2013高三数学一轮复习单元练习题基本初等函数(含答案)1
高考数学学业水平测试一轮复习专题二函数的概念与基本初等函数Ⅰ第4讲函数的奇偶性与周期性课件
B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数 D.f(x)为偶函数,g(x)为奇函数 解析:(1)A、C选项中的函数不是奇函数,D选项中 的函数在定义域内不是增函数. (2)因为函数f(x)与g(x)的定义域均为R, f(-x)=3-x+3x=f(x),所以为偶函数, g(-x)=3-x-3x=-g(x),所以为奇函数. 答案:(1)B (2)D
则f(-2)=( )
A.-10
B.10
C.-12
D.12
解析:依题意有f(2)=22 017a+bsin 2-1=10,
所以22 017a+bsin 2=11.
所以f(-2)=(-2)2 017a+bsin(-2)-1
=-(22 017a+bsin 2)-1
=-11-1
=-12.
答案:C
3.已知定义在R上的奇函数f(x)满足f(x+2)=-
f(x),当0≤x≤1时,f(x)=x2,则f(1)+f(2)+f(3)+…+
f(2 019)=( )
A.2019
B.0
C.1
D.-1
解析:由f(x+4)=-f(x+2)=f(x)得,f(x)的周期为4.
又f(x)为奇函数,
则f(1)=1,f(2)=-f(0)=0,f(3)=f(-1)=-f(1)=
么函数f(x)是奇函数
关于______ 对称
答案:f(-x)=f(x) y轴 f(-x)=-f(x) 原点
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常 数T,使得当x取定义域内的任何值时,都有_____,那么 就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中 ________________的正数,那么这个最小正数就叫做f(x) 的最小正周期. 答案:(1)f(x+T)=f(x) (2)存在一个最小
高考数学一轮复习第二章函数的概念基本初等函数(Ⅰ)及函数的应用2.6函数与方程习题理
§2.6函数与方程1.函数的零点(1)定义:对于函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的________,也是函数y=f(x)的图象与x轴的________.(2)函数有零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴⇔函数y=f(x) .由此可知,求方程f(x)=0的实数根,就是确定函数y=f(x)的________.一般地,对于不能用公式求根的方程f(x)=0来说,我们可以将它与________联系起来,利用函数的性质找出零点,从而求出方程的根.2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈,使得,这个c 也就是方程f(x)=0的根.3.二次函数的零点分布(即一元二次方程根的分布,见2.4节“考点梳理”5)自查自纠1.(1)f(x)=0 实数根交点的横坐标(2)有交点有零点零点函数y=f(x)2.f(a)·f(b)<0 (a,b) (a,b) f(c)=0(2015·安徽)下列函数中,既是偶函数又存在零点的是( )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1解:y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点.故选A.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3解:易知函数f (x )=2x+x 3-2单调递增,∵f (0)=1-2=-1<0,f (1)=2+1-2=1>0,∴函数f (x )在区间(0,1)内零点的个数为1.故选B .(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解:在同一平面直角坐标系中分别画出函数y =f (x ),y =g (x )的图象.如图所示,方程f (x )=g (x )有两个不相等的实根,等价于两个函数的图象有两个不同的交点.结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.故选B .方程ln x =8-2x 的实数根x ∈(k ,k+1),k ∈Z ,则k =________.解:构造函数f (x )=ln x +2x -8,∴f ′(x )=1x+2>0(x >0),则f (x )在(0,+∞)上单调递增,又f (1)=-6<0,f (2)=ln2-4<0,f (3)=ln3-2<0,f (4)=ln4>0,∴f (x )的唯一零点在(3,4)内,因此k =3.故填3.(2014·苏锡模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (x 2)+f (k -x )只有一个零点,则实数k 的值是________.解:由f (x 2)+f (k -x )=0得f (x 2)=-f (k -x ),因为f (x )是奇函数,有-f (k -x )=f (x -k ),故有f (x 2)=f (x -k ),又f (x )是R 上的单调函数,所以方程x 2=x -k 即x 2-x +k=0有唯一解,由Δ=0解得k =14,故填14.类型一 判断函数零点所在的区间(2014·北京)已知函数f (x )=6x-log 2x .在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解:f (x )在(0,+∞)为减函数,又f (1)=6>0,f (2)=2>0,f (4)=32-2=-12<0.故选C .【点拨】要判断在给定区间连续的函数是否存在零点,只需计算区间端点的函数值是否满足零点存在性定理的条件;如果题目没有给出具体区间,则需要估算函数值并利用函数的单调性等性质来求.但应注意到:不满足f (a )·f (b )<0的函数也可能有零点,此时,应结合函数性质分析判断.(2013·北京朝阳检测)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)解:∵f ′(x )=1x +2x 2>0(x >0),∴f (x )在(0,+∞)上单调递增,又f (3)=ln3-23>0,f (2)=ln2-1<0,∴f (2)·f (3)<0,∴f (x )唯一的零点在区间(2,3)内.故选B .类型二 零点个数的判断(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0, 0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.解:由题意知,方程|f (x )+g (x )|=1实根的个数即为函数y =f (x )与y =1-g (x )交点个数及函数y =f (x )与y =-1-g (x )交点个数之和,而y =1-g (x )=⎩⎪⎨⎪⎧1, 0<x ≤1,7-x 2,x ≥2,x 2-1,1<x <2,作图易知函数y =f (x )与y =1-g (x )有两个交点,又y =-1-g (x )=⎩⎪⎨⎪⎧-1, 0<x <1,5-x 2,x ≥2,x 2-3,1<x <2,作图易知函数y =f (x )与y =-1-g (x )有两个交点,因此共有4个交点.故填4.【点拨】(1)连续函数在区间[a ,b ]上满足f (a )·f (b )<0时,函数在(a ,b )内的零点至少有一个,但不能确定究竟有多少个.要更准确地判断函数在(a ,b )内零点的个数,还得结合函数在该区间的单调性、极值等性质进行判断;(2)对于解析式较复杂的函数,可根据解析式特征化为f (x )=g (x )的形式,通过考察两个函数图象的交点个数来求原函数的零点个数;(3)有时求两函数图象交点的个数,不仅要研究其走势(单调性、极值点、渐近线等),而且要明确其变化速度快慢.(2014·福建)函数f (x )=⎩⎪⎨⎪⎧x 2-2, x ≤0,2x -6+ln x ,x >0的零点个数是________. 解:当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0]上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x ,解法一:令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图象,易得两函数图象只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点.解法二:f ′(x )=2+1x,由x >0知f ′(x )>0,∴f (x )在(0,+∞)上单调递增, 而f (1)=-4<0,f (e)=2e -5>0,f (1)f (e)<0,从而f (x )在(0,+∞)上只有一个零点.综上可知,函数f (x )的零点个数是2.故填2.类型三 已知零点情况求参数范围(2014·江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解:函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数f (x )在一个周期[0,3)上的图象如图,可知当0<a <12时满足题意.故填⎝ ⎛⎭⎪⎫0,12. 【点拨】(1)解答本题的关键在于依据函数的对称性、周期性等知识作出函数图象,将函数的零点个数问题转化为求两个函数的交点个数问题;(2)对于含参数的函数零点问题,一般先分离参数,针对参数进行分类讨论,按照题目所给零点的条件,找出符合要求的参数值或范围,但讨论要注意全面及数形结合.(2015·河南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解:∵f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,∴g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2, x >a ,x 2+3x +2,x ≤a .方程-x +2=0的解为x =2,方程x 2+3x +2=0的解为x =-1或-2.若函数g (x )=f (x )-2x 恰有三个不同的零点,则⎩⎪⎨⎪⎧a <2,-1≤a ,-2≤a ,解得-1≤a <2,即实数a的取值范围是[-1,2).故选D .1.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x 轴交点的横坐标,注意它是数而不是点.2.判断函数在给定区间零点的步骤(1)确定函数的图象在闭区间[a,b]上连续;(2)计算f(a),f(b)的值并判断f(a)·f(b)的符号;(3)若f(a)·f(b)<0,则有实数解.除了用上面的零点存在性定理判断外,有时还需结合相应函数的图象来作出判断.3.确定函数f(x)零点个数(方程f(x)=0的实根个数)的方法:(1)判断二次函数f(x)在R上的零点个数,一般由对应的二次方程f(x)=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f(x)在[a,b]上的图象是连续不断的一条曲线,且是单调函数,又f(a)·f(b)<0,则y=f(x)在区间(a,b)内有唯一零点.1.函数y =x 12-⎝ ⎛⎭⎪⎫12x 的零点个数为( ) A .0B .1C .2D .3解:在同一坐标系内分别做出y 1=x ,y 2=⎝ ⎛⎭⎪⎫12x的图象,根据图象可以看出交点的个数为1.故选B .2.(2015·青岛模拟)若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .a >15B .a >15或a <-1C .-1<a <15D .a <-1解:由题可知函数f (x )的图象是一条直线,所以f (x )在区间(-1,1)上存在一个零点等价于f (-1)f (1)<0,即(1-5a )(a +1)<0.解得a >15或a <-1.故选B .3.(2013·天津)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1B .2C .3D .4解:判断函数f (x )的零点个数可转化为判断方程f (x )=2x|log 0.5x |-1=0的根的个数,由此得到|log 0.5x |=⎝ ⎛⎭⎪⎫12x ,设y 1=|log 0.5x |,y 2=⎝ ⎛⎭⎪⎫12x,则两个函数y 1与y 2的交点个数即为所求,如图所示,可知交点有两个.故选B .4.已知x 0是函数f (x )=2x+11-x的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解:由于函数g (x )=11-x =-1x -1在(1,+∞)上单调递增,函数h (x )=2x在(1,+∞)上单调递增,故函数f (x )=h (x )+g (x )在(1,+∞)上单调递增,所以函数在(1,+∞)上只有唯一的零点x 0,且在(1,x 0)上,f (x 1)<f (x 0)=0;在(x 0,+∞)上,f (x 2)>f (x 0)=0.故选B .5.(2014·黄冈九月质检)函数f (x )=⎝ ⎛⎭⎪⎫1+x -x 22+x 33cos2x 在区间[-3,3]上零点的个数为( )A .3B .4C .5D .6解:令g (x )=1+x -x22+x33, 则g ′(x )=1-x +x 2>0,故g (x )在R 上单调递增,而g (-3)g (3)<0,故g (x )在(-3,3)上仅有1个零点.作图易知y =cos2x 在[-3,3]上有4个零点,且易判断这5个零点互不相同.故选C .6.(2015·浙江模拟)函数y =ln|x -1|的图象与函数y =-2cos πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .8B .6C .4D .2解:作出两函数的大致图象如图所示.两函数图象都关于直线x =1对称,且共有6个交点, 故所有交点的横坐标之和为6.故选B .7.设f (x )=2x-x -4,x 0是函数f (x )的一个正数零点,且x 0∈(a ,a +1),其中a ∈N ,则a = .解:∵x 0是函数f (x )的一个正数零点,即f (x 0)=2x 0-x 0-4=0,知f (2)=22-2-4<0,f (3)=23-3-4>0,∴x 0∈(2,3),再由y =2x与y =x +4在(0,+∞)上只有一个交点知a 值惟一.又∵a ∈N ,∴a =2.故填2.8.(2014·安庆六校联考)已知函数f (x )=⎩⎪⎨⎪⎧|x |, x >0,-x 2-2x +1,x ≤0, 若函数g (x )=f (x )+2m 有三个零点,则实数m 的取值范围是________.解:作出函数f (x )=⎩⎪⎨⎪⎧|x |,x >0,-x 2-2x +1,x ≤0 的图象如图所示,令g (x )=f (x )+2m =0,则f (x )=-2m ,由图象知,当1≤-2m <2,即-1<m ≤-12时,直线y =-2m 与y =f (x )的图象有三个交点.故填⎝⎛⎦⎥⎤-1,-12.9.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,求函数y =f (f (x ))+1的所有零点构成的集合.解:先解方程f (t )=-1,即⎩⎪⎨⎪⎧t ≤0,t +1=-1或⎩⎪⎨⎪⎧t >0,log 2t =-1. 得t =-2或t =12.再解方程f (x )=-2和f (x )=12.即⎩⎪⎨⎪⎧x ≤0,x +1=-2或⎩⎪⎨⎪⎧x >0,log 2x =-2和⎩⎪⎨⎪⎧x ≤0,x +1=12或⎩⎪⎨⎪⎧x >0,log 2x =12. 得x =-3或x =14和x =-12或x = 2.故所求为⎩⎨⎧⎭⎬⎫-3,-12,14,2.10.若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,求实数a 的取值范围. 解:f (x )在(0,1)上恰有一个零点,显然a ≠0. ∴有两种情形:①f (0)f (1)<0,得(-1)·(2a -2)<0⇒a >1;②Δ=0且方程f (x )=0的根在(0,1)内,令Δ=0⇒1+8a =0⇒a =-18,得f (x )=-14(x 2+4x +4),此时f (x )=0的根x 0=-2∉(0,1).综上知a >1,即实数a 的取值范围为(1,+∞). 11.已知二次函数f (x )=ax 2+bx +c (a ≠0). (1)若f (-1)=0,试判断函数f (x )的零点个数;(2)若对任意x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),试证明存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立. 解:(1)∵f (-1)=0,∴a -b +c =0,b =a +c . ∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2, 当a =c 时,Δ=0,函数f (x )有一个零点; 当a ≠c 时,Δ>0,函数f (x )有两个零点.(2)证明:令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f (x 1)-f (x 2)2,g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f (x 2)-f (x 1)2,∴g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2.∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0,即g (x )=0在(x 1,x 2)内必有一个实根.即存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=||x cos (πx ),则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( ) A .5B .6C .7D .8解:原问题可转化为函数f (x )与g (x )的图象在[-12,32]上的交点个数问题.由题意知函数f (x )为偶函数,且周期为2.当x =32,12,0,-12时,g (x )=0,当x =1时,g (x )=1,且g (x )是偶函数,g (x )≥0,由此可画出函数y =g (x )和函数y =f (x )的大致图象如图所示,由图可知在⎣⎢⎡⎦⎥⎤-12,32上两函数图象有6个交点,故选B .。
2013届高三一轮复习理科数学全能测试(一)集合集合与常用逻辑用语、函数概念与基本初等函数
2013届高三一轮复习理科数学全能测试(一) 集合与常用逻辑用语、函数概念与基本初等函数本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、科类填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.参考公式:如果事件A,B 互斥,那么P (A+B )=P (A )+P (B );球的表面积公式:24R S π=(其中R 表示球的半径);球的体积公式:343V R π=(其中R 表示球的半径); 锥体的体积公式:Sh V 31=(其中S 表示锥体的底面积,h 表示锥体的高);柱体的体积公式Sh V =(其中S 表示柱体的底面积,h 表示柱体的高);台体的体积公式:)(312211S S S S h V ++=(其中21,S S 分别表示台体的上,下底面积,h 表示台体的高).第Ⅰ卷(选择题,共50分)1、【2012 浙江理】设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C RB)= ( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)2、【2011 浙江理 】若,a b 为实数,则“01m ab <<”是11a b b a <或>的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3、下列函数中既是奇函数,又在区间()1,1-上是增函数的为( )A .y x= B .sin y x = C .x x y e e -=+ D .3y x =-4、若函数()log (2)(0,1)a f x ax a a =->≠在区间()1,3内单调递增,则a 的取值范围是A .2[,1)3 B .2(0,]3 C .3(1,)2 D .3[,)2+∞ 5、奇函数()f x 在(0,)+∞上的解析式是()(1)f x x x =-,则在(,0)-∞上()f x 的函数解析式是( )A .()(1)f x x x =--B .()(1)f x x x =+C .()(1)f x x x =-+D .()(1)f x x x =-6、函数()f x 的定义域为R ,且满足:()f x 是偶函数,(1)f x -是奇函数,若(0.5)f =9,则(8.5)f 等于( )A .-9B .9C .-3D .07、定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗,则()()222xf x x ⊕=-⊗是( )函数. ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数8、已知函数()()()()f x x a xb a b =-->其中的图象如下面右图所示,则函数()x g x a b =+的图象是 ( )9、若02log )1(log 2<<+a a a a ,则a 的取值范围是 ( )A .(0,1)B .(0,21)C .(21,1)D .(0,1)∪(1,+∞)10、设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当]0,2[-∈x 时,1)21()(-=x x f ,若在区间]6,2(-内关于x 的方程0log )()2(=-+x a x f (a >1)恰有3个不同的实根,则a 的取值范围是( )A.(1,2)B.),2(+∞C.)4,1(3D.)2,4(3非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11、命题“∃(12)x ∈,时,满足不等式240x mx ++≥”是假命题,则m 的取值范围 __________ 12、函数)12(log )(5+=x x f 的单调增区间是__________13、函数m x x f +=lg )(关于直线x=1对称,则m= 14、已知函数()()231f x mx m x =+-+的值域是[0,)+∞,则实数m 的取值范围是________________。
( 一轮复习用卷)基本初等函数
基本初等函数第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于 ( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.下列四个函数中,与y =x 表示同一函数的是 ( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3.设a =log 3π,b =log 23,c =log 32,则 ( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a4.由方程x |x |+y |y |=1确定的函数y =f (x )在(-∞,+∞)上是 ( )A .增函数B .减函数C .先增后减D .先减后增5.函数f (x )=|x |-k 有两个零点,则 ( )A .k =0B .k >0C .0≤k <1D .k <06.若0<x <y <1,则 ( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y 7.函数y =lg|x |x 的图象大致是 ()8.若函数f (x )=212log ,0,log (),0,x x x x >⎧⎪⎨-<⎪⎩若f (a )>f (-a ),则实数a 的取值范围( ) A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)9.已知幂函数f (x )的图象经过点(18,24),P (x 1,y 1),Q (x 2,y 2)(x 1<x 2)是函数图象上的任意不同两点,给出以下结论:①x 1f (x 1)>x 2f (x 2);②x 1f (x 1)<x 2f (x 2);③f (x 1)x 1>f (x 2)x 2; ④f (x 1)x 1<f (x 2)x 2. 其中正确结论的序号是 ( )A .①②B .①③C .②④D .②③10.已知函数f (x )=112log (421)x x +-+的值域为[0,+∞),则它的定义域可以是 ( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 选择题答题栏题 号1 2 3 4 5 6 7 8 9 10 11 12 答 案第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知对不同的a 值,函数f (x )=2+a x -1(a >0,且a ≠1)的图象恒过定点P ,则P 点的坐标是________.14.定义在R 上的函数f (x )满足f (x )=2log (1),0(1)(2),0x x f x f x x -≤⎧⎨--->⎩,则f (2 011)的值为__________.15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.18.(本小题满分12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.19.(本小题满分12分)已知函数f (x )=2x -12|x |. (1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.20.(本小题满分12分)(2011·银川模拟)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.21.(本小题满分12分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.22.(本小题满分12分)(2011·合肥模拟)对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.(1)若函数f(x)为理想函数,求f(0)的值;(2)判断函数f(x)=2x-1 (x∈[0,1])是否为理想函数,并予以证明;(3)若函数f(x)为理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0.数学卷(三)1.B由2x-x2>0,得x(x-2)<0⇒0<x<2,故A={x|0<x<2},由x>0,得2x>1,故B={y|y>1},∁R B={y|y≤1},则(∁R B)∩A={x|0<x≤1}.2.B3.A ∵log 32<log 22<log 23,∴b >c .又∵log 23<log 22=log 33<log 3π,∴a >b ,∴a >b >c .4.B①当x ≥0且y ≥0时,x 2+y 2=1,②当x >0且y <0时,x 2-y 2=1,③当x <0且y >0时,y 2-x 2=1,④当x <0且y <0时,无意义.由以上讨论作图如右,易知是减函数.5.B[令y =|x |,y =k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象,得k >0.6.C ∵0<x <y <1,∴由函数的单调性得3x <3y ,log x 3>log y 3,(14)x >(14)y ,即选项A 、B 、D 错,故选C.7.D8.C 由分段函数的表达式知,需要对a 的正负进行分类讨论.f (a )>f (-a )⇒⎩⎪⎨⎪⎧ a >0log 2a >log 12a 或 ⎩⎪⎨⎪⎧ a <0log 12(-a )>log 2(-a )⇒⎩⎨⎧ a >0a >1或⎩⎨⎧a <0-1<a ⇒a >1或-1<a <0.9.D 依题意,设f (x )=x α,则有(18)α=24,即(18)α=(18)12,所以α=12,于是f (x )=x 12. 由于函数f (x )=x 12在定义域[0,+∞)内单调递增,所以当x 1<x 2时,必有f (x 1)<f (x 2),从而有x 1f (x 1)<x 2f (x 2),故②正确;又因为f (x 1)x 1,f (x 2)x 2分别表示直线OP 、OQ 的斜率,结合函数图象,容易得出直线OP 的斜率大于直线OQ 的斜率,故f (x 1)x 1>f (x 2)x 2,所以③正确. 10.A ∵f (x )的值域为[0,+∞),令t =4x -2x +1+1,∴t ∈(0,1]恰成立,即0<(2x )2-2·2x +1≤1恰成立,0<(2x -1)2成立,则x ≠0,(2x )2-2·2x +1≤1可化为2x (2x -2)≤0,∴0≤2x ≤2,即0≤x ≤1,综上可知0<x ≤1.11.D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,-f (1)<0,即f (-25)<f (80)<f (11).12.C 将f (x )<12化为x 2-12<a x ,利用数形结合,分a >1和0<a <1两种情况求解.结合图象得⎩⎪⎨⎪⎧ a >1a -1≥12或⎩⎪⎨⎪⎧ 0<a <1a ≥12,解得1<a ≤2或12≤a <1. 13.(1,3)14.-1解析 由已知得f (-1)=log 22=1,f (0)=0,f (1)=f (0)-f (-1)=-1,f (2)=f (1)-f (0)=-1,f (3)=f (2)-f (1)=-1-(-1)=0,f (4)=f (3)-f (2)=0-(-1)=1,f (5)=f (4)-f (3)=1,f (6)=f (5)-f (4)=0,所以函数f (x )的值以6为周期重复性出现,所以f (2 011)=f (1)=-1.15.154解析 由0≤|log 0.5x |≤2解得14≤x ≤4, ∴[a ,b ]长度的最大值为4-14=154. 16.①②④解析 由f (x +1)=f (x -1)可得f (x +2)=f [(x +1)+1]=f (x +1-1)=f (x ),∴2是函数f (x )的一个周期.又函数f (x )是定义在R 上的偶函数,且x ∈[0,1]时,f (x )=(12)1-x , ∴函数f (x )的简图如右图,由简图可知②④也正确.17.解 (1)∵f (x )的不动点为(1,1)、(-3,-3),∴有⎩⎪⎨⎪⎧a +b -b =1,9a -3b -b =-3,∴a =1,b =3.………………………………………………4分 (2)∵函数总有两个相异的不动点,∴ax 2+(b -1)x -b =0,Δ>0,即(b -1)2+4ab >0对b ∈R 恒成立,……………………………………………………7分 Δ1<0,即(4a -2)2-4<0,………………………………………………………………9分 ∴0<a <1.…………………………………………………………… …………………10分18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a 20=1-a =0. ∴a =1.……………………………………………………………………………………3 设x ∈[0,1],则-x ∈[-1,0].∴f (-x )=14-x -12-x =4x -2x . 又∵f (-x )=-f (x )∴-f (x )=4x -2x .∴f (x )=2x -4x .……………………………………………………………………………8分(2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2,∴设t =2x (t >0),则f (t )=t -t 2.∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.……………………………………………12分19.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .…………………………………………………………………3分 由条件可知2x -12x =2,即22x -2·2x -1=0, 解得2x =1±2.∵2x >0,∴x =log 2(1+2).……………………………………………………………6分(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1).∵22t -1>0,∴m ≥-(22t +1).…………………………………………………………9分 ∵t ∈[1,2],∴-(1+22t )∈[-17,-5],故m 的取值范围是[-5,+∞). (2)20.解 (1)设f (x )图象上任一点坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,……………………………………………………………………………2分∴2-y =-x +1-x+2,∴y =x +1x , 即f (x )=x +1x.……………………………………………………………………………6分 (2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2]. ∵x ∈(0,2],∴a +1≥x (6-x ),…………………………………………………………8分 即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,∴a ≥7.……………………………………………12分21.解 (1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|) =⎩⎪⎨⎪⎧(30+t )(40-t ), 0≤t <10,(40-t )(50-t ), 10≤t ≤20.……………………………………………………4分(2)当0≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值为1 225;……………………………………………………8分当10≤t≤20时,y的取值范围是[600,1 200],在t=20时,y取得最小值为600.所以第5天,日销售额y取得最大值为1 225元;第20天,日销售额y取得最小值为600元.………………………………………12分22.(1)解取x1=x2=0,可得f(0)≥f(0)+f(0)⇒f(0)≤0.又由条件①得f(0)≥0,故f(0)=0.………………………………………………………4分(2)解显然f(x)=2x-1在[0,1]满足条件①f(x)≥0;也满足条件②f(1)=1.若x1≥0,x2≥0,x1+x2≤1,则f(x1+x2)-[f(x1)+f(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,即满足条件③,故f(x)是理想函数.………………………………8分(3)证明由条件③知,任给m、n∈[0,1],当m<n时,n-m∈[0,1],∴f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).若x0<f(x0),则f(x0)≤f[f(x0)]=x0,前后矛盾.若x0>f(x0),则f(x0)≥f[f(x0)]=x0,前后矛盾.故f(x0)=x0.……………………………………………………………………………12分。
高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析
第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。
2013届高三数学一轮复习基础训练系列卷(及答案)-(3)
2013届高三数学一轮复习基础训练系列卷(及答案)-(3)45分钟滚动基础训练卷(五)[考查范围:第17讲~第21讲 分值:100分]一、填空题(本大题共8小题,每小题5分,共40分,把答案填在答题卡相应位置)1.sin585°的值为________.2.函数f (x )=sin x cos x +12最小值是________.3.若cos α=13,则cos (2π-α)·sin (π+α)sin ⎝ ⎛⎭⎪⎪⎫π2+α·tan (3π-α)的值为________.4.把函数y =sin ⎝ ⎛⎭⎪⎪⎫5x -π2的图象向右平移π4个单位长度,再把所得图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.5.若函数y =a sin x +b (x ∈R)的最大值和最小值分别为4和0,则实数a =________,b =________.6.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则a ,b ,c 的大小关系为________(用“<”连接).7.[2011·南通一模] 若函数f (x )=sin ωx +3cos ωx (x ∈R)满足f (α)=-2,f (β)=0,且|α-β|(3)说明y =2sin ⎝⎛⎭⎪⎪⎫2x +π3的图象可由y =sin x的图象经过怎样的变换而得到.11.已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|<π2.(1)若cos π4cos φ-sin 3π4sin φ=0,求φ的值;(2)在(1)的条件下,若函数f (x )的图象的相邻两条对称轴之间的距离等于π3,求函数f (x )的解析式;并求最小正实数m ,使得函数f (x )的图象向左平移m 个单位所对应的函数是偶函数.12.若函数f (x )=12-sin ⎝ ⎛⎭⎪⎪⎫2ax +π6(a >0)的图象与直线y =m 相切,相邻切点之间的距离为π2.(1)求m 和a 的值; (2)若点A (x 0,y 0)是y =f (x )图象的对称中心,且x 0∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,求点A 的坐标.45分钟滚动基础训练卷(五) 1.-22[解析] sin585°=sin(360°+225°)=sin(180°+45°)=-sin45°=-22.2.0 [解析] ∵f (x )=12sin2x +12,∴f (x )min=0.3.13 [解析] 原式=cos α·(-sin α)cos α·(-tan α)=cos α=13. 4.y =sin ⎝ ⎛⎭⎪⎪⎫10x -7π4 [解析] 将原函数图象向右平移π4个单位长度,得y =sin ⎝ ⎛⎭⎪⎪⎫5x -7π4,再压缩横坐标得y =sin ⎝⎛⎭⎪⎪⎫10x -7π4. 5.2或-2 2 [解析] 由于-1≤sin x ≤1,所以当a >0时有⎩⎨⎧a +b =4,-a +b =0,解得a =2,b =2;当a <0时有⎩⎨⎧-a +b =4,a +b =0,解得a =-2,b =2.6.b <a <c [解析] c >tan π4=1,b =cos 2π7,a=sin 5π7=sin 27π,故b <a <c .7.1 [解析] 因为f (x )=2sin ⎝⎛⎭⎪⎪⎫ωx +π3,由条件可知周期为T =4×π2=2π,从而ω=2πT =1.8.8π [解析] 如图所示,设矩形ABCD 的周长为c ,⎭⎪⎬⎪⎫c =2(AB +AD )AB =2|a |AD =2π|a |⇒c =2(AB +AD )=4|a |+4π|a |≥8π. (当且仅当a =±π时取“=”号).9.[解答] (1)因为sin α=35,α是第二象限角,所以cos α=-45,从而tan α=-34.(2)cos ⎝ ⎛⎭⎪⎪⎫π2-α+cos ⎝⎛⎭⎫3π+α=sin α-cos α=75.10.[解答] (1)y =2sin ⎝ ⎛⎭⎪⎪⎫2x +π3的振幅A =2,周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎪⎪⎫2x +π3=2sin X . 列表,并描点画出图象:x -π6 π12 π3 7π125π6 X =2x +π3 0 π2 π 3π22π y =sin X 0 1 0-10 y =2sin ⎝ ⎛⎭⎪⎪⎫2x +π3 02 0 -2 0(3)方法一:把y =sin x 的图象上所有的点向左平移π3个单位,得到y =sin ⎝ ⎛⎭⎪⎪⎫x +π3的图象,再把y =sin ⎝ ⎛⎭⎪⎪⎫x +π3的图象上的点的横坐标缩短到原来的12(纵坐标不变),得到y =sin ⎝⎛⎭⎪⎪⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎪⎪⎫2x +π3的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝ ⎛⎭⎪⎪⎫2x +π3的图象.方法二:将y =sin x 的图象上每一点的横坐标x 缩短为原来的12(纵坐标不变),得到y =sin2x的图象;再将y =sin2x 的图象向左平移π6个单位得到y =sin ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎪⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎪⎪⎫2x +π3的图象上每一点的纵坐标伸长为原来的2倍(横坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎪⎫2x +π3的图象.[点评] “变量变化”与“图象变化”的关系:当x →x +φ时,若φ>0,则向左移|φ|个单位;若φ<0,则向右移|φ|个单位.当y →y +m 时,若m >0,则向下移|m |个单位;若m <0,则向上移|m |个单位.当x →ωx (ω>0)时,则其横坐标变为原来的1ω.当y →ky (k >0)时,其纵坐标变为原来的1k .要注意体会其“相反”的变化过程,把握其实质.11.[解答] 方法一:(1)由cos π4cos φ-sin3π4sin φ=0得cos π4cos φ-sin π4sin φ=0, 即cos ⎝ ⎛⎭⎪⎪⎫π4+φ=0,又|φ|<π2,∴φ=π4.(2)由(1)得f (x )=sin ⎝⎛⎭⎪⎪⎫ωx +π4, 依题意,T 2=π3.又T =2π|ω|,ω>0,故ω=3,∴f (x )=sin ⎝ ⎛⎭⎪⎪⎫3x +π4.函数f (x )的图象向左平移m 个单位后所对应的函数为g (x )=sin ⎣⎢⎢⎡⎦⎥⎥⎤3(x +m )+π4, ∵g (x )是偶函数,∴3m +π4=k π+π2(k ∈Z),即m =k π3+π12(k ∈Z),从而,最小正实数m =π12.方法二:(1)同方法一.(2)由(1)得,f (x )=sin ⎝⎛⎭⎪⎪⎫ωx +π4, 依题意,T 2=π3.又T =2π|ω|,ω>0,故ω=3,∴f (x )=sin ⎝ ⎛⎭⎪⎪⎫3x +π4. 函数f (x )的图象向左平移m 个单位后所对应的函数为g (x )=sin ⎣⎢⎢⎡⎦⎥⎥⎤3(x +m )+π4, 而g (x )是偶函数当且仅当g (-x )=g (x )对x ∈R 恒成立,即sin ⎝⎛⎭⎪⎪⎫-3x +3m +π4=sin ⎝ ⎛⎭⎪⎪⎫3x +3m +π4对x ∈R 恒成立,∴sin(-3x )cos3m +π4+cos(-3x )sin3m +π4=sin3x cos3m +π4+cos3x sin3m +π4, 即2sin3x cos3m +π4=0对x ∈R 恒成立, ∴cos ⎝ ⎛⎭⎪⎪⎫3m +π4=0, 故3m +π4=k π+π2(k ∈Z), ∴m =k π3+π12(k ∈Z), 从而,最小正实数m =π12. 12.[解答] (1)由题意知m 为f (x )的最大值或最小值,∴m =-12或m =32, 由题意知函数f (x )的最小正周期为π2,且a >0,∴a =2,∴m =-12或m =32,a =2. (2)∵f (x )=-sin ⎝ ⎛⎭⎪⎪⎫4x +π6+12, ∴令sin ⎝ ⎛⎭⎪⎪⎫4x +π6=0,得4x +π6=k π(k ∈Z),∴x =k π4-π24(k ∈Z). 由0≤k π4-π24≤π2(k ∈Z),得k =1或k =2, 因此点A 的坐标为⎝ ⎛⎭⎪⎪⎫5π24,12或⎝ ⎛⎭⎪⎪⎫11π24,12.。
高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案
第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n=1a m n=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编有下列四个式子:①3(-8)3=-8;② (-10)2=-10;③4(3-π)4=3-π;④2 017(a -b )2 017=a -b . 其中正确的个数是( )A .1B .2C .3D .4B ①④正确,(-10)2=|-10|=10,②错误; 4(3-π)4=|3-π|=-(3-π)=π-3,③错误,故选B.2.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3xD 根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x是增函数,所以D 正确.3.(2017·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y=1-x 的图象上.4.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________. 由1-e x ≥0,e x≤1,故函数f (x )的定义域为{x |x ≤0}. 所以0<e x ≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)0.027-13-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【解】 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=⎝ ⎛⎭⎪⎫-52a -16b -3÷(2a 13b -32)·a 12b 12=-54a -12b -32·a 12b 12=-54b -1=-54b.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b-32=85.指数函数的图象及应用(1)函数f (x )=21-x的大致图象为()(2)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f (x )=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.)1.函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 D 由f (x )=a x -b 的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.若函数y =21-x+m 的图象不经过第一象限,求m 的取值范围.y =⎝ ⎛⎭⎪⎫12x -1+m ,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m ≤-2.指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质.(1)已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. ①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.【解】 (1)选B.把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c . (2)①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).②令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ) 故f (x )的值域为(0,+∞)时,a 的值为0.有关指数函数性质的问题类型及解题策略(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小 1.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1BA 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73. B 中,因为y =0.6x在R 上是减函数,-1<2, 所以0.6-1>0.62. C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小. 因为y =1.25x在R 上是增函数,0.1<0.2, 所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.角度二 解简单的指数方程或不等式2.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 因为2x 2-x <4,所以2x 2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质 3.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在 因为f (x )=2|x -a |,所以f (x )的图象关于x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是 1——换元法解决指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x与a 2x(log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数y =9x+m ·3x-3在区间上单调递减,则m 的取值范围为________.设t =3x ,则y =9x +m ·3x -3=t 2+mt -3.因为x ∈,所以t ∈⎣⎢⎡⎦⎥⎤19,9.又函数y =9x+m ·3x -3在区间上单调递减,即y =t 2+mt -3在区间⎣⎢⎡⎦⎥⎤19,9上单调递减, 故有-m2≥9,解得m ≤-18.所以m 的取值范围为(-∞,-18]. (-∞,-18]1.下列函数中值域为正实数的是( )A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2xBA 中,y =-5x<0,B 中,因为1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数,所以y =⎝ ⎛⎭⎪⎫131-x的值域是正实数,C 中,y =⎝ ⎛⎭⎪⎫12x-1≥0,D 中,y =1-2x ,由于2x >0,故1-2x <1,又1-2x≥0,故0≤y <1,故符合条件的只有B.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8a bC .-6a bD .-6abC 原式=4÷⎝ ⎛⎭⎪⎫-23a 23-(-13)b -13-23=-6ab -1=-6a b,故选C.3.函数y =a x-1a(a >0,a ≠1)的图象可能是( )D 函数y =a x -1a 的图象由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.4.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >cB .a >c >bC .c >a >bD .b >c >aA 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .5.(2017·莱芜模拟)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g (x )=|2x -4|在 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).7.指数函数y =f (x )的图象经过点(m ,3),则f (0)+f (-m )=________. 设f (x )=a x(a >0且a ≠1),所以f (0)=a 0=1. 且f (m )=a m =3.所以f (0)+f (-m )=1+a -m=1+1a m =43.438.614-(π-1)0-⎝ ⎛⎭⎪⎫33813+⎝ ⎛⎭⎪⎫164-23=________. 原式=52-1-⎝ ⎛⎭⎪⎫27813+(4-3)-23=32-32+42=16. 169.(2015·高考山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.①当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.-3210.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(-1,2)11.求下列函数的定义域和值域. (1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y = 32x -1-19. (1)显然定义域为R .因为2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, 因为y =3x为增函数,所以2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,所以y ≥0. 即函数的值域为 (1)因为f (x )为偶函数, 所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间 因为函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,所以a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a+a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a.因为a <-1,所以⎝ ⎛⎭⎪⎫13a>3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞). 14.(2017·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,则12≤b <1. b ·f (a )=b ·f (b )=b (b +1)=b 2+b =⎝ ⎛⎭⎪⎫b +122-14,所以34≤b ·f (a )<2.⎣⎢⎡⎭⎪⎫34,215.已知函数y =2-x 2+ax +1在区间(-∞,3)内递增,求a 的取值范围. 函数y =2-x 2+ax +1是由函数y =2t 和t =-x 2+ax +1复合而成.因为函数t =-x 2+ax +1在区间 (-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减,且函数y =2t在R 上单调递增,所以函数y =2-x 2+ax +1在区间(-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减. 又因为函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,所以3≤a2,即a ≥6.16.已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围. (1)因为f (x )是定义在(-∞,+∞)上的奇函数, 所以f (0)=0,即1-42a 0+a =0.解得a =2.(2)因为y =f (x )=2x-12x +1,所以2x=1+y 1-y .由2x>0知1+y 1-y >0,所以-1<y <1.即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x -2等价于t (2x -1)2x+1≥2x -2,即(2x )2-(t +1)2x+t -2≤0.令2x =u ,因为x ∈(0,1],所以u ∈(1,2]. 又u ∈(1,2]时,u 2-(t +1)u +t -2≤0恒成立.所以⎩⎪⎨⎪⎧12-(t +1)+t -2≤0,22-2(t +1)+t -2≤0,解得t ≥0.故所求t 的取值范围为[0,+∞).。
高考数学一轮复习(函数与基本初等函数)
阶段性测试题(函数与基本初等函数).第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知log a 2=m ,log a 3=n ,则a 2m +n的值为( )A .6B .18C .12D .72.下列函数f (x )中,满足“对任意x 1,x 2∈(-∞,0),当x 1<x 2时,都有f (x 1)<f (x 2)”的函数是( ) A .f (x )=-x +1 B .f (x )=x 2-1 C .f (x )=2xD .f (x )=ln(-x )3.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )ln x 的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.设a =log 13 12,b =log 13 23,c =log 343,则a 、b 、c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0)3x (x ≤0),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫14的值是( ) A .9 B.19 C .-9D .-196.若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是( ) A .a =-1或3 B .a =-1 C .a >3或a <-1D .-1<a <37.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0-x +2, x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]8.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f [f (5)]=( )A .-5B .-15C.15D .59.已知函数f 1(x )=a x ,f 2(x )=x a ,f 3(x )=log a x (其中a >0,且a ≠1)在同一坐标系中画出其中两个函数在第一象限的图像,其中正确的是( )10.已知函数f (x )=2x +ln x ,若a n =0.1n (其中n ∈N +),则使得|f (a n )-2012|取得最小值的n 的值是( )A .100B .110C .11D .10第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.函数f (x )=log 2(2x +1)的单调增区间是________.12.设奇函数f (x )的定义域为R ,且周期为5,若f (1)<-1,f (4)=log a 2(a >0,且a ≠1),则实数a 的取值范围是________.13.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1]则b -a 的最小值为________.14.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a , x <1-x -2a , x ≥1,若f (1-a )=f (1+a ),则a 的值为________.15.设a >1,若对于任意的x ∈[a,2a ],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值集合为________.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.17.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图像恒在y=2x+m的图像上方,试确定实数m的范围.18.已知f(x)=x2-x+k,且log2f(a)=2,f(log2a)=k(a>0,a≠1).(1)求a,k的值;(2)当x为何值时,f(log a x)有最小值?并求出该最小值.19.函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.20.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)21.已知二次函数f (x )=ax 2+bx +c (a ≠0)且满足f (-1)=0,对任意实数x, 恒有f (x )-x ≥0,并且当x ∈(0,2)时,f (x )≤⎝⎛⎭⎫x +122.(1)求f (1)的值; (2)证明:a >0,c >0;(3)当x ∈[-1,1]时,函数g (x )=f (x )-mx (x ∈R )是单调函数,求证:m ≤0或m ≥1.。
2013高三数学一轮复习单元练习题基本初等函数(含答案)
《函数》假期作业一、选择题(本大题共12小题,每小题4分,共48分)1.已知集合A ={x |x <3},B ={x |2x -1>1},则A ∩B = ( ) A.{x |x >1} B.{x |x <3} C.{x |1<x <3} D.∅2、已知函数f(x)的定义域为[-1,5],在同一坐标系下,函数y =f(x)的图像与直线x =1的交点个数为( ).A .0个B .1个C .2个D .0个或1个均有可能 3设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .184.下列函数①y =|x|,x ∈(-3,2),②y =x 2-,③y =,④y =中,偶函数有( )A .1个B .2个C .3个D .4个 5.下列各组函数中,表示同一函数的是( ). A. 1,xy y x==B. 211,1y x x y x =-+=-C. 33,y x y x ==D. 2||,()y x y x == 6.函数f (x )=ln x -1x 的零点所在的区间是 ( )A.(0,1)B.(1,e)C.(e,3)D.(3,+∞) 7.已知f +1)=x +1,则f(x)的解析式为( )A .x2B .x 2+1(x ≥1) C .x 2-2x +2(x ≥1) D .x 2-2x(x ≥1)8.一等腰三角形的周长是20,底边y 是关于腰长x 的函数,它的解析式为( ) A .y =20-2x (x ≤10) B .y =20-2x (x <10) C .y =20-2x (5≤x ≤10) D .y =20-2x (5<x <10) 9.函数的递减区间是( )A .(-3,-1)B .(-∞,-1)C .(-∞,-3)D .(-1,-∞)10.若函数f(x)=是奇函数,则m 的值是( )A .0B .C .1D .211.已知f (x )=314<1log 1.a a x a x x x -+⎧⎨⎩(),,≥是R 上的减函数,那么a 的取值范围是 ( )A.(0,1)B.(0,13)C.[17,13)D.[17,1)12.定义在R 的偶函数f (x )在[0,+∞)上单调递减,且f (12)=0,则满足f (log 14x )<0的x 的集合为( )A.(-∞,12)∪(2,+∞)B.(12,1)∪(1,2)C.(12,1)∪(2,+∞)D.(0,12)∪(2,+∞)二、填空题(本大题共4小题,每小题4分,共16分)13.若1122(1)(32)a a --+<-,则a 的取值范围是________. 14、若30.530.5,3,log 0.5a b c ===,则a ,b ,c 的大小关系是15、函数()22231mm y m m x --=--是幂函数且在(0,)+∞上单调递减,则实数m 的值为 .16.已知函数f (x )=22log >0,1(0)xx x x -⎧⎪⎨-⎪⎩()≤则不等式f (x )>0的解集为 三、解答题(共5个大题,17,18各10分,19,20,21各12分,共56分)17、求下列表达式的值(1);)(65312121132b a b a b a ⋅⋅⋅⋅--(a>0,b>0) (2)21lg 4932-34lg 8+lg 245.18、 求下列函数的值域:(1)y=x-x 21-; (2) y=521+-x x19.已知奇函数f (x )是定义在(-3,3)上的减函数且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.20.某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使每天所赚的利润最大?并求出最大值.21、已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围.《函数》假期作业1-5CBABC 6-10 BCDAD 11-12 CD13、23(,)3214、 b a c >> 15、 2 16、(-1,1)17、(1)原式=.100653121612131656131212131=⋅=⋅=⋅-+-+--b a b aba b a b a(2)原式=21(lg32-lg49)-34lg821+21lg245=21 (5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5=21lg(2×5)= 21lg10=21.18.解:(1)令x 21-=t,则t≥0,且x=.212t -∴y=-21(t+1)2+1≤21(t≥0),∴y∈(-∞,21]. (2) (分离常数法)y=-)52(2721++x ,∵)52(27+x ≠0,∴y≠-21.故函数的值域是{y|y∈R,且y≠-21}.19、解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 20、解 设每个提价为x 元(x ≥0),利润为y 元,每天销售总额为(10+x )(100-10x )元, 进货总额为8(100-10x )元, 显然100-10x >0,即x <10,则y =(10+x )(100-10x )-8(100-10x )=(2+x )(100-10x )=-10(x -4)2+360 (0≤x <10). 当x =4时,y 取得最大值,此时销售单价应为14元,最大利润为360元. 21、解:设()f x 的最小值为()g a (1)当22a-<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;(2) 当[2,2]2a-∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2又-4≤a ≤4,故-4≤a ≤2; (3)22a->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4 故-7≤a <-4 综上,得-7≤a ≤2。
黑龙江省2013届高三数学一轮复习单元训练 基本初等函数
黑龙江省2013届高三数学一轮复习单元训练:基本初等函数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数⎩⎨⎧=≥+<+=6))0((,1.1,13)(2f f x ax x x x f x 若,则a 的取值等于( )A . -1B .1C .2D .4【答案】B2.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 【答案】C3. 设函数221,1()22,1x x f x x x x +≥⎧=⎨--<⎩,若0()1f x >,则0x 的取值范围是( )A .(,1)(1,)-∞-+∞B .[)(,1)1,-∞-+∞C .(,3)(1,)-∞-+∞D .[)(,3)1,-∞-+∞【答案】B4.设|13|)(-=x x f ,a b c <<且)()()(b f a f c f >>,则下列关系中一定成立的是( )A .bc33> B .ab 33> C .233>+acD .233<+ac【答案】D5.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[【答案】D6.已知函数log (1)(0,1)a y ax a a =->≠在定义域(1,2)上为增函数,则a 的范围是( )A .1(0,)2B .(0,1)C .1(0,]2D .(1,2)【答案】C7. 已知函数2log (),0(2)1(),02x x x f x x -<⎧⎪+=⎨≥⎪⎩,则2(2)(log 12)f f -+= ( )A 、13B 、73C 、2512D 、1312【答案】B 8.已知函数的值域为R,则k 的取值范围是( ) A . O <k<l B.C .D .【答案】C9.定义在R 上的函数()f x 满足:()()()f x 1f x 1f 1x -=+=-成立,且()f x 在[]1,0-`上单调递增,设()()a f 3,b f ,c f 2===,则a 、b 、c 的大小关系是A .a >b > cB .a >c >bC .b >c >aD .c >b >a【答案】D10.已知偶函数()f x 在[]0,2上递减,试比()12211 , log , log 42a f b f c f ⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭大小 ( )A . a b c >>B . a c b >>C . b a c >>D . c a b >>【答案】D11.下列各组函数是同一函数的是 ( )①()f x =()g x =()f x x =与()g x =0()f x x =与1()g x x=;④2()21f x x x =--与2()21g t t t =--。
高三数学基本初等函数Ⅰ试题
高三数学基本初等函数Ⅰ试题1.若函数有两个不同的零点,则实数的取值范围是.【答案】【解析】当时,函数图象与x轴有一个交点,即有一个零点,所以当时,要使函数图象与x轴还要有一个交点,而过点(0,1),所以要向下平移,所以.【考点】本小题主要考查分段函数的图象和函数零点个数问题.点评:函数的零点个数一般都转化为函数图象与x轴的交点个数解决,考查学生的数形结合能力.2.如果函数没有零点,则的取值范围为( )A.B.C.D.【答案】C【解析】因为没有零点,所以无交点,画出两个函数的图像,由图像可知:的取值范围为。
【考点】函数的零点;函数的综合应用。
点评:此题主要利用了数形结合的数学思想,考查了学生画图、识图、用图的能力。
题目较难,对学生的能力要求较高。
3.若的反函数为,且,则的最小值是( ).A.B.C.D.【答案】B【解析】解:由y=2x解得:x=log2y∴函数f(x)=2x的反函数为f-1(x)=log2x,x>0由f-1(a)+f-1(b)=4得:log2a+log2b=4即:log2ab=4∴ab=16∴≥2 = 即的最小值是.答案:B4.函数f (x)=e x+3x的零点个数是A.0B.1C.2D.3【答案】B【解析】,f(x)在R上单调递增,f(0)=1>0,f(-1)=<0,则f(x) 有一个零点在区间(-1,0)内5.若函数且,则下列结论中,必成立的是( ) A.B.C.D.【答案】D【解析】作函数的图像则故选D6.已知函数f(x)=ax2+bx+c(a>0), f′(x)为f(x)的导函数. 设A={x|f(x)<0}, B={x|f′(x)<0}. 若A∩B=P{x|2<x<3},则(b+c)/a = ________【答案】2【解析】略7.对某种产品市场产销量情况如图所示,其中:l1表示产品各年年产量的变化规律;l2表示产品各年的销售情况。
高三第一轮复习基本初等函数
第二章基本初等函数(1)(基础训练)测试题 1.下列函数与x y =有相同图象的一个函数是( ) A .2x y =B .xx y 2= C .)10(log ≠>=a a a y xa 且 D .x a a y log = 2.下列函数中是奇函数的有几个( )①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a xy x +=-A .1B .2C .3D .43.函数y x =3与y x=--3的图象关于下列那种图形对称( ) A.x 轴 B.y 轴 C.直线y x = D.原点中心对称4.已知13x x -+=,则3322x x -+值为( )A .B .C .D . -5.函数y =的定义域是( )A .[1,)+∞ B.2(,)3+∞ C.2[,1]3 D.2(,1]36.三个数60.70.70.76log 6,,的大小关系为( )A . 60.70.70.7log 66<<B . 60.70.70.76log 6<<C .0.760.7log 660.7<<D . 60.70.7log 60.76<< 7.若f x x (ln )=+34,则f x ()的表达式为( ) A .3ln x B .3ln 4x + C .3x e D .34x e + 二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x xy 的值是_____________。
5.方程33131=++-x x的解是_____________。
6.函数1218x y -=的定义域是______;值域是______.7.判断函数2lg(y x x =+的奇偶性 。
数学(理)一轮复习 第二章 基本初等函数、导数及其应用 第讲 二次函数与幂函数
第4讲二次函数与幂函数1.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x错误!,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α〈0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质解析式f(x)=ax2+bx+c(a〉f(x)=ax2+bx+0)c(a<0)图象定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在错误!上单调递减;在错误!上单调递增在错误!上单调递增;在错误!上单调递减对称性函数的图象关于x=-错误!对称1.辨明两个易误点(1)对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.2.会用两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.1.错误!幂函数y=f(x)经过点(2,错误!),则f(9)为( )A.81 B.错误!C。
错误!D.3D 设f(x)=xα,由题意得错误!=2α,所以α=错误!。
浙江省2013届高三数学一轮复习 基本初等函数单元训练
浙江省2013届高三数学一轮复习单元训练:基本初等函数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数)30(42)(2<<++=a ax ax x f ,其图象上两点的横坐标1x ,2x 满足21x x <, 且a x x -=+121,则有( )A .)()(21x f x f >B . )()(21x f x f =C .)()(21x f x f <D .)(),(21x f x f 的大小不确定 【答案】C2.已知函数()x f 的定义域为R ,()10=f ,对任意R x ∈都有()()()()()()()()=+⋅⋅⋅⋅⋅⋅+++=+1091211101,21f f f f f f x f x f 则( )A .910 B .2110 C .109 D .2111 【答案】B解析:由()()()()(),2121,10=-++=+=n f n f x f x f f 得且().2110=f所以()()()().1112111⎪⎪⎭⎫ ⎝⎛+-=+n f n f n f n f 所以()()()()()()()()211010101211091211101=⎪⎪⎭⎫ ⎝⎛-=+⋅⋅⋅⋅⋅⋅++f f f f f f f f . 3. 若()2()lg 21f x x ax a =-++在区间]1,(-∞上递减,则a 范围为( )A .[1,2)B . [1,2]C .[)1,+∞D . [2,)+∞【答案】A4.函数2()log f x x π=+的零点所在区间为( )A .10,8⎛⎤ ⎥⎝⎦B .11,84⎡⎤⎢⎥⎣⎦C .11,42⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C5.若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( )A .(1a,b ) B .(10a,1-b )C .(10a,b +1) D .(a 2,2b )【答案】D6.已知4(7),0,()(9)log (),0.f x x f x f x x -≥⎧=⎨-<⎩则等于( ) A .-1B .0C .1D .2【答案】C7.幂函数()f x x α=的图象过点(2,4),那么函数()f x 的单调递增区间是( )A .(2,)-+∞B .[1,)-+∞C .[0,)+∞D .(,2)-∞-【答案】C8.下列函数中,图象与函数2xy =的图象关于原点对称的是A .2xy =-B .12xy ⎛⎫= ⎪⎝⎭C .12xy ⎛⎫=- ⎪⎝⎭D .12xy -⎛⎫=- ⎪⎝⎭【答案】C9.函数y =x2-2sin x 的图像大致是( )【答案】C 10.设函数||()x f x x =,对于任意不相等的实数,a b ,代数式()22a b a bf a b +-+⋅-的值等于( ) A .a B .bC .a 、b 中较小的数D .a 、b 中较大的数【答案】D11.设4log , 2 ,3.03.03.02===c b a ,则( )A . b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A12.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )【答案】AxxA .B .C .D .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.如图,连结函数f(x)= 2x (x>0)上任意两点22(,),(,)A a a B b b ,线段AB 必在AB 上方,设点C 是线段AB 的中点,则由图中C 在C1的上方可得不等式:222()22a b a b ++>.请分析函数f(x)=lg x(x>0)的图象,类比上述不等式可以得到 .【答案】lg lg lg22a b a b++< 14. 幂函数()f x 的图象过点427)(,则()f x 的解析式是_____________ 【答案】34()f x x =15.函数y=log 3(9-x 2)的定义域为A ,值域为B ,则A ∩B=______.【答案】(-3,2]16.函数y=22x x 1()2-的值域为______. 【答案】[12,+∞)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.设函数a R,(x |a x 2|x f(x)2∈-+=为实数). (Ⅰ)若f(x)为偶函数,求实数a 的值; (Ⅱ)设2a >,求函数f(x)的最小值. 【答案】(Ⅰ) 函数f(x)是偶函数,∴f(x)x)f(=-,即|a x 2||a x 2|+=-,解得0a =; (Ⅱ)f(x)= a21x a,x 2x a 21x a,x 2x 22<+-≥-+, ①当a x 21≥时,1)(a 1)(x a x 2x f(x)22+-+=-+=,由a 21x 2,a ≥>,得1x >,故f(x)在),21[+∞a 时单调递增,f(x)的最小值为4)2(2a a f =;②当a 21x <,1)(a 1)(x a x 2x f(x)22-+-=+-=, 故当2ax 1<<时,f(x)单调递增,当1x <时,f(x)单调递减,则f(x)的最小值为1a f(1)-=;由于042)(a 1)(a 4a 22>-=--,故f(x)的最小值为1a -.18.化简或求值:(1)4160.250321648200549-+---)()+()(2)2lg 5lg 8000(lg 1lg 600lg 0.362⋅+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数》假期作业
一、选择题(本大题共12小题,每小题4分,共48分)
1.已知集合A ={x |x <3},B ={x |2x -
1>1},则A ∩B = ( )
A.{x |x >1}
B.{x |x <3}
C.{x |1<x <3}
D.∅
2、已知函数f(x)的定义域为[-1,5],在同一坐标系下,函数y =f(x)的图像与直线x =1的交点个数为( ).
A .0个
B .1个
C .2个
D .0个或1个均有可能
3设函数2
211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,
,,,
≤则
1(2)f f ⎛⎫
⎪⎝⎭
的值为( )
A .
15
16
B .2716
-
C .
89
D .18
4.下列函数①y =|x|,x ∈(-3,2),②y =x 2-,③y =,④y =中,偶
函数有( )
A .1个
B .2个
C .3个
D .4个 5.下列各组函数中,表示同一函数的是( ).
A. 1,x
y y x
==
B. 11,y x y
+C.
,y x y == D. 2||,y x y == 6.函数f (x )=ln x -1
x 的零点所在的区间是 ( )
A.(0,1)
B.(1,e)
C.(e,3)
D.(3,+∞) 7.已知f +1)=x +1,则f(x)的解析式为( )
A .x
2
B .x 2
+1(x ≥1) C .x 2
-2x +2(x ≥1) D .x 2
-2x(x ≥1)
8.一等腰三角形的周长是20,底边y 是关于腰长x 的函数,它的解析式为( ) A .y =20-2x (x ≤10) B .y =20-2x (x <10) C .y =20-2x (5≤x ≤10) D .y =20-2x (5<x <10) 9.函数
的递减区间是( )
A .(-3,-1)
B .(-∞,-1)
C .(-∞,-3)
D .(-1,-∞)
10.若函数f(x)=是奇函数,则m 的值是( )
A .0
B .
C .1
D .2
11.已知f (x )=314<1log 1.a
a x a x x x -+⎧
⎨⎩(),,≥是R 上的减函数,那么a 的取值范围是 ( )
A.(0,1)
B.(0,13)
C.[17,13)
D.[1
7
,1)
12.定义在R 的偶函数f (x )在[0,+∞)上单调递减,且f (12)=0,则满足f (log 1
4x )<0的x 的
集合为( ) A.(-∞,12)∪(2,+∞) B.(12,1)∪(1,2) C.(12,1)∪(2,+∞) D.(0,1
2)∪(2,+∞)
二、填空题(本大题共4小题,每小题4分,共16分)
13.若1
12
2
(1)(32)a a --
+<-,则a 的取值范围是________.
14、若
30.530.5,3,log 0.5a b c ===,则a ,b ,c 的大小关系是
15、函数()
2
223
1m m y m m x --=--是幂函数且在(0,)+∞上单调递减,则实数m 的值
为 .
16.已知函数f (x )=22
log >0,1(0)x
x x x -⎧⎪⎨-⎪⎩
()≤则不等式f (x )>0的解集为 三、解答题(共5个大题,17,18各10分,19,20,21各12分,共56分)
17、求下列表达式的值 (1);)(65
3
12
12
113
2
b a b
a b a ⋅⋅⋅⋅--(a>0,b>0) (2)2
1lg 49
32-3
4lg 8+lg 245
.
18、 求下列函数的值域:
(1)y=x-x 21- (2) y=
5
21+-x x
19.已知奇函数f (x )是定义在(-3,3)上的减函数且满足不等式f (x -3)+f (x 2
-3)<0,求x 的取值范围.
20.某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使每天所赚的利润最大?并求出最大值.
21、已知函数2
()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围.
《函数》假期作业
1-5CBABC 6-10 BCDAD 11-12 CD 13、
23
(,)32
14、 b a c >> 15、 2 16、(-1,1) 17、(1)原式=.1006
531216
1
21316
56
13
1
21
21
31
=⋅=⋅=⋅-+-+--b a b
a
b
a b a b a
(2)原式=2
1(lg32-lg49)-3
4lg82
1+2
1lg245
=21 (5lg2-2lg7)-3
4×2lg 2
3+2
1 (2lg7+lg5)
=2
5lg2-lg7-2lg2+lg7+21lg5=21lg2+2
1lg5
=21lg(2×5)= 21lg10=2
1.
18.解:(1)令x 21-=t,则t≥0,且x=
.2
12
t --2
1(t+1)2
+1≤2
1(t≥0)
∴y∈(-∞,2
1]
(2) (分离常数法)y=-)52(2721
++
x ,∵)
52(27
+x ≠0,
∴y≠-
2
1.故函数的值域是{y|y∈R,且y≠-2
1
19、解:由⎩⎨⎧<<-<<⎩⎨
⎧<-<-<-<-666
03333
332
x x x x 得,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2
-3)=f (3-x 2
),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2
,即x 2
+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 20、解 设每个提价为x 元(x ≥0),利润为y 元,每天销售总额为(10+x )(100-10x )元,
进货总额为8(100-10x )元,
显然100-10x >0,即x <10,
则y =(10+x )(100-10x )-8(100-10x )=(2+x )(100-10x )=-10(x -4)2
+360 (0≤x <10).
当x =4时,y 取得最大值,此时销售单价应为14元,最大利润为360元. 21、解:设()f x 的最小值为()g a (1)当22
a
-
<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;
(2) 当[2,2]2a -∈-即-4≤a ≤4时,()g a =3-a -2
4
a ≥0,得-6≤a ≤2
又-4≤a ≤4,故-4≤a ≤2; (3)22
a
-
>即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4 故-7≤a <-4 综上,得-7≤a ≤2。