第7章_相关与回归分析
第7章 相关分析与回归分析(含SPSS)
四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。
偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)
偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。
(二)偏相关系数在SPSS中的实现
1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶
第7章 相关与回归分析。
第七章相关与回归分析学习内容一、变量间的相关关系二、一元线性回归三、线性回归方程拟合优度的测定学习目标1. 掌握相关系数的含义、计算方法和应用2. 掌握一元线性回归的基本原理和参数的最小二3. 掌握回归方程的显著性检验4. 利用回归方程进行预测5. 了解可化为线性回归的曲线回归6. 用Excel 进行回归分析一、变量间的相关关系1. 变量间的关系(函数关系)1)是一一对应的确定关系。
2)设有两个变量x和y,变量y 随变量x一起变化,并完全依赖于x,当变量x 取某个数值时,y依确定的关系取相应的值,则称y 是x的函数,记为y = f (x),其中x 称为自变量,y 称为因变量。
3)各观测点落在一条线上。
4)函数关系的例子–某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)。
–圆的面积(S)与半径之间的关系可表示为S = π R2。
–企业的原材料消耗额(y)与产量x1、单位产量消耗x2、原材料价格x3间的关系可表示为y =x1 x2 x3。
单选题下面的函数关系是()A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2. 变量间的关系(相关关系)1)变量间关系不能用函数关系精确表达。
2)一个变量的取值不能由另一个变量唯一确定。
3)当变量 x 取某个值时,变量 y 的取值可能有几个。
4)各观测点分布在直线周围。
5)相关关系的例子–商品的消费量(y)与居民收入(x)之间的关系。
–商品销售额(y)与广告费支出(x)之间的关系。
–粮食亩产量(y)与施肥量(x1)、降雨量(x2)、温度 (x3)之间的关系。
–收入水平(y)与受教育程度(x)之间的关系。
–父亲身高(y)与子女身高(x)之间的关系。
3. 相关图表1)相关表:将具有相关关系的原始数据,按某一顺序平行排列在一张表上,以观察它们之间的相互关系。
2)相关图:也称为分布图或散点图,它是在平面直角坐标中把相关关系的原始数据用点描绘出来,通常以直角坐标轴的横轴代表自变量x,纵轴代表因变量y。
第七章 相关分析和线性回归分析
❖对样本来自的两总体是否存在显 著的净相关进行推断。
练习
❖ 高校科研研究.sav:高级职称的人年数 可能是共同影响课题总数和发表论文数 的变量,希望考察控制高级职称的人年 数的影响后,课题总数和发表论文数之 间的关系。
❖ 教养方式.sav:父亲对情感温暖的理解 是否成为父亲惩罚严厉以及拒绝否认的 中介变量?
线性回归分析
❖ 回归分析是一种应用极为广泛的数量分 析方法。它用于分析事物之间的统计关 系,侧重考察变量之间的数量变化规律, 并通过回归方程的形式描述和反映这种 关系,帮助人们准确把握变量受其他一 或者多个变量影响的程度,进而为控制 和预测提供两个或两个以上变量之间关系的方法。 从广义上说,相关分析包括了回归分析。严格地说, 二者有区别:
❖偏相关也称净相关,它在控制其 他变量的线性影响的条件下分析 两变量间的线性相关,所采用的 工具是偏相关系数。
❖控制变量数为1时,偏相关系数称 为一阶偏相关;当控制两个变量 时,称为二阶偏相关;当控制变 量的个数为0时,偏相关系数称为 零阶偏相关,也就是相关系数。
❖ 如果需要进行相关分析的两个变量其取值 均受到其他变量的影响,就可以利用偏相 关分析对其他变量进行控制,输出控制其 他变量影响后的相关系数。
❖相关系数
(二)散点图
❖含义 ❖简单散点图:生成一对相关变量的散
点图 ❖重叠散点图:生成多对相关变量的散
点图 ❖矩阵散点图:同时生成多对相关变量
的矩阵散点图 ❖三维散点图:生产成三个变量之间的
三维散点图
散点图的基本操作
❖简单散点图 ❖重叠散点图 ❖矩阵散点图 ❖三维散点图
练习
❖高校科研研究.sav: ❖绘制课题总数与论文数的简单散点
第七章相关与回归分析
第七章 相关与回归分析一、本章学习要点(一)相关分析就是研究两个或两个以上变量之间相关程度大小以及用一定函数来表达现象相互关系的方法。
现象之间的相互关系可以分为两种,一种是函数关系,一种是相关关系。
函数关系是一种完全确定性的依存关系,相关关系是一种不完全确定的依存关系。
相关关系是相关分析的研究对象,而函数关系则是相关分析的工具。
相关按其程度不同,可分为完全相关、不完全相关和不相关。
其中不完全相关关系是相关分析的主要对象;相关按方向不同,可分为正相关和负相关;相关按其形式不同,可分为线性相关和非线性相关;相关按影响因素多少不同,可分为单相关和复相关。
(二)判断现象之间是否存在相关关系及其程度,可以根据对客观现象的定性认识作出,也可以通过编制相关表、绘制相关图的方式来作出,而最精确的方式是计算相关系数。
相关系数是测定变量之间相关密切程度和相关方向的代表性指标。
相关系数用符号“γ”表示,其特点表现在:参与相关分析的两个变量是对等的,不分自变量和因变量,因此相关系数只有一个;相关系数有正负号反映相关系数的方向,正号反映正相关,负号反映负相关;计算相关系数的两个变量都是随机变量。
相关系数的取值区间是[-1,+1],不同取值有不同的含义。
当1||=γ时,x 与y 的变量为完全相关,即函数关系;当1||0<<γ时,表示x 与y 存在一定的线性相关,||γ的数值越大,越接近于1,表示相关程度越高;反之,越接近于0,相关程度越低,通常判别标准是:3.0||<γ称为微弱相关,5.0||3.0<<γ称为低度相关,8.0||5.0<<γ称为显著相关,1||8.0<<γ称为高度相关;当0||=γ时,表示y 的变化与x 无关,即不相关;当0>γ时,表示x 与y 为线性正相关,当0<γ时,表示x 与y 为线性负相关。
皮尔逊积距相关系数计算的基本公式是: ∑∑∑∑∑∑∑---==])(][)([22222y y n x x n y x xy n y x xy σσσγ 斯皮尔曼等级相关系数和肯特尔等级相关系数是测量两个等级变量(定序测度)之间相关密切程度的常用指标。
统计学第七章 相关与回归分析
(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2
或
y- y R= 1- 2 y y
ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5
统计学 第 七 章 相关与回归分析
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
第七章相关与回归分析
函数关系
(几个例子)
某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
圆的面积S与半径R之间的关系可表示为 S=R2 企业的原材料消耗额y与产量x1 、单位产量 消耗x2 、原材料价格x3之间的关系可表示为 y = x1 x2 x3
相关关系
(correlation)
1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 y 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 3. 各观测点落在一条线上
二.相关关系的种类 1、按相关的程度划分 完全相关 不完全相关 不相关 正相关 负相关 线性相关 非线性相关 单相关 4、按影响因素的多少划分 复相关 3、按相关的形式划分
2、按相关的方向划分
散点图
(scatter diagram)
第七章 相关与回归分析
教学目的与要求 掌握相关关系的含义,以及相关关系与 函数关系的区别,了解相关分析的内容,掌 握相关关系的判别方法和类型,理解回归分 析的实质,熟悉回归分析与相关分析的区别 与联系,掌握一元线性回归分析方法和应用
本章主要内容 第一节 相关分析 第二节 回归分析
第一节
相关分析
客观存在的各种现象之间的相互联系,都可以 表现为一定的数量关系,研究现象之间的数量关系 ,则是回归分析和相关分析的宗旨。现象之间的相 互联系,在许多情况下,表现为一定的因果关系, 将这些现象数量化,则成为变量,其中起着影响作 用的变量称为自变量,受自变量影响而发生变动的 变量称为因变量。 现象之间的相互关系,可以概括为两种不同的类 型,即函数关系和相关关系。
《统计学》-第七章-相关与回归分析
第七章 相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为 、 和 。
2、相关系数的正负表示相关关系的方向,r 为正值,两变量是 ;r 为负数,两变量是 。
3、r=0,说明两个变量之间 ;r=+1,说明两个变量之间 ;r=-1说明两个变量之间 。
4、一元线性回归方程bx a y+=ˆ 中的参数a 代表 ,数学上称为 ;b 代表 ,数学上称为 。
5、 分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与 分析时不同。
6、相关关系按方向不同,可分为 和 。
7、完全线性相关的相关系数r 值等于 。
8、计算回归方程要注意资料中因变量是 的,自变量是 的。
9、回归方程只能用于由 推算 。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是( )A 、现象间客观存在的依存关系B 、现象间的一种非确定性的数量关系C 、现象间的一种确定性的数量关系D 、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x 的值增加,因变量y 的值也随之增加,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关5、相关系数r 的取值范围是( )A. B.C. 6、当自变量x 的值增加,因变量y 的值也随之减少,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r 的取值范围是( )A 、从0到1B 、从-1到0C 、从-1到1D 、无范围限制11<<-r 10≤≤r 11≤≤-r9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求( )A 、自变量是给定的,因变量是随机的B 、两个变量都是随机的C 、两个变量都是非随机的D 、因变量是给定的,自变量是随机的11、回归方程 中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b个单位 B. 平均变动b 个单位C.变动a+b 个单位 D. 变动a 个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是( )A 、负相关B 、正相关C 、零相关D 曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是( )A 、移动平均法B 、半数平均法C 、散点法D 、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是( )A 、复相关B 、不相关C 、正相关D 、负相关17、按最小平方法估计回归方程 中参数的实质是使( )A. B. C. D. 18、判断现象之间相关关系密切程度的方法是( )A 、作定性分析B 、制作相关图C 、计算相关系数D 、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是( )A 、Y=12000+38XB 、Y=50000+12000XC 、Y=38000+12XD 、Y=12000+50000Xbx a y +=ˆbx a y +=ˆ∑=-最小值2)ˆ(y y21、已知,则相关系数为()A.不能计算 22、相关图又称( )A 、散布表B 、折线图C 、散点图D 、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是( )A 、显著相关B 、高度相关C 、正相关D 、负相关24、相关分析与回归分析的一个重要区别是( )A 、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B 、前者研究变量之间的变动关系,后者研究变量间的密切程度C 、两者都研究变量间的变动关系D 、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为( )A 、1B 、-1C 、+1或-1D 、大于-1,小于+126、一元线性回归方程y=a+bx 中,b 表示( )A 、自变量x 每增加一个单位,因变量y 增加的数量B 、自变量x 每增加一个单位,因变量y 平均增加或减少的数量C 、自变量x 每减少一个单位,因变量y 减少的数量D 、自变量x 每减少一个单位,因变量y 增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程 中,两个变量x 和y ( )A. 前一个是自变量 ,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量 ,后一个是随机变量E. 前一个随机变量 ,后一个是给定的量2、相关分析( )A 、分析对象是相关关系B 、分析方法是配合回归方程C 、分析方法主要是绘制相关图和计算相关系数D 、分析目的是确定自变量和因变量E 、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有( )A 、职工家庭收入不断增长,消费支出也相应增长B 、产量大幅度增加,单位成本相应下降C 、税率一定,纳税额随销售收入增加而增加D 、商品价格一定,销售额随销量增加而增加E 、农作物收获率随着耕作深度的加深而提高bx a y +=ˆ5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是( )A 、相关关系B 、函数关系C 、正相关D 、负相关E 、单相关7、为了揭示变量x 与y 之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数( )A 、是测定两个变量间有无相关关系的指标B 、是在线性相关条件下测定两个变量间相关关系密切程度的指标C 、也能表明变量之间相关的方向D 、其数值大小决定有无必要配合回归方程E 、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D.10、直线回归方程( )A、建立前提条件是现象之间具有较密切的直线相关关系B 、关键在于确定方程中的参数a 和bC 、表明两个相关变量间的数量变动关系D 、可用来根据自变量值推算因变量值,并可进行回归预测E 、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差 12、某种产品的单位成本y (元)与工人劳动生产率x (件/人)之间的回归直线方程Y=50-0.5X ,则( )A 、0.5为回归系数B 、50为回归直线的起点值C 、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D 、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E 、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b 是回归直线的斜率B. b 的绝对值介于0-1之间C. bD. bE. b 满足方程组y S ⎪⎩⎪⎨⎧+=+=∑∑∑∑∑2xb x a xy x b na y14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。
七章 相关与回归分析
(一)狭义的相关分析。简称为相关关系分析,它以现象之间是 否相关、相关的方向和相关密切程度等为主要研究内容,它不区 别自变量与因变量,对各变量的构成形式也不关心。其主要分析 方法有:编制相关表、绘制相关图、计算相关系数。 (二)广义的相关分析。还包括对现象间具体的相关形式的分析, 即回归分析。在回归分析中根据研究的目的,应区分出自变量和 因变量,并研究确定自变量和因变量之间的具体关系的方程形式。 其主要方法有:建立回归模型、求解回归模型中的参数、对回归 模型进行检验等。可见,广义的相关分析包括狭义的相关分析和 回归分析两部分内容,也就是本章讲解的主要内容。
.
.
(2)配合单位成本倚产量的直线回归方程,并解释参数 a、b 的经济含义。 (3)当产量为6000件时。试问单位成本为多少元? (4)计算估计标准误。 解:
r
n xy x y n x 2 x 2
6 1 4 8 1 2 1 4 2 6
2
n y 2 y 2
.
样本相 关系数
r
s s
x
2 xy s
.
y
1 ( x x )( y y ) n 1 1 2 2 ( x x ) ( y y) n n ( x x )( y y ) ( x x)
2 2 ( y y)
n xy x y
n x 2 ( x) 2 n y 2 ( y ) 2 1 2 LXY ( x x)( y y ) xy x y n 1 2 2 LXX ( x x) x ( x) 2 n 1 2 2 Lyy ( y y ) y ( y ) 2 n
.
统计学 第七章 相关与回归分析
数 值 说 明
完全负相关
无线性相关
完全正相关
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
通常:当相关系数的绝对值: 通常:当相关系数的绝对值: 小于0.3 小于0.3时,表示不相关或微弱相关 0.3时 介于0.3 0.5, 介于0.3至0.5,表示低度相关 0.3至 介于0.5 0.8,表示显著(中度) 介于0.5至0.8,表示显著(中度)相 0.5至 关 大于0.8Lxx Lyy
r=
n ∑ xy − ∑ x ⋅ ∑ y n ∑ x 2 − (∑ x ) 2 ⋅ n ∑ y 2 − (∑ y ) 2
r=
∑ ( x − x )( y − y) ∑ ( x − x )2 ∑ ( y − y)
2
( x − x )( y − y) = ∑ xy − 1 ∑ x ∑ y ∑ n
第二节
定性分析
相关分析的方法
是依据研究者的理论知识和实践经 验,对客观现象之间是否存在相关 关系,以及何种关系作出判断。 关系,以及何种关系作出判断。 在定性分析的基础上,通过编制相 在定性分析的基础上, 关表、绘制相关图、计算相关系数 等方法, 等方法,来判断现象之间相关的方 向、形态及密切程度。 形态及密切程度。
xy
( y − y) 2 ∑
σ xσ y
3.相关系数的其他公式 相关系数的其他公式
• (1)积差法公式: )积差法公式: • • (2)积差法简化式: )积差法简化式: r= • • (3)简捷公式: )简捷公式: •
∑ ( x − x)( y − y) r=
nσ xσ y
∑ ( x − x )( y − y ) ∑ (x − x) ⋅ ∑ ( y − y)
《统计学原理与应用》课件第07章 相关与回归分析
74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)
《统计学导论》 曾五一 第七章内容 相关与回归分析
第七章相关与回归分析第一节相关与回归分析的基本概念一函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,我们称这种关系为确定性的函数关系。
例如,商品的销售收入Y与该商品的销售量X以及该商品价格P之间的关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。
变量间的这种相互关系,称为具有不确定性的相关关系。
例如,劳动生产率与工资水平的关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
本来具有函数关系的变量,当存在观测误差时,其函数关系往往以相关的形式表现出来。
而具有相关关系的变量之间的联系,如果我们对它们有了深刻的规律性认识,并且能够把影响因变量变动的因素全部纳入方程,这时的相关关系也可能转化为函数关系。
相关关系也具有某种变动规律性,所以,相关关系经常可以用一定的函数形式去近似地描述。
客观现象的函数关系可以用数学分析的方法去研究,而研究客观现象的相关关系必须借助于统计学中的相关与回归分析方法。
二相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
当一种现象的数量变化完全由另一个现象的数量变化所确定时,称这两种现象间的关系为完全相关。
在这种场合,相关关系便成为函数关系。
因此也可以说函数关系是相关关系的一个特例。
当两个现象彼此互不影响,其数量变化各自独立时,称为不相关现象。
两个现象之间的关系介于完全相关和不相关之间,称为不完全相关,一般的相关现象都是指这种不完全相关。
按相关的方向可分为正相关和负相关。
当一个现象的数量增加(或减少),另一个现象的数量也随之增加(或减少)时,称为正相关。
例如,消费水平随收入的增加而提高。
当一个现象的数量增加(或减少),而另一个现象的数量向相反方向变动时,称为负相关。
例如商品流转的规模愈大,流通费用水平则愈低。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
生物统计学:第七章 直线回归与相关分析
特别要指出的是:利用直线回归方程进行预 测或控制时,一般只适用于原来研究的范围,不 能随意把范围扩大,因为在研究的范围内两变量 是直线关系,这并不能保证在这研究范围之外仍 然是直线关系。若需要扩大预测和控制范围,则 要有充分的理论依据或进一步的实验依据。利用 直线回归方程进行预测或控制,一般只能内插, 不要轻易外延。
(三)、相关系数的显著性检验
统计学家已根据相关系数r显著性t检验法计算出了 临界r值并列出了表格。 所以可以直接采用查表法对相 关系数r进行显著性检验。
先根据自由度 n-2 查临界 r 值 ( 附表8 ), 得 r0.05(n2) ,r0.01(n2)。若|r|< r0.05(n2),P>0.05,则相 关系数r不显著,在r的右上方标记“ns”;若 r0.05(n2) ≤|r|< r0.01(n2) ,0.01<P≤0.05,则相关系数 r 显 著,在r的右上方标记“*”;若|r|≥ r0.01(n2) ,P ≤ 0.01, 则相关系数 r 极显著,在 r 的右上方标记 “**”。
第七章 直线回归与相关分析
在试验研究中常常要研究两个变量间的关系。 如:人的身高与体重、作物种植密度与产量、食品价格与需
求量的关系等。 两个关系 依存关系:依变量Y随自变量X变化而变化。
—— 回归分析 互依关系:依变量Y与自变量X间的彼此关系.
—— 相关分析
一 直线回归
(一)、直线回归方程的建立 对于两个相关变量x和y,如果通过试验或调查 获得它们的n对观测值: (x1,y1),(x2,y2),……,(xn,yn) 为了直观地看出x和y间的变化趋势,可将每一 对观测值在平面直角坐标系描点,作出散点图。
y)2 y)2
SPxy 2 SSxSS y
SPxy SS x
第7章 直线回归与相关分析
y y ( x x)
y x
总体资料直线回 归的数学模型
总体回归截踞
总体回归系数 随机误差
y ( x x)
总体回归截踞 总体回归系数 随机误差
α:它是y的本底水平,即x对y没有任何作用时,y的数量 表现。 βx:它描述了因变量y的取值改变中,由y与自变量x的线 性关系所引起的部分,即可以由x直接估计的部分。 误差:它描述了因变量y的取值改变由x以外的可能与y有 关的随机和非随机因素共同引起的部分,即不能由 x直接 估计的部分。
ˆ y) ( y y ˆ) ( y y) ( y
2 2
2
回归平方和 U
离回归平方和 Q
ss
y
U Q
ˆ y ) 2 [ y b ( x x ) y ]2 U (y b 2 ( x x) b 2 ss x bsp ( sp ) 2
2 sy /x
2
sy / x SSx
回归系数的标准误
b 2 b t ( ) 2 sb sb
2
2 2 2
2
sb
sy / x SSx
b SSx b t 2 2 s y / x / SSx sy / x
2
U b
2
ss bsp
x
(sp)
2
ss
x
U t F Q /(n 2)
相关关系
X身高
Y体重
在大量测量各种身高人群的体重时会发现,虽然在同样身高 下,体重并不完全一样。但在每一身高下,都有一个确定的 体重分布与之相对应;
X体重
Y身高
在大量测量各种体重人群的身高时会发现,虽然在同样体重 下,身高并不完全一样。但在每一体重下,都有一个确定的 身高分布与之相对应;
统计学第7章相关与回归分析PPT课件
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。
第7章 相关与回归
Q
b
( X X )(Y Y (X X )2
)
( X
X
)(Y
Y
)
b( X
X
)2
判定系数r2与相关系数r的关系 Q r2 (Yˆ Y )2 (Y Y )2 且 :Yˆ a bX Y a bX (Yˆ Y )2 (a bX a bX )2 b2( X X )2
r2
(Yˆ Y )2
假设1:解释变量X是确定性变量,不是随机变量; 模 假设2:随机误差项 具有零均值、同方差和不序列相关性: 型 的 基 假设3:随机误差项 与解释变量X之间不相关: 本 假 设 假设4: 服从零均值、同方差、零协方差的正态分布
推论1: 推论2:
(总体理论回归直线)
为同方差,但不同分布的随机变量
(二)样本一元线性回归方程(一元线性经验回归方程)
129.5
X2
1122.25 2570.49 4044.96 6162.25 7726.41 9761.44 11513.29 10465.29 14568.49 19768.36
87703.23
Y2
30.25
25 144 88.36 65.61 289 256 237.16
345.96 506.25 1987.59
因果关系 互为因果关系 共变关系
确定性依存关系
随机性依存关系
二、 相关的种类
正相关 负相关
一元相关 多元相关
线性相关 曲线相关
y
y
y
y
x 线性正相关
x 线性负相关
x 曲线相关
x 不相关
三、简单线性相关
(一)相关系数(皮尔逊积矩相关系数、动差相关系数)
对两变量之间简单线性相关程度和方向的测定。
第七章 相关与回归分析
总体一元线性 回归方程:
Yˆ EY X
以样本统计量估计总体参数
(估计的回归方程)
样本一元线性回归方程: yˆ a bx
(一元线性回归方程)
截距 斜率(回归系数)
截距a 表示在没有自变量x的影响时,其它各 种因素对因变量y的平均影响;回归系数b 表
明自变量x每变动一个单位,因变量y平均变 动b个单位。
n x2 x2 n y2 ( y)2
1637887 916 625
0.9757
16 55086 9162 16 26175 6252
r 2 0.97572 0.9520
第七章 回归分析与相关分析
第七章 相关与回归分析
STAT
★ 第一节 相关分析概述 ★ 第二节 一元线性回归分析
第七章 回归分析与相关分析
yˆ a bx是理论模型,表明x与y变量 之间的平均变动关系,而变量y的实际
值应为yi (a bxi ) i yˆ i
X对y的线性影响而形 成的系统部分,反映两 变量的平均变动关系, 即本质特征。
随机干扰:各种偶然 因素、观察误差和其 他被忽视因素的影响
体重(Y)
75 70 65 60 55 50 45 40
b
n xy x y
n x2 x2
16 37887 916 625 16 55086 9162
0.7961
a y bx 625 0.7961 916 6.5142
16
16
即线性回归方程为:
yˆ 6.5142 0.7961x
计算结果表明,在其他条件不变时,能源消耗 量每增加一个单位(十万吨),工业总产值将 增加0.7961个单位(亿元)。
函数关系 相关关系
统计学导论 科学出版社 第七章 相关与回归分析
•
对于 n 组实际观察数据(yi ; xi1,,xi2 , , xip ),(i=1,2,…,n),多元线性回归模型可 表示为
{
y1 = 0 1 x11 2 x12 px1p 1 y2= 0 1 x21 2 x22 px2p 2 …… yn= 0 1 xn1 2 xn2 pxnp n
x 1766.293
y 1379.13
(x x)
2
4670769.25
( y y ) 2741904.99 ( x x )( y y) 3447388.39
2
要求:(1)计算相关系数r; (2)配合简单线性回归方程
(3)估计人均生活费收入为2000元时的商品支出额
表明Y的期望值是X的线性函数
反映了除 X和 Y之间的线性关系之外的随机因素对Y的 影响 是不能由X和Y之间的线性关系所解释的变异性
• 总体回归直线(回归方程) :E (Yt ) 1 2 X t
• 方程的图示是一条直线,因此也称为直 线回归方程 • 1是回归直线在 y 轴上的截距,是当 x=0 时 y 的期望值 • 2是直线的斜率,称为回归系数,表示 当 x 每变动一个单位时,y 的平均变动 值
样本回归函数
(概念要点)
样本回归线
ˆ ˆ ˆ Yt 1 2 X t
样本回归函数
ˆ ˆ Yt 1 2 X t et
最小二乘法
1. 使因变量的观察值与估计值之间的离差平方和 达到最小来求得回归系数。即
垐 ) ( y y ) 2 e2 最小 Q( 1 , 2 i ˆ i
年份
1981 1982 1983 1984 1985 1986 1987
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。
答:错。
应是相关关系。
单位成本与产量间不存在确定的数值对应关系。
2.相关系数为0表明两个变量之间不存在任何关系。
答:.错。
相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。
3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。
答:对,因果关系的判断还有赖于实质性科学的理论分析。
4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。
答:错。
两者是精确的函数关系。
5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。
答:对。
6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。
答:对。
因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。
二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。
答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。
然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。
两者之间的单相关关系出现正相关是因为背后还有天气等因素的影响,天气越热,两种冷饮的消费量都越多。
如果设法将天气等因素固定不变,单纯考察冰激凌与汽水的消费量,则可能出现负相关关系。
像这种假定其他影响因素不变专门考察其中两个因素之间的关系就成为偏相关。
2.讨论以下几种场合,回归方程t t t t u X X Y +++=33221βββ中回归系数的经济意义和应取的符号。
(1)Y t 为商业利润率;X 2t 为人均销售额;X 3t 为流通费用率。
(2)Y t 为粮食销售量;X 2t 为人口数;X 3t 为人均收入。
(3)Y t 为工业总产值;X 2t 为占用的固定资产;X 3t 为职工人数。
(4)Y t 为国内生产总值;X 2t 为工业总产值;X 3t 为农业总产值。
答: (1)02>β,03<β人均销售额越大,企业利润越高,故此商业利润率越高,从而商业利润率与人均销售额呈正相关关系;而流通费用率越高,反映商业企业的经营成本越高,其商业利润率就越低。
(2)02>β,03>β人口数量越多,对粮食的消费量就越大;人均收入越多,对粮食的购买力就越强,故此这两个变量皆与粮食销售量呈正相关关系。
(3)02>β,03>β固定资产和职工人数是两大生产要素,数量越多,说明生产要素越密集,工业总产值就越高,所以它们与工业总产值的关系为正相关。
(4)01>β,02>β,03>β因为国内生产总值包括三次产业,所以工业总产值、农业总产值和全部的国内生产总值为正相关关系,同时即便某些特殊地区没有工业和农业,仍然有国内生产总值,所以,01>β。
四、计算题1.设销售收入X为自变量,销售成本Y为因变量。
现根据某百货公司12个月的有关资料计算出以下数据:(单位:万元) ∑-2)(X X t =425053.73 ; X = 647.88; ∑-2)(Y Y t = 262855.25 ; Y = 549.8; ∑--))((X XY Y tt= 334229.09(1) 拟合简单线性回归方程,并对方程中回归系数的经济意义做出解释。
(2) 计算决定系数和回归估计的标准误差。
(3) 对β2进行显著水平为5%的显著性检验。
(4)假定明年1月销售收入为800万元,利用拟合的回归方程预测相应的销售成本,并给出置信度为95%的预测区间。
解:(1)7863.073.42505309.334229)())((ˆ22==---=∑∑X X X X Y Y tt tβ3720.4088.647*7863.08.549ˆˆ21=-=-=X Y ββ (2)∑∑∑----=2222)()(]))(([Y Y X X X X Y Y r tttt999834.025.262855*73.42505309.3342292== 6340.43)()1(222=--=∑∑Y Y r et0889.222=-=∑n eS te(3)0:,0:2120≠=ββH H003204.073.4250530889.2)(2ˆ2==-=∑X XS S teβ4120.245003204.07863.0ˆ22ˆ2ˆ===βββS t228.2)10()2(05.02/==-t n t αt 值远大于临界值2.228,故拒绝零假设,说明2β在5%的显著性水平下通过了显著性检验。
(4)41.669800*7863.03720.40=+=f Y (万元)1429.273.425053)88.647800(12110089.2)()(11222=-++=--++=∑X X X X n S S t f e f所以,Y f 的置信度为95%的预测区间为:3767.241.6690667.1*228.214.696)2(2/±=±=-±f e f S n t Y α所以,区间预测为: 18.46764.466≤≤f Y2. 对9位青少年的身高Y 与体重X 进行观测,并已得出以下数据:i13.54Y =∑ ,∑=9788.22Y2i,i472X=∑,228158i X =∑,803.02i iX Y =∑要求:(1)以身高为因变量,体重为自变量,建立线性回归方程;(2)计算残差平方和决定系数;(3)计算身高与体重的相关系数并进行显著性检验;(自由度为7,显著水平为0.05的t 分布双侧检验临界值为2.365。
)(4)对回归系数2ˆβ进行显著性检验。
解:(1)2222)())())((ˆ∑∑∑∑∑∑∑--=---=tttttt tttX X N Y X Y X N X X X X Y Y β0273.0472*47228158*9472*54.1302.803*9=--=0727.09/472*0273.09/54.13ˆˆ21=-=-=X Y ββ (2)决定系数:9723.0)()(]))(([2222=----=∑∑∑Y Y X X X X Y Y r t t t t残差平方和0722.0)()1(222=--=∑∑Y Y r e t (3)身高与体重的相关系数:9861.09723.02===R r不同时为零和211210:,0:ββββH H ==1016.022=-=∑n e S te检验统计量9134.245)(ˆ2222=-=∑etS X X F β)2(2,1-=-N t F NF 值远大于临界值2.365,故拒绝零假设,说明回归方程在5%的显著性水平下通过了显著性检验。
(4)0:,0:2120≠=ββH H0005.03404.2220273.0)(2ˆ2==-=∑X XS S teβ6.540005.00273.0ˆ22ˆ2ˆ===βββS t365.2)7()2(05.02/==-t n t αt 值远大于临界值2.365,故拒绝零假设,说明2β在5%的显著性水平下通过了显著性检验。
资料来源:厦门市统计局网站,其中人均储蓄根据储蓄额与人口数推算。
试根据该表的资料,(1) 拟合以下形式的消费函数:Y t =β1+β2X 1t +β3X 2t +U t (2) 计算随机误差项的标准差估计值、修正自由度的决定系数,并对整个回归方程进行显著性检验。
(3) 假设某一居民家庭人均可支配收入为12,000元,人均储蓄为40000元,试预测其人均消费支出,并给出置信度为95%的预测区间。
解:(1)回归分析的EXCEL 操作步骤为:步骤一:首先将数据粘贴导入EXCEL 数据表中。
步骤二:进行回归分析选择“工具” →“数据分析” →“回归”,在该窗口中选定自变量和因变量的数据区域,最后点击“确定”完成操作:得到回归分析的输出结果见下图。
因此回归方程为:t t t X X Y 210245.05879.00116.1596-+=(2)随机误差项的标准差估计值为:S =369.3716,修正的决定系数为:9633.02=R 。
不同时为零和、32113210:,0:ββββββH H ===F=145.4606远大于F 统计量的临界值4.10,说明回归方程在5%的显著性水平下通过检验。
(3)预测 点估计值为:158.963140000*0245.012000*5879.00116.1596=-+=f C使用EXCEL 进行区间估计步骤如下: 步骤一:构造工作表步骤二:为方便后续步骤书写公式,定义某些单元格区域的名称首先,定义F6、F7、F8的名称:选定E6:F8区域,然后执行菜单命令“插入”→“名称”→“指定”,在调出的对话框中选中“最左列”,单击“确定”:其次,定义B2:D13的名称:先选定该区域,然后执行然后执行菜单命令“插入”→“名称”→“定义”:调出“定义名称”对话框,输入名称“X ”,单击“确定”。
最后,采用同样方法,将B15:D15定义为“Xf ”,将F2:F4定义为“B ”。
步骤三:计算点预测值f C在F6中输入公式“=MMULT(Xf,B)”,按回车键即可。
步骤四:计算t 临界值在F7中输入公式“=TINV(1-0.95,12-3)”,按回车键即可。
步骤五:计算预测估计误差的估计值f e S在F5中输入公式:“=MMULT(MMULT(Xf,MINVERSE(MMULT(TRANSPOSE(X),X))),TRANSPOSE(Xf))”然后按“Ctrl+Shift+Enter ”组合键即可。
再计算f e S ,在F8中输入公式“=369.3716*SQRT(1+F5)”。
369.3716为回归估计标准差。
步骤六:计算置信区间上下限在F9、F10中分别输入公式“=Cf-t 临界值*Sef ”和“=Cf+t 临界值*Sef ”。