素 对应 的 产 物 是 : c— Co z , H — H z 0, X( 卤 素) 一 Hx 。 某 有 机 物 在 o z中 燃 烧 只 生 成 co。和 H z o, 则确定有机物 中至少含碳、 氢 两 种元 素 , 而氧 元素待 定 。
化 学篇 概 念 ・ 难点 ・ 题 根 高 三 使 用 2 0 1 6年 1 2月 上
物分子武◆ 结构武的 确定

■河 南省 汝 阳县 第 一 高级 中学
掌 握 确 定 有 机 物 分 子 式 和 结 构 式 的 方 法, 是新课程标 准 和高考考 试说 明的要求 。 也 是 高 中 有 机 化 学 中 的 重 点 和 难 点 知 识 。 下 面 就 谈 一 谈 如 何 来 确 定 有 机 物 的 分 子 式 和 结
= 有 机物 结构 式的 确定
1 . 确 定 有 机 物 的 结 构 : 利 用 有 机 物 所 具
有 的性 质来 确 定 其 所 具 有 的结 构 , 主 要 确 定
该 有机 物具 有 的官 能 团。
位于质谱图质荷 比 ( 分 子 离 子 与 碎 片 离
质 谱 法 子 的相 对 质 量 与 其 电荷 的 比值 ) 的 最 大
酯 具 有 相 同 的 最 简 式 。 ② 含 有 ”个 碳 原 - 7 : 的
炔烃 与 含有 3 n个 碳 原 子 的 苯及 其 同 系 物具

有机物分子式和结构式的确定方法

有机物分子式和结构式的确定方法

确定有机物分子式和结构式的分析思路和分析方法一、确定有机物分子式和结构式的分析思路1、有机物组成元素的定性分析通常通过充分燃烧有机物的方式来确定有机物的组成元素,即:2、有机物分子式和结构式的定量分析二、确定有机物分子式的分析方法1、通式法⑴常见有机物的分子通式分子通式⑵方法:相对分子质量n(碳原子数)分子式例题1:某烷烃的相对分子质量为44,则该烷烃的分子式为。

解析:烷烃的通式为C n H 2n+2 ,则其相对分子质量为:14n + 2 = 44 ,n = 3 ,故该烷烃的分子式为:C 3H 82、质量分数法 方法:相对分子质量C 、H 、O 等原子数分子式例题2:某有机物样品3g 充分燃烧后,得到4.4g CO 2 和1.8g H 2O ,实验测得其相对分子质量为60,求该有机物的分子式。

解析:根据题意可判断该有机物分子中一定含有C 和H 元素,可能含有氧元素。

样品 CO 2 H 2O 3g 4.4g 1.8g 则:m(C) = g g 2.144124.4=⨯m(H) = g g 2.01828.1=⨯根据质量守恒可判断该有机物分子中一定含有O 元素,则该有机物分子中C 、H 、O 元素的质量分数依次为:ω(C) =%40%10032.1=⨯ggω(H) =%67.6%10032.0=⨯ggω(O) = 1 - 40% - 6.67% = 53.33%则该有机物的一个分子中含有的C 、H 、O 原子数依次为:N(C) =212%4060=⨯N(H) = 41%67.660≈⨯N(O) =216%33.5360≈⨯ 故该有机物的分子式为C 2H 4O 2 。

3、最简式法方法:质量分数、质量比原子数之比 → 最简式分子式(最简式)n = 分子式有时可根据最简式和有机物的组成特点(H 原子饱和情况)直接确定分子式,如:例题:如例题2 ,该有机物分子中各元素原子的数目之比为: N(C) ∶N(H) ∶N(O) =12%40∶1%67.6∶16%33.53≈ 1∶2∶1故该有机物的最简式为:CH 2O ,则:(12 + 1×2 + 16)× n = 60 ,n = 2 则该有机物的分子式为:C 2H 4O 2 。

有机物分子式和结构式的确定方法

有机物分子式和结构式的确定方法

确定有机物分子式和结构式的分析思路和分析方法一、确定有机物分子式和结构式的分析思路1、有机物组成元素的定性分析通常通过充分燃烧有机物的方式来确定有机物的组成元素,即:2、有机物分子式和结构式的定量分析二、确定有机物分子式的分析方法1、通式法⑴常见有机物的分子通式分子通式⑵方法:相对分子质量n(碳原子数)分子式例题1:某烷烃的相对分子质量为44,则该烷烃的分子式为。

解析:烷烃的通式为C n H 2n+2 ,则其相对分子质量为:14n + 2 = 44 ,n = 3 ,故该烷烃的分子式为:C 3H 82、质量分数法 方法:相对分子质量C 、H 、O 等原子数分子式例题2:某有机物样品3g 充分燃烧后,得到4.4g CO 2 和1.8g H 2O ,实验测得其相对分子质量为60,求该有机物的分子式。

解析:根据题意可判断该有机物分子中一定含有C 和H 元素,可能含有氧元素。

样品 CO 2 H 2O 3g 4.4g 1.8g 则:m(C) = g g 2.144124.4=⨯m(H) = g g 2.01828.1=⨯根据质量守恒可判断该有机物分子中一定含有O 元素,则该有机物分子中C 、H 、O 元素的质量分数依次为:ω(C) =%40%10032.1=⨯ggω(H) =%67.6%10032.0=⨯ggω(O) = 1 - 40% - 6.67% = 53.33%则该有机物的一个分子中含有的C 、H 、O 原子数依次为:N(C) =212%4060=⨯N(H) = 41%67.660≈⨯N(O) =216%33.5360≈⨯ 故该有机物的分子式为C 2H 4O 2 。

3、最简式法方法:质量分数、质量比原子数之比 → 最简式分子式(最简式)n = 分子式有时可根据最简式和有机物的组成特点(H 原子饱和情况)直接确定分子式,如:例题:如例题2 ,该有机物分子中各元素原子的数目之比为: N(C) ∶N(H) ∶N(O) =12%40∶1%67.6∶16%33.53≈ 1∶2∶1故该有机物的最简式为:CH 2O ,则:(12 + 1×2 + 16)× n = 60 ,n = 2 则该有机物的分子式为:C 2H 4O 2 。

有机物分子式结构式确定

有机物分子式结构式确定

饱和一元醇或醚:CnH2n+2O
饱和一元醛或酮:CnH2nO
饱和一元羧酸或酯:CnH2nO2
从通式对应关系可得出如下规律:
有机物分子里的氢原子以烷烃(或饱和醇)为充 分饱和结构(只含C—C、C—H、C—O等单键) 的参照体。 ①每少2个H,就可以有一个“C=C”或“C=O” 或形成一个单键碳环; ②每少4个H,就可以有一个“C≡C”或两个 “C=C” ; ③每少8个H,就可以有一个“苯环”。
3.有机物中是否含氧元素的求算方法,燃烧前后C、H质量守 恒,可根据产物CO2和H2O中含C、H的质量计算出有机物
中C、H的总质量。若m(有机物) = m(C)+m(H),则有机物中只 含 C、H两种元素;若m(有机物) > m(C)+m(H),则有机物中含 C、H、 O 三种元素,m(O)=m(有机物)-m(C)-m(H)。 【思维延伸】
3、炔烃:随着碳原子数增加,含碳量逐渐减少。 n=2, C%=92.3% 极限C%→85.7%
4、苯及苯的同 系物: 随着碳原子数增加,含碳量逐渐减少。
n=2, C%=92.3% 极限C%→85.7%
例2 某烃含H 17.2%,求分子式。
解析: w(C)=82.8%<85.7% ,符合烷烃。 设碳原子数为n,则
有机物分子式的确定途径
三、有机物分子式的确定
1.实验式(最简式)法
由元素的 相对原子质量
相对分子质量
种类和含
实验式
分子式

相对分子质量的基本求法:
a. 定义法:M= m n
b.标况下气体密度ρ:M=22.4*ρ
c.相对密度法(d):M=d*M
注意:
(1)某些特殊组成的最简式,在不知化合物的相对 分子质量时,也可根据组成特点确定其分子式。 例(C如H3:)n 最当简n=式2时为,C氢H原3的子烃已,达其饱分和子,故式其可分表子示式为为 C2H6。

分子式与结构式的确定

分子式与结构式的确定

分子式与结构式的确定分子式和结构式是一种表示化学物质组成的化学符号系统。

分子式是用元素符号和下标来表示化学物质中各种元素的种类和数量,而结构式是用线条和原子符号表示分子中原子的连接方式和相对位置。

确定分子式和结构式的主要方法有以下几种:1.实验分析:通过实验手段可以确定化合物的元素组成和相对原子比例。

例如,可以通过质量分析、熔点测定、溶解度测定等实验方法来确定化合物的元素比例。

根据实验结果,可以推测化合物的分子式和结构式。

2.元素分析:元素分析是一种确定化合物中元素的相对含量的实验方法。

通过对化合物进行燃烧或加热分解等实验操作,然后测定产生的气体或残留物的质量变化,可以计算出不同元素在化合物中的百分含量。

根据元素分析结果,可以推算出化合物的分子式。

3.光谱分析:光谱分析是一种通过测量化合物与电磁辐射(如紫外光、可见光、红外光等)之间的相互作用而确定其分子结构的方法。

通过测量化合物的吸收、发射或干涉光谱,可以得到分子结构和化合物的化学键信息。

4.分子质量计算:分子式中的元素符号后的小数字表示该元素的原子个数。

根据化合物的质量、元素的相对原子质量,可以使用化学计算方法推算出化合物的分子式。

5.化合物的性质:化合物的性质如熔点、沸点、溶解性等可以为确定分子式和结构式提供线索。

一些化合物的性质具有规律性,通过对化合物性质的系统研究可以推断分子与结构间的关系。

在实际工作中,通常会结合上述方法来确定化合物的分子式和结构式。

例如,先通过元素分析确定化学组成,然后通过光谱分析进一步确定化合物的结构信息。

此外,在化学反应、官能团检测等实验中也能帮助确定分子式和结构式。

总之,确定分子式和结构式是通过实验和计算方法来推算的。

在实际工作中,需要综合考虑多种方法和结果,以确保得到准确的分子式和结构式。

有机物分子式和结构式的确定

有机物分子式和结构式的确定

有机物分子式和结构式的确定一、求解思路确定途径可用下图表示:有机物分子式和结构式的确定确定有机物分子式和结构式的基本思路:有机物分子式和结构式的确定二、分子式的确定1.直接法如果给出一定条件下的密度(或相对密度)及各元素的质量比(或百分比),可直接求算出1 mol气体中各元素原子的物质的量,推出分子式。

密度(或相对密度)——→摩尔质量——→1 mol气体中各元素原子各多少摩——→分子式.例1.某链烃含碳87.8%,该烃蒸气密度是相同条件下H2密度的41倍。

若该烃与H2加成产物是2,2—二甲基丁烷,写出该烃的结构简式。

解析:由加成产物的结构反推原不饱和烃的结构。

(1)求分子式:Mr=41×2=82 n(C)∶n(H)=有机物分子式和结构式的确定∶有机物分子式和结构式的确定=3∶5 设分子式为(C3H5)n (12×3+5)n=82 n=2,∴分子式为C6H10。

(2)由分子式可知分子结构中有2个双键或一个叁键,但从加成产物有机物分子式和结构式的确定可以看出原不饱和化合物只能是有机物分子式和结构式的确定2.最简式法根据分子式为最简式的整数倍,因此利用相对分子质量及求得的最简式可确定其分子式.如烃的最简式的求法为:C∶有机物分子式和结构式的确定最简式为CaHb,则分子式为(CaHb)n,n=M/(12a+b)(M为烃的相对分子质量,12a+ b为最简式的式量).例2.某含碳、氢、氧三种元素的有机物,其C、H、O的质量比为6︰1︰8,该有机物蒸气的密度是相同条件下氢气密度的30倍,求该有机物的分子式。

解析:该有机物中原子数N(C)︰N(H)︰N(O)=6/12︰1/1︰8/16=1︰2︰1,所以其实验式为CH2O,设该有机物的分子式为(CH2O)n。

根据题意得:M=30×2=60,n=60/12+1×2+16=2。

该有机物的分子式为C2H4O2。

3.商余法①用烃的相对分子质量除14,视商数和余数.有机物分子式和结构式的确定其中商数A为烃中的碳原子数.此法运用于具有确定通式的烃(如烷、烯、炔、苯的同系物等)。

有机物分子式结构式的确定和单体的寻找

有机物分子式结构式的确定和单体的寻找

有机物分子式结构式的确定一、有机物分子式的确定:(一)商余法:已知相对分子质量确定分子式,商数为碳数,余数定种类。

+2 烷烃0 烯烃或环烷烃—2 炔烃或二烯烃或环烯烃—6 苯及其同系物注意:当商数≥9时,可去H 补C 求另类,如:C9H20; C10H8 练习:1.某烃的相对分子质量为114,其可能的分子式是 。

(二)最简式法或摩尔质量法 1、最简式法由各元素的质量分数---------------→各元素的原子个数比---------------→最简式 相对分子质量==n ×最简式的式量注意:有的最简式,没有相对分子质量也可以确定分子式 如:CH 3 、CH 3O 、C 2H 5 、C 2H 5O 等 总结:最简式相同的物质 (1)、C n H 2n 型: (2)、C n H n 型:n=2、4、6、8 (3)、(CH 2O)n 型:n=1、2、3、6 (4)、(C 2H 4O)n 型:n=1、2 (5)、C 3H 4和C 9H 122、摩尔质量法由相对分子质量和各元素的质量分数,确定1mol 物质中各元素原子的物质的量,得出分子式。

)()()()(x x A M w M x n ⨯=注意:相对分子质量的确定方法:(1)定义法:)()()(A A n m A M ==(2)对于气体:4.22)()(⨯=标ρA M (3)相对密度法:)()()()(B A B A M M D ρρ===4)质量分数的变形式:)()()()(A x x M N M x w ⨯= 变形式:)()()()(x x x A w N M M ⨯=14M练习:1、经元素分析后,发现某烃的含碳量为82.76%,氢的质量分数则为17.24%,且相对分子质量为58,试推断该烃的分子式。

(8分)2.(8分)吗啡和海洛因都是严格查禁的毒品。

吗啡分子中C 、H 、N 、O 的质量分数分别为71.58%、6.67%、4.91%和16.84%,已知其相对分子质量不超过300。

有机物分子式和结构式的确定

有机物分子式和结构式的确定

2. 实验式和分子式的区别
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法: (1) 最简式法 先求最简式 n(C):n(H):n(O)
(C) : (H) : (O)
12 1 16
= m:n:p
由此得该有机物的最简式为CmHnOp 后求分子式,设为(CmHnOp)x
x
Hale Waihona Puke 相对分子质量 最简式量 12m
M n
16p
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法:
3. 化合物相对分子质量的确定
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
3. 化合物相对分子质量的确定
Mm n
M=22.4
d 1 M1 2 M2
例题:
3. 某混合气体在标准状况下的密度为0.821g/L, 该混合气体的平均相对分子质量为______.
4. 某卤代烃的蒸气密度是相同状况下甲烷密度 的11.75倍,该卤代烃的摩尔质量为:
___1_8_8_g_/_m__o_l___。
5. 如果ag某气体中含b个分子,则1摩该气体的 质量为_____a_N_A_/_b_g_____。
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法: (1) 最简式法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定有机物分子式和结构式的分析思路和分析方法一、确定有机物分子式和结构式的分析思路1、有机物组成元素的定性分析通常通过充分燃烧有机物的方式来确定有机物的组成元素,即:2、有机物分子式和结构式的定量分析二、确定有机物分子式的分析方法1、通式法⑴常见有机物的分子通式分子通式⑵方法:相对分子质量n(碳原子数)分子式例题1:某烷烃的相对分子质量为44,则该烷烃的分子式为。

解析:烷烃的通式为C n H 2n+2 ,则其相对分子质量为:14n + 2 = 44 ,n = 3 ,故该烷烃的分子式为:C 3H 82、质量分数法 方法:相对分子质量C 、H 、O 等原子数分子式例题2:某有机物样品3g 充分燃烧后,得到4.4g CO 2 和1.8g H 2O ,实验测得其相对分子质量为60,求该有机物的分子式。

解析:根据题意可判断该有机物分子中一定含有C 和H 元素,可能含有氧元素。

样品 CO 2 H 2O 3g 4.4g 1.8g 则:m(C) = g g 2.144124.4=⨯m(H) = g g 2.01828.1=⨯ 根据质量守恒可判断该有机物分子中一定含有O 元素,则该有机物分子中C 、H 、O 元素的质量分数依次为:ω(C) =%40%10032.1=⨯ggω(H) =%67.6%10032.0=⨯ggω(O) = 1 - 40% - 6.67% = 53.33%则该有机物的一个分子中含有的C 、H 、O 原子数依次为:N(C) =212%4060=⨯N(H) =41%67.660≈⨯ N(O) =216%33.5360≈⨯ 故该有机物的分子式为C 2H 4O 2 。

3、最简式法方法:质量分数、质量比原子数之比 → 最简式分子式(最简式)n = 分子式有时可根据最简式和有机物的组成特点(H 原子饱和情况)直接确定分子式,如:例题:如例题2 ,该有机物分子中各元素原子的数目之比为: N(C) ∶N(H) ∶N(O) =12%40∶1%67.6∶16%33.53≈ 1∶2∶1故该有机物的最简式为:CH 2O ,则:(12 + 1×2 + 16)× n = 60 ,n = 2 则该有机物的分子式为:C 2H 4O 2 。

4、燃烧通式法方法:燃烧通式、相对分子质量和燃烧产物质量分子式烃: C x H y + (4y x +)O 2 → x CO 2 + 2yH 2O △V (体积变化) 烃的含氧衍生物: C x H y O m + (24m y x -+)O 2 → x CO 2 + 2yH 2O △V (体积变化)例题:如例题2,设该有机物的分子式为:C x H y O mC x H y O m + (24m y x -+)O 2 → x CO 2 + 2y H 2O 60 44x 18×2y3g 4.4g 1.8ggy g x g 8.194.444360== x = 2 ,y = 4又12x + y + 16m = 60 ,则:m = 2 故该有机物的分子式为:C 2H 4O 2 。

5、化学方程式法方法:有机物分子通式和化学方程式分子式例题3:某饱和一元醇A 0.16g 与足量的金属钠充分反应,产生56 mL 氢气(标准状况),求该一元醇的分子式。

解析:设该饱和一元醇的分子式为:C n H 2n+2O ,则2C n H 2n+2O + 2Na2C n H 2n+1ONa + H 2↑2×(14n + 18)g 22.4L0.16g 0.056LLLg g n 056.04.2216.0)1814(2=+⨯1=n 故该饱和一元醇的分子式为:CH 4O 。

6、比例法方法:n(有机物A)∶n(C)∶n(H)∶n(O )…… = 1∶x ∶y ∶z ……例题:如例题2,样品 CO 2 H 2O O(样品中的氧原子) 3g 4.4g 1.8g 3g -1.2g -0.2g = 1.6g 则,n(A)∶n(C)∶n(H)∶n(O ) =m ol g g /603∶m ol g g /444.4∶2/188.1⨯mol g g ∶molg g/166.1= 0.05mol ∶0.1mol ∶0.2mol ∶0.1mol = 1∶2∶4∶2则该有机物的分子式为:C 2H 4O 2 。

7、商余法方法:将烃的相对分子质量(或者将有机物的相对分子质量减去官能团的相对分子质量后的差值),除以14(即CH 2的相对质量),则最大的商为烃或烃基中含CH 2原子团的个数,余数为氢原子数(若余数为正数,则加氢原子数;若余数为负数,则减氢原子数)。

即:M r ÷ 14 = n (商) …… m (余数) ,如:若n ≥6 ,并且烃为不饱和烃时,每减少1个碳原子,烃分子相应增加12个氢原子,直到烃为饱和烃为止;反之,当烃为饱和烃时,每增加1个碳原子,烃分子相应减少12个氢原子。

例题4:某烃的相对分子质量为128,则该烃的分子式为 。

解析:故该烃的通式为 22+n n H C ,分子式为209H C 。

当增加1个碳原子时,相应减少12个氢原子,则分子式为810H C 。

则该烃的分子式为209H C 或810H C 。

8、区间法(极限法)典例6:常温下,在密闭容器中混有2 mL 气态烷烃和10 mL O 2点火爆炸,生成的只是气态产物,除去其中的CO 2和H 2O ,又在剩余物中加入5 mL O 2,再进行一次爆炸,重新得到的只是气态产物,除得到CO 2外,还剩余O 2,试确定该烃的分子式。

9、讨论法典例7:25 ℃某气态烃与O2混合,在密闭容器中点燃爆炸后又恢复至25 ℃,此时容器内压强为原来的一半,再经NaOH溶液处理,容器几乎成为真空。

该烃的分子式可能为()。

A.C2H4 B. C2H6 C. C3H6 D. C3H8在通常状况下,37.0g由两种气态烷烃组成的混合物完全燃烧消耗4.25molO2,则此混合物可能的组合是_________,__________,__________,____________。

10.根据分子的平均组成及分子组成的通式确定分子式典例8:150℃时,1L混合烃与9L氧气混合,在密闭容器内充分燃烧,当恢复到150℃时,容器内的压强增大8%,则该混合烃的组成是(体积比)()A Ⅴ甲烷:Ⅴ乙烷=1:1B Ⅴ丙烷:Ⅴ乙烷=1:4C Ⅴ乙烯:Ⅴ丁烷=1:4D Ⅴ乙烯:Ⅴ丁烯=1:4注:判断混合烃组成时,可借助以下几条规律迅速确定混合烃的组成①平均相对分子质量小于或等于26的混合烃中一定有CH4②在温度高于100℃的环境下:烃燃烧体积变大,混合烃的平均分子式中H数目大于4烃燃烧体积不变,混合烃的平均分子式中H数目等于4烃燃烧体积变小,混合烃的平均分子式中H数目小于4,且一定含有C2H2。

③若平均分子式中:1<n(C)<2,一定有CH4;2<n(H)<4,一定有C2H2三、确定有机物结构式的分析方法1、根据价键规律确定某些有机物根据价键规律只存在一种结构,则直接由分子式便可确定该有机物的结构简式。

例如分子式为C2H6 ,根据价键规律,其结构简式只能为CH3CH3;分子式为CH4O ,根据价键规律,其结构简式只能为CH3OH 。

2、根据同分异构体的限定条件确定例如,分子式为C5H12的烷烃,其一氯代物只有一种,则该烃的结构简式只能为:3、根据定性实验确定方法:实验 特征性质 官能团种类、数目和位置 结构简式4、根据特征信息红外光谱法和核磁共振氢谱法确定例如核磁共振技术是利用核磁共振谱来测定有机化合物的结构,最有实用价值的就是氢谱,常用HNMR 表示,如,乙醚分子中有两种等效氢原子,其HNMR 谱中有两个共振峰,两个共振峰的强度之比为3∶2 ;乙醇分子中有三种等效氢原子,其HNMR 谱中有三个共振峰,三个共振峰的强度之比为3∶2∶1 。

信息特征:①共振峰的强度比刚好为各种等效氢原子的总数之比;②根据强度比可求出各种等效氢原子.....原子团...的个数,即1023=+x x (乙醚分子中的氢原子总数)。

则2=x ,即乙醚分子中有2个CH 2和2个CH 3 。

例题5:根据上述信息,C 4H 10的HNMR 谱有两种,其两个共振峰的强度之比为9∶1,则该烷烃的结构简式为 。

解析:因1019=+,则结合烷烃的结构特点,该烷烃分子中有1个CH 原子团和3个 CH 3原子团 ,故该烷烃分子的结构简式为:。

典例9:某有机化合物A 经李比希法测得其中含碳为72.0%、含氢为6.67%,其余为氧。

现用下列方法测定该有机化合物的相对分子质量和分子结构。

方法一:用质谱法分析得知A的相对分子质量为150。

方法二:核磁共振仪测出A 的核磁共振氢谱有5个峰,其面积之比为l :2:2:2:3,如下图A 所示。

方法三:利用红外光谱仪测得A 分子的红外光谱如下图B 所示。

请填空:(1)A 的分子式为 。

(2)A 的分子中含一个甲基的依据是a. A的相对分子质量b.A的分子式c.A的核磁共振氢谱图d.A分子的红外光谱图(3)A的结构简式为。

(4)A的芳香类同分异构体有多种,其中符合下列条件:①分子结构中只含一个官能团;②分子结构中含有一个甲基;③苯环上只有一个取代基。

则该类A的同分异构体共有种。

例6:化学上常用燃烧法确定有机物的组成。

如图所示装置是用燃烧法确定烃或烃的含氧衍生物分子式的常用装置,这种方法是在电炉加热时用纯氧氧化管内样品:根据产物的质量确定有机物的组成。

回答下列问题:(1)A中发生反应的化学方程式为。

(2) B装置的作用是,燃烧管C中CuO的作用是。

(3) 产生氧气按从左向右流向,燃烧管C与装置D、E的连接顺序是:C→→;(4)反应结束后,从A装置锥形瓶内的剩余物质中分离出固体,需要进行的实验操作是。

(5) 准确称取1.8g烃的含氧衍生物X的样品,经充分燃烧后,D管质量增加2.64g,E管质量增加1.08g,则该有机物的实验式是。

实验测得X的蒸气密度是同温同压下氢气密度的45倍,则X的分子式为,1molX分别与足量Na、NaHCO3反应放出的气体在相同条件下的体积比为1:1,x可能的结构简式为。

相关文档
最新文档