(浙江专用)高考数学第八章立体几何与空间向量5第5讲直线、平面垂直的判定及其性质高效演练分层突破

合集下载

浙江专用2018版高考数学大一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件

浙江专用2018版高考数学大一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件
答案 解析
如图1,连接OA,OB,OC,OP,
在 Rt△POA 、 Rt△POB 和 Rt△POC 中, PA = PC = PB ,
所以OA=OB=OC,即O为△ABC的外心.
垂 心. 答案 (2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的___
如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.
π (2)范围:[0,2].
3.平面与平面垂直
(1)二面角的有概念
①二面角:从一条直线出发的 两个半平面 所组成的图形叫做二面角;
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两
个半平面内分别作 垂直于棱 的两条射线,这两条射线所构成的角叫
做二面角的平面角.
(2)平面和平面垂直的定义
必在 答案
解析
A.直线AB上 √
C.直线AC上
B.直线BC上
D.△ABC内部
由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1. 又∵AC⊂平面ABC,∴平面ABC1⊥平面ABC. ∴C1在平面ABC上的射影H必在两平面交线AB上.
1
2
3
4
5
6
7
8
9
10 11 12 13
4.(2016· 包头模拟 ) 如图,三棱柱 ABC - A1B1C1 中,侧棱 AA1 垂直底面 A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确 的是
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l与平面α内的无数条直线都垂直,则l⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a⊥α,直线b⊥α,则a∥b.( √ ) (4)若α⊥β,a⊥β⇒a∥α.( × ) (5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √ )

高三数学一轮复习第八篇立体几何与空间向量第5节直线平面垂直的判定与性质课件理

高三数学一轮复习第八篇立体几何与空间向量第5节直线平面垂直的判定与性质课件理
第5节 直线、平面垂直的判定与性质
知识链条完善 考点专项突破 解题规范夯实
知识链条完善 把散落的知识连起来
【教材导读】 1.直线l与平面α 内无数条直线垂直,则直线l⊥α 吗? 提示:不一定,当这无数条直线相互平行时,l与α不一定垂直. 2.若平面α 内有一条直线垂直于平面β ,则α ⊥β 吗? 提示:垂直. 3.若α ⊥β ,则α 内任意直线都与β 垂直吗? 提示:不一定,平面α内只有垂直于交线的直线才与β垂直.
②二面角的平面角:在二面角α l β 的棱l上任取一点O,以点O为垂足, 在半平面α 和β 内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成 的∠AOB 叫做二面角的平面角.
故B1C⊥平面ABO.
由于AB⊂平面ABO,
(2)解:设 AB=x,在菱形 ABCD 中,由∠ABC=120°,可得 AG=GC= 3 x,GB=GD= x .
所以△EAC 的面积为 3,△EAD 的面积与△ECD 的面积均为 5 .
故三棱锥 E ACD 的侧面积为 3+2 5 .
故B1C⊥AB.
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.
文字语言
判定 一个平面过另一个平面的
定理
,则这两个平面垂直
图形语言
符号语言
线线垂直 线面垂直 面面垂直
(1)解:在四棱锥 P ABCD 中, 因为 PA⊥底面 ABCD,AB⊂ 平面 ABCD,所以 PA⊥AB. 又 AB⊥AD,PA∩AD=A,所以 AB⊥平面 PAD, 所以∠APB 是 PB 与平面 PAD 所成的角. 在 Rt△PAB 中,AB=PA, 所以∠APB=45°, 所以 PB 和平面 PAD 所成的角的大小为 45°.

高考数学(理)之立体几何与空间向量 专题05 直线、平面的垂直的判定与性质(解析版)

高考数学(理)之立体几何与空间向量 专题05 直线、平面的垂直的判定与性质(解析版)

立体几何与空间向量05 直线、平面的垂直的判定与性质一、具体目标:①理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;②以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理; ③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 二、知识概述:1.直线与平面垂直的判定与性质定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直. 定理:⎭⎪⎬⎪⎫a αb αl ⊥a l ⊥ba ∩b =A ⇒l ⊥α 2. 平面与平面垂直的判定与性质定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. 定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α【考点讲解】⎭⎪⎬⎪⎫α⊥βα∩β=MNAB βAB ⊥MN⇒AB ⊥α 3. 1.直线与平面垂直(1)判定直线和平面垂直的方法 ①定义法.②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直. ③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面. (2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一直线的两平面平行. 2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角. 3.平面与平面垂直(1)平面与平面垂直的判定方法 ①定义法②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直. (2)平面与平面垂直的性质如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 4.理解并会证明以下常用结论:1)过空间任意一点有且只有一条直线垂直于一个平面; 2)两条平行直线中有一条垂直于平面,则另一条也垂直于平面;3)如果两个平面互相垂直,那么在第一个平面内任取一点作另一个平面的垂线,该垂线必然落在第一个平面内;4)一个点到一个角的两边的距离相等,那么该点在这个角所在平面内的射影必然落在该角的平分线上;同样,如果一条直线与一个角的两个边所成的角相等(直线经过角的顶点),那么,该直线在这个角所在平面内的射影必然是该角的平分线;5)夹在两个平行平面之间的平行线段长度相等; 6)理解三垂线定理及逆定理。

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A ­BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A ­BCB 1=V B 1­ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCD­A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCD­A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD­A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ­ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ­ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC­A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥P­ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥P­NBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P ­NBM =V M ­PNB =23V C ­PNB =23×13×32×2=23.10.如图,在直三棱柱ABC ­A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC ­A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。

浙江高考数学一轮复习第八章立体几何84直线平面垂直的判定与性质课件

浙江高考数学一轮复习第八章立体几何84直线平面垂直的判定与性质课件

2021/4/17
浙江高考数学一轮复习第八章立体几何 84直线平面垂直的判定与性质课件
11
方法总结 证明线面垂直的常用方法及关键 (1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性 (a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性 质. (2)证明线面垂直的关键是证线线垂直,而证明线线垂直需借助线面垂直的 性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
POC∩平面ABCD=OC,∴CD⊥平面POC,又PO⊂平面POC,∴CD⊥PO,易知AB
与CD相交,∴PO⊥平面ABCD,∵PO⊂平面PAB,∴平面PAB⊥平面ABCD.
(2)解法一:取OD的中点F,过F作FG⊥PD于G,连接CG,CF.
∵OC=CD= 5 ,∴CF⊥OD.∵PO⊥平面ABCD,∴CF⊥PO,又OD∩PO=O,∴CF
2021/4/17
浙江高考数学一轮复习第八章立体几何 84直线平面垂直的判定与性质课件
20
17
则P(0,0, 3 ),D(-1,3,0),C(1,2,0),∴OP=(0,0, 3 ),OD=(-1,3,0),CP=(-1,-2, 3), CD =(-2,1,0). 设平面OPD的法向量为n1=(x1,y1,z1), 平面PCD的法向量为n2=(x2,y2,z2).
由 OP
OD
2021/4/17
常用结论 (1)过一点有且只有一条直线与已知平面垂直. (2)过一点有且只有一个平面与已知直线垂直.
直线l和平面α
l⊂α
l⊥α
的位置关系
或l∥α
l和α 斜交
θ(直线l与平面α
θ=0°
所成的角)的取值范围

2020版高考数学浙江专用新精准大一轮精讲通用版:第八章第5讲直线、平面垂直的判定及其性质含解析

2020版高考数学浙江专用新精准大一轮精讲通用版:第八章第5讲直线、平面垂直的判定及其性质含解析

[基础达标]1.(2019·嘉兴市七校联考)“直线a 与平面M 内的无数条直线都垂直”是“直线a 与平面M 垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:选B.根据直线与平面垂直的定义知“直线a 与平面M 内的无数条直线都垂直”不能推出“直线a 与平面M 垂直”,反之可以,所以应该是必要不充分条件.2. 如图,O 为正方体ABCD -A 1B 1C 1D 1的底面ABCD 的中心,则下列直线中与B 1O 垂直的是( )A .A 1DB .AA 1C .A 1D 1 D .A 1C 1解析:选D.由题易知A 1C 1⊥平面BB 1D 1D .又B 1O ⊂平面BB 1D 1D ,所以A 1C 1⊥B 1O . 3.(2019·温州中学高三模考) 如图,在三棱锥D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列命题中正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BCDC .平面ABC ⊥平面BDE ,且平面ACD ⊥平面BDE D .平面ABC ⊥平面ACD ,且平面ACD ⊥平面BDE解析:选C.因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理,DE ⊥AC ,由于DE ∩BE =E ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .故选C.4.(2019·浙江省名校协作体高三联考)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( )A .64B .104C .22D .32解析:选A.如图所示,取A 1C 1的中点D ,连接AD ,B 1D ,则可知B 1D ⊥平面ACC 1A 1,所以∠DAB 1即为直线AB 1与平面ACC 1A 1所成的角,不妨设正三棱柱的棱长为2,所以在Rt △AB 1D 中,sin ∠DAB 1=B 1D AB 1=322=64,故选A.5.(2019·浙江省高中学科基础测试)在四棱锥P -ABCD 中,底面ABCD 是直角梯形,BA ⊥AD ,AD ∥BC ,AB =BC =2,P A =3,P A ⊥底面ABCD ,E 是棱PD 上异于P ,D 的动点,设PEED=m ,则“0<m <2”是“三棱锥C -ABE 的体积不小于1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.过E 点作EH ⊥AD ,H 为垂足,则EH ⊥平面ABCD .因为V C ­ABE =V E ­ABC ,所以三棱锥C -ABE 的体积为23EH .若三棱锥C -ABE 的体积不小于1,则EH ≥32,又P A =3,所以PEED=m ≤1,故选B.6.(2019·绍兴市柯桥区高考数学模拟)如图,四边形ABCD 是矩形,沿直线BD 将△ABD 翻折成△A ′BD ,异面直线CD 与A ′B 所成的角为α,则( )A .α<∠A ′CAB .α>∠A ′CAC .α<∠A ′CD D .α>∠A ′CD解析:选B.因为AB ∥CD ,所以∠A ′BA 为异面直线CD 与A ′B 所成的角. 假设AB =BC =1,平面A ′BD ⊥平面ABCD . 连接AC 交BD 于点O , 连接A ′A ,A ′C ,A ′O , 则A ′O ⊥平面ABCD ,A ′O =AO =BO =CO =DO =12AC =22,所以A ′A =A ′C =A ′B =A ′D =1,所以△A ′BA ,△A ′CD 是等边三角形, △A ′CA 是等腰直角三角形, 所以∠A ′CA =45°,∠A ′CD =∠A ′BA =60°, 即α>∠A ′CA ,α=∠A ′CD . 排除A ,C ,D.故选B.7. 如图,在△ABC 中,∠ACB =90°,AB =8,∠ABC =60°,PC ⊥平面ABC ,PC =4,M 是AB 上的一个动点,则PM 的最小值为________.解析:作CH ⊥AB 于H ,连接PH .因为PC ⊥平面ABC ,所以PH ⊥AB ,PH 为PM 的最小值,等于27.答案:278. 如图所示,在四面体ABCD 中,AB ,BC ,CD 两两垂直,且BC =CD =1.直线BD 与平面ACD 所成的角为30°,则线段AB 的长度为________.解析:如图,过点B 作BH ⊥AC ,垂足为点H ,连接DH .因为CD ⊥AB ,CD ⊥BC ,所以平面ACD ⊥平面ABC ,所以BH ⊥平面ACD . 所以∠BDH 为直线BD 与平面ACD 所成的角. 所以∠BDH =30°,在Rt △BDH 中,BD =2,所以BH =22.又因为在Rt △BHC 中,BC =1, 所以∠BCH =45°.所以在Rt △ABC 中,AB =BC =1. 答案:1 9.(2019·台州市书生中学月考)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥CD ,AD ⊥CD ,PD =AD =DC =2AB ,则异面直线PC 与AB 所成角的大小为________;直线PB 与平面PDC 所成角的正弦值为________.解析:因为AB ∥CD ,所以∠PCD 即为异面直线PC 与AB 所成的角,显然三角形PDC 为等腰直角三角形,所以∠PCD =π4.设AB =1,则可计算得,PB =3,而点B 到平面PDC 的距离d 等于AD 的长为2,所以直线PB 与平面PDC 所成角的正弦值为d PB =23.答案:π4 2310.(2019·浙江名校新高考联盟联考)如图,已知正四面体D -ABC ,P 为线段AB 上的动点(端点除外),则二面角D -PC -B 的平面角的余弦值的取值范围是________.解析:当点P 从A 运动到B ,二面角D -PC -B 的平面角逐渐增大,二面角D -PC -B 的平面角最小趋近于二面角D -AC -B 的平面角,最大趋近于二面角D -BC -A 的平面角的补角,故余弦值的取值范围是⎝⎛⎭⎫-13,13. 答案:⎝⎛⎭⎫-13,13 11.如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的任意一点.(1)求证:平面P AC⊥平面PBC;(2)若P A=AC,D为PC的中点.求证:PB⊥AD.证明:(1)设⊙O所在的平面为α,由已知条件P A⊥α,BC在α内,所以P A⊥BC.因为点C是圆周上不同于A,B的任意一点,AB是⊙O的直径,所以∠BCA是直角,即BC⊥AC.又因为P A与AC是△P AC所在平面内的两条相交直线,所以BC⊥平面P AC.又因为BC在平面PBC内,所以平面P AC⊥平面PBC.(2)因为P A=AC,D是PC的中点,所以AD⊥PC.由(1)知平面P AC⊥平面PBC,且平面P AC∩平面PBC=PC.因为AD⊂平面P AC.所以AD⊥平面PBC.又PB⊂平面PBC,所以PB⊥AD.12.(2019·浙江名校协作体高三质检)如图,在四棱锥P­ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.(1)求证:PD∥平面OCM;(2)若AP与平面PBD所成的角为60°,求线段PB的长.解:(1)证明:设BD交OC于N,连接MN,OB,因为O为AD的中点,AD=2,所以OA=OD=1=BC.又因为AD∥BC,所以四边形OBCD为平行四边形,所以N为BD的中点,因为M为PB的中点,所以MN∥PD.又因为MN⊂平面OCM,PD⊄平面OCM,所以PD∥平面OCM.(2)由四边形OBCD为平行四边形,知OB=CD=1,所以△AOB为等边三角形,所以∠A=60°,所以BD=1+4-2×1×2×12=3,即AB2+BD2=AD2,即AB⊥BD.因为DP⊥平面ABP,所以AB⊥PD.又因为BD∩PD=D,所以AB⊥平面BDP,所以∠APB为AP与平面PBD所成的角,即∠APB=60°,所以PB=33.[能力提升]1.如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出下列四个结论:①DF⊥BC;②BD⊥FC;③平面BDF⊥平面BCF;④平面DCF⊥平面BCF,则上述结论可能正确的是()A .①③B .②③C .②④D .③④解析:选B.对于①,因为BC ∥AD ,AD 与DF 相交但不垂直,所以BC 与DF 不垂直,则①不成立;对于②,设点D 在平面BCF 上的射影为点P ,当BP ⊥CF 时就有BD ⊥FC ,而AD ∶BC ∶AB =2∶3∶4可使条件满足,所以②正确;对于③,当点D 在平面BCF 上的射影P 落在BF 上时,DP ⊂平面BDF ,从而平面BDF ⊥平面BCF ,所以③正确;对于④,因为点D 在平面BCF 上的射影不可能在FC 上,所以④不成立.2.(2019·绍兴诸暨高考模拟)已知三棱锥A -BCD 的所有棱长都相等,若AB 与平面α所成角等于π3,则平面ACD 与平面α所成角的正弦值的取值范围是( ) A .⎣⎢⎡⎦⎥⎤3-66,3+66 B .⎣⎢⎡⎦⎥⎤3-66,1C .⎣⎡⎦⎤22-36,22+36D .⎣⎡⎦⎤22-36,1解析:选A.因为三棱锥A -BCD 的所有棱长都相等,所以三棱锥A -BCD 为正四面体,如图:设正四面体的棱长为2,取CD 中点P ,连接AP ,BP , 则∠BAP 为AB 与平面ADC 所成角.AP =BP =3,可得cos ∠BAP =33,sin ∠BAP =63.设∠BAP =θ.当CD 与α平行且AB 在平面ACD 上面时,平面ACD 与平面α所成角的正弦值最小,为sin ⎝⎛⎭⎫π3-θ=sin π3cos θ-cos π3sin θ=32×33-12×63=3-66;当CD 与α平行且AB 在平面ACD 下面时,平面ACD 与平面α所成角的正弦值最大,为sin ⎝⎛⎭⎫π3+θ=sin π3cos θ+cos π3sin θ=32×33+12×63=3+66,所以平面ACD 与平面α所成角的正弦值的取值范围是⎣⎢⎡⎦⎥⎤3-66,3+66.故选A. 3.(2019·杭州市高三期末)在△ABC 中,∠ABC =π3,边BC 在平面α内,顶点A 在平面α外,直线AB 与平面α所成角为θ.若平面ABC 与平面α所成的二面角为π3,则sin θ=________.解析:过A 作AO ⊥α,垂足是O ,过O 作OD ⊥BC ,交BC 于D ,连接AD ,则AD ⊥BC ,所以∠ADO 是平面ABC 与平面α所成的二面角,即∠ADO =π3,∠ABO 是直线AB 与平面α所成的角,即∠ABO =θ,设AO =3,所以AD =2,在Rt △ADB 中,∠ABD =π3,所以AB =2sin π3=433,所以sin θ=AO AB =3433=34.答案:344.(2019·浙江“七彩阳光”新高考联盟联考)已知直角三角形ABC 的两条直角边AC =2,BC =3,P 为斜边AB 上一点,沿CP 将此三角形折成直二面角A -CP -B ,此时二面角P -AC -B 的正切值为2,则翻折后AB 的长为________.解析:如图,在平面PCB 内过P 作直二面角A -CP -B 的棱CP 的垂线交边BC 于E, 则EP ⊥平面ACP .于是在平面P AC 中过P 作二面角P -AC -B 的棱AC 的垂线,垂足为D ,连接DE ,则∠PDE 为二面角P -AC -B 的平面角,且tan ∠PDE =EPPD=2,设DP =a ,则EP =2a .如图,设∠BCP =α,则∠ACP =90°-α,则在直角三角形DPC 中,PC =a sin (90°-α)=acos α,又在直角三角形PCE 中,tan α=PE PC ,则acos α·tan α=2a ,sin α=2cos 2α,所以α=45°,因为二面角A ­CP ­B 为直二面角,所以cos ∠ACB =cos ∠ACP ·cos ∠BCP ,于是AC 2+BC 2-AB 22·AC ·BC=cos∠ACP ·sin ∠ACP =12,解得AB =7.答案:7 5.(2019·浙江模拟)如图,在四棱锥E -ABCD 中,平面CDE ⊥平面ABCD ,∠DAB =∠ABC =90°,AB =BC =1,AD =ED =3,EC =2.(1)证明:AB ⊥平面BCE ;(2)求直线AE 与平面CDE 所成角的正弦值. 解:(1)证明:因为∠DAB =∠ABC =90°, 所以四边形ABCD 是直角梯形,因为AB =BC =1,AD =ED =3,EC =2.所以CD =12+(3-1)2=5,所以CE 2+DC 2=DE 2,所以EC ⊥CD ,因为平面EDC ⊥平面ABCD ,平面EDC ∩平面ABCD =DC , 所以CE ⊥平面ABCD ,所以CE ⊥AB ,又AB ⊥BC ,BC ∩CE =C , 所以AB ⊥平面BCE .(2)过A 作AH ⊥DC ,交DC 于H , 则AH ⊥平面DCE ,连接EH ,则∠AEH 是直线AE 与平面DCE 所成的角,因为12×DC ×AH =AD +BC 2×AB -12×AB ×BC ,所以AH =12×(3+1)×1-12×1×112×5=355,AE =AB 2+(CE 2+BC 2)=6,所以sin ∠AEH =3010,所以直线AE 与平面CDE 所成角的正弦值为3010.6.(2019·鲁迅中学高考方向性测试) 四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,E 为AB 的中点,P A ⊥平面ABCD ,PC 与平面P AB 所成的角的正弦值为64.(1)在棱PD 上求一点F ,使AF ∥平面PEC ; (2)求二面角D -PE -A 的余弦值.解:(1)分别取PD ,PC 的中点F ,G ,则FG ∥CD ∥AB ,FG =12CD =12AB =AE ,所以四边形AEGF 为平行四边形, 所以AF ∥EG ,又EG ⊂平面PEC , 所以AF ∥平面PEC ,所以PD 的中点F 即为所求.(2)易知,∠CPE 即为PC 与平面P AB 所成的角,在Rt △PEC 中,CE CP =64,即33+1+P A 2=64,解得:P A =2,过D 作BA 的垂线,垂足为H ,过H 作PE 的垂线,垂足为K ,连接KD , 因为P A ⊥平面ABCD ,所以P A ⊥DH ,又DH ⊥BA ,所以DH ⊥平面PBA , 所以DH ⊥PE ,所以PE ⊥平面DHK ,所以PE ⊥DK , 所以∠DKH 即为所求的二面角的平面角, 在Rt △DHK 中,DH =3,由于PE ·HK =EH ·P A ,所以HK =EH ·P A PE =45,从而DK =3+165=315,所以cos ∠DKH =HK DK =43131,即二面角D -PE -A 的余弦值为43131.。

浙江省2021届高考数学一轮复习第八章立体几何与空间向量第5节直线平面垂直的判定及其性质含解析

浙江省2021届高考数学一轮复习第八章立体几何与空间向量第5节直线平面垂直的判定及其性质含解析

第5节直线、平面垂直的判定及其性质考试要求 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知识梳理1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α性质定理两直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.垂直关系的转化2.直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)过一点有且只有一条直线与已知平面垂直.(5)过一点有且只有一个平面与已知直线垂直.诊断自测1.判断下列说法的正误.(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( )(2)垂直于同一个平面的两平面平行.( )(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( )解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.答案(1)×(2)×(3)×(4)×2.(2020·温州适应性测试)设m,n为直线,α,β为平面,则m⊥α的一个充分条件可以是( )A.α⊥β,α∩β=n,m⊥nB.α∥β,m⊥βC.α⊥β,m∥βD.n⊂α,m⊥n解析对于A,直线m与平面α可能平行、相交或直线m在平面α内,A错误;对于B,由直线垂直于两平行平面中的一个,得该直线垂直于另一个平面,B正确,对于C,直线m与平面α可能平行、相交或直线m在平面α内,C错误;对于D,直线m与平面α可能平行、相交或直线m在平面α内,D错误.综上所述,故选B.答案 B3.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l,故选C.答案 C4.在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析如图,由题设知A1B1⊥平面BCC1B1且BC1⊂平面BCC1B1,从而A1B1⊥BC1,又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1.答案 C5.(2020·北京顺义区二模)已知m,n是两条不同的直线,α,β是两个不同的平面,则( )A.若m⊥α,α⊥β,则m∥βB.若m∥α,n⊥α,则m⊥nC.若m⊂α,n⊂α,m∥β,n∥β,则α∥βD.若m∥α,n∥α,则m∥n解析在如图所示的正方体中依次判断各个选项;A选项,面ABCD⊥面ADD1A1,AA1⊥面ABCD,此时AA1⊂面ADD1A1,可知A错误;B选项,m∥α,则α内必存在直线,使得m∥l;又n⊥α,则n⊥l,可知n⊥m,可知B正确;C选项,取AA1和DD1中点E和F,可知A1D1∥面ABCD,EF∥面ABCD,A1D1,EF⊂面ADD1A1,此时面ADD1A1⊥面ABCD,可知C错误;D选项,AA1∥面BCC1B1,AD∥面BCC1B1,此时AA1∩AD=A,可知D错误.答案 B6.(必修2P67练习2改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O,(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.图1 图2(2)如图2,∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,AB⊂平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.答案(1)外(2)垂考点一线面垂直的判定与性质【例1】(2020·苏锡常镇四市一调)如图,正三棱柱ABC-A1B1C1的高为6,其底面边长为2.已知点M,N分别是棱A1C1,AC的中点,点D是棱CC1上靠近C的三等分点.求证:(1)B1M∥平面A1BN;(2)AD⊥平面A1BN.证明(1)连接MN,正三棱柱ABC-A1B1C1中,四边形AA1C1C是平行四边形,因为点M,N分别是棱A1C1,AC的中点,所以MN∥AA1且MN=AA1,又正三棱柱ABC-A1B1C1中AA1∥BB1且AA1=BB1,所以MN∥BB1且MN=BB1,所以四边形MNBB1是平行四边形,所以B1M∥BN,又B1M⊄平面A1BN,BN⊂平面A1BN,所以B1M∥平面A1BN.(2)正三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BN⊂平面ABC,所以BN⊥AA1.在正△ABC 中,N 是AC 的中点,所以BN ⊥AC ,又AA 1,AC ⊂平面AA 1C 1C ,AA 1∩AC =A , 所以BN ⊥平面AA 1C 1C , 又AD ⊂平面AA 1C 1C , 所以AD ⊥BN .由题意,AA 1=6,AC =2,AN =1,CD =63, 所以AA 1AC =AN CD =62, 又∠A 1AN =∠ACD =π2,所以△A 1AN ∽△ACD , 则∠AA 1N =∠CAD ,所以∠ANA 1+∠CAD =∠ANA 1+∠AA 1N =π2,则AD ⊥A 1N ,又BN ∩A 1N =N ,BN ,A 1N ⊂平面A 1BN , 所以AD ⊥平面A 1BN .规律方法 (1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【训练1】 如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD =13DB ,点C 为圆O 上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB .求证:PA ⊥CD .证明 因为AB 为圆O 的直径,所以AC ⊥CB . 在Rt△ABC 中,由3AC =BC 得,∠ABC =30°. 设AD =1,由3AD =DB 得,DB =3,BC =2 3.由余弦定理得CD2=DB2+BC2-2DB·BC cos 30°=3,所以CD2+DB2=BC2,即CD⊥AB.因为PD⊥平面ABC,CD⊂平面ABC,所以PD⊥CD,由PD∩AB=D得,CD⊥平面PAB,又PA⊂平面PAB,所以PA⊥CD.考点二面面垂直的判定与性质【例2】(2018·江苏卷)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.证明(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.规律方法(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【训练2】如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明 (1)在平面ABD 内,AB ⊥AD ,EF ⊥AD ,则AB ∥EF . ∵AB ⊂平面ABC ,EF ⊄平面ABC , ∴EF ∥平面ABC .(2)∵BC ⊥BD ,平面ABD ∩平面BCD =BD ,平面ABD ⊥平面BCD ,BC ⊂平面BCD , ∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .又AB ⊥AD ,BC ,AB ⊂平面ABC ,BC ∩AB =B , ∴AD ⊥平面ABC ,又因为AC ⊂平面ABC ,∴AD ⊥AC . 考点三 平行与垂直的综合问题多维探究角度1 多面体中平行与垂直关系的证明【例3-1】 (2018·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .证明 (1)因为PA =PD ,E 为AD 的中点,所以PE ⊥AD . 因为底面ABCD 为矩形,所以BC ∥AD . 所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD .又PD ⊂平面PAD ,所以AB ⊥PD . 又因为PA ⊥PD ,且PA ∩AB =A , 所以PD ⊥平面PAB .又PD ⊂平面PCD , 所以平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .规律方法 (1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化. (2)垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用. 角度2 平行垂直中探索性问题【例3-2】 如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,BC =CE ,点F 为CE 的中点.(1)证明:AE ∥平面BDF .(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM ⊥BE ?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由. (1)证明 连接AC 交BD 于O ,连接OF ,如图①.∵四边形ABCD 是矩形,∴O 为AC 的中点,又F 为EC 的中点, ∴OF 为△ACE 的中位线,∴OF ∥AE ,又OF ⊂平面BDF ,AE ⊄平面BDF , ∴AE ∥平面BDF .(2)解 当P 为AE 中点时,有PM ⊥BE ,证明如下:取BE 中点H ,连接DP ,PH ,CH ,∵P 为AE 的中点,H 为BE 的中点,∴PH ∥AB ,又AB ∥CD , ∴PH ∥CD ,∴P ,H ,C ,D 四点共面.∵平面ABCD ⊥平面BCE ,平面ABCD ∩平面BCE =BC ,CD ⊂平面ABCD ,CD ⊥BC .∴CD ⊥平面BCE ,又BE ⊂平面BCE ,∴CD ⊥BE ,∵BC =CE ,H 为BE 的中点,∴CH ⊥BE ,又CD ∩CH =C , ∴BE ⊥平面DPHC ,又PM ⊂平面DPHC , ∴BE ⊥PM ,即PM ⊥BE .规律方法 (1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.【训练3】 (1)(角度1)(2019·江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:①A 1B 1∥平面DEC 1; ②BE ⊥C 1E .(2)(角度2)(2018·全国Ⅲ卷)如图,矩形ABCD 所在平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.①证明:平面AMD ⊥平面BMC ;②在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. (1)证明 ①因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.②因为AB =BC ,E 为AC 的中点, 所以BE ⊥AC .因为三棱柱ABC -A 1B 1C 1是直棱柱, 所以C 1C ⊥平面ABC .又因为BE ⊂平面ABC ,所以C 1C ⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .(2)①证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD , 所以BC ⊥平面CMD , 又DM ⊂平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . ②解 当P 为AM 的中点时,MC ∥平面PBD . 证明如下:如图,连接AC ,BD ,AC 交BD 于O . 因为ABCD 为矩形,所以O 为AC 中点.连接OP , 因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .基础巩固题组一、选择题1.已知平面α⊥平面β,且α∩β=b,a⊂α,则“a⊥b”是“a⊥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析平面α⊥平面β,且α∩β=b,a⊂α,若a⊥b,则a⊥β,充分性成立;平面α⊥平面β,因为α∩β=b,所以b⊂β,若a⊥β,则a⊥b,必要性成立,所以“a⊥b”是“a⊥β”的充要条件,故选C.答案 C2.下列命题正确的是( )A.若直线l不平行于平面α,则α内不存在直线平行于直线lB.若直线l不垂直于平面α,则α内不存在直线垂直于直线lC.若平面α不平行于平面β,则β内不存在直线平行于平面αD.若平面α不垂直于平面β,则β内不存在直线垂直于平面α解析A中,若直线l在平面α内,则平面α内存在直线平行于直线l;B中,平面α内存在无数条直线与直线l垂直;C中,平面β内与两平面交线平行的直线都与平面α平行;故选D.答案 D3.(2015·浙江卷)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析由面面垂直的判定定理可知A正确;B中,l与m可能平行、垂直、相交、异面;C中,α与β可能相交、平行;D中,l与m可能异面、平行.答案 A4.若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为( )A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β解析由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确.过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确.根据面面垂直的性质定理知C,D正确.答案 B5.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC解析因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,∴BC⊥平面PAE,DF∥BC,则DF⊥平面PAE,又DF⊂平面PDF,从而平面PDF⊥平面PAE.因此B,C均正确.答案 D6.(2020·北京门头沟区一模)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是( )解析对于A,AB为体对角线,M、N、Q分别为棱的中点,由中位线定理可得MN,MQ,NQ平行于所对应的面对角线,连接另一条面对角线,由线面垂直的判定可得AB垂直于MN,MQ,NQ,可得AB垂直于平面MNQ;对于B,AB为上底面的对角线,显然AB垂直于MN,与AB相对的下底面的面对角线平行,且与直线NQ垂直,可得AB垂直于平面MNQ;对于C,AB为前面的面对角线,显然AB垂直于MN,QN在下底面且与棱平行,此棱垂直于AB所在的面,即有AB垂直于QN,可得AB垂直于平面MNQ;对于D,AB为上底面的对角线,MN平行于前面的一条面对角线,此对角线与AB所成角为60°,则AB不垂直于平面MNQ.答案 D二、填空题7.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.解析∵PA⊥平面ABC,AB,AC,BC⊂平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.答案 48.(2019·北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________. 解析已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.答案若m∥α,l⊥α,则l⊥m(或若l⊥m,l⊥α,则m∥α,答案不唯一)9.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析由题意可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD.又PC⊂平面PCD,∴平面MBD⊥平面PCD.答案DM⊥PC(或BM⊥PC等)10.已知α,β是两个平面,m,n是两条直线.(1)如果m⊥α,n∥α,那么m,n的位置关系是________;(2)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角的大小关系是________.解析(1)由线面平行的性质定理知存在直线l⊂α,n∥l,m⊥α,所以m⊥l,所以m⊥n.(2)因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等.答案(1)垂直(2)相等三、解答题11.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.(1)求证:PB∥平面MNC;(2)若AC=BC,求证:PA⊥平面MNC.证明(1)因为M,N分别为AB,PA的中点,所以MN∥PB.又因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.(2)因为PA⊥PB,MN∥PB,所以PA⊥MN.因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB.所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又MN∩CM=M,所以PA⊥平面MNC.12.(2019·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD 的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.(1)证明因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.(2)证明因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .又因为AB ∥CD ,所以AB ⊥AE .又AB ∩PA =A ,所以AE ⊥平面PAB .因为AE ⊂平面PAE ,所以平面PAB ⊥平面PAE .(3)解 棱PB 上存在点F ,使得CF ∥平面PAE .理由如下:取PB 的中点F ,PA 的中点G ,连接CF ,FG ,EG ,则FG ∥AB ,且FG =12AB .因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB .所以FG ∥CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ∥EG . 因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .能力提升题组13.(2019·全国Ⅲ卷)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( ) A.BM =EN ,且直线BM ,EN 是相交直线 B.BM ≠EN ,且直线BM ,EN 是相交直线 C.BM =EN ,且直线BM ,EN 是异面直线 D.BM ≠EN ,且直线BM ,EN 是异面直线解析 取CD 的中点O ,连接ON ,EO ,因为△ECD 为正三角形,所以EO ⊥CD ,又平面ECD ⊥平面ABCD ,平面ECD ∩平面ABCD =CD ,所以EO ⊥平面ABCD .设正方形ABCD 的边长为2,则EO =3,ON =1,所以EN 2=EO 2+ON 2=4,得EN =2.过M 作CD 的垂线,垂足为P ,连接BP ,则MP =32,CP =32,所以BM 2=MP 2+BP 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322+22=7,得BM =7,所以BM ≠EN .连接BD ,BE ,因为四边形ABCD 为正方形,所以N 为BD 的中点,即EN ,MB 均在平面BDE 内,所以直线BM ,EN 是相交直线,故选B.答案 B14.(2020·浙江教育绿色评价联盟适考)在三棱锥P -ABC 中,E 为线段AB (不包括端点)上一点,则错误的是( )A.一定存在唯一的平面α经过点E ,使得平面α∥平面PACB.一定存在唯一的平面α经过点E ,使得平面α⊥平面PACC.一定存在唯一的平面α经过点E,使得平面α⊥PAD.在平面ABC内,一定存在唯一的直线l经过点E,使得l∥平面PAC解析由点E为平面PAC外一点,逐项分析如下:选项理由正误A过平面外一点有且只有一个平面与已知平面平行正确B 过一点有且只有一条直线与已知平面垂直;过平面垂线的所有平面与已知平面垂直错误C过一点有且只有一个平面与已知直线垂直正确D 过已知平面的平行直线的平面与已知平面相交,则交线与已知直线平行;又在同一平面内有且只有一条直线与已知直线平行正确答案 B15.如图,已知六棱锥PABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;又平面PAD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错误;由正六边形的性质得BC∥AD,又AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错误;在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确.答案①④16.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,点D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.解析由题意易知B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF即可.令CF⊥DF,设AF=x,则A1F=3a-x.易知Rt△CAF∽Rt△FA1D,得AC A 1F =AF A 1D ,即2a 3a -x =x a, 整理得x 2-3ax +2a 2=0, 解得x =a 或x =2a . 答案 a 或2a17.如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由. (2)证明:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:连接CM ,因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB .CM ⊄平面PAB . 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD . 因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD . 又BD ⊂平面ABCD ,从而PA ⊥BD . 因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .18.(2020·北京西城区测试)如图,在多面体ABCDEF 中,底面ABCD 为矩形,侧面ADEF 为梯形,AF∥DE,DE⊥AD,DC=DE.(1)求证:AD⊥CE;(2)求证:BF∥平面CDE;(3)判断线段BE上是否存在点Q,使得平面ADQ⊥平面BCE?并说明理由. (1)证明由底面ABCD为矩形知AD⊥CD.又因为DE⊥AD,DE∩CD=D,所以AD⊥平面CDE.又因为CE⊂平面CDE,所以AD⊥CE.(2)证明由底面ABCD为矩形,知AB∥CD,又因为AB⊄平面CDE,CD⊂平面CDE,所以AB∥平面CDE.同理AF∥平面CDE,又因为AB∩AF=A,所以平面ABF∥平面CDE.又因为BF⊂平面ABF,所以BF∥平面CDE.(3)解结论:线段BE上存在点Q(即BE的中点),使得平面ADQ⊥平面BCE. 证明如下:取CE的中点P,BE的中点Q,连接AQ,DP,PQ,则PQ∥BC.由AD∥BC,得PQ∥AD.所以A,D,P,Q四点共面.由(1)知AD⊥平面CDE,又DP⊂平面CDE,所以AD⊥DP,故BC⊥DP.在△CDE中,由DC=DE,可得DP⊥CE.又因为BC∩CE=C,所以DP⊥平面BCE.又因为DP⊂平面ADPQ,所以平面ADPQ⊥平面BCE(即平面ADQ⊥平面BCE).即线段BE上存在点Q(即BE中点),使得平面ADQ⊥平面BCE.。

高考文数一轮复习课件:第八章立体几何第五节直线、平面垂直的判定与性质

高考文数一轮复习课件:第八章立体几何第五节直线、平面垂直的判定与性质

1.给出下列四个命题:
①垂直于同一直线的两个平面互相平行; ②垂直于同一平面的两个平面互相平行; ③若一个平面内有无数条直线与另一个平面都平行,那么这两个平面相 互平行; ④若一条直线垂直于一个平面内的任意一条直线,那么这条直线垂直于 这个平面.
其中真命题的个数是 ( B )
A.1 B.2 C.3 D.4
垂直于同一个平面的两条ห้องสมุดไป่ตู้线⑦ 平行
⑧ a ⇒ a ∥ b ⑨ b
与“直线与平面垂直”有关的结论 (1)直线与平面垂直的定义常常逆用,即a⊥α,b⊂α⇒a⊥b.
(2)若两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平
面. (3)垂直于同一条直线的两个平面平行. (4)过一点有且只有一条直线与已知平面垂直. (5)过一点有且只有一个平面与已知直线垂直.
垂直.
(2)直线与平面垂直的判定定理及性质定理
文字语言 判定 定理 一条直线与一个平面内的② 两条相交直线 都 垂直,则该直线与此平面垂直 图形语言 符号语言
③ a、b ④ a b O ⇒ l ⊥ α ⑤ l a ⑥ l b
性质 定理
∴AB∥l.
(3)∵C'D⊥BD,C'D⊥DE,ED∩BD=D, ∴C'D⊥平面BDE.
S C= C 'F , 1 ∵ = ' DF S
0, 2 .
3.二面角的有关概念
(1)二面角:从一条直线出发的 面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分 别作 平面角. 垂直于棱 的两条射线,这两条射线所成的角叫做二面角的 两个半平面 所组成的图形叫做二
4.平面与平面垂直的判定定理与性质定理

高考数学一轮复习 第8章 立体几何 第5讲 直线、平面垂直的判定与性质课件 文

高考数学一轮复习 第8章 立体几何 第5讲 直线、平面垂直的判定与性质课件 文
12/11/2021
所以 A1C1⊥B1D1. 又 B1D1∩BB1=B1,所以 A1C1⊥平面 BB1D1D. 又 BD1⊂平面 BB1D1D,所以 A1C1⊥BD1. 同理,DC1⊥BD1,DC1∩A1C1=C1, 所以 BD1⊥平面 A1C1D.② 由①②可知 EF∥BD1.
12/11/2021
12/11/2021
由 AC⊥平面 DBE,易知 AC⊥BD,故②正确; 因为 DE 为三棱锥 D-ABC 的高, 所以 V 三棱锥 D-ABC=13S△ABC·DE =13×12×1×1× 22=122,故③正确. 答案:①②③
12/11/2021
考点一 直线与平面垂直的判定与性质
(1)(2017·高考全国卷Ⅲ)在正方体 ABCD-A1B1C1D1 中, E 为棱 CD 的中点,则( )
2.(必修 2 P69 例 3 改编)如图,AB 是⊙O 的 直径,PA 垂直于⊙O 所在的平面,C 是圆 周上不同于 A,B 的任意一点. (1)求证:平面 PAC⊥平面 PBC; (2)若 PA=AC,D 为 PC 的中点.求证:PB⊥AD.
12/11/2021
证明:(1)设⊙O 所在的平面为 α, 由已知条件 PA⊥α,BC 在 α 内,所以 PA⊥BC. 因为点 C 是圆周上不同于 A,B 的任意一点, AB 是⊙O 的直径, 所以∠BCA 是直角,即 BC⊥AC. 又因为 PA 与 AC 是△PAC 所在平面内的两条相交直线,所以 BC⊥平面 PAC. 又因为 BC 在平面 PBC 内, 所以平面 PAC⊥平面 PBC.
2.如图,在四面体 ABCD 中,平面 BAD⊥ 平面 CAD,∠BAD=90°.M,N,Q 分 别为棱 AD,BD,AC 的中点. (1)求证:CD∥平面 MNQ; (2)求证:平面 MNQ⊥平面 CAD.

2023年新高考数学一轮复习8-5 直线、平面垂直的判定及性质(知识点讲解)含详解

2023年新高考数学一轮复习8-5 直线、平面垂直的判定及性质(知识点讲解)含详解

专题8.5 直线、平面垂直的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的垂直关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理的两条相交直线都垂直,2.(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°. (3)范围:[0,]2π.3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. (3)范围:[0,π]. 4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理5.(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线. (2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直. (5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.【常考题型剖析】题型一:与线、面垂直相关命题的判定例1.(浙江·高考真题(理))下列命题中错误的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β例2.(2023·全国·高三专题练习)设m ,n 是不同的直线,α,β,γ是不同的平面,则下面说法正确的是( )A .若αβ⊥,αγ⊥,则//βγB .若αβ⊥,//m α,则m β⊥C .若m α⊥,//m β,则αβ⊥D .若//m n ,n ⊂α,则//m α例3.(江苏·高考真题)设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号 (写出所有真命题的序号)例4.(2019·北京高考)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【方法技巧】判定定理与性质定理的合理转化是证明垂直关系的基本思想;另外,在解题中要重视平面几何知识,特别是正、余弦定理及勾股定理的应用. 题型二:直线与平面垂直的判定与性质例5.(2021·浙江·高考真题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B例6.【多选题】(2021·全国·高考真题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N为正方体的顶点.则满足MN OP ⊥的是( )A . B .C .D .【总结提升】证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想. 题型三:平面与平面垂直的判定与性质例8. (2022·江西·高三阶段练习(理))如图,在四面体ABCD 中,AB CD ⊥,1AB CD ==,BD =,BC AD == )A .2B .3C .4D .5例9.(2021·全国·高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.例10. (2020·全国·高考真题(文))如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【总结提升】1.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式(如勾股定理)证明线线垂直,也可以根据已知的垂直关系证明线线垂直.2.垂直关系的转化:3.判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β). 4.证面面垂直的思路(1)关键是考虑证哪条线垂直哪个面.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑. (2)条件中告诉我们某种位置关系,就要联系到相应的性质定理,如已知两平面互相垂直,我们就要联系到两平面互相垂直的性质定理. 题型四:平行和垂直的综合问题例11.(2018·江苏·高考真题)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(1)11//AB A B C 平面; (2)111ABB A A BC ⊥平面平面.例12.(2019·北京·高考真题(文))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面P AC ;(Ⅱ)若∠ABC =60°,求证:平面P AB ⊥平面P AE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面P AE ?说明理由.例13.(2020·全国·高三专题练习)如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,12AA =.(1)求证:1//B C 平面1A BM ; (2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AAC C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.例14.(2018·全国·高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q为线段AD上一点,P为线段BC上一点,且23BP DQ DA==,求三棱锥Q ABP-的体积.【规律方法】1.对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.2.解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.3.探索性问题(1)处理空间中平行或垂直的探索性问题,一般先根据条件猜测点的位置,再给出证明.探索点存在问题,点多为中点或n等分点中的某一个,需根据相关的知识确定点的位置.(2)利用向量法,设出点的坐标,结论变条件,求出点的坐标,并指明点的位置.专题8.5 直线、平面垂直的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的垂直关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理的两条相交直线都垂直,2.(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°. (3)范围:[0,]2π.3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)范围:[0,π].4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理5.(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.【常考题型剖析】题型一:与线、面垂直相关命题的判定例1.(浙江·高考真题(理))下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【答案】D【解析】【分析】利用面面垂直的性质定理和线面平行的判定定理证明A正确;利用面面垂直的判定定理证明B正确;利用面面垂直的性质定理和线面垂直的判定定理证明C正确;举反例可得D错误.【详解】对于A ,设平面α∩平面β=直线a , 设直线b α⊂,且b //a , 则显然直线b ⊄平面β,根据线面平行的判定定理可得直线b //β, 故A 正确;对于B ,如果α内存在直线与β平行,则由面面垂直的判定定理可知平面α⊥平面β, 与已知矛盾,故B 正确;对于C ,设平面α平面a =,平面β平面γb =, 在γ内作直线,m a n b ⊥⊥,由面面垂直的性质定理可得,m n αβ⊥⊥, 又∵直线,l l αβ⊂⊂,∴,m l n l ⊥⊥, 又∵α∩β=l ,∴,m n 为相交直线, 又∵⊂m,n 平面γ,∴l ⊥平面γ, 故C 正确;平面α⊥平面β,设平面α∩平面βa =, 在平面α内与a 平行的直线都不与平面β垂直, 故 D 项错误. 故选:D.例2.(2023·全国·高三专题练习)设m ,n 是不同的直线,α,β,γ是不同的平面,则下面说法正确的是( )A .若αβ⊥,αγ⊥,则//βγB .若αβ⊥,//m α,则m β⊥C .若m α⊥,//m β,则αβ⊥D .若//m n ,n ⊂α,则//m α 【答案】C 【解析】【分析】由线面、面面的位置关系,结合平面的基本性质、面面垂直的判定等判断各选项的正误.【详解】A :由αβ⊥,αγ⊥,则//βγ或,βγ相交,错误;B :由αβ⊥,//m α,则//m β或m β⊂或,m β相交,错误;C :由//m β,则存在直线l β⊂且//l m ,而m α⊥则l α⊥,根据面面垂直的判定易知αβ⊥,正确;D :由//m n ,n ⊂α,则//m α或m α⊂,错误.故选:C例3.(江苏·高考真题)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;(4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号 (写出所有真命题的序号)【答案】(1)(2)【解析】【详解】由线面平行的判定定理知,(2)正确;相应地(1)可转化为一个平面内有两相交直线分别平行于另一个平面,所以这两个平面平行.直线与平面垂直必须直线与平面内两条相交直线垂直,所以(3)(4)都不正确. 例4.(2019·北京高考)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: .【答案】②③⇒①或①③⇒②【解析】已知l ,m 是平面α外的两条不同直线,由①l ⊥m 与②m ∥α,不能推出③l ⊥α,因为l 可以与α平行,也可以相交不垂直;由①l ⊥m 与③l ⊥α能推出②m ∥α;由②m ∥α与③l ⊥α可以推出①l ⊥m .故正确的命题是②③⇒①或①③⇒②.【方法技巧】 判定定理与性质定理的合理转化是证明垂直关系的基本思想;另外,在解题中要重视平面几何知识,特别是正、余弦定理及勾股定理的应用.题型二:直线与平面垂直的判定与性质例5.(2021·浙江·高考真题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确.故选:A.例6.【多选题】(2021·全国·高考真题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .【答案】BC【分析】根据线面垂直的判定定理可得BC 的正误,平移直线MN 构造所考虑的线线角后可判断AD 的正误.【详解】 设正方体的棱长为2,对于A ,如图(1)所示,连接AC ,则//MN AC ,故POC ∠(或其补角)为异面直线,OP MN 所成的角,在直角三角形OPC ,OC 1CP =,故tanPOC ∠==, 故MN OP ⊥不成立,故A 错误.对于B ,如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ NT ⊥,PQ MN ⊥,由正方体SBCM NADT -可得SN ⊥平面ANDT ,而OQ ⊂平面ANDT ,故SN OQ ⊥,而SN MN N =,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,OQ MN ⊥,而OQ PQ Q =,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN OP ⊥,故B 正确.对于C ,如图(3),连接BD ,则//BD MN ,由B 的判断可得OP BD ⊥,故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接,,,,AC PQ OQ PK OK ,则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN ,所以QPO ∠或其补角为异面直线,PO MN 所成的角,因为正方体的棱长为2,故122PQ AC ==,22123OQ AO AQ =+=+=,PO 222QO PQ OP <+,故QPO ∠不是直角,故,PO MN 不垂直,故D 错误.故选:BC.例7.(2019·全国高考真题(文))已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连CO ,知,CD PD CD PO ⊥⊥,=PD OD P , CD 平面PDO ,OD ⊂平面PDO ,CD OD ∴⊥PD PE ==∵,2PC =.sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=, PO CO ∴⊥,CO 为ACB ∠平分线,451,OCD OD CD OC ︒∴∠=∴===2PC =,PO ∴==【总结提升】证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.题型三:平面与平面垂直的判定与性质例8. (2022·江西·高三阶段练习(理))如图,在四面体ABCD 中,AB CD ⊥,1AB CD ==,BD =,BC AD == )A .2B .3C .4D .5【答案】B【解析】【分析】分别证明出平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD ,平面ACD ⊥平面ABD ,即可得到答案.【详解】因为1AB =,BD =AD =所以222AB BD AD +=,所以AB BD ⊥.又AB CD ⊥,BD CD D ⋂=,BD ⊂平面BCD ,CD ⊂平面BCD .所以AB ⊥平面BCD .又AB 平面ABC ,AB 平面ABD ,所以平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD .因为1CD =,BD =,BC =所以222CD BD BC +=,所以CD BD ⊥.又CD AB ⊥,BD AB B ⋂=,BD ⊥平面ABD ,AB ⊥平面ABD ,所以CD ⊥平面ABD ,又CD ⊂平面ACD ,所以平面ACD ⊥平面ABD ,综上可知有3对.故选:B.例9.(2021·全国·高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD AM ⊥,又PB AM ⊥,PB PD P =,所以AM ⊥平面PBD ,而AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥,从而~DAB ABM ,设BM x =,2AD x =,则BM AB AB AD =,即221x =,解得x =AD = 因为PD ⊥底面ABCD ,故四棱锥P ABCD -的体积为(1113V =⨯⨯. 例10. (2020·全国·高考真题(文))如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -.【详解】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN ∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN ∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP =//AO NP ∴又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC 中EF AP BC AM=即2AP BC EF AM ⋅=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=, ∴1243243V =⨯⨯=. 【总结提升】1.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式(如勾股定理)证明线线垂直,也可以根据已知的垂直关系证明线线垂直.2.垂直关系的转化:3.判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).4.证面面垂直的思路(1)关键是考虑证哪条线垂直哪个面.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑.(2)条件中告诉我们某种位置关系,就要联系到相应的性质定理,如已知两平面互相垂直,我们就要联系到两平面互相垂直的性质定理.题型四:平行和垂直的综合问题例11.(2018·江苏·高考真题)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.【答案】(1)见解析(2)见解析【解析】【详解】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB 1A 1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.-中,PA⊥平面ABCD,底部ABCD为菱形,例12.(2019·北京·高考真题(文))如图,在四棱锥P ABCDE为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥;因为底面ABCD 是菱形,所以AC BD ⊥;因为PA AC A =,,PA AC ⊂平面PAC ,所以BD ⊥平面PAC .(Ⅱ)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥,因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以AE PA ⊥;因为PA AB A =所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE .(Ⅲ)存在点F 为PB 中点时,满足//CF 平面PAE ;理由如下:分别取,PB PA 的中点,F G ,连接,,CF FG EG ,在三角形PAB 中,//FG AB 且12FG AB =; 在菱形ABCD 中,E 为CD 中点,所以//CE AB 且12CE AB =,所以//CE FG 且CE FG =,即四边形CEGF 为平行四边形,所以//CF EG ;又CF ⊄平面PAE ,EG ⊂平面PAE ,所以//CF 平面PAE .例13.(2020·全国·高三专题练习)如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AAC C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由. 【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =. 【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA ∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证. (3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.(1)连接1AB 与1A B ,两线交于点O ,连接OM ,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .(2)因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A =,1AA ,AC ⊂平面11ACC A , 所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =在1Rt ACC 和1Rt A AM中,11tan tan AC C AMA ∠=∠ 所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BMA M M =,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .(3)当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AAC C . 证明如下:设1AC 的中点为D ,连接DM ,DN ,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点, 所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN ⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .例14.(2018·全国·高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析.(2)1.【解析】【详解】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且ACAD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以BP = 作QE ⊥AC ,垂足为E ,则QE =13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为111131332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=. 【规律方法】1.对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.2.解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.3.探索性问题(1)处理空间中平行或垂直的探索性问题,一般先根据条件猜测点的位置,再给出证明.探索点存在问题,点多为中点或n 等分点中的某一个,需根据相关的知识确定点的位置.(2)利用向量法,设出点的坐标,结论变条件,求出点的坐标,并指明点的位置.。

2019届高考(浙江专版)一轮复习:第8章 5 第5讲 直线、平面垂直的判定及其性质

2019届高考(浙江专版)一轮复习:第8章 5 第5讲 直线、平面垂直的判定及其性质
栏目 导引
判定 定理
性质 定理
第八章 立体几何与空间向量
2.平面与平面垂直的判定定理与性质定理 文字语言 一个平面过另一 判定定理 图形语言 符号语言
垂线 , 个平面的_____
则这两个平面互 相垂直
l⊂β ⇒α⊥β l⊥ α
栏目 导引
第八章 立体几何与空间向量
文字语言 两个平面互相垂直, 性质 定理 则一个平面内垂直于
栏目 导引
第八章 立体几何与空间向量
(教材习题改编)线段 AB 的长等于它在平面 α 内的射影长 的 2 倍,则 AB 所在直线与平面 α 所成的角为________.
解析:如图,AC⊥α,AB∩α=B,则 BC 是 AB 在平面 α 内 1 的射影,则 BC= AB,所以∠ABC=60°,它是 AB 与平面 2 α 所成的角.
答案:3
栏目 导引
第八章 立体几何与空间向量
线面垂直的判定与性质 [典例引领] (1)在四棱锥 PABCD 中,PA⊥底面 ABCD,AB⊥AD, AC⊥CD,∠ABC=60°,PA=AB=BC,E 是 PC 的中点.
证明:①CD⊥AE; ②PD⊥平面 ABE.
栏目 导引
第八章 立体几何与空间向量
αlβ 如 图 的 二 面 角 , 可 记 作 : 二 面 角 ____________ 或二面角 PABQ ______________ .
栏目 导引
第八章 立体几何与空间向量
②二面角的平面角 如图,过二面角 αlβ 的棱 l 上一点 O 在两 个 半 平 面 内 分 别 作 BO⊥l , AO ⊥研)如图,在平行四边形 ABCD 中,AB=1, π BC=2,∠CBA= ,ABEF 为直角梯形,BE∥AF,∠BAF 3 π = ,BE=2,AF=3,平面 ABCD⊥平面 ABEF. 2

(浙江专用)高考数学一轮复习第八章立体几何8.4直线、

(浙江专用)高考数学一轮复习第八章立体几何8.4直线、
高考数学
(浙江专用)
第八章 立体几何
§8.4 直线、平面垂直的判定和性质
五年高考
考点 垂直的判定和性质
1.(2017课标全国Ⅲ文,10,5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则 ( A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC )
答案 C ∵A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,又BC1⊥B1C,且B1C∩A1B1=B1,∴ BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,∴BC1⊥A1E.故选C.
2.(2014浙江文,6,5分)设m,n是两条不同的直线,α,β是两个不同的平面 ( A.若m⊥n,n∥α,则m⊥α B.若m∥β,β⊥α,则m⊥α C.若m⊥β,n⊥β,n⊥α,则m⊥α D.若m⊥n,n⊥β,β⊥α,则m⊥α
)
答案 C 对于选项A、B、D,均能举出m∥α的反例;对于选项C,若m⊥β,n⊥β,则m∥n,又n⊥α, ∴m⊥α,故选C. 3.(2015安徽,5,5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是 ( A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β 不平行 ,则在α内 不存在 与β平行的直线
6.(2017课标全国Ⅰ文,18,12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为 ,求该四棱锥的侧面积.
8 3
解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB⊂平面PAB, 所以平面PAB⊥平面PAD. (2)在平面PAD内作PE⊥AD,垂足为E.

高考数学(理)创新大一轮(实用课件)浙江专用版:第八章第5节直线、平面垂直的判定及其性质

高考数学(理)创新大一轮(实用课件)浙江专用版:第八章第5节直线、平面垂直的判定及其性质
已知两平面垂直时,一般要用性质定 理进行转化,证明平面和平面垂直的 方法:(1)面面垂直的定义;(2)面面垂 直的判定定理.
考点二 面面垂直的判定与性质
1.证明平面和平面垂直的方法:(1)面面垂直的定义;(2)面面垂直的判定定 理. 2.已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的 垂线,转化为线面垂直,然后进一步转化为线线垂直.
考点一 线面垂直的判定与性质
[例 1] 如图,在四棱锥 P - ABCD 中,PA⊥底面 ABCD,AB⊥AD,AC⊥CD, 证明直线和平面垂直的常用方法有: ∠ABC=60° ,PA=AB=BC,E 是 PC 的中点.证明: (1)判定定理;(2)垂直于平面的传递 (1)CD⊥AE; (2)PD⊥平面 ABE. 性;(3)面面平行的性质;(4)面面垂
证明 (1)∵平面PAD⊥底面ABCD, 且PA垂直于这两个平面的交线AD,PA⊂平面PAD, ∴PA⊥底面ABCD. (2)∵AB∥CD,CD=2AB,E为CD的中点, ∴AB∥DE,且AB=DE. ∴四边形ABED为平行四边形. ∴BE∥AD. 又∵BE⊄平面PAD,AD⊂平面PAD, ∴BE∥平面PAD.
证明 (3)∵AB⊥AD,而且ABED为平行四边形. ∴BE⊥CD,AD⊥CD, 由(1)知PA⊥底面ABCD,CD⊂平面ABCD, ∴PA⊥CD,且PA∩AD=A,PA,AD⊂平面PAD, ∴CD⊥平面PAD,又PD⊂平面PAD, ∴CD⊥PD. ∵E和F分别是CD和PC的中点,∴PD∥EF. ∴CD⊥EF,又BE⊥CD且EF∩BE=E, ∴CD⊥平面BEF,又CD⊂平面PCD, ∴平面BEF⊥平面PCD.
已知两平面垂直时,一般要用性质定 理进行转化,证明平面和平面垂直的 方法:(1)面面垂直的定义;(2)面面垂 直的判定定理.

(浙江专用)高考数学总复习 第八章 立体几何与空间向量 第5讲 直线、平面垂直的判定及其性质学案-人

(浙江专用)高考数学总复习 第八章 立体几何与空间向量 第5讲 直线、平面垂直的判定及其性质学案-人

第5讲直线、平面垂直的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知识梳理1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α性质定理两直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.判断正误(在括号内打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( )(2)垂直于同一个平面的两平面平行.( )(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( )解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.答案(1)×(2)×(3)×(4)×2.(必修2P56A组7T改编)下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β解析对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项易知均是正确的.答案 D3.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l,故选C.答案 C4.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β解析由线线平行性质的传递性和线面垂直的判定定理,可知C正确.答案 C5.(2017·浙江名校协作体联考)已知矩形ABCD,AB=1,BC= 2.将△ABD沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直解析若AB⊥CD,BC⊥CD,则可得CD⊥平面ACB,因此有CD⊥AC.因为AB=1,BC=AD=2,CD=1,所以AC=1,所以存在某个位置,使得AB⊥CD.答案 B6.(必修2P67练习2改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O,(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.图1 图2(2)如图2,∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,AB⊂平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.答案(1)外(2)垂考点一线面垂直的判定与性质【例1】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD,又∵AC⊥CD,且PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥AB.又∵AB⊥AD,且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.规律方法(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质(α⊥β,α∩β=a,l⊥a,l⊂β⇒l⊥α).(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【训练1】 如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD =13DB ,点C 为圆O 上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB .求证:PA ⊥CD .证明 因为AB 为圆O 的直径,所以AC ⊥CB . 在Rt △ABC 中,由3AC =BC 得,∠ABC =30°. 设AD =1,由3AD =DB 得,DB =3,BC =2 3. 由余弦定理得CD 2=DB 2+BC 2-2DB ·BC cos 30°=3, 所以CD 2+DB 2=BC 2,即CD ⊥AB . 因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD ⊥CD ,由PD ∩AB =D 得,CD ⊥平面PAB , 又PA ⊂平面PAB ,所以PA ⊥CD . 考点二 面面垂直的判定与性质【例2】 (2015·山东卷)如图,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH . 证明 (1)连接DG ,CD ,设CD ∩GF =M ,连接MH . 在三棱台DEF -ABC 中,AB =2DE ,G 为AC 中点,可得DF ∥GC ,且DF =GC , 则四边形DFCG 为平行四边形. 从而M 为CD 的中点, 又H 为BC 的中点,所以HM ∥BD ,又HM ⊂平面FGH ,BD ⊄平面FGH , 故BD ∥平面FGH .(2)连接HE ,因为G ,H 分别为AC ,BC 的中点, 所以GH ∥AB .由AB ⊥BC ,得GH ⊥BC . 又H 为BC 的中点,所以EF ∥HC ,EF =HC , 因此四边形EFCH 是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.规律方法(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【训练2】如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.(1)求证:PB∥平面MNC;(2)若AC=BC,求证:PA⊥平面MNC.证明(1)因为M,N分别为AB,PA的中点,所以MN∥PB.又因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.(2)因为PA⊥PB,MN∥PB,所以PA⊥MN.因为AC=BC,AM=BM,所以CM⊥AB.因为平面PAB⊥平面ABC,CM⊂平面ABC,平面PAB∩平面ABC=AB.所以CM⊥平面PAB.因为PA⊂平面PAB,所以CM⊥PA.又MN∩CM=M,所以PA⊥平面MNC.考点三平行与垂直的综合问题(多维探究)命题角度一多面体中平行与垂直关系的证明【例3-1】(2016·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1. 因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.规律方法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.命题角度二平行垂直中探索性问题【例3-2】如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.(1)证明:AE∥平面BDF.(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由.(1)证明连接AC交BD于O,连接OF,如图①.∵四边形ABCD是矩形,∴O为AC的中点,又F为EC的中点,∴OF为△ACE的中位线,∴OF∥AE,又OF⊂平面BDF,AE⊄平面BDF,∴AE∥平面BDF.(2)解当P为AE中点时,有PM⊥BE,证明如下:取BE中点H,连接DP,PH,CH,∵P为AE的中点,H为BE的中点,∴PH∥AB,又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,平面ABCD∩平面BCE=BC,CD⊂平面ABCD,CD⊥BC.∴CD⊥平面BCE,又BE⊂平面BCE,∴CD⊥BE,∵BC=CE,H为BE的中点,∴CH⊥BE,又CD∩CH=C,∴BE⊥平面DPHC,又PM⊂平面DPHC,∴BE⊥PM,即PM⊥BE.规律方法(1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.【训练3】(2017·嘉兴七校联考)在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=3,AB=2BC=2,AC⊥FB.(1)求证:AC⊥平面FBC.(2)求四面体FBCD的体积.(3)线段AC上是否存在点M,使EA∥平面FDM?若存在,请说明其位置,并加以证明;若不存在,请说明理由.(1)证明在△ABC中,因为AC=3,AB=2,BC=1,所以AC2+BC2=AB2,所以AC⊥BC.又因为AC⊥FB,BC∩FB=B,所以AC⊥平面FBC.(2)解因为AC⊥平面FBC,FC⊂平面FBC,所以AC⊥FC.因为CD⊥FC,AC∩CD=C,所以FC⊥平面ABCD.在等腰梯形ABCD中可得CB=DC=1,所以FC=1.所以△BCD的面积为S=34.所以四面体FBCD 的体积为V F -BCD =13S ·FC =312.(3)解 线段AC 上存在点M ,且点M 为AC 中点时,有EA ∥平面FDM .证明如下:连接CE ,与DF 交于点N ,取AC 的中点M ,连接MN . 因为四边形CDEF 是正方形, 所以点N 为CE 的中点.所以EA ∥MN .因为MN ⊂平面FDM ,EA ⊄平面FDM , 所以EA ∥平面FDM .所以线段AC 上存在点M ,且M 为AC 的中点,使得EA ∥平面FDM 成立.[思想方法]1.证明线面垂直的方法:(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; (2)判定定理1:⎭⎪⎬⎪⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n⇒l ⊥α;(3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β; 2.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a ⊂α,a ⊥β⇒α⊥β. 3.转化思想:垂直关系的转化[易错防范]1.证明线面垂直时,易忽视面内两条线为相交线这一条件.2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.4.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的相互转化.。

2018年高考数学(浙江专用)总复习教师用书:第8章 第5讲 直线、平面垂直的判定及其性质 Word版含解析

2018年高考数学(浙江专用)总复习教师用书:第8章 第5讲 直线、平面垂直的判定及其性质 Word版含解析

第5讲 直线、平面垂直的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知 识 梳 理1.直线与平面垂直 (1)直线和平面垂直的定义如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理两直线垂直于同一个平面,(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理1.判断正误(在括号内打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误. (4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.答案(1)×(2)×(3)×(4)×2.(必修2P56A组7T改编)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β解析对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项易知均是正确的. 答案 D3.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l,故选C.答案 C4.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β解析由线线平行性质的传递性和线面垂直的判定定理,可知C正确.答案 C5.(2017·浙江名校协作体联考)已知矩形ABCD,AB=1,BC= 2.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直解析若AB⊥CD,BC⊥CD,则可得CD⊥平面ACB,因此有CD⊥AC.因为AB =1,BC=AD=2,CD=1,所以AC=1,所以存在某个位置,使得AB⊥CD. 答案 B6.(必修2P67练习2改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O,(1)若P A=PB=PC,则点O是△ABC的________心.(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,P A=PC=PB,所以OA=OB=OC,即O为△ABC的外心.图1图2(2)如图2,∵PC⊥P A,PB⊥PC,P A∩PB=P,∴PC⊥平面P AB,AB⊂平面P AB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心. 答案(1)外(2)垂考点一线面垂直的判定与性质【例1】如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.而AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂平面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,而PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.规律方法 (1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想. 【训练1】 如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD =13DB ,点C 为圆O 上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB . 求证:P A ⊥CD .证明 因为AB 为圆O 的直径,所以AC ⊥CB . 在Rt △ABC 中,由3AC =BC 得,∠ABC =30°. 设AD =1,由3AD =DB 得,DB =3,BC =2 3. 由余弦定理得CD 2=DB 2+BC 2-2DB ·BC cos 30°=3, 所以CD 2+DB 2=BC 2,即CD ⊥AB . 因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD ⊥CD ,由PD ∩AB =D 得,CD ⊥平面P AB , 又P A ⊂平面P AB ,所以P A ⊥CD . 考点二 面面垂直的判定与性质【例2】 (2015·山东卷)如图,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH . 证明 (1)连接DG ,CD ,设CD ∩GF =M ,连接MH .在三棱台DEF -ABC 中, AB =2DE ,G 为AC 中点, 可得DF ∥GC ,且DF =GC , 则四边形DFCG 为平行四边形. 从而M 为CD 的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,故BD∥平面FGH.(2)连接HE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.规律方法(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【训练2】如图,在三棱锥P-ABC中,平面P AB⊥平面ABC,P A⊥PB,M,N分别为AB,P A的中点.(1)求证:PB∥平面MNC;(2)若AC=BC,求证:P A⊥平面MNC.证明(1)因为M,N分别为AB,P A的中点,所以MN∥PB.又因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.(2)因为P A⊥PB,MN∥PB,所以P A⊥MN.因为AC=BC,AM=BM,所以CM⊥AB.因为平面P AB⊥平面ABC,CM⊂平面ABC,平面P AB∩平面ABC=AB.所以CM⊥平面P AB.因为P A⊂平面P AB,所以CM⊥P A.又MN∩CM=M,所以P A⊥平面MNC.考点三平行与垂直的综合问题(多维探究)命题角度一多面体中平行与垂直关系的证明【例3-1】(2016·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.规律方法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用. 命题角度二平行垂直中探索性问题【例3-2】如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.(1)证明:AE∥平面BDF.(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由. (1)证明连接AC交BD于O,连接OF,如图①.∵四边形ABCD是矩形,∴O为AC的中点,又F为EC的中点,∴OF为△ACE的中位线,∴OF∥AE,又OF⊂平面BDF,AE⊄平面BDF,∴AE∥平面BDF.(2)解当P为AE中点时,有PM⊥BE,证明如下:取BE中点H,连接DP,PH,CH,∵P为AE的中点,H为BE的中点,∴PH∥AB,又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,平面ABCD∩平面BCE=BC,CD⊂平面ABCD,CD ⊥BC.∴CD⊥平面BCE,又BE⊂平面BCE,∴CD⊥BE,∵BC=CE,H为BE的中点,∴CH⊥BE,又CD∩CH=C,∴BE⊥平面DPHC,又PM⊂平面DPHC,∴BE⊥PM,即PM⊥BE.规律方法(1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.【训练3】 (2017·嘉兴七校联考)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB ∥CD ,AC =3,AB =2BC =2,AC ⊥FB .(1)求证:AC ⊥平面FBC . (2)求四面体FBCD 的体积.(3)线段AC 上是否存在点M ,使EA ∥平面FDM ?若存在,请说明其位置,并加以证明;若不存在,请说明理由. (1)证明 在△ABC 中,因为AC =3,AB =2,BC =1,所以AC 2+BC 2=AB 2, 所以AC ⊥BC .又因为AC ⊥FB ,BC ∩FB =B , 所以AC ⊥平面FBC .(2)解 因为AC ⊥平面FBC ,FC ⊂平面FBC ,所以AC ⊥FC . 因为CD ⊥FC ,AC ∩CD =C ,所以FC ⊥平面ABCD . 在等腰梯形ABCD 中可得CB =DC =1,所以FC =1. 所以△BCD 的面积为S =34.所以四面体FBCD 的体积为V F -BCD =13S ·FC =312.(3)解 线段AC 上存在点M ,且点M 为AC 中点时,有EA ∥平面FDM .证明如下:连接CE ,与DF 交于点N ,取AC 的中点M ,连接MN . 因为四边形CDEF 是正方形, 所以点N 为CE 的中点.所以EA ∥MN .因为MN ⊂平面FDM ,EA ⊄平面FDM ,所以EA ∥平面FDM .所以线段AC 上存在点M ,且M 为AC 的中点,使得EA ∥平面FDM 成立.[思想方法]1.证明线面垂直的方法:(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; (2)判定定理1:⎭⎬⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; (3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β; 2.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a ⊂α,a ⊥β⇒α⊥β. 3.转化思想:垂直关系的转化[易错防范]1.证明线面垂直时,易忽视面内两条线为相交线这一条件.2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.4.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的相互转化.基础巩固题组 (建议用时:40分钟)一、选择题1.(2015·浙江卷)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( )A.若l ⊥β,则α⊥βB.若α⊥β,则l ⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析由面面垂直的判定定理,可知A选项正确;B选项中,l与m可能平行;C选项中,α与β可能相交;D选项中,l与m可能异面.答案 A2.(2017·深圳四校联考)若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为()A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β解析由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确.过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确.根据面面垂直的性质定理知,选项C,D正确.答案 B3.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,∴BC⊥平面P AE,DF∥BC,则DF⊥平面P AE,又DF⊂平面PDF,从而平面PDF⊥平面P AE.因此选项B,C均正确.答案 D4.(2017·丽水调研)设l是直线,α,β是两个不同的平面,则下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β解析A中,α∥β或α与β相交,不正确.B中,过直线l作平面γ,设α∩γ=l′,则l′∥l,由l⊥β,知l′⊥β,从而α⊥β,B正确.C中,l∥β或l⊂β,C不正确.D中,l与β的位置关系不确定.答案 B5.(2017·天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD 为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是()A.①②④B.①②③C.②③④D.①③④解析由题意知,BD⊥平面ADC,且AC⊂平面ADC,故BD⊥AC,①正确;AD 为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.答案 B二、填空题6.如图,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.解析∵P A⊥平面ABC,AB,AC,BC⊂平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC,则△P AB,△P AC为直角三角形.由BC⊥AC,且AC∩P A=A,∴BC⊥平面P AC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.答案 47.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD.又PC⊂平面PCD,∴平面MBD⊥平面PCD.答案DM⊥PC(或BM⊥PC等)8.(2016·全国Ⅱ卷改编)α,β是两个平面,m,n是两条直线.(1)如果m⊥α,n∥α,那么m,n的位置关系是________;(2)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角的大小关系是________.解析(1)由线面平行的性质定理知存在直线l⊂α,n∥l,m⊥α,所以m⊥l,所以m⊥n.(2)因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n 与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等.答案(1)垂直(2)相等三、解答题9.(2017·青岛质检)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D-BCG的体积.(1)证明由已知得△ABC≌△DBC,因此AC=DC.又G为AD的中点,所以CG ⊥AD .同理BG ⊥AD ,又BG ∩CG =G ,因此AD ⊥平面BCG .又EF ∥AD ,所以EF ⊥平面BCG .(2)解 在平面ABC 内,作AO ⊥BC ,交CB 的延长线于O ,如图由平面ABC ⊥平面BCD ,平面ABC ∩平面BDC =BC ,AO ⊂平面ABC ,知AO ⊥平面BDC .又G 为AD 中点,因此G 到平面BDC 的距离h 是AO 长度的一半.在△AOB 中,AO =AB ·sin 60°=3,所以V D -BCG =V G -BCD =13S △DBC ·h =13×12BD ·BC ·sin 120°·32=12.10.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ;(2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.(1)证明 因为PC ⊥平面ABCD ,所以PC ⊥DC .又因为AC ⊥DC ,且PC ∩AC =C ,所以DC ⊥平面P AC .(2)证明 因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB .又因为PC ∩AC =C ,所以AB ⊥平面P AC .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .理由如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点,所以EF ∥P A .又因为P A ⊄平面CEF ,且EF ⊂平面CEF ,所以P A ∥平面CEF . 能力提升题组(建议用时:25分钟)11.设m,n是两条不同的直线,α,β是两个不同的平面.则下列说法正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n ⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.答案 C12.(2017·诸暨调研)如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在△AEF内的射影为O,则下列说法正确的是()A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心解析由题意可知P A,PE,PF两两垂直,所以P A⊥平面PEF,从而P A⊥EF,而PO⊥平面AEF,则PO⊥EF,因为PO∩P A=P,所以EF⊥平面P AO,∴EF⊥AO,同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.答案 A13.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE ⊥AB ,P A ∩AB =A ,得AE ⊥平面P AB ,又PB ⊂平面P AB ,∴AE ⊥PB ,①正确;又平面P AD ⊥平面ABC ,∴平面ABC ⊥平面PBC 不成立,②错;由正六边形的性质得BC ∥AD ,又AD ⊂平面P AD ,BC ⊄平面P AD ,∴BC ∥平面P AD ,∴直线BC ∥平面P AE 也不成立,③错;在Rt △P AD 中,P A =AD =2AB ,∴∠PDA =45°,∴④正确.答案 ①④14.(2016·四川卷)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由.(2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面P AB .CM ⊄平面P AB .所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,P A ⊥AB ,P A ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD .又BD ⊂平面ABCD ,从而P A ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD .所以四边形BCDM是平行四边形,所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD⊂平面PBD,所以平面P AB⊥平面PBD.15.(2016·浙江卷)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示,因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解由(1)知BF⊥平面ACFD,所以BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.在Rt△BFD中,BF=3,DF=32,得cos ∠BDF=217.所以,直线BD与平面ACFD所成角的余弦值为21 7.。

高考数学大一轮复习第八章立体几何8.5直线、平面垂直的判定与性质教师用书

高考数学大一轮复习第八章立体几何8.5直线、平面垂直的判定与性质教师用书

(浙江专用)2018版高考数学大一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质教师用书1.直线与平面垂直 (1)定义如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理2.直线和平面所成的角 (1)定义平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角. (2)范围:[0,π2].3.平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (3)平面与平面垂直的判定定理与性质定理【知识拓展】 重要结论:(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,直线b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β⇒a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )1.(教材改编)下列命题中不正确的是( )A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案 A解析根据面面垂直的性质,知A不正确,直线l可能平行平面β,也可能在平面β内.2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.(2016·宝鸡质检)对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中为真命题的是( )A.①② B.②③ C.②④ D.①④答案 D解析①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD.④设A在平面BCD内的射影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.4.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案(1)外(2)垂解析 (1)如图1,连接OA ,OB ,OC ,OP , 在Rt△POA 、Rt△POB 和Rt△POC 中,PA =PC =PB , 所以OA =OB =OC ,即O 为△ABC 的外心.(2)如图2,延长AO ,BO ,CO 分别交BC ,AC ,AB 于H ,D ,G . ∵PC ⊥PA ,PB ⊥PC ,PA ∩PB =P ,∴PC ⊥平面PAB ,AB ⊂平面PAB ,∴PC ⊥AB , 又AB ⊥PO ,PO ∩PC =P , ∴AB ⊥平面PGC , 又CG ⊂平面PGC ,∴AB ⊥CG ,即CG 为△ABC 边AB 的高. 同理可证BD ,AH 为△ABC 底边上的高, 即O 为△ABC 的垂心.题型一 直线与平面垂直的判定与性质例1 (2016·全国甲卷改编)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.证明:D ′H ⊥平面ABCD . 证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得AE AD =CF CD,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,且OH ,EF ⊂平面ABCD , 所以D ′H ⊥平面ABCD .思维升华 证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(2016·嵊州市高三质检) 在三棱锥A -BCD 中,AB ⊥平面BCD ,DB =DC =4,∠BDC=90°,P 在线段BC 上,CP =3PB ,M ,N 分别为AD ,BD 的中点. 求证:BC ⊥平面MNP .证明 因为MN 是△ABD 的中位线,所以MN ∥AB . 又AB ⊥平面BCD , 所以MN ⊥平面BCD , 又因为BC ⊂平面BCD ,所以MN ⊥BC .①取BC 的中点Q ,连接DQ ,则DQ ⊥BC . 由PN 是△BDQ 的中位线知PN ∥DQ , 所以PN ⊥BC .②由①②可得BC ⊥平面MNP .题型二 平面与平面垂直的判定与性质例2 如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面PAD ; (2)求证:平面EFG ⊥平面EMN . 证明 (1)方法一取PA 的中点H ,连接EH ,DH . 又E 为PB 的中点, 所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH ⊂平面PAD ,CE ⊄平面PAD . 所以CE ∥平面PAD . 方法二 连接CF .因为F 为AB 的中点, 所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD ,又CF ⊄平面PAD ,AD ⊂平面PAD , 所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又EF ⊄平面PAD ,PA ⊂平面PAD , 所以EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD . 又CE ⊂平面CEF ,所以CE ∥平面PAD .(2)因为E 、F 分别为PB 、AB 的中点,所以EF ∥PA . 又因为AB ⊥PA ,所以EF ⊥AB ,同理可证AB ⊥FG .又因为EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG . 所以AB ⊥平面EFG .又因为M ,N 分别为PD ,PC 的中点, 所以MN ∥CD ,又AB ∥CD ,所以MN ∥AB , 所以MN ⊥平面EFG .又因为MN ⊂平面EMN ,所以平面EFG ⊥平面EMN . 引申探究1.在本例条件下,证明:平面EMN ⊥平面PAC . 证明 因为AB ⊥PA ,AB ⊥AC ,且PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以AB ⊥平面PAC .又MN∥CD,CD∥AB,所以MN∥AB,所以MN⊥平面PAC.又MN⊂平面EMN,所以平面EMN⊥平面PAC.2.在本例条件下,证明:平面EFG∥平面PAC.证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥PA,FG∥AC,又EF⊄平面PAC,PA⊂平面PAC,所以EF∥平面PAC.同理,FG∥平面PAC.又EF∩FG=F,所以平面EFG∥平面PAC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2016·江苏) 如图,在直三棱柱ABC—A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由已知,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,又∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABC—A1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,A1B1⊂平面ABB1A1,AA1⊂平面ABB1A1,∴A1C1⊥平面ABB1A1,∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵A1F⊥B1D,且A1F∩A1C1=A1,A1F⊂平面A1C1F,A1C1⊂平面A1C1F,∴B1D⊥平面A1C1F,又∵B1D⊂平面B1DE,∴平面B1DE⊥平面A1C1F.题型三求空间角命题点1 求两条异面直线所成的角和二面角例3 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AD,AA1的中点.(1)求直线EF和直线AB1所成的角的大小;(2)求二面角D—A1C1—D1的正切值.解(1)在正方体ABCD—A1B1C1D1中,因为E,F分别是AD,AA1的中点,所以EF∥A1D.因为AD∥B1C1,AD=B1C1,所以四边形ADC1B1为平行四边形.所以AB1∥DC1.所以∠A1DC1是直线AB1和EF所成的角.因为△A1DC1是等边三角形,所以∠A 1DC 1=60°,即直线AB 1和EF 所成的角是60°.(2)在正方体ABCD —A 1B 1C 1D 1中,连接B 1D 1交A 1C 1于点M ,连接DM ,则D 1M ⊥A 1C 1.又DD 1⊥平面A 1C 1, 所以DD 1⊥A 1C 1, 且D 1M ∩DD 1=D 1,所以A 1C 1⊥平面DD 1M ,又DM ⊂平面DD 1M , 所以DM ⊥A 1C 1.故∠DMD 1为二面角D —A 1C 1—D 1的平面角, 故tan∠DMD 1=DD 1D 1M= 2. 命题点2 求直线和平面所成的角例4 (2016·温州一模)如图,在三棱锥D —ABC 中,DA =DB =DC ,点D 在底面ABC 上的射影为点E ,AB ⊥BC ,DF ⊥AB 于点F .(1)求证:平面ABD ⊥平面DEF ;(2)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成的角的正弦值. (1)证明 如图,由题意知DE ⊥平面ABC , 所以AB ⊥DE ,又AB ⊥DF ,DE ∩DF =D ,所以AB ⊥平面DEF ,又AB ⊂平面ABD ,所以平面ABD ⊥平面DEF .(2)解 由DA =DB =DC ,知EA =EB =EC ,E 为AC 的中点,所以E 是△ABC 的外心.过点E 作EH ⊥DF 于点H ,则由(1)知EH ⊥平面DAB , 所以∠EBH 即为BE 与平面DAB 所成的角. 由AC =4,∠BAC =60°,得DE =2,EF =3, 所以DF =7,EH =237,所以sin∠EBH =EH BE =217. 所以直线BE 与平面DAB 所成角的正弦值为217. 思维升华 求空间角的策略(1)利用定义将空间角转化为两条相交直线所成的角,然后在三角形中计算. (2)要遵循求角的四个步骤:作、指、算、答;注意不要忽略角的范围.在如图所示的多面体ABCDE 中,已知AB ∥DE ,AB ⊥AD ,△ACD 是正三角形,AD=DE =2AB =2,BC =5,F 是CD 的中点. (1)求证:AF ∥平面BCE ;(2)求直线CE 与平面ABED 所成角的余弦值.(1)证明 如图所示,取CE 的中点为M ,连接BM ,MF ,因为F 为CD 的中点,所以MF 綊12ED .又AB ∥DE ,DE =2AB ,所以MF 綊AB ,所以四边形ABMF 为平行四边形. 所以BM ∥AF .因为BM ⊂平面BCE ,AF ⊄平面BCE , 所以AF ∥平面BCE .(2)解 因为△ACD 是正三角形, 所以AC =AD =CD =2.在△ABC 中,AB =1,AC =2,BC =5, 所以AB 2+AC 2=BC 2,故AB ⊥AC . 又AB ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD .如图所示,取AD 的中点H ,连接CH ,EH ,则AB ⊥CH . 又AC =CD ,所以CH ⊥AD .又AB ∩AD =A ,所以CH ⊥平面ABED , 所以∠CEH 是直线CE 与平面ABED 所成的角. 在Rt△CHE 中,CH =3,EH =5,CE =22, 所以cos∠CEH =EH CE =104. 所以直线CE 与平面ABED 所成角的余弦值为104.19.立体几何证明问题中的转化思想典例 (14分) 如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点. 求证:(1)AN ∥平面A 1MK ; (2)平面A 1B 1C ⊥平面A 1MK .思想方法指导 (1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等; (3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.规范解答证明(1) 如图所示,连接NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD. [2分] ∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[4分] ∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K. [6分] ∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK. [8分] (2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1. [10分] 在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C. [12分]∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK. [14分]1.(2016·嘉兴期末)设α,β是两个不同的平面,m是直线,且m⊂α,则“m⊥β”是“α⊥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若m⊂α,m⊥β,则α⊥β;反之,若α⊥β,m⊂α,则m与β的位置关系不确定,所以“m⊥β”是“α⊥β”的充分不必要条件,故选A.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D解析A中,m与n可垂直、可异面、可平行;B中,m与n可平行、可异面;C中,若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误.故选D.3. (2016·芜湖模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案 A解析由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.又∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面交线AB上.4.(2016·包头模拟) 如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE与B1C1是异面直线,且AE⊥B1C1D.A1C1∥平面AB1E答案 C解析A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故AC不可能垂直平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线,易得AE⊥BC,而B1C1 ∥BC,所以AE⊥B1C1 ;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,故选C.5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是( )A.①②④ B.①②③C.②③④ D.①③④答案 B解析由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,由②知③正确;由①知④错.故选B.6.已知三棱柱ABC —A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AC 1与底面ABC 所成角的余弦值等于( ) A.223 B.73 C.63D.53答案 B解析 设三棱柱ABC —A 1B 1C 1的各棱长为a ,A 1在底面ABC 内的射影为O .则依题意,得AO =AB 2sin 60°=a3,由题意得四面体A 1—ABC 为四面体,所以∠A 1AC =60°,∠AA 1C 1=120°.在菱形ACC 1A 1中,AC 1=a 2+a 2-2a 2cos 120°=3a . 又点C 1到底面ABC 的距离等于A 1到底面ABC 的距离,且A 1O =a 2-a32=63a ,因此AC 1与底面ABC 所成角的正弦值为63a 3a=23, AC 1与底面ABC 所成角的余弦值为73. 7. 如图,∠BAC =90°,PC ⊥平面ABC ,则在△ABC 和△PAC 的边所在的直线中,与PC 垂直的直线有________;与AP 垂直的直线有________.答案 AB 、BC 、AC AB解析 ∵PC ⊥平面ABC ,∴PC 垂直于直线AB ,BC ,AC ;∵AB ⊥AC ,AB ⊥PC ,AC ∩PC =C ,∴AB ⊥平面PAC ,∴与AP 垂直的直线是AB .8. 如图,直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.答案 12解析 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF , 所以AB 1⊥DF .由已知可得A 1B 1=2,设Rt△AA 1B 1斜边AB 1上的高为h , 则DE =12h .又2×2=h 22+22,所以h =233,DE =33.在Rt△DB 1E 中,B 1E =222-332=66. 由面积相等得66× x 2+222=22x , 得x =12.9. 如图,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的射影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC . 其中正确结论的序号是________.答案 ①②③解析由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.10.(2016·保定模拟) 在直二面角α-MN-β中,等腰直角三角形ABC的斜边BC⊂α,一直角边AC⊂β,BC与β所成角的正弦值为64,则AB与β所成的角是________.答案π3解析如图所示,作BH⊥MN于点H,连接AH,则BH⊥β,∠BCH为BC与β所成的角.∵sin∠BCH=64=BHBC,设BC=1,则BH=64.∵△ABC为等腰直角三角形,∴AC=AB=22,∴AB与β所成的角为∠BAH.∴sin∠BAH=BHAB=6422=32,∴∠BAH=π3.11.(2016·四川) 如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)证明:平面PAB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下: 连接BM ,CM .因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB . 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,PA ⊥AB ,PA ⊥CD . 因为AD ∥BC ,BC =CD =12AD ,所以直线AB 与CD 相交,因为AB ⊂平面ABCD ,CD ⊂平面ABCD , 所以PA ⊥平面ABCD ,又因为BD ⊂平面ABCD ,从而PA ⊥BD . 又BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,AB ⊂平面PAB ,AP ⊂平面PAB , 所以BD ⊥平面PAB . 又BD ⊂平面PBD , 所以平面PAB ⊥平面PBD .12.(2016·湖州市高三下学期5月调测)在三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC 1⊥平面ABC ,BC =CA =AC 1. (1)求证:AC ⊥平面AB 1C 1;(2)求直线A 1B 与平面AB 1C 1所成角的余弦值. (1)证明 由三棱柱的性质知,BC ∥B 1C 1.因为∠ACB =90°, 所以AC ⊥B 1C 1.因为AC 1⊥平面ABC ,AC ⊂平面ABC , 所以AC 1⊥AC .因为AC 1∩B 1C 1=C 1,AC 1⊂平面AB 1C 1,B 1C 1⊂平面ABC 1, 所以AC ⊥平面AB 1C 1.(2)解 因为三棱柱ABC -A 1B 1C 1中AC ∥A 1C 1, 又由(1)知,AC ⊥平面AB 1C 1, 所以A 1C 1⊥平面AB 1C 1.设A 1B 交AB 1于点O ,所以∠AOC 1为直线A 1B 与平面AB 1C 1所成角. 设BC =CA =AC 1=a , Rt△AC 1O 中,OC 1=22a ,A 1O =62a . 因此,cos∠A 1OC 1=33, 故直线A 1B 与平面AB 1C 1所成角的余弦值为33. 13.(2016·北京) 如图,在四棱锥P —ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .21(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC ,∴DC ⊥平面PAC .(2)证明 ∵AB ∥CD ,CD ⊥平面PAC ,∴AB ⊥平面PAC ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAC .(3)解 棱PB 上存在点F ,使得PA ∥平面CEF.证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又∵E 为AB 的中点,∴EF 为△PAB 的中位线,∴EF ∥PA .又PA ⊄平面CEF ,EF ⊂平面CEF ,∴PA ∥平面CEF .。

(浙江专用)2020版高考数学一轮总复习专题8立体几何8.4直线、平面垂直的判定和性质课件

(浙江专用)2020版高考数学一轮总复习专题8立体几何8.4直线、平面垂直的判定和性质课件

二面角记作α-l-β. (2)在二面角α-l-β的棱l上任取一点O,以点O为垂足,在半平面α和β内分 别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面 角的 平面角 .
二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就 说这个二面角是多少度.平面角是直角的二面角叫做 直二面角 .
∴VS-A 1 3
3 6
设点C到平面SAB的距离为h,
3 3 1 由VS-ABC=VC-SAB得h= . (12分) 2
则VC-SAB= S△SAB· h= h,
又AB⊥SD,AB∥CD,∴CD⊥SD. 设SC与平面SAB所成角为θ,
1 2 h 2 则sin θ= = = , 4 SC SD 2 CD 2
2 4
在等腰△SDE中,易得DH= , (12分)
1 2
又AB⊥SD,AB∥CD,∴CD⊥SD.
设SC与平面SAB所成的角为θ,
1 2 DH 2 则sin θ= = = , 2 2 4 SC SD CD
故直线SC与平面SAB所成角的正弦值为 . (15分)
2 4
考向三 二面角的求法 例3 (2018浙江新高考调研卷三(杭州二中),19,15分)已知矩形ABCD,
设直线SC与平面SAB所成的角为θ,则sin θ=
| n || SC | 2 故直线SC与平面SAB所成的角的正弦值为 . (15分) 4
n SC


= .
2 4
解法二:等体积法.
连接AC,∵AB⊥平面SDE,AB⊂平面ABCD,∴平面ABCD⊥平面SDE,过S
3 , (9分) 作DE的垂线SF,则SF⊥平面ABCD,在等腰△SDE中,易得SF= 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 直线、平面垂直的判定及其性质[基础题组练]1.在正方体ABCD ­A 1B 1C 1D 1中,点E 为棱CD 的中点,则( ) A .A 1E ⊥DC 1 B .A 1E ⊥BD C .A 1E ⊥BC 1D .A 1E ⊥AC解析:选C.由正方体的性质,得A 1B 1⊥BC 1,B 1C ⊥BC 1,所以BC 1⊥平面A 1B 1CD ,又A 1E ⊂平面A 1B 1CD ,所以A 1E ⊥BC 1,故选C.2.如图,O 为正方体ABCD ­A 1B 1C 1D 1的底面ABCD 的中心,则下列直线中与B 1O 垂直的是( )A .A 1DB .AA 1C .A 1D 1D .A 1C 1解析:选D.由题易知A 1C 1⊥平面BB 1D 1D .又B 1O ⊂平面BB 1D 1D ,所以A 1C 1⊥B 1O . 3.(2020·温州中学高三模考)如图,在三棱锥D ­ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列命题中正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BCDC .平面ABC ⊥平面BDE ,且平面ACD ⊥平面BDE D .平面ABC ⊥平面ACD ,且平面ACD ⊥平面BDE解析:选C.因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理,DE ⊥AC ,由于DE ∩BE =E ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .故选C.4.(2020·浙江省名校协作体高三联考)已知正三棱柱ABC ­A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( )A.64 B.104 C.22D.32解析:选A.如图所示,取A 1C 1的中点D ,连接AD ,B 1D ,则可知B 1D ⊥平面ACC 1A 1,所以∠DAB 1即为直线AB 1与平面ACC 1A 1所成的角,不妨设正三棱柱的棱长为2,所以在Rt △AB 1D 中,sin ∠DAB 1=B 1D AB 1=322=64,故选A.5.(2020·浙江省高中学科基础测试)在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,BA ⊥AD ,AD ∥BC ,AB =BC =2,PA =3,PA ⊥底面ABCD ,E 是棱PD 上异于P ,D 的动点,设PE ED=m ,则“0<m <2”是“三棱锥C ­ABE 的体积不小于1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.过E 点作EH ⊥AD ,H 为垂足,则EH ⊥平面ABCD .因为V C ­ABE =V E ­ABC ,所以三棱锥C ­ABE 的体积为23EH .若三棱锥C ­ABE 的体积不小于1,则EH ≥32,又PA =3,所以PEED =m ≤1,故选B.6.(2019·高考浙江卷)设三棱锥V ­ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P ­AC ­B 的平面角为γ,则( )A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β解析:选B.由题意,不妨设该三棱锥的侧棱长与底面边长相等,因为点P 是棱VA 上的点(不含端点),所以直线PB 与平面ABC 所成的角β小于直线VB 与平面ABC 所成的角,而直线VB 与平面ABC 所成的角小于二面角P ­AC ­B 的平面角γ,所以β<γ;因为AC ⊂平面ABC ,所以直线PB 与直线AC 所成的角α大于直线PB 与平面ABC 所成的角β,即α>β.故选B.7.如图,在△ABC 中,∠ACB =90°,AB =8,∠ABC =60°,PC ⊥平面ABC ,PC =4,M 是AB 上的一个动点,则PM 的最小值为________.解析:作CH ⊥AB 于H ,连接PH .因为PC ⊥平面ABC ,所以PH ⊥AB ,PH 为PM 的最小值,等于27.答案:278.如图所示,在四面体ABCD 中,AB ,BC ,CD 两两垂直,且BC =CD =1.直线BD 与平面ACD 所成的角为30°,则线段AB 的长度为________.解析:如图,过点B 作BH ⊥AC ,垂足为点H ,连接DH .因为CD ⊥AB ,CD ⊥BC ,所以平面ACD ⊥平面ABC ,所以BH ⊥平面ACD . 所以∠BDH 为直线BD 与平面ACD 所成的角. 所以∠BDH =30°, 在Rt △BDH 中,BD =2, 所以BH =22. 又因为在Rt △BHC 中,BC =1, 所以∠BCH =45°.所以在Rt △ABC 中,AB =BC =1. 答案:19.(2020·台州市书生中学月考)如图,在四棱锥P ­ABCD 中,PD ⊥平面ABCD ,AB ∥CD ,AD ⊥CD ,PD =AD =DC =2AB ,则异面直线PC 与AB 所成角的大小为________;直线PB 与平面PDC 所成角的正弦值为________.解析:因为AB ∥CD ,所以∠PCD 即为异面直线PC 与AB 所成的角,显然三角形PDC 为等腰直角三角形,所以∠PCD =π4.设AB =1,则可计算得,PB =3,而点B到平面PDC 的距离d 等于AD 的长为2,所以直线PB 与平面PDC 所成角的正弦值为d PB =23.答案:π4 2310.(2020·浙江名校新高考联盟联考)如图,已知正四面体D ­ABC ,P 为线段AB 上的动点(端点除外),则二面角D ­PC ­B 的平面角的余弦值的取值范围是________.解析:当点P 从A 运动到B ,二面角D ­PC ­B 的平面角逐渐增大,二面角D ­PC ­B 的平面角最小趋近于二面角D ­AC ­B 的平面角,最大趋近于二面角D ­BC ­A 的平面角的补角,故余弦值的取值范围是⎝ ⎛⎭⎪⎫-13,13. 答案:⎝ ⎛⎭⎪⎫-13,13 11.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的任意一点.(1)求证:平面PAC ⊥平面PBC ;(2)若PA =AC ,D 为PC 的中点.求证:PB ⊥AD . 证明:(1)设⊙O 所在的平面为α,由已知条件PA ⊥α,BC 在α内,所以PA ⊥BC . 因为点C 是圆周上不同于A ,B 的任意一点,AB 是⊙O 的直径,所以∠BCA 是直角,即BC ⊥AC .又因为PA 与AC 是△PAC 所在平面内的两条相交直线,所以BC ⊥平面PAC . 又因为BC 在平面PBC 内, 所以平面PAC ⊥平面PBC .(2)因为PA =AC ,D 是PC 的中点,所以AD ⊥PC .由(1)知平面PAC ⊥平面PBC ,且平面PAC ∩平面PBC =PC . 因为AD ⊂平面PAC .所以AD ⊥平面PBC . 又PB ⊂平面PBC ,所以PB ⊥AD .12.(2020·浙江名校协作体高三质检)如图,在四棱锥P ­ABCD 中,底面ABCD 为梯形,AD ∥BC ,AB =BC =CD =1,DA =2,DP ⊥平面ABP ,O ,M 分别是AD ,PB 的中点.(1)求证:PD ∥平面OCM ;(2)若AP 与平面PBD 所成的角为60°,求线段PB 的长. 解:(1)证明:设BD 交OC 于点N ,连接MN ,OB , 因为O 为AD 的中点,AD =2,所以OA =OD =1=BC . 又因为AD ∥BC ,所以四边形OBCD 为平行四边形,所以N 为BD 的中点,因为M 为PB 的中点,所以MN ∥PD .又因为MN ⊂平面OCM ,PD ⊄平面OCM ,所以PD ∥平面OCM . (2)由四边形OBCD 为平行四边形,知OB =CD =1, 所以△AOB 为等边三角形,所以∠A =60°, 所以BD =1+4-2×1×2×12=3,即AB 2+BD 2=AD 2,即AB ⊥BD .因为DP ⊥平面ABP ,所以AB ⊥PD . 又因为BD ∩PD =D ,所以AB ⊥平面BDP ,所以∠APB 为AP 与平面PBD 所成的角,即∠APB =60°, 所以PB =33. [综合题组练]1.如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD ∶BC ∶AB =2∶3∶4,E ,F 分别是AB ,CD 的中点,将四边形ADFE 沿直线EF 进行翻折,给出下列四个结论:①DF ⊥BC ;②BD ⊥FC ;③平面BDF ⊥平面BCF ;④平面DCF ⊥平面BCF ,则上述结论可能正确的是( )A .①③B .②③C .②④D .③④解析:选B.对于①,因为BC ∥AD ,AD 与DF 相交但不垂直,所以BC 与DF 不垂直,则①不成立;对于②,设点D 在平面BCF 上的射影为点P ,当BP ⊥CF 时就有BD ⊥FC ,而AD ∶BC ∶AB =2∶3∶4可使条件满足,所以②正确;对于③,当点D 在平面BCF 上的射影P 落在BF 上时,DP ⊂平面BDF ,从而平面BDF ⊥平面BCF ,所以③正确;对于④,因为点D 在平面BCF 上的射影不可能在FC 上,所以④不成立.2.(2020·绍兴诸暨高考模拟)已知三棱锥A ­BCD 的所有棱长都相等,若AB 与平面α所成角等于π3,则平面ACD 与平面α所成角的正弦值的取值范围是( )A.⎣⎢⎡⎦⎥⎤3-66,3+66B.⎣⎢⎡⎦⎥⎤3-66,1C.⎣⎢⎡⎦⎥⎤22-36,22+36 D.⎣⎢⎡⎦⎥⎤22-36,1 解析:选A.因为三棱锥A ­BCD 的所有棱长都相等, 所以三棱锥A ­BCD 为正四面体,如图:设正四面体的棱长为2,取CD 中点P ,连接AP ,BP , 则∠BAP 为AB 与平面ADC 所成角.AP =BP =3,可得cos ∠BAP =33,sin ∠BAP =63. 设∠BAP =θ.当CD 与α平行且AB 在平面ACD 上面时,平面ACD 与平面α所成角的正弦值最小,为sin ⎝ ⎛⎭⎪⎫π3-θ=sin π3cos θ-cos π3sin θ=32×33-12×63=3-66;当CD 与α平行且AB 在平面ACD 下面时,平面ACD 与平面α所成角的正弦值最大,为sin ⎝ ⎛⎭⎪⎫π3+θ=sin π3cos θ+cos π3sin θ=32×33+12×63=3+66, 所以平面ACD 与平面α所成角的正弦值的取值范围是⎣⎢⎡⎦⎥⎤3-66,3+66.故选A.3.(2020·杭州市高三期末)在△ABC 中,∠ABC=π3,边BC 在平面α内,顶点A 在平面α外,直线AB 与平面α所成角为θ.若平面ABC 与平面α所成的二面角为π3,则sin θ=________.解析:过A 作AO ⊥α,垂足是O ,过O 作OD ⊥BC ,交BC 于点D ,连接AD ,则AD ⊥BC ,所以∠ADO 是平面ABC 与平面α所成的二面角,即∠ADO =π3,∠ABO 是直线AB 与平面α所成的角,即∠ABO =θ,设AO =3, 所以AD =2,在Rt △ADB 中, ∠ABD =π3,所以AB =2sinπ3=433,所以sin θ=AO AB =3433=34.答案:344.(2020·浙江“七彩阳光”新高考联盟联考)已知直角三角形ABC 的两条直角边AC =2,BC =3,P 为斜边AB 上一点,沿CP 将此三角形折成直二面角A ­CP ­B ,此时二面角P ­AC ­B 的正切值为2,则翻折后AB 的长为________.解析:如图,在平面PCB 内过P 点作直二面角A ­CP ­B 的棱CP 的垂线交边BC 于点E, 则EP ⊥平面ACP .于是在平面PAC 中过P 作二面角P ­AC ­B 的棱AC 的垂线,垂足为D ,连接DE ,则∠PDE 为二面角P ­AC ­B 的平面角,且tan ∠PDE =EPPD=2,设DP =a ,则EP =2a .如图,设∠BCP =α,则∠ACP =90°-α,则在直角三角形DPC 中,PC =a sin (90°-α)=a cos α,又在直角三角形PCE 中,tan α=PEPC,则acos α·tan α=2a,sin α=2cos2α,所以α=45°,因为二面角A­CP­B为直二面角,所以cos∠ACB=cos∠ACP·cos∠BCP,于是AC2+BC2-AB22·AC·BC=cos∠ACP·sin∠ACP=12,解得AB=7.答案:75.(2020·浙江名校模拟)如图,在四棱锥E­ABCD中,平面CDE⊥平面ABCD,∠DAB=∠ABC=90°,AB=BC=1,AD=ED=3,EC=2.(1)证明:AB⊥平面BCE;(2)求直线AE与平面CDE所成角的正弦值.解:(1)证明:因为∠DAB=∠ABC=90°,所以四边形ABCD是直角梯形,因为AB=BC=1,AD=ED=3,EC=2.所以CD=12+(3-1)2=5,所以CE2+DC2=DE2,所以EC⊥CD,因为平面EDC⊥平面ABCD,平面EDC∩平面ABCD=DC,所以CE⊥平面ABCD,所以CE⊥AB,又AB⊥BC,BC∩CE=C,所以AB⊥平面BCE.(2)过A作AH⊥DC,交DC于点H,则AH⊥平面DCE,连接EH,则∠AEH是直线AE与平面DCE所成的角,因为12×DC×AH=AD+BC2×AB-12×AB×BC,所以AH=12×(3+1)×1-12×1×112×5=355,AE=AB2+(CE2+BC2)=6,所以sin∠AEH=3010,所以直线AE 与平面CDE 所成角的正弦值为3010.6.(2020·鲁迅中学高考方向性测试)四棱锥P ­ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,E 为AB 的中点,PA ⊥平面ABCD ,PC 与平面PAB 所成的角的正弦值为64. (1)在棱PD 上求一点F ,使AF ∥平面PEC ; (2)求二面角D ­PE ­A 的余弦值.解:(1)分别取PD ,PC 的中点F ,G ,连接AF ,FG ,GE , 则FG ∥CD ∥AB ,FG = 12CD =12AB =AE , 所以四边形AEGF 为平行四边形, 所以AF ∥EG ,又EG ⊂平面PEC , 所以AF ∥平面PEC , 所以PD 的中点F 即为所求.(2)易知,∠CPE 即为PC 与平面PAB 所成的角, 在Rt △PEC 中,CE CP=64,即33+1+PA2=64, 解得PA =2,过D 作BA 的垂线,垂足为H ,过H 作PE 的垂线,垂足为K ,连接KD , 因为PA ⊥平面ABCD ,所以PA ⊥DH ,又DH ⊥BA ,所以DH ⊥平面PBA , 所以DH ⊥PE ,所以PE ⊥平面DHK ,所以PE ⊥DK , 所以∠DKH 即为所求的二面角的平面角, 在Rt △DHK 中,DH =3, 由于PE ·HK =EH ·PA ,所以HK =EH ·PA PE =45, 从而DK =3+165=315, 所以cos ∠DKH =HK DK =43131,即二面角D ­PE ­A 的余弦值为43131.。

相关文档
最新文档