九年级数学(人教版)上学期单元试卷(八)

合集下载

人教版九年级上册数学各单元测试卷及答案(全套)

人教版九年级上册数学各单元测试卷及答案(全套)

第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( ) A.12x x ==B .10x =,2x =-C.1x =2x =-D.1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。

人教版数学九年级上册《圆》单元测试卷(含答案)

人教版数学九年级上册《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试【考试时间:90分钟满分:120分】一.选择题(共12小题)1.(2020春•南岸区校级月考)如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、BC、BD、CD,若∠CDB=36°,则∠ABC=()A.36°B.44°C.54°D.72°2.(2020•清江浦区)如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°3.(2020•斗门区)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2B.4C.6D.8 4.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°5.(2020•通辽)如图,P A,PB分别与⊙O相切于A,B两点,∠P=72°,则∠C=()A.108°B.72°C.54°D.36°6.(2020•三明)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,若AD=8,∠B=30°,则AC的长度为()A.3B.4C.4√2D.4√3 7.(2020•南充模拟)如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A .9B .10C .12D .158.若正六边形的边长为8cm ,则它的边心距为( )A .8cmB .6cmC .4√3cmD .2√3cm9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是( )A .36πB .60πC .96πD .100π10.(2020•包头)如图,AB 是⊙O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若∠AOC :∠AOD :∠DOB =2:7:11,CD =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π11.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3cmB .2cmC .1cmD .4cm12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r,母线长为R,正方形的边长为a,则用r表示a为()A.a=2+√22r B.a=5+2√22r C.a=2+5√22r D.a=(1+5√22r)二.填空题(共7小题)13.(2020•铁岭)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.14.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是AB̂的中点,且CD=10m,则这段弯路所在圆的半径为m.15.如图,AB为⊙O的直径,△P AB的边P A,PB与⊙O的交点分别为C、D.若AĈ=CD̂=DB̂,则∠P的大小为度.16.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.17.(2020•碑林区校级四模)如图,若正六边形ABCDEF边长为1,连接对角线AC,AD.则△ACD的周长为.18.(2020春•南岸区校级月考)如图,在正方形ABCD中,AB=2,分别以B、C为圆心,以AB的长为半径作弧,则阴影部分的面积为.19.(2020•娄底)如图,四边形ABDC中,AB=AC=3,BD=CD=2,则将它以AD为轴旋转180°后所得分别以AB、BD为母线的上下两个圆锥的侧面积之比为.三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.22.(2020•鼓楼区校级模拟)如图,AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.(1)若点D在AC上,连接DE,且AD=DE,求证:DE是⊙O的切线;(2)若CE=1.BE=3,求∠ACB的度数.23.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.24.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.25.(2020•承德)如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优̂,使点B在点O右下方,且∠AOB=30°,在优弧AB̂上任取一点P,过点P作直弧AB线OB的垂线,交数轴于点Q,设Q在数轴上对应的数为x,连接OP.̂上一段AP̂的长为10π,求∠AOP的度数及x的值;(1)若优弧AB̂所在圆的位置关系.(2)求x的最小值,并指出此时直线PQ与AB答案与解析一.选择题(共12小题)1.(2020春•南岸区)如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、BC、BD、CD,若∠CDB=36°,则∠ABC=()A.36°B.44°C.54°D.72°【答案】C【解析】∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠D=36°,∴∠ABC=90°﹣36°=54°,故选:C.【小贴士】圆周角定理,直角三角形的性质等知识,属于中考常考题型.【考点】圆周角定理.2.(2020•清江浦区)如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°【答案】D【解析】如图,∵A、B、C是⊙O上的三个点,∠AOB=58°,∴∠BCA=12∠AOB=29°,故选:D.【小贴士】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,基础题.【考点】圆周角定理.3.(2020•斗门区)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2B.4C.6D.8【考点】勾股定理;垂径定理.【答案】B【分析】根据CE=2,DE=8,得出直径CD=10,从而得出半径为5,在直角三角形OBE 中,由勾股定理得BE.【解析】∵CE=2,DE=8,∴CD=10,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,BE=√OB2−OE2=√52−32=4,故选:B.【小贴士】勾股定理以及垂径定理,是基础.4.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°【考点】切线的性质.【答案】B【解析】∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB=180°−∠O2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.【小贴士】切线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•通辽)如图,P A,PB分别与⊙O相切于A,B两点,∠P=72°,则∠C=()A.108°B.72°C.54°D.36°【考点】圆周角定理和切线的性质.【答案】C【解析】连接OA、OB,∵P A,PB分别为⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠P AO=90°,∠PBO=90°,∴∠AOB=360°﹣∠P AO﹣∠PBO﹣∠P=360°﹣90°﹣90°﹣72°=108°,由圆周角定理得,∠C=12∠AOB=54°,故选:C.【小贴士】的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(2020•三明)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,若AD=8,∠B=30°,则AC的长度为()A.3B.4C.4√2D.4√3【考点】三角形的外接圆与外心.【答案】B【解析】连接CD,∵AD是⊙O的直径,∴∠ACD=90°,又∵∠B=∠D=30°,∴AC=12AD=4,故选:B.7.(2020•南充模拟)如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.15【考点】正多边形和圆.【答案】C【解析】如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BCO=∠AOC﹣∠AOB=30°,由题意30°=360°n,∴n=12,8.若正六边形的边长为8cm,则它的边心距为()A.8cm B.6cm C.4√3cm D.2√3cm 【考点】正多边形和圆.【答案】C【解析】如图所示,连接OA,OB,过O作OD⊥AB于D,则OA=OB,OD⊥AB,AD=BD=12AB=12×8=4cm,∵此六边形是正六边形,∴∠AOB=360°6=60°,∴∠AOD=12∠AOB=12×60°=30°,∴OD=AD•cot∠AOD=4×√3=4√3cm.故选:C.9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是()A.36πB.60πC.96πD.100π【考点】圆锥的计算.【答案】B【解析】底面周长是:2×6π=12π,则圆锥的侧面积是:12×12π×10=60π.故选:B .10.(2020•包头)如图,AB 是⊙O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若∠AOC :∠AOD :∠DOB =2:7:11,CD =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π【考点】弧长的计算.【答案】D【解析】∵∠AOC :∠AOD :∠DOB =2:7:11,∠AOD +∠DOB =180°,∴∠AOD =77+11×180°=70°,∠DOB =110°,∠COA =20°,∴∠COD =∠COA +∠AOD =90°,∵OD =OC ,CD =4,∴2OD 2=42,∴OD =2√2,∴CD ̂的长是nπr 180=90π×2√2180=√2π,故选:D .【小贴士】解直角三角形和弧长公式,能求出半径OD 的长是解此题的关键,注意:圆心角是n °,半径是r 的弧的长度是nπr 180.11.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3cmB .2cmC .1cmD .4cm【考点】圆锥的计算.【答案】C【分析】利用扇形的面积公式可得圆锥的母线长,进而可求得圆锥的弧长,除以2π即为圆锥的底面半径.【解析】设圆锥的母线长为R ,120π×R 2360=3π,解得R =3cm , ∴圆锥的侧面展开图的弧长=120π×3180=2πcm , ∴圆锥的底面半径=2π÷2π=1cm ,故选:C .【小贴士】用到的知识点为:圆锥的侧面展开图的面积=nπR 2360;圆锥的侧面展开图的弧长=nπR 180;圆锥的侧面展开图的弧长等于底面周长.12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r ,母线长为R ,正方形的边长为a ,则用r 表示a 为( )A.a=2+√22r B.a=5+2√22r C.a=2+5√22r D.a=(1+5√22r)【考点】弧长的计算.【答案】C【分析】利用底面周长=展开图的弧长求出半径比,再根据过小圆的圆心作垂线,垂直于正方形的边,就构成等腰直角三角形,从图中关系可知,直角三角形的斜边是r+R,直角边a﹣r,根据勾股定理计算.【解析】利用底面周长=展开图的弧长可得;2πr=90πR180,得出R=4r,利用勾股定理解得a=2+5√22r.故选:C.【小贴士】的关键是利用底面周长=展开图的弧长求得r与R的关系,然后由勾股定理求得a与r之间的关系.二.填空题(共7小题)13.(2020•铁岭)如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=8cm.【考点】勾股定理和垂径定理.【答案】8【解析】∵CD⊥OB,∴CE=DE=12CD=4,在Rt△OCE中,OE=√52−42=3,∴AE=AO+OE=5+3=8(cm).14.(2019秋•昌平区期末)如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是AB̂的中点,且CD=10m,则这段弯路所在圆的半径为25 m.【考点】垂径定理的应用.【答案】25【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解析】∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.15.(2019•长春)如图,AB为⊙O的直径,△P AB的边P A,PB与⊙O的交点分别为C、D.若AĈ=CD̂=DB̂,则∠P的大小为60度.【考点】圆心角、弧、弦的关系.【答案】60【解析】连接OC、OD,̂=CD̂=DB̂,∵AC∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,OB=OD,∴△AOC和△BOD都是等边三角形,∴∠A=60°,∠B=60°,∴∠P=60°,故答案为:60.【小贴士】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.16.(2020•遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是√41−52.【考点】垂径定理和三角形的外接圆与外心.【解析】连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=5√2 2,∴OA=5√22,OF=BF=52,∴DF=BD﹣BF=3 2,∴OG=32,GD=52,在Rt△AGO中,AG=√OA2−OG2=√412,∴GE=√41 2,∴DE=GE﹣GD=√41−52.17.(2020•碑林区校级四模)如图,若正六边形ABCDEF边长为1,连接对角线AC,AD.则△ACD的周长为3+√3.【考点】正多边形和圆.【答案】3+√3.【分析】根据正六边形的性质和直角三角形的性质即可得到结论.【解析】∵正六边形ABCDEF中,AB=BC=CD=1,∠B=∠BCD=120°,∴∠ACB=∠BAC=30°,∴∠ACD=90°,∵∠CDA=∠EDA=60°,∴∠CAD=30°,∴AD=2CD=2,AC=√3CD=√3,∴△ACD的周长=AD+AC+CD=3+√3,18.(2020春•南岸区校级月考)如图,在正方形ABCD中,AB=2,分别以B、C为圆心,以AB的长为半径作弧,则阴影部分的面积为2√3−23π.【考点】扇形面积的计算.【答案】2√3−23π.【分析】连接BE 、CE ,得出等边三角形EBC ,求出∠DCE =30°,∠EBC =60°,分别求出扇形EBC 、扇形DCE 和△EBC 的面积,再求出答案即可.【解析】∵在正方形ABCD 中,AB =2,分别以B 、C 为圆心,以AB 的长为半径作弧, ∴∠DCB =90°,BC =AB =2,弧对应的半径是2,如图,连接BE 、CE ,∵BC =CE =BE =2,∴△BEC 是等边三角形,∴∠EBC =∠ECB =60°,∴∠DCE =30°,S 弓形=S 扇形EBC ﹣S △EBC =60π×22360−12×2×√3=23π−√3, ∴阴影部分的面积S =2(S 扇形DCE ﹣S 弓形)=2×[30π×22360−(23π−√3)]=2√3−23π.19.(2020•娄底)如图,四边形ABDC 中,AB =AC =3,BD =CD =2,则将它以AD 为轴旋转180°后所得分别以AB 、BD 为母线的上下两个圆锥的侧面积之比为 3:2 .【考点】圆锥的计算.【答案】3:2,【分析】根据两个圆锥的底面圆相同,设底面圆的周长为l ,根据圆锥的侧面积公式可得上面圆锥的侧面积为:12l •AB ,下面圆锥的侧面积为:12l •BD ,即可得出答案. 【解析】∵两个圆锥的底面圆相同,∴可设底面圆的周长为l ,∴上面圆锥的侧面积为:12l •AB ,下面圆锥的侧面积为:12l •BD ,∵AB =AC =3,BD =CD =2,∴S 上:S 下=3:2,三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,AB 为⊙O 的直径,点C 在⊙O 上,AD 平分∠CAB ,AD 与BC 交于点F ,过点D 作DE ⊥AB 于点E .(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.【考点】圆周角定理.【分析】(1)如图①中,延长DE交⊙O于G,连接AG.想办法证明DE=EG,BC=DG即可.(2)如图②中,作FR⊥AB于R,OS⊥AD于S.首先证明BF=BO,利用相似三角形的性质证明AC=2FR=2CF,由tan∠F AR=tan∠F AC=12,设SO=t,AS=2t,SF=SO=t,利用勾股定理求出t即可解决问题.【解析】(1)证明:如图①中,延长DE交⊙O于G,连接AG.∵AB⊥DG,AB是直径,∴BD̂=BĜ,DE=EG,∵AD平分∠CAB,∴CD̂=BD̂,∴BĈ=DĜ,∴BC=DG=2DE.(2)如图②中,作FR⊥AB于R,OS⊥AD于S.∵AD平分∠CAB,FC⊥AC,FR⊥AB,∴∠CAD=∠BAD=x,FC=FR,∴∠FBO=90°﹣2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB=∠OFB∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴FBAB =FRAC=12,∴tan∠F AR=tan∠F AC=1 2,设SO=t,AS=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=2√5 5,∴AF=3t=6√55,设CF=m,则AC=2m,则有5m2=36 5,∵m>0,∴m=6 5,∴AC=2m=12 5.【小贴士】解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【考点】等腰三角形的判定与性质;圆周角定理.【解析】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴AF=EF.22.(2020•鼓楼区校级模拟)如图,AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.(1)若点D在AC上,连接DE,且AD=DE,求证:DE是⊙O的切线;(2)若CE=1.BE=3,求∠ACB的度数.【考点】圆周角定理和切线的判定与性质.【解析】(1)连接OE,AE,∵AE=DE,OA=OE,∴∠DAE=∠DEA,∠OAE=∠OEA,∵AC是⊙O的切线,∴∠BAC=90°,∴∠DAE+∠OAE=∠DEA+∠OEA=90°,∵OE是⊙O的半径,∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠AEB=90°,∵∠C+∠CAE=∠CAE+∠BAE=90°,∴∠C=∠BAE,∴AE2=CE•BE,∴AE2=1×3,∴AE=√3,在Rt△ACE中,∴tan∠ACE=AECE=√3,∴∠ACE=60°.23.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.【解析】(1)证明:在⊙O中,∵∠BAC与∠CPB是BĈ对的圆周角,∠ABC与∠APC是AĈ所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.24.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1)求∠F AB的度数;(2)求证:OG=OH.【考点】正多边形和圆.【解析】(1)∵六边形ABCDEF 是正六边形,∴∠F AB =(6−2)×1806=120°; (2)证明:连接OA 、OB ,∵OA =OB ,∴∠OAB =∠OBA ,∵∠F AB =∠CBA ,∴∠OAG =∠OBH ,在△AOG 和△BOH 中,{AG =BH ∠OAG =∠OBH OA =OB,∴△AOG ≌△BOH (SAS )∴OG =OH .25.(2020•承德)如图,点A 在数轴上对应的数为20,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在点O 右下方,且∠AOB =30°,在优弧AB ̂上任取一点P ,过点P 作直线OB 的垂线,交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为10π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线PQ 与AB̂所在圆的位置关系.【考点】实数与数轴和圆周角定理和弧长的计算.【解析】(1)如图1,由n⋅π×20180=10π,解得n=90°,∴∠POQ=90°,∴∠AOP=180°﹣∠POQ=90°,∵PQ⊥OB,∴∠PQO=60°,∴tan∠PQO=OPOQ=√3,∴OQ=20√3 3∴x=−20√3 3;(2)如备用图,当直线PQ与AB̂所在圆的位置关系相切时,x有最小值,则∠QPO=90°,∵∠POQ=∠AOB=30°,OP=20,∴OQ=2√33OP=40√33,∴x=−40√3 3.【小贴士】切线的判定和性质,弧长计算,锐角三角函数定义,解题的关键是熟练掌握切线的性质.。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。

人教版数学九年级上册《旋转》单元测试题(附答案)

人教版数学九年级上册《旋转》单元测试题(附答案)
15.如图,直线y=﹣ x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,求点B′的坐标.
16.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
17.在平面直角坐标系中,点A坐标为(-2,4),与原点的连线OA绕原点顺时针转90°,得到线段OB,连接线段AB,若直线y=kx-2与△OAB有交点,则k的取值范围是____.
三、解答题
19.不同的“基本图形”的旋转可能具有相同的旋转效果.如图,点O是六个正三角形的公共顶点,这个图案可以看作是哪个“基本图形”以点O为旋转中心经过怎样旋转组合得到的?
20.如果把钟表的时针在任一时刻所在的位置作为起始位置,那么时针旋转出一个平角及一个周角,至少需要多长时间?
21.如图,△ABC绕点O旋转后,顶点A 对应点为A′,试确定旋转后的三角形.
( )
A.105°B.115°C.120°D.135°
【答案】C
【解析】
试题分析:∵DE=DF,∠EDF=30°,∴∠DEF= (180°﹣∠EDF)=75°,∴∠DEC=105°,∵∠C=45°,∴∠CDE=180°﹣45°﹣105°=30°,∴∠BDN=120°,故选C.
考点:旋转的性质.
10.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()
2.点A的坐标为(2,3),则点A关于原点的对称点A′的坐标为()

人教版数学九年级上学期《圆》单元测试题(附答案)

人教版数学九年级上学期《圆》单元测试题(附答案)
A.∠APB=30°B.∠APB>30°C.∠APB<30°D.不能确定
10.如图,A B是半圆的直径,点D是弧A C的中点,∠A B C=500,则∠D A B等于( )
A. 55°B. 60°C. 65°D. 70°
二、填空题
11.如图,A C与B D交于P,A D、B C延长交于点E,∠AEC=37°,∠C AE=31°,则∠APB的度数为.
(1)求证:DE∥B C;
(2)若AF=CE,求线段B C的长度.
27.如图,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(-1,0),AE=4.
(1)求点C的坐标;
(2)连接MG、B C,求证:MG∥B C.
[答案]8
12.已知点O到直线l的距离为6,以O为圆心,r为半径作⊙O,若⊙O上只有3个点到直线l的距离为2,则r的值为_____.
13.用一张半径为9Cm、圆心角为120°的扇形纸片,做成一个圆锥形冰淇淋的侧面(不计接缝),那么这个圆锥形冰淇淋的底面半径是_________Cm.
14.如图,⊙C与∠AOB 两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=4,则OC的长为____.
A. ∠APB=30°B. ∠APB>30°C. ∠APB<30°D. 不能确定
[答案]C
[解析]
[分析]
连接B C,已知∠AOB=60°,∠AOB与∠A C B为优弧A B所对的圆心角和圆周角,利用圆周角定理求得∠A C B,再利用三角形外角的性质得出答案即可.
[详解]如图,
∵∠AOB与∠A C B为优弧A B所对的圆心角和圆周角,

人教版九年级数学上册单元测试题全套及答案

人教版九年级数学上册单元测试题全套及答案

九年级数学上册半月测试题姓名:分数:时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.一元二次方程x2-8x-1=0配方后为( )A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=172.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为( )A.0,5 B.0,1 C.-4,5 D.-4,13.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为( ) A.4,-2 B.-4,-2 C.4,2 D.-4,24.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( )A.1 B.-3或1 C.3 D.-1或35.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是( )A.4 B.6 C.8 D.106.已知关于x的一元二次方程x2+2x-(m-2)=0有实数根,则m的取值范围是( )A.m>1 B.m<1 C.m≥1 D.m≤17.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,∠OBC=45°,则下列各式成立的是( )A.b-c-1=0 B.b+c+1=0C.b-c+1=0 D.b+c-1=08.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长为( )A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 29.当x取何值时,代数式x2-6x-3的值最小?( )A.0 B.-3 C.3 D.-910.如图,将边长为12 cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm2,则它移动的距离AA′等于()A .4 cmB .8 cmC .6 cmD .4 cm 或8 cm二、填空题(每小题3分,共24分)11.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为__ __.12.方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为__ __.13.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为__ __. 14.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则x =a ;②方程2x(x -2)=x -2的解为x =0;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则x 1+x 2=32,x 1x 2=-2.其中错误的答案序号是____.15.已知一元二次方程x 2+3x -4=0的两根为x 1,x 2,则x 12+x 1x 2+x 22=___.16.如图,一个矩形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5 cm ,容积是500 cm 3的无盖长方体容器,那么这块铁皮的长为__ __,宽为__ __.17.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是__ _.18.若二次函数y =2x 2-4x -1的图象与x 轴交于A(x 1,0),B(x 2,0)两点,则1x 1+1x 2的值为__ __.三、解答题(共66分)19.(8分)用适当的方法解下列方程:(1)(x +1)(x -2)=x +1; (2)2x 2-4x =4 2.20.(8分) 已知:如图,二次函数y=ax2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为 它的顶点.(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB.21.(6分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.22.(8分)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.(8分) 已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).(1)求证:4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.24.(8分) 某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数解析式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.(10分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出__ __只粽子,利润为__ __元;(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?26.(10分)要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)。

(精)新人教版九年级数学上册全单元测试卷(含答案)

(精)新人教版九年级数学上册全单元测试卷(含答案)

新人教版九年级数学上个单元测试卷(含答案)第二十一章过关自测卷 (100分,45分钟)一、选择题(每题3分,共21分)1.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx +c =0 B.211x x=2 C.x 2+2x =y 2-1 D.3(x +1)2=2(x +1)2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( ) A.a =0 B.b =0 C.c =0 D.c ≠03.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根4.方程x 2+6x =5的左边配成完全平方式后所得方程为( ) A.(x +3)2=14 B.(x -3)2=14C.(x +6)2=12D.以上答案都不对 5.已知x =2是关于x 的方程32x 2-2a =0的一个根,则2a -1的值是( ) A.3 B.4 C.5 D.66.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .3(1+x )2=5 B .3x 2=5C. 3(1+x %)2=5D. 3(1+x ) +3(1+x )2=57.使代数式x 2-6x -3的值最小的x 的取值是( ) A.0 B.-3 C.3 D.-9 二、填空题(每题3分,共18分)8.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________. 9.如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是____________.10.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)=________.11.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为________________.112.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为________. 13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.15.已知关于x (1)求k(2)求方程x 216.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根..每间的年((设当单价从38元/千克下调到x 元/千克时,销售量为y 千克.(1)根据上述表格中提供的数据,通过在直角坐标系中描点、连线等方法,猜测并求出y 与x 的函数解析式;(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)19.如图2,A 、B 、C 、D 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向点D 移动. (1)P 、Q 两点从出发开始到几秒时四边形PBCQ 的面积为33 cm 2?图2(2)P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10 cm ?第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是())C.1D.05.〈舟山〉若一次函数y =ax +b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax 2+bx 的对称轴为( ) A.直线x =1 B.直线x =-2 C.直线x =-1 D.直线x =-46.设一元二次方程(x -1)(x -2)=m (m >0)的两实根分别为α,β,且α<β,则α,β满足( ) A.1<α<β<2 B.1<α<2<βC.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上B.抛物线的对称轴是直线x =1C.当x =1时,y 的最大值为-4D.抛物线与x 轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9.10.11.12.2+6,则小球距13.14.ax 2+bx +3x=015.A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式;(218.(1)k(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y1=ax2+bx+c过点A(1,0),顶点为B,且抛物线不经过第三象限. (1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2第二十三章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.已知下列命题:①关于一点对称的两个图形一定不全等;②关于一点对称的两个图形一定是全等图形;③两个全等的图形一定关于一点对称.其中真命题的个数是()A.0 B.1 C.2 D.32.〈江苏泰州〉下列标志图(图1)中,既是轴对称图形,又是中心对称图形的是()图13.如图2,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()图2A.10°B.15°C.20°D.25°4.如图3①,将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是图3②中的()图35.如图4所示的图案中,绕自身的某一点旋转180°后还能与自身重合的图形的个数是()图4A.1B.2C.3D.46.已知a<0,则点P(-a2,-a+1)关于原点的对称点P′在()A.第一象限B.第二象限C.第三象限D.第四象限7.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图5①.在图5②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图5①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()图5A.6 B.5 C.3 D.28.如图6,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()D.60A. 30,2B.60,2C.60,29.如图7,E10.如图8,△90°,得到△A′B′A′的坐标是图811.如图9,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形的面积是_______平方单位(结果保留π).图9 图1012.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为_______.13.如图10,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,则PP′的长是14.如图11三、解答题(15.如图12(1(2)在图中画出再次旋转后的三角形④.16.如图13所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:图13(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)问而没有答第(1)问的解答不得分)17.如图14(1)四边形(2)若矩形18.如图15,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标;图15(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.拼在一起,构α.(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.)图3 图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6a B.5a C.2aπD aπEB的中点,则下列结论不成立的是()5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒A.OC//AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5)°,则∠BCD图7 图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9 图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图1114.如图12,AB则P A的长是三、解答题(15. 如图1316. 如图14(1)求证:(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;(218. 如图16内,过点P(1)点P(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.第二十五章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.〈大连〉一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.352.〈牡丹江〉小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.110B.25C.15D.3103.〈贵阳〉一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为()A.15B.25C.13D.12图15.小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A. 13B.23C.12D.34A1(1,0),A2A .0个B .1个C .2个D .3个8.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是( )A .小强赢的概率最小B .小文赢的概率最小C .小亮赢的概率最小D .三人赢的概率相等二、填空题(每题3分,共18分)9.〈长沙〉在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是_______.10.一只昆虫在如图5所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在 A 叶面的概率是_______.图5 图611.如图6,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤⑥都可使这个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为_______.12.13.1、2、3、12数作为点P 14.三、解答题(15.地摸出一个小球,求下列事件的概率:(1)两次摸出的小球的标号相同;(2)两次摸出的小球标号的和等于4.17.〈扬州〉端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:(1(218.(1(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.19.有三张正面分别写有数-2 ,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y的值,两次结果记为(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使代数式2223x xy yx y x y-+--有意义的(x,y)出现的概率;(3 20.(1图10(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=-上班堵车时间上班花费时间上班堵车时间×100%,比如,北京的堵车率=145214-×100%≈36.8%;沈阳的堵车率=123412-×100%≈54.5%,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.期末选优拔尖测试 (120分,90分钟)一、选择题(每题3分,共24分)1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是( )图12.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖3.如图2,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.75°B.72°D.65°图2 图34.有一块长为30 m,宽为20 m的矩形菜地,准备修筑同样宽的三条直路(如图3),把菜地分成六块作为试验田,种植不同品种的蔬菜,并且种植蔬菜面积为矩形菜地面积的34,设道路的宽度为x m,下列方程:①30x+20x×2=30×20×14;②30x+20x×2-2x2=30×20×14;③(30-2x)(20-x)=30×20×34,其中正确的是()A.①②B.①③.设运动)0的个数二、填空题(每题3分,共21分)9.(陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则m的最小值为_______.10.已知点P(a,-3)关于原点的对称点为P1(-2,b),则a+b的值是_______.11.已知2x2-4x+c=0的一个根,则方程的另一个根是_______.12.如图7所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一壁灯,两壁灯间的水平距离为6 m,则厂门的高度约为_______.(精确到0.1 m)图713.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6 cm,则此圆锥的表面积为_______cm2.14.已知⊙O1和⊙O2的半径分别是一元二次方程x2-5x+6=0的两根,且O1O2=1,则⊙O1和⊙O2的位置关系是_______.15.如图8,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A= 30°;若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_______ (结果用含π的式子表示).BC的长(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.19.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”“2”“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.20.已知正方形(1)如图9(DF与BF图9(2DG21.如图10,.(1)求证:PB是⊙O的切线;图10(2)若⊙O的半径为2,求弦AB及P A,PB的长.22.“五一”期间,小明和同学一起到游乐场游玩.如图11为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?(223.距离全长为工单价y1长度x(注:工程款=(1)(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?24.如图12,y关于x的二次函数y=x+m)(x-3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于点D.以AB为直径作圆,圆心为点C,定点E的坐标为(-3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m(3)当m第二十一章参考答案及点拨一、1.D 2.C 3.B 4.A 5.C 6.A 7.C二、8.1 9.a <1且a ≠0 10.-6 11.x 2+40x -75=0 12.1313.6或10或12三、14. 解:①x 1,2x 1,2=1x 1=0,x 2=3;④x 1,2=1点拨:①可选择公式法,②选择直接开平方法,③选择因式分解法,④选择配方法;任选一题即可. 15. 解:(1)k =-1. (2)方程的另一个解为x =-1. 16. 解:(1)∵方程有两个不相等的实数根, ∴(-3)2-4(-k )>0.即4k >-9,解得,k >-94.(2)若k 是负整数,则k 只能为-1或-2.如果k =-1,原方程为x 2-3x +1=0.解得x 1=32+,x 2=32. 点拨:(2)题答案不唯一. 17. 解:(1)∵30 000÷5 000=6,∴能租出24间. (2)设每间商铺的年租金增加x 万元,则 (30-0.5x )×(10+x )-(30-0.5x )×1-0.5x×0.5=275, 整理得2 x 218. 解:y =kx +b (k ≠0).35k +b =56.(2解得x 1=33,19. 解:(1cm,CQ =2x cm,所以PB =16因为(PB +CQ )所以(16-3所以P 、Q答图1(2)设P 、Q 两点从出发开始到y 秒时,点P 和点Q 间的距离是10 cm.如答图1,过点Q 作QE ⊥AB 于E ,得EB =QC =2y cm ,EQ =BC =6 cm ,所以PE =PB -BE =PB -QC =16-3y -2y =16-5y (cm), 在直角三角形PEQ 中,PE 2+EQ 2=PQ 2,得 (16-5y )2+62=102, 即25y 2-160y +192=0,解得y 1=85,y 2=245,经检验均符合题意. 所以P 、Q 两点从出发开始到85秒或245秒时,点P 和点Q 间的距离是10 cm.第二十二章参考答案及点拨一、1. C 2. C 3. B4. B 点拨:本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.5. C6. D 点拨:令m =0,则函数y =(x -1)(x -2)的图象与x 轴的交点分别为(1,0),(2,0),画出函数图象(如答图1),利用数形结合即可求出α,β的取值范围.∵m >0,∴α<1,β>2.故选D.c =2,∴该1y =ax 2+bx 204b a- =15. 12.5 点拨:设一段铁丝的长度为x cm,则另一段长度为(20-x) cm,S=116x2+116(20-x)(20-x)=18(x-10)2+12.5,∴当x=10 时,S最小为12.5 cm2.16. 272点拨:(1)平移后抛物线的表达式与原来的抛物线的表达式中的a相同,可以通过待定系数法求抛物线的表达式;(2)不规则图形的面积要通过割补、拼接转化为规则图形的面积,这是解本题的关键.三、17. 解:(1)∵二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3),∴10,3,b cc++=⎧⎨=-⎩解得2,3.bc=⎧⎨=-⎩∴二次函数的解析式为y=x2+2x-3;(2)∵当y=0时,x2+2x-3=0,解得:x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴12AB·|n|=10,解得:n=±5,当n=5时,m2+2m-3=5,解得:m=-4或2,∴P点坐标为(-4,5)或(2,5);当n=-5时,m2+2m-3=-5,方程无解,故P点坐标为(-4,5)或(2,5).18. 解:(1)∵抛物线y=x2-(k+2)x+14k2+1与x轴有两个交点,若令y=0,即x2-(k+2)x+14k2+1=0,则有∆=-(k+2)2-4×1×(14k2+1)>0, k2+4k+4-k2-4>0,4k>0,∴k>0,即k>0时,此抛物线与x轴有两个交点.(2∴x1,2∴x1∵x119.(2当a=0,解得(3,b=-8,此时-把B又a∴y1=2x2-8x+6,B(2,-2).画出上述二次函数的图象(如答图2),观察图象知,当x≥1时,y1的最小值为顶点纵坐标-2,且无最大值.∴当x≥1时,y1的取值范围是y1≥-2.答图2点拨:二次函数的问题通常都是求解析式、求对称轴、求顶点坐标、求最值以及与其他知识的综合等,本题基本上综合了上述各种问题,解题的方法就是牢牢抓住二次函数的对称轴的求法,顶点坐标的求法,以及最值的求法.第二十三章参考答案及点拨一、1.B 2.B3.B 点拨:由旋转性质得△BCE≌△DCF,所以∠DFC=∠BEC= 60°,CE=CF,又∠ECF=90°,所以∠EFC=45°,所以∠EFD= ∠DFC-∠EFC=60°-45°=15°.4. C5. D 点拨:四个图形都是中心对称图形,所以绕自身的某一点旋转180°后都与自身重合.6. D7. B 点拨:先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变AB扫,∴∠P AP′角顶点坐标为(12,0),图⑥⑦的直角顶点坐标为(24,0),所以,图⑨⑩的直角顶点坐标为(36,0).三、15. 解:(1)旋转中心点P位置如答图2所示,点P的坐标为(0,1);(2)旋转后的三角形④如答图2所示.答图216.解:(1)①都是轴对称图形;②面积都等于四个小正方形的面积之和.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如:同时具备特征①②的部分图案如答图3所示:答图317.解:(1)四边形BDEG是菱形.理由:因为矩形ABCD和矩形AEFG关于点A中心对称,所以BE和DG互相平分,四边形BDEG 是平行四边形;又因为∠DAB=90°,所以四边形BDEG是菱形.(2)因为矩形ABCD面积为2,所以△DAB的面积为1,所以菱形BDEG的面积为4.3,∴在△GCD′和△E′CD中,CD CDGCD DCE CG CE'=⎧⎪∠'=∠'⎨⎪='⎩,,,∴△GCD′≌△E′CD,∴GD′=E′D;(3) 解:能.旋转角α为135°或315°.第二十四章参考答案及点拨一、1. C 点拨:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC,∴∠OCB=12(180°-∠O)=65°.故选C.2. C 点拨:如答图1所示,过圆心O作OD⊥AB于点D,连接OA.答图1∵OD⊥AB,∴AD=12AB=设OA=r cm在Rt△AOD解得r=5.故选C.3. B =6π,解得:l=6.故选B4. C 60180aπ×6=2aπ.故选C5. D∴OC⊥BE ∴AE⊥BEB.∵⌒EC=⌒BC C.∵AD为圆∴∠DAE+∠∴∠DAE=∠D.AC6. C 点拨:∴∠BMN+∠∵∠BMN∴∠PMN =21∠BMN ,∠PNM =21∠MND , ∴∠PMN +∠PNM =90°.∴∠MPN =180°-(∠PMN +∠PNM )=180°-90°=90°. ∴以MN 为直径作⊙O 时,OP =21MN =⊙O 的半径, ∴点P 在⊙O 上.故选C .7. C 点拨:如答图2,连接IC .答图2∵CD 为AB 边上的高,∴∠ADC =90°, ∴∠BAC +∠ACD =90°.∵I 为△ACD 的内切圆圆心,∴AI ,CI 分别是∠BAC 和∠ACD 的平分线, ∴∠IAC +∠ICA =21(∠BAC +∠ACD )=21×90°=45°, ∴∠AIC=135°.又∵AB =AC ,∠BAI =∠CAI ,AI =AI ,=S △ABC ,即C =60°,O ′D =3,∴O ′C =2,∴O ′A =6-2=4.∴以O 为圆心、3为半径的圆在运动过程中与△ABC 的边第二次相切时是出发后第4秒.答图3 答图4 13. 13 点拨: 连接AE ,如答图4,由题意易得AE =23,EP =1, ∠AEP =90°.∴在Rt △AEP 中,AP = 22132+)(=13. 14.7a 点拨:连接OC ,OP ,如答图5所示.∵C 为半圆的三等分点,Rt △ABP 中,21AB =5cm ,答图6∵BC =AB ,∠CAB =30°, ∴∠ACB =∠CAB =30°, 又∵OC =OB ,∴∠CBO =∠ACB =30°,∴∠AOB =∠CBO +∠ACB =60°.在△ABO 中,∠CAB =30°,∠AOB =60°, 可得∠ABO =90°,即AB ⊥OB , ∴AB 是⊙O 的切线.(2)解:∵OB =2,∠BOD =60°, ∴⌒BD的长度l =32180260=•ππ. 点拨:此题考查了切线的判定,等腰三角形的性质,三角形的外角性质以及弧长公式的运用.切线的判定方法有两种:有切点连半径,证明垂直;无切点作垂线,证明垂线段等于半径. 17. 解:(1)如答图7所示,连接BC . 由∠BAC =90°得BC 为⊙O 的直径, ∴BC =4.∴d=2.又∵DE=4-22<d=2,即围成圆锥的底面圆的直径大于DE,∴不能围成圆锥.点拨:(1)由勾股定理求出扇形的半径,再根据扇形面积公式求值.(2)题需要求出③中最大圆的直径以及圆锥底面圆的直径(圆锥底面圆的周长即为弧BC的长),然后进行比较即可.18. 解:(1)线段AB长度的最小值为4.理由如下:连接OP,如答图8所示.答图8∵AB切⊙O于P,∴OP⊥AB.取AB的中点C,则AB=2OC;当OC=OP时,OC最短,答图10∵OQ∥P A,∠APO=90°,∴∠POQ=90°,又∵OP=OQ,∴∠PQO=45°,∵PQ∥OA,∴PQ⊥y轴.设PQ⊥y轴于点H,在Rt△OHQ中,根据OQ=2,∠HQO=45°,得Q点坐标为(-2,2).∴符合条件的点Q的坐标为(-2,2)或(2,-2).方法规律:解答本题运用了分类讨论思想.(1)如答图8,设AB的中点为C,连接OP,由于AB是⊙O的切线,故△OPC是直角三角形,所以当OC与OP重合时,OC最短,即AB最短.(2)分两种情况:如答图9,当四边形APOQ;如答图10,可求得∠QOP=∠2,2).一、1. B2. C 点拨:3. D 点拨:4. B 3张,黄色纸牌35. C 两部分,概率∵四边形四边形DCFE∴飞镖落在阴影部分的概率是21.故选C. 6. D 点拨:∵以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形,共可以作4个三角形.所作三角形是等腰三角形只有: △OA 1B 1,△OA 2B 2,∴所作三角形是等腰三角形的概率是42=21.故选D. 7. A 点拨:①由于一枚质地均匀的硬币只有正反两面,因此正面朝上的概率是21;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,则标奇数和偶数的部分各占一半,指针落在奇数区域的次数与总次数的比值为21; ③由于圆锥是均匀的,因此落在圆形纸板上的米粒的个数也是均匀地分布的,与纸板面积成正比,可验证其中一半纸板上的米粒数与纸板上总米粒数的比值为21. ∴三个试验均科学,故选A.8. A 点拨:设有A 、B 、C 三枚硬币, 共有以下8种情况:(用1表示正,0表示反)1,1,1;0,0,0;1,1,0;1,0,0;1,0,1;0,1,1;0,1,0;0,0,1.于是P (小强赢)=28=14,P (小亮赢)=38, P (小文赢)=38,∴小强赢的概率最小.故选A.二、9. 10 点拨:由题意,得n2=0.2.解得n =10.故估计n 大约是10.故答案为10.10. 61在A 11. 52∴一共有12. 王红 .如答图1所示.答图1∴共9种情况,和为7的情况有3种,王红获胜的概率为93=31.和为8的情况有2种,刘芳获胜的概率为92.∴王红获胜的可能性较大.故答案为王红.13.5314. 32点拨:画树状图如答图2所示.∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是64=32.故答案为32.答图2三、15. 解:设口袋内有x 个黑球,则有白球(120-x )个,从袋中任意摸出一球,记下其颜色,再把它放回去混合均匀,不断重复上述过程,若共摸了a 次,其中黑球b 个,则有a b =120x ,解得x =a b 120,即口袋内有ab 120个黑球,有(120-ab120. 16. 解:(1概率P =164(2共有1617. 解:(1答图5则该顾客最少可得20元购物券,最多可得80元购物券. 故答案为:20;80;(2)树状图如答图5所示,∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况, ∴该顾客所获购物券金额不低于50元的概率为1610=85. 点拨:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.注意概率等于所求情况数与总情况数之比.18. 解:(1)列表如下:(2∴P 即P 19. (2,(1,-2),(3.∵在使代数式2223y x xyx -- +y x y -有意义的4个结果中,使代数式的值为整数的(x,y )有(1,-2),(-2,1)2个结果,∴使代数式2223yx xyx -- +y x y -的值为整数的(x,y )出现的概率是92. 考点:列表法或画树状图法,概率,代数式有意义的条件,代数式的化简求值.点拨:(1)根据题意列出表格或画树状图,即可表示出(x,y )所有可能出现的结果.(2)根据(1)中的表格或树状图找出使代数式2223y x xy x -- +y x y -有意义的结果数,再除以所有结果数即可. (3)先化简,再在使代数式2223y x xyx -- +y x y -有意义的4个结果中找出使代数式的值为整数的(x,y )的结果数,再除以所有结果数即可.20. 解:(1)上班花费时间在30分钟到40分钟之间的城市有4个,40分钟到50分钟之间的城市有3个,补充频数分布直方图,如答图6所示.,(北京,上30%的情况有3=2163=. 分钟到50分15. (4+3)π三、16. 解:设抛物线的解析式为y =a (x -2)2+k .把A (1,0),B (0,-3)的坐标代入,得⎪⎩⎪⎨⎧+-=-+-=.)20(3,)21(022k a k a解得⎩⎨⎧=-=.1,1k a∴y =-(x -2)2+1= -x 2+4x -3.17. 解:移项,得x 2-4x =-2,配方,得x 2-4x +4= -2+4,即(x -2)2=2,所以x -2=±2,x 1=2+2,x 2=2-2.18. 解:(1)∵x 2-(2k +1)x +k (k +1)=0, ∴(x -k )·[x -(k +1)]=0, ∴x 1=k ,x 2=k +1.由勾股定理,得k 2+(k +1)2=52,解得k 1=3,k 2=-4(舍去). ∴当k =3时,△ABC 是以BC 为斜边的直角三角形. (2)当△ABC 是等腰三角形时,有三种情况:①AB =AC ,而在一元二次方程中,由于b 2-4ac =[-(2k +1)]2-4k (k +1)=1,即AB ≠AC .因此此种情况不存在; ②AB =BC 或AC =BC .此时x =5是已知方程的一个根,所以52-5(2k +1)+k (k +1)=0,解得k 1=4,k 2=5. 当k 1=4时,方程的两个根为x 1=k =4,x 2=k +1=5,此时等腰三角形的三边长为4,5,5,可以构成三角形, ∴此时等腰三角形的周长为4+5+5=14;b ,计算可得ABE (SAS ),°.∵P A 切。

人教版九年级上册数学《概率初步》单元测试(含答案)

人教版九年级上册数学《概率初步》单元测试(含答案)
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
3.下列说法中正确的是()
A.不确定事件发生的概率是不确定的
B.事件发生的概率可以是任何小于 的正数
C.事件发生的概率可以等于事件不发生的概率
C,必然事件是一定会发生的事件,则对于选项C很明显不一定能发生,故此选项错误;
D,此试卷确实共24小题,所以是必然事件,故此选项正确.
故选D.
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
4.在“红桃 、红桃 、红桃 ”这三张扑克牌中任取一张,抽到“红桃 ”的概率是()
A.
B.
C.
D.
【答案】B
【解析】
【分析】
根据题意,共3张扑克牌,其中有1张为“红桃7”,根据概率的计算公式计算可得答案.
【详解】解:根据题意,共3张扑克牌,其中有1张为“红桃7”,则抽到“红桃7”的概率是 ,
故选B.
0.074
0.069
0.069
0.071
0 070
0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
12.在用模拟试验估计50名同学中有两个是同一天生日 概率中,将小球每次搅匀的目的是_________.
13.一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是_______.
14.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.

人教版九年级数学上册全册综合测试题

人教版九年级数学上册全册综合测试题

人教版九年级数学上册全册综合测试题------------------------------------------作者xxxx------------------------------------------日期xxxx九年级上册综合测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间100分钟.第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1.如图SC-1所示的四个图形中,是中心对称图形的为( )图SC-12.下列事件是随机事件的是( )A.在一个标准大气压下,加热到100 ℃,水沸腾B.购买一张福利彩票,中奖C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸出红球3.用配方法解方程x2-2x-1=0时,配方后得到的方程为( )A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=24.一个扇形的半径为8 cm,弧长为πcm,则这个扇形的圆心角为( )A.60°B.120°C.150°D.180°5.正方形外接圆的边心距与半径的比是( )A.1∶2B.1∶C.1∶D.∶16.掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率为P1,拋两枚硬币,正面均朝上的概率为P2,则( )A.P1<P2B.P1>P2C.P1=P2D.P1与P2的大小关系不确定7.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A.289(1-x)2=256B.256(1-x)2=289C.289(1-2x)=256D.256(1-2x)=289图SC-28.已知:如图SC-2,PA,PB分别切☉O于点A,B,∠P=70°,∠C等于( )A.55°B.70°C.110°D.140°图SC-39.如图SC-3,☉O的半径为1,AB是☉O的一条弦,且AB=,则弦AB所对圆周角的度数为( )A.30°B.60°C.30°或150°D.60°或120°10.如图SC-4,正方形ABCD的边长为1,E,F,G,H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为y,AE为x,则y关于x的函数图象大致是( )图SC-4图SC-5请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.一条直线a与☉O有公共点,则直线a与☉O的位置关系是.12.已知点P(m+2,3)和点Q(2,n-4)关于原点对称,则m+n= .13.在一个不透明的口袋中,装有标号为A,B,C,D的4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.14.菱形的两条对角线长分别是一元二次方程x2-14x+48=0的两实数根,则菱形的面积为.15.如图SC-6,AB,BC是☉O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC=4 cm,则OC的长为cm.图SC-6图SC-716.如图SC-7,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为.三、解答题(共52分)17.(6分)解方程:(1)x(x-2)+x-2=0;(2)2x2-x-1=0.18.(5分)小明骑自行车从家去学校,途经装有红、绿灯的三个路口.假设他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?请用画树状图的方法加以说明.19.(6分)如图SC-8,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是(3,2),(1,3).将△AOB绕点O逆时针旋转90°后得到△A 1OB1.(1)画出△A1OB1,并直接写出点A1的坐标;(2)求旋转过程中点B经过的路径长(结果保留根号和π).图SC-820.(6分)如图SC-9所示,AB为☉O的直径,CD是☉O的弦,AB,CD的延长线交于点E,已知AB=2DE,∠E=20°.求∠AOC的度数.图SC-921.(6分)图SC-10是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则:同时转动两个转盘,当转盘停止后,若指针所指区域内的数字之和小于10,则小颖获胜;若指针所指区域内的数字之和等于10,则为平局;若指针所指区域内的数字之和大于10,则小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法求小颖获胜的概率.(2)该游戏规则是否公平?若公平,请说明理由;若不公平,请你设计出一种公平的游戏规则.图SC-1022.(7分)在母亲节前夕,某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售,则每天能卖出36件;若每件按29元的价格销售,则每天能卖出21件.假定每天销售件数y(件)是销售单价x(元/件)的一次函数.(1)求y与x满足的函数解析式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售单价定为多少时,才能使每天获得的利润P最大?23.(8分)如图SC-11,已知直线PA交☉O于A,B两点,AE是☉O的直径,C为☉O 上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为D.(1)求证:CD为☉O的切线;(2)若CD+AD=6,☉O的直径为10,求AB的长度.图SC-1124.(8分)如图SC-12,已知二次函数y1=-x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A,B两点的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标.(2)由图象写出满足y1<y2的自变量x的取值范围.(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.图SC-12九年级上册综合测试1.C2.B3.D4.B5.B6.B7.A8.A9.D10.B11.相交或相切12.-313.14.2415.416.πa2-a217.解:(1)因式分解,得(x-2)(x+1)=0.于是得x-2=0或x+1=0,∴x1=2,x2=-1.(2)a=2,b=-1,c=-1,Δ=(-1)2-4×2×(-1)=9>0,∴x=,即x1=1,x2=-.18.解:树状图如图所示,根据树状图可知,共有8种等可能情况,其中恰有一次遇到红灯的情况有3种,∴恰有一次遇到红灯的概率是.19.解:(1)△A1OB1如图.A1(-2,3).(2)旋转过程中点B经过的路径长为=π.20.解:如图,连接OD.∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠ODC=∠DOE+∠E=40°.而OC=OD,∴∠OCD=∠ODC=40°,∴∠AOC=∠OCD+∠E=60°.21.解:(1)画树状图或列表略.∵指针所指区域内的数字之和共有12种等可能的结果,小于10的有6种可能的结果,∴P(小颖获胜)==.(2)∵指针所指区域内的数字之和大于10的有3种可能结果,∴P(小亮获胜)==≠,∴该游戏规则不公平.新的游戏规则:答案不唯一,如同时转动两个转盘,当转盘停止后,若指针所指区域内的数字之和小于10,则小颖获胜;否则小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.22.解:(1)设y与x满足的函数解析式为y=kx+b(k≠0).由题意,得解得∴y与x满足的函数解析式为y=-3x+108.(2)每天获得的利润为P=(-3x+108)(x-20)=-3x2+168x-2160=-3(x-28)2+192.∴当销售单价定为28元/件时,才能使每天获得的利润P最大.23.解:(1)证明:如图,连接OC.∵OA=OC,∴∠OCA=∠OAC.∵CD⊥PA,∴∠CDA=90°,∴∠DAC+∠DCA=90°.∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°.又∵OC为☉O的半径,∴CD为☉O的切线.(2)如图,过点O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形OFDC为矩形,∴OC=FD,OF=CD.∵CD+AD=6,设AD=x,则OF=CD=6-x.∵☉O的直径为10,∴DF=OC=5,∴AF=5-x.在Rt△AOF中,由勾股定理,得AF2+OF2=OA2,即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x=2或x=9.由AD<DF,知0<x<5,故x=2,从而得AD=2,AF=5-2=3.∵OF⊥AB,由垂径定理知F为AB的中点,∴AB=2AF=6.24.解:(1)把点A(4,0)代入y1=-x2+x+c,得-16+13+c=0,解得c=3,∴二次函数y1的解析式为y1=-x2+x+3,∴点B的坐标为(0,3).(2)由图象得直线在抛物线上方的部分对应的x的取值范围是x<0或x>4,∴当x<0或x>4时,y1<y2.(3)坐标轴上存在点P使得△ABP是以AB为底边的等腰三角形.如图所示,作线段AB的垂直平分线l,垂足为C,交x轴于点P1,交y轴于点P2.∵A(4,0),B(0,3),∴在Rt△AOB中,根据勾股定理得AB==5.∵l为AB的垂直平分线,∴AC=BC=,∵∠CAP1=∠OAB,∠ACP1=∠AOB,∴△ACP1∽△AOB.根据相似三角形的性质,得=,即=,解得AP1=,则OP1=OA-AP1=4-=,所以点P1的坐标为,0.∵∠BOA=∠BCP2,∠OBA=∠CBP2,∴△BOA∽△BCP2.根据相似三角形的性质,得=,即=,解得P2B=,则OP2=P2B-OB=-3=,∴点P2的坐标为0,-.故坐标轴上存在点P使得△ABP是以AB为底边的等腰三角形,点P的坐标为,0或0,-.。

2024年九年级上学期开学考数学(人教版)试题及答案

2024年九年级上学期开学考数学(人教版)试题及答案

九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1.(2024·山东潍坊·模拟预测)计算()23−的结果是( )A .3B .9C .23D .3 2.(23-24八年级上·甘肃酒泉·期末)如图,一张长方形纸片剪去一个角后剩下一个梯形,则这个梯形的周长为( )A .30B .32C .34D .363.(23-24八年级下·云南昆明·期末)已知正比例函数的解析式为7x y =,下列结论正确的是( ) A .图象是一条线段B .图象必经过点(1,6)−C .图象经过第一、三象限D .y 随x 的增大而减小4.(23-24八年级下·湖北恩施·期末)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数5.(22-23八年级下·广东揭阳·期中)如图,在ABCD 中,对角线AC ,BD 交于点O ,下列结论一定成立的是( )A .AC BD ⊥B .=AC BD C .OB OD =D .ABC BAC∠=∠6.(22-23八年级下·四川广安·期末)如图,在作线段AB 的垂直平分线时,小聪是这样操作的:分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .平行四边形7.(23-24八年级上·安徽合肥·期末)下图中表示一次函数y mx n =+与正比例函数y mnx = (m ,n 是常数,且<0mn )图象是( )A .B .C .D .8.(23-24八年级下·云南昭通·期末)为了培养学生的数学核心素养,提高学生发现问题,分析问题,解决问题的能力.2024年昭通市某学校的156班组织了一次课外研学活动.在研学活动中,王宇同学欲控制遥控轮船匀速垂直横渡一条河,但由于水流的影响,实际上岸地点F 与欲到达地点E 相距10米,结果轮船在水中实际航行的路程HF 比河的宽度EH 多2米,则河的宽度EH 是( ).A .8米B .12米C .16米D .24米9.(2024·重庆·模拟预测)设一元二次方程()200ax bx ca ++=≠的两个根分别为1x ,2x ,则方程可写成()()12a x x x x 0−−=,即()212120ax a x x x ax x −++=.容易发现:12b x x a +=−,12c x x a=.设一元三次方程()3200ax bx cx d a +++=≠的三个非零实根分别为1x ,2x ,3x ,则以下正确命题的序号是( ) ①123b x x x a ++=−;②122313c x x x x x x a ++=;③123111cx x x d ++=;④123d x x x a =−. A .①②③ B .①②④ C .②③④ D .①③④10.(2023·湖北黄冈·模拟预测)如图,抛物线()20y ax bx c a ++≠与x 轴的一个交点坐标为(1,0)−,抛物线的对称轴为直线1x =,下列结论:①0abc <;②30a c +=;③当0y >时,x 的取值范围是13x −≤<;④点1(2,)y −,2(2,)y 都在抛物线上,则有120.y y <<其中结论正确的个数是( )A .2个B .3个C .4个D .5个二、填空题(8小题,每小题2分,共16分)11.(23-24八年级下·广东惠州·期中)如果最简二次根式1a +与21a −是同类二次根式,那么a = .12.(23-24八年级下·山西晋城·期末)若点()13,A y ,()25,B y 都在一次函数y x b =+的图象上,则1y 2y .(填“>”“<”“=”)13.(2024·四川乐山·二模)若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 .14.(22-23八年级下·广东惠州·阶段练习)如图,Rt ABC △中,90C ∠=°,AB 比AC 长1,3BC =,则AC = .15.(22-23八年级下·湖南衡阳·期末)如图,已知直线y ax b =+和直线y kx =交于点P ,则关于x ,y 的二元一次方程组y kx y ax b = =+ 的解是.16.(23-24八年级下·广东惠州·期中)如图,在平行四边形ABCD 中,DDDD 平分ADC ∠,5AD =,2BE =,则平行四边形ABCD 的周长是 .17.(22-23八年级下·湖北黄冈·期中)如图,电工黄师傅为了确定新栽的电线杆与地面是否垂直,他从电线杆上离地面2.5m 处向地面拉一条长6.5m 的缆绳,当黄师傅量得这条缆绳在地面的固定点距离电线杆底部距离为 m 时,这根电线杆便与地面垂直了.18.(2024·吉林·模拟预测)已知抛物线2y ax bx c ++(a ,b ,c 是常数,0a c <<)经过点()1m −,,其中0m >.下列结论:①0b <;②当12x >−时,y 随x 的增大而减小; ③关于x 的方程()20ax b m x c n ++++=有实数根,则n 是非负数;④代数式3m a b++的值大于0.其中正确的结论是(填写序号).三、解答题(8小题,共64分)19.(23-24八年级下·广东广州·期末)计算:()243332+−.20.(23-24八年级下·海南省直辖县级单位·阶段练习)用适当的方法解下列方程:(1)21690x −=;(2)231212x x −=−;(3)()33x x x +=+;(4)24240x x −+=.21.(23-24八年级下·广东广州·期末)如图,在 Rt ABC △中,90ACB ∠=°,68AC BC ==,,以点 A 为圆心,AC 长为半径画弧交AB 于点 D ,求BD 的长.22.(23-24八年级上·四川达州·期末)如图,在ABC 中,5cm AB =,26cm BC =,AD 是BC 边上的中线,12cm AD =,求ABC 的面积.23.(23-24八年级下·福建泉州·期末) 某公司随机抽取一名职员,统计了他一个月 (30天) 每日上班通勤费用通勤费用 (元/天) 0 48 36 天数(天) 8 12 64 (1)该名职工上班通勤费用的中位数是 元,众数是 元:(2)若该公司每天补贴该职员上班通勤费用6元,请你利用统计知识判断该职员是否还需自行补充上班通勤费用?24.(23-24八年级下·山东临沂·期中)如图,点D ,C 在BF 上,AC DE ∥,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.25.(22-23八年级下·四川广安·期末)如图,已知函数12y x b =−+的图象与x 轴,y 轴分别交于点A 、B ,与函数y x =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =−+和y x =的图象于点C 、D .(1)求点A 的坐标;(2)若OB CD =,求a 的值.26.(2024·山西晋中·模拟预测)鹰眼技术助力杭州亚运,提升球迷观赛体验.如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O ,守门员位于点A ,OA 的延长线与球门线交于点B ,且点A ,B 均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.水平距离s 与离地高度h 的鹰眼数据如表: /m s 0 9 12 1518 21 … /m h 0 4.2 4.8 5 4.8 4.2 …(2)求h关于s的函数解析式.九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

人教版九年级上学期数学《圆》单元检测题(含答案)

人教版九年级上学期数学《圆》单元检测题(含答案)
22.如图,有一座石拱桥的桥拱是以 为圆心, 为半径的一段圆弧.
请你确定弧 的中点;(要求:用尺规作图,保留作图痕迹,不写作法和证明)
如果已知石拱桥 桥拱的跨度(即弧所对的弦长)为 米,拱高(即弧的中点到弦的距离)为 米,求桥拱所在圆的半径.
23.如图, 中,弦 与弦 相交于点 ,且 .求证: .
24.如图, 是 的直径, 是弦,且 ,若 ,求 的度数.
当点A在圆内时,最大距离为6Cm,最小距离为2Cm,则直径是8Cm,因而半径是4Cm;
当点A在圆外时,最大距离为6Cm,最小距离为2Cm,则直径是4Cm,因而半径是2Cm.
故答案为4或2.
[点睛]本题考查了点与圆的位置关系,注意分两种情况进行讨论是解决本题的关键.
12.如图, 是 的直径, 垂直于弦 , ,则 ________度.
1.下列说法不正确的有()
①直径是弦,弦是直径;②长度相等的弧是等弧;③在同圆或等圆中,相等的圆心角所对的弧相等;④在同圆或等圆中,相等的弦所对的圆周角相等.
A.1个B.2个C.3个D.4个
[答案]C
[解析]
[分析]
根据弦、直径的定义对①进行判断;根据等弧的定义对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据圆周角定理对④进行判断.
[详解]解:易知:两半圆的交点即为正方形的中心,设此点为O,连接A C,则A C必过点O,连接OB,
则图中的四个小弓形的面积相等,
∴两个半圆的面积−Rt△A B C的面积=4个小弓形的面积,
故答案为相交.
[点睛]此题考查了直线与圆的位置关系.此题难度不大,注意解决此类问题可通过比较圆心到直线距离D与圆半径大小关系完成判定.
14.如图,正方形 的边长为 ,分别以 、 为直径,在正方形内作半圆,则图中阴影部分的面积为________平方单位.

数学九年级上册《旋转》单元检测卷(附答案)

数学九年级上册《旋转》单元检测卷(附答案)
【点睛】此类旋转往往是旋转直角三角形.如上题旋转的是两直角边分别为1,2的直角三角形,这样就很快知道旋转后的点到两坐标的距离,从而确定点的坐标.
6.下列图形中,既是中心对称又是轴对称的图形是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
三、解答题(共 4 小题 ,每小题 10 分 ,共 40 分 )
18. 如图 ,在正方形网格中,每个小正方形的边长均为 个单位.将 向绕点 逆时针旋转 ,得到 ,请你画出 (不要求写画法).
如图 ,已知点 和 ,试画出与 关于点 成中心对称的图形.
19.如图所示,已知 ,且 .
说明 经过怎样的变换后可与 重合;
二、填空题(共 5 小题 ,每小题 3 分 ,共 15 分 )
13.从数学对称的角度看:下面的几组大写英文字母:① ;② ;③ ;④ .不同于另外三组的一组是________,这一组的特点是________.
14.若点 与 关于原点 对称,则 ________且 ________.
15.如图,这个图形是由”基本图案” 绕着点________顺时针依次旋转________次得到的,则每次旋转的角度为________.
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
10.如图,将线段 绕点 顺时针旋转 后,得到线段 ,则点 的对应点 的坐标是()
A.(-3, 2)B.(2, 2)C.(3, 0)D.(2, 1)
【答案】C
【解析】
【分析】
根据旋转的性质得出BC=A′O,进而得出A′点坐标.

人教版九年级数学上册试卷(附答案解析)

人教版九年级数学上册试卷(附答案解析)

2022-2023学年人教版九年级数学上册暑假开学假期自主学习学情检测题(附答案)一、选择题(每小题3分,共12小题)1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)2.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+3 3.二次函数y=x2﹣2x+1与x轴的交点个数为()A.0个B.1个C.2个D.3个4.若,,为二次函数y=x2﹣4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2 5.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.6.若关于x的方程x2+px+q=0没有实数根,则函数y=x2﹣px+q的图象的顶点一定在()A.x轴的上方B.x轴的下方C.x轴上D.y轴上7.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+=0的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根8.已知抛物线y =﹣x 2+x +6与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为()A .B .C .D .9.已知关于x 的二次函数y =x 2+(1﹣a )x +1,当x 的取值范围是1≤x ≤3时,y 在x =1时取得最大值,则实数a 的取值范围是()A .a =5B .a ≥5C .a =3D .a ≥310.二次函数y =x 2﹣x +m (m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a ﹣1时,函数值()A .y <0B .0<y <mC .y >mD .y =m11.当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为()A .﹣B .或C .2或D .2或或12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x =2,且OA =OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④c ﹣a <0;关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为﹣.其中正确的结论个数有()A .1个B .2个C .3个D .4个二、填空题(每小题3分,共6小题)13.已知函数,当m =时,它是二次函数.14.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣4﹣3﹣2﹣10…y…3﹣2﹣5﹣6﹣5…则y<﹣2时,x的取值范围是.15.已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为.16.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.17.二次函数y=ax2﹣12ax+36a﹣5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.=;(1)S△ABC(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为底边的等腰△ABP,使该三角形的面积等于△ABC的面积,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(共66分,共7小题)19.已知二次函数y=﹣x2+x+4.(1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?20.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.已知二次函数y=2x2+4x﹣6.(1)求图象与两坐标轴的交点坐标;(2)直接写出当x取何值时,y>0?(3)直接写出当﹣4<x<0时,求y的取值范围.22.已知抛物线y=x2+bx+c经过A(0,﹣1),B(3,2)两点.(1)求这个函数的解析式;(2)函数图象有最点,当x=时,y有最值是;(3)抛物线上是否存在点C,使△AOC的面积等于2?若存在,求出C点的坐标;若不存在,请说明理由.23.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.(3)在(2)的条件下,根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c (a<0)经过点A,B.(1)求a,b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求实数a的取值范围.(3)当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共12小题)1.解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.2.解:由题意得原抛物线的顶点为(0,1),∴平移后抛物线的顶点为(3,﹣1),∴新抛物线解析式为y=(x﹣3)2﹣1,故选:C.3.解:令y=0,则x2﹣2x+1=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×1=4﹣4=0,所以,二次函数与x轴有1个交点.故选:B.4.解:∵二次函数y=x2﹣4x﹣5=(x﹣2)2﹣9,∴当x>2时,y随x的增大而增大,当x≤2时,y随x的增大而减小,∵2>>>﹣,∴y1<y3<y2,故选:D.5.解:A、由抛物线可知,a>0,>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.6.解:∵关于x的方程x2+px+q=0没有实数根,∴△=p2﹣4q<0;而对于函数y=x2﹣px+q,∵△=(﹣p)2﹣4q=p2﹣4q<0,∴函数y=x2﹣px+q的图象的顶点一定在x轴的上方,故选:A.7.解:函数y=ax2+bx+c向上平移个单位得到y′=ax2+bx+c+,而y′顶点的纵坐标为﹣2+=﹣,故y′=ax2+bx+c+与x轴有两个交点,且两个交点在x轴的右侧,故ax2+bx+c+=0有两个同号不相等的实数根,故选:D.8.解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∵C(0,6)∴OD=4.5,OC=6,当x=0时,y=6,∴OC=6,∴CD==.故选:D.9.解:∵1≤x≤3时,y在x=1时取得最大值,∴﹣≥,解得a≥5.故选:B.10.解:∵对称轴是直线x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选:C.11.解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.12.解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴为直线x=2,∴﹣>0,∴b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;∵对称轴为直线x=2,∴﹣=2,即b=﹣4a,由图可知:x=1时y>0,∴a+b+c>0,∴b+c>﹣a>0,∴﹣4a+c>0,即c﹣a>0,故④错误;∵OA=OC=﹣c,∴A(﹣c,0),代入y=ax2+bx+c得:0=ac2﹣bc+c,两边同除以ac得:c﹣+=0,即﹣+c=0,∴a•(﹣)2+b•(﹣)+c=0,∴ax2+bx+c=0(a≠0)有一个根为﹣,故⑤正确;综上可知正确的结论有①③⑤,故选:C.二、填空题(每小题3分,共6小题)13.解:∵y=(m﹣1)x m2+1是二次函数,∴m2+1=2,∴m=﹣1或m=1(舍去此时m﹣1=0).故答案为:﹣1.14.解:从表格得到x=0与x=﹣2所对应的y值相同,∴函数的对称轴为直线x=﹣1,∴当x=﹣1时,函数有最小值,∴函数开口向上,∵y=﹣2,x=﹣3,由对称性可得x=1时,y=﹣2,∴y<﹣2时,﹣3<x<1,故答案为﹣3<x<1.15.解法一:将x=﹣1,y=0代入y=ax2﹣2ax+c得:a+2a+c=0.解得:c=﹣3a.将c=﹣3a代入方程得:ax2﹣2ax﹣3a=0.∴a(x2﹣2x﹣3)=0.∴a(x+1)(x﹣3)=0.∴x1=﹣1,x2=3.解法二:已知抛物线的对称轴为x==1,又抛物线与x轴一个交点的坐标为(﹣1,0),则根据对称性可知另一个交点坐标为(3,0);故而ax2﹣2ax+c=0的两个根为﹣1,3故答案为:﹣1,3.16.解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.17.解:∵抛物线的对称轴为直线x=﹣=6,∴x=4和x=8对应的函数值相等,∵在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,∴抛物线与x轴的交点坐标为(4,0),(8,0),把(4,0)代入y=ax2﹣12ax+36a﹣5得16a﹣48a+36a﹣5=0,解得a=.故答案为.18.解:(1)S△ABC=•BC•AC=•2•3=3,故答案为3.(2)如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.故答案为:如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.三、解答题(共66分,共7小题)19.解:(1)∵y=﹣x2+x+4=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),对称轴为直线x=1;(2)当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小.20.解:由抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,可设抛物线为:y=a(x﹣2)2+4,把(1,2)代入得:2=a+4,解得:a=﹣2,所以抛物线为:y=﹣2(x﹣2)2+4,即y=﹣2x2+8x﹣4,21.解:(1)y=2x2+4x﹣6,与y轴交于(0,﹣6),令y=0得2x2+4x﹣6=0.解得:x1=﹣3,x2=1,∴抛物线与x轴交点为(﹣3,0),(1,0);(2)∵抛物线与x轴交点为(﹣3,0),(1,0),抛物线的开口方向向上,∴当x<﹣3或x>1时,y>0;=2×16﹣4×4﹣6=10.(3)当x=﹣4时,y最大值=2﹣4﹣6=﹣8.当x=﹣1时,y最小值所以﹣8<y<10.22.解:(1)∵抛物线y=x2+bx+c经过(0,﹣1),(3,2),∴,∴,∴二次函数的关系式为:y=x2﹣2x﹣1;(2)y=x2﹣2x﹣1=(x﹣1)2﹣2,∴抛物线的顶点坐标为(1,﹣2),又∵a>0,∴抛物线开口向上,有最低点,当x=1时,y有最小值﹣2,故答案为:低,1,小,﹣2;(3)∵A(0,﹣1),∴AO=1,=2=OA•h,∵S△AOC∴h=4,即:|x c|=4,当x=4时,y=16﹣8﹣1=7,当x=﹣4时,y=16+8﹣1=23,∴C(4,7)或(﹣4,23).23.解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).(3)根据函数图象可知:x<0或x>3.24.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为322520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.25.解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即﹣≥0,解得:a≥﹣,故a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=×2×PQ×=1,则PQ=y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1±,故点P(﹣1,2)或(﹣1+,)或(﹣1﹣,﹣).。

九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)

九年级数学上册 第二十三章 旋转  单元测试卷及答案(2023年人教版)

九年级数学上册第二十三章旋转单元测试卷及答案(人教版)一、选择题(每题3分,共30分)1.【教材P69习题T2拓展】垃圾混置是垃圾,垃圾分类是资源.下列可回收物、有害垃圾、厨余垃圾、其他垃圾四种垃圾回收标识中,既是轴对称图形又是中心对称图形的是()2.【教材P60例题变式】如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()3.【教材P69练习T2改编】点(-1,2)关于原点的对称点坐标是() A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 4.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA?()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°(第4题)(第5题)(第6题)(第7题)5.【教材P77复习题T7变式】如图,点O是▱ABCD的对称中心,EF是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF 的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,将Rt△ABC(∠B=25°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C ,A ,B 1在同一条直线上,那么旋转角等于( )A .65°B .80°C .105°D .115°7.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE绕点A 顺时针旋转到与△ABF 重合,则EF =( ) A.41 B.42 C .5 2 D .2138.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( )A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)(第8题) (第9题) (第10题)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( )A .1∶ 2B .1∶2 C.3∶2 D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0) C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1) 二、填空题(每题3分,共24分)11.【教材P 63习题T 5变式】如图,风车图案围绕着旋转中心至少旋转________度,会和原图案重合.(第11题) (第12题) (第13题)12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“轴对称”)14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.(第14题)(第15题)(第16题)(第17题) 15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.16.如图,在Rt△OAB中,∠OAB=90°,O A=AB=6,将△O AB绕点O按逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将△ABC在平面内绕点A逆时针旋转40°到△AB′C′的位置,若CC′∥AB,则∠CAB′的度数为________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.【教材P70习题T4拓展】平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图①中涂黑一个小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图②中涂黑一个小正方形,使涂黑的四个小正方形组成一个中心对称图形.23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE =CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.C 3.B 4.C 5.C 6.D7.D8.D9.B10.B点规律:2022=252×8+6,则点A2022在点A6的位置,点A6与点C重合.二、11.6012.π13.轴对称;旋转;平移14.215.(-1,-3);(1,-3)16.3617.30°18.②③④点思路:将△ADF绕点A顺时针旋转90°,点D与点B重合,利用全等的知识判断.三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示:①、②、③、④处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图②所示:①、②处涂黑都可以使涂黑的四个小正方形组成一个中心对称图形.23.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°得到的,∴DB=CB,∠ABE=∠DBC=60°.∵AB⊥BC,∴∠ABC=90°.∴∠CBE=30°.∴∠DBE=30°.∴∠DBE=∠CBE.在△BDE和△BCE中,DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE(SAS).(2)解:四边形ABED为菱形.理由:由(1)得△BDE≌△BCE,∴EC=ED.∵△BAD是由△BEC旋转得到的,∴△BAD≌△BEC.∴BA=BE,AD=EC.又∵BE=CE,EC=ED,∴BA=BE=AD=ED.∴四边形ABED为菱形.24.点方法:(1)可以用观察法初步判断AE和DB的数量、位置关系,通过边长DB交AE于点M,利用全等的知识进行验证.解:(1)AE=DB,AE⊥DB.理由:如图①,延长DB交AE于点M.由题意可知,CA=CB,CE=CD,∠ACE=∠BCD=90°,∴△ACE≌△BCD(SAS).∴AE=DB,∠AEC=∠BDC.∵∠ACE=90°,∴∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD 中,∠AMD =180°-90°=90°.∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:如图②,设ED 与AF 相交于点N ,由题意易知BE =AD .∵∠EBD =∠C +∠BDC =90°+∠BDC ,∠ADF =∠BDF +∠BDC =90°+∠BDC ,∴∠EBD =∠ADF .又∵DB =DF ,∴△EBD ≌△ADF (SAS).∴∠E =∠FAD ,DE =AF .∵∠E =45°,∴∠FAD =45°.又∵∠EDC =45°,∴∠AND =90°.∴DE ⊥AF .25.解:(1)∠ABD =30°-12α.(2)△ABE 为等边三角形.证明如下:连接AD ,CD .∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∴△BCD 是等边三角形.∴BD =CD .∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 和△ACD 中,AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD (SSS).∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-12α150°=12α.∴∠BAD =∠BEC .在△ABD 和△EBC 中,∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS).∴AB =BE .又∵∠ABE =60°,∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°.∵∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形,∴DC =CE =BC .∴∠CBE =∠BEC .∵∠BCE =150°,∴∠EBC =180°-150°2=15°.而由(2)知∠EBC =30°-12α,∴30°-12α=15°.∴α=30°.。

【人教版】九年级上册期末数学试卷8含答案

【人教版】九年级上册期末数学试卷8含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!九年级(上)期末数学模拟试卷一、选择题(本题共有12小题,每小题3分,共36分)1.2cos45°的值等于( )A.B.C.D.2.某种零件模型如图所示,该几何体(空心圆柱)的主视图是( )A.B.C.D.3.二次函数y=﹣2(x﹣3)2+1的顶点坐标为( )A.C.4.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值( )A.B.C.D.5.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A.B.C.D.6.下列性质中正方形具有而菱形没有的是( )A.对角线互相平分B.对角线相等C.对角线互相垂直D.一条对角线平分一组对角7.如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是( )A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC8.某市商品房的均价原为18150元/m2,经过连续两次降价后均价为15000元/m2.设平均每次降价的百分率为x,根据题意所列方程正确的是( )A.18150(1﹣x)2=18150﹣15000B.18150(1﹣x2)=15000C.18150(1﹣2x)=15000D.18150(1﹣x)2=150009.关于二次函数y=﹣2x2+3,下列说法中正确的是( )A.它的开口方向是向上B.当x<﹣1时,y随x的增大而增大C.它的顶点坐标是(﹣2,3)D.当x=0时,y有最小值是310.一个三角形的两边长为3和6,第三边的长是方程(x﹣3)(x﹣4)=0的根,则这个三角形第三边的长是( )A.3B.4C.3或4D.3和411.如图,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(3,4).反比例函数(x>0)的图象经过顶点B,则k的值为( )A.32B.24C.20D.1212.已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是( )A.B.C.D.二、填空题(本题共有4小题,每小题3分,共12分)13.若关于x的方程x2﹣x+c=0有一根是x=3,则另一个根是 .14.为了估计湖里有多少条鱼,先从湖里捕捞50条鱼都做上标记,然后放回湖中去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞200条鱼,发现其中10条有标记,那么你估计湖里大约有鱼 .15.如图,四边形ABCD中,对角线AC⊥BD,E、F、G、H分别是各边的中点,若AC=8,BD=6,则四边形EFGH的面积是 .16.如图,已知双曲线(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=4,则k= .三.解答题(本题共有7小题,共52分)17.解方程:5x2﹣6x+1=0.18.计算:.19.一个口袋中有1个黑球和若干个白球,这些球除颜色外其他都相同.已知从中任意摸取一个球,摸得黑球的概率为.(1)求口袋中白球的个数;(2)如果先随机从口袋中摸出一球,不放回,然后再摸出一球,求两次摸出的球都是白球的概率.用列表法或画树状图法加以说明.20.光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.(已知≈1.732)21.(8分)(2011思茅区校级二模)如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.(1)求证:AD=CE;(2)试判断四边形ADCE的形状,并说明理由.22.天虹商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m件与每件的销售价x元满足一次函数关系m=kx+b,当销售单价定为35元时,每天可销售57件;当销售单价定为40元时,每天可销售42件.(1)求m与x的函数关系式;(2)请写出商场卖这种商品每天的销售利润y元与每件的销售价x元之间的函数关系式;(3)当每件的销售单价定为多少元时,商场每天所获的利润最高?最高利润为多少?23.如图,在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别为A(0,4)、B(1,4)、C(0,1),将▱ABCD绕点C沿顺时针方向旋转90°,得到▱A′B′CD′,A′D′与BC相交于点E.(1)求经过点D、A、A′的抛物线的函数关系式;(2)求▱ABCD与▱A′B′CD′的重叠部分(即△CED’)的面积;(3)点P是抛物线上点A、A′之间的一动点,是否存在点P使得△APA′的面积最大?若存在,求出△APA′的最大面积,及此时点P的坐标;若不存在,请说明理由.九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分)1.2cos45°的值等于( )A.B.C.D.【考点】特殊角的三角函数值.【分析】将45°角的余弦值代入计算即可.【解答】解:∵cos45°=,∴2cos45°=.故选B.【点评】本题考查特殊角的三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.2.某种零件模型如图所示,该几何体(空心圆柱)的主视图是( )A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看是一个矩形被分成三部分,分割线是虚线,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.二次函数y=﹣2(x﹣3)2+1的顶点坐标为( )A.C.【考点】二次函数的性质.【分析】根据顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=﹣2(x ﹣3)2+1的顶点坐标.【解答】解:∵二次函数y=﹣2(x﹣3)2+1是顶点式,∴顶点坐标为(3,1).故选:D.【点评】此题主要考查了顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),考查了学生的应用能力,是中考中考查重点注意必须熟练掌握其性质.4.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值( )A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理计算出BC长,再根据余弦定义可得答案.【解答】解:∵AC=4,AB=5,∴BC===3,∴cosB==.故选:B.【点评】此题主要考查了锐角三角函数,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.5.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A.B.C.D.【考点】列表法与树状图法.【专题】计算题;压轴题;数形结合.【分析】列举出所有情况,看在同一辆车的情况数占总情况数的多少即可.【解答】解:设3辆车分别为A,B,C,共有9种情况,在同一辆车的情况数有3种,所以坐同一辆车的概率为,故选A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到在同一辆车的情况数是解决本题的关键.6.下列性质中正方形具有而菱形没有的是( )A.对角线互相平分B.对角线相等C.对角线互相垂直D.一条对角线平分一组对角【考点】正方形的性质;菱形的性质.【分析】菱形的对角线垂直且互相平分,正方形的对角线垂直相等且互相平分.【解答】解:因为菱形的对角线垂直且互相平分,正方形的对角线垂直相等且互相平分.所以对角线相等是正方形具有而菱形不具有的.故选B.【点评】本题考查菱形的性质和正方形的性质,要熟记菱形和正方形的性质.7.如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是( )A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC【考点】平行四边形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】本题要综合分析,但主要依据都是平行四边形的性质.【解答】解:A、∵AD∥BC∴△AFD∽△EFB∴===故S△AFD=4S△EFB;B、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.【点评】解决本题的关键是利用相似求得各对应线段的比例关系.8.某市商品房的均价原为18150元/m2,经过连续两次降价后均价为15000元/m2.设平均每次降价的百分率为x,根据题意所列方程正确的是( )A.18150(1﹣x)2=18150﹣15000B.18150(1﹣x2)=15000C.18150(1﹣2x)=15000D.18150(1﹣x)2=15000【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:18150(1﹣x2)=15000.故选B.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.9.关于二次函数y=﹣2x2+3,下列说法中正确的是( )A.它的开口方向是向上B.当x<﹣1时,y随x的增大而增大C.它的顶点坐标是(﹣2,3)D.当x=0时,y有最小值是3【考点】二次函数的性质.【专题】探究型.【分析】分别根据抛物线的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:A、∵二次函数y=﹣2x2+3中,x=﹣2<0,∴此抛物线开口向下,故本选项错误;B、∵抛物线的对称轴x=﹣=0,∴当x>﹣1时函数图象在对称轴左侧,y随x的增大而增大,故本选项正确;C、抛物线的顶点坐标为(0,3),故本选项错误;D、∵抛物线开口向下,∴此函数有最大值,故本选项错误.故选B.【点评】本题考查的是二次函数的性质,即二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大.10.一个三角形的两边长为3和6,第三边的长是方程(x﹣3)(x﹣4)=0的根,则这个三角形第三边的长是( )A.3B.4C.3或4D.3和4【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】先解方程,求出x的值,再根据三角形三边关系舍去不合题意的解.【解答】解:∵(x﹣3)(x﹣4)=0,∴x1=3,x2=4,当x=3时,3+3=6(不合题意,舍去),∴x=4,即这个三角形第三边的长是4.故选:B.【点评】本题考查了因式分解法解一元二次方程以及三角形三边关系,此题比较简单,易于掌握.11.如图,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(3,4).反比例函数(x>0)的图象经过顶点B,则k的值为( )A.32B.24C.20D.12【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】根据菱形的性质以及勾股定理得出AO=CO=5,即可得出B点坐标,进而求出k的值.【解答】解:∵菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(3,4),∴CO==5,∴AO=BC=5,∴B(8,4),∴k=xy=4×8=32.故选;A.【点评】此题主要考查了菱形的性质以及勾股定理和反比例函数图象上点的坐标性质,得出B点坐标是解题关键.12.已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是( )A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【专题】压轴题;数形结合.【分析】根据二次函数图象开口方向与对称轴判断出a、b的正负情况,再根据二次函数图象与y轴的交点判断出c=0,然后根据一次函数图象与系数的关系,反比例函数图象与系数的关系判断出两图象的大致情况即可得解.【解答】解:∵二次函数图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c过第二四象限且经过原点,反比例函数y=位于第二四象限,纵观各选项,只有C选项符合.故选C.【点评】本题考查了二次函数图象,一次函数图象,反比例函数图象,根据二次函数图象判断出a、b、c的情况是解题的关键,也是本题的难点.二、填空题(本题共有4小题,每小题3分,共12分)13.若关于x的方程x2﹣x+c=0有一根是x=3,则另一个根是 ﹣2 .【考点】根与系数的关系.【专题】计算题.【分析】设方程的另一个根是t,根据根与系数的关系得到3+t=1,然后解一次方程求t即可.【解答】解:设方程的另一个根是t,根据题意得3+t=1,解得t=﹣2,即方程另一个根是﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.为了估计湖里有多少条鱼,先从湖里捕捞50条鱼都做上标记,然后放回湖中去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞200条鱼,发现其中10条有标记,那么你估计湖里大约有鱼 1000条 .【考点】用样本估计总体.【分析】在样本中“捕捞200条鱼,发现其中10条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【解答】解:设湖中有x条鱼,则200:10=x:50,解得x=1000.故答案为:1000条.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.15.如图,四边形ABCD中,对角线AC⊥BD,E、F、G、H分别是各边的中点,若AC=8,BD=6,则四边形EFGH的面积是 12 .【考点】矩形的判定与性质;三角形中位线定理.【专题】计算题.【分析】根据E、F、G、H分别是各边的中点,利用三角形中位线定理求出EH和EF,判定四边形EFGH是矩形,然后即可四边形EFGH的面积.【解答】解:∵E、F、G、H分别是四边形ABCD各边的中点,∴EH∥BD且EH=BD,FG∥BD且=BD,∴EH∥FG,EH=FG,同理EF∥HG,EF=HG,又∵AC⊥BD,∴四边形EFGH是矩形,∴四边形EFGH=EF×EH=AC×BD=×8××6=12.【点评】此题主要考查学生对三角形中位线定理和矩形的判定与性质等知识点的理解和掌握,此题难度不大,属于中档题.16.如图,已知双曲线(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=4,则k= 4 .【考点】反比例函数与一次函数的交点问题;反比例函数的性质;三角形的面积.【专题】计算题.【分析】过C作CD⊥X轴于D,设A的坐标是(a,b),根据双曲线的性质得到C的坐标是(﹣a,﹣b),根据三角形的面积公式推出×a×b+×a×b=4,代入即可求出k.【解答】解:过C作CD⊥X轴于D,设A的坐标是(a,b),则根据双曲线的两个分支关于原点对称,则C的坐标是(﹣a,﹣b ),则ab=k,OB=a,AB=b,CD=b,∵S△ABC=S△AOB+S△COB=4,∴×a×b+×a×b=4,即k+k=4,k=4,故答案为:4.【点评】本题主要考查对三角形的面积,反比例函数的性质,一次函数与反比例函数的交点问题等知识点的理解和掌握,能推出k+k=4是解此题的关键.三.解答题(本题共有7小题,共52分)17.解方程:5x2﹣6x+1=0.【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:5x2﹣6x+1=0,(5x﹣1)(x﹣1)=0,5x﹣1=0,x﹣1=0,x1=,x2=1.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.18.计算:.【考点】特殊角的三角函数值.【专题】计算题.【分析】将sin45°和tan30°的值代入计算可得出答案.【解答】解:原式=﹣×=﹣1=﹣.【点评】本题考查了特殊角的三角函数值,比较简单,解决此类题目的关键是熟记特殊角的三角函数值.19.一个口袋中有1个黑球和若干个白球,这些球除颜色外其他都相同.已知从中任意摸取一个球,摸得黑球的概率为.(1)求口袋中白球的个数;(2)如果先随机从口袋中摸出一球,不放回,然后再摸出一球,求两次摸出的球都是白球的概率.用列表法或画树状图法加以说明.【考点】列表法与树状图法.【分析】(1)根据摸得黑球的概率为,假设出白球个数直接得出答案;(2)利用先随机从口袋中摸出一球,不放回,得出树状图即可.【解答】解:(1)∵一个口袋中有1个黑球和若干个白球,从中任意摸取一个球,摸得黑球的概率为.∴假设白球有x个,∴,∴x=2.∴口袋中白球的个数为2个;(2)∵先随机从口袋中摸出一球,不放回,然后再摸出一球,求两次摸出的球都是白球的概率.∴两次都摸到白球的概率为:.【点评】此题主要考查了树状图法求概率,根据已知得出树状图注意按要求从口袋中摸出一球,不放回,容易在这个地方犯错.20.光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.(已知≈1.732)【考点】解直角三角形的应用-方向角问题.【分析】作CD⊥AB于D,构造出Rt△ACD与Rt△BCD,求出AB的长度.根据平行线的性质求出三角形各角之间的关系,利用特殊角的三角函数值求解.【解答】解:作CD⊥AB于D.设AD=x,则BD=50×20﹣x=1000﹣x.∵∠EAC=60°,∴∠CAB=90°﹣60°=30°.在Rt△BCD中,∵∠FBC=45°,∴∠CBD=∠BCD=45°,∴CD=DB=1000﹣x.在Rt△ACD中,∵∠CAB=30°,∴CD=tan30°AD,即DB=CD=tan30°AD=1000﹣x=x,解得:x≈633.98,∴CD=1000﹣633.98=366.02.答:建筑物C到公路AB的距离为366.02m.【点评】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.21.(8分)(2011思茅区校级二模)如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.(1)求证:AD=CE;(2)试判断四边形ADCE的形状,并说明理由.【考点】菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质.【分析】(1)根据中垂线的性质:中垂线上的点线段两个端点的距离相等,得出AE=CE ,AD=CD,OA=OC,∠AOD=∠EOC=90°,由CE∥AB,得到∠DAO=∠ECO,利用AAS证明△ADO≌△CEO,即可得出OD=OE;(2)由一组对边平行且相等知,四边形ADCE是平行四边形,再根据对角线互相垂直的平行四边形是菱形得平行四边形ADCE是菱形.【解答】(1)证明:∵MN是AC的垂直平分线,∴OA=OC,∠AOD=∠EOC=90°.∵CE∥AB,∴∠DAO=∠ECO,在△ADO与△CEO中,,∴△ADO≌△CEO(ASA),∴AD=CE;(2)解:四边形ADCE是菱形.理由如下:由(1)得OA=OC,AD=CE,∴四边形ADCE是平行四边形,∵AC⊥DE,∴平行四边形ADCE是菱形.【点评】本题考查了中垂线的性质,全等三角形的判定和性质,菱形的判定,证明△ADO ≌△CEO,得出OD=OE是解题的关键.22.天虹商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m件与每件的销售价x元满足一次函数关系m=kx+b,当销售单价定为35元时,每天可销售57件;当销售单价定为40元时,每天可销售42件.(1)求m与x的函数关系式;(2)请写出商场卖这种商品每天的销售利润y元与每件的销售价x元之间的函数关系式;(3)当每件的销售单价定为多少元时,商场每天所获的利润最高?最高利润为多少?【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据待定系数法解出解析式即可;(2)根据题意列出函数解析式解答即可;(3)根据题意列出函数解析式,利用函数解析式的最值解答即可.【解答】解:(1)把x=35,m=57;x=40,m=42代入m=kx+b得,,解得:.故m与x的函数关系式为:m=﹣3x+162;(2)根据题意得:y=(﹣3x+162)(x﹣30),即:销售利润y元与每件的销售价x元之间的函数关系式:y=﹣3x2+252x﹣4860;(3)∵y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,∴当x=42时,y最大=432,∴每件的销售单价定为42元时,商场每天所获的利润最高,最高利润为432元.【点评】此题考查二次函数的应用,关键是根据题意列出方程和函数解析式,利用函数解析式的最值分析.23.如图,在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别为A(0,4)、B(1,4)、C(0,1),将▱ABCD绕点C沿顺时针方向旋转90°,得到▱A′B′CD′,A′D′与BC相交于点E.(1)求经过点D、A、A′的抛物线的函数关系式;(2)求▱ABCD与▱A′B′CD′的重叠部分(即△CED’)的面积;(3)点P是抛物线上点A、A′之间的一动点,是否存在点P使得△APA′的面积最大?若存在,求出△APA′的最大面积,及此时点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=ax2+bx+c,根据平行四边形的性质和旋转的性质易求点D的坐标和A′坐标,再把D(﹣1,1)、A(0,4)、A′(3,1)代入求出a、b、c的值即可;(2)根据旋转:∠CED’=90°,所以可证明△CED′∽△CAB,利用相似三角形的性质:面积比等于相似比的平方即可求出▱ABCD与▱A′B′CD′的重叠部分(即△CED’)的面积;(3)易得:y AA'=﹣x+4,设P(t,﹣t2+2t+4),则Q(t,﹣t+4),所以PQ=(﹣t2+2t+4)﹣(﹣t+4)=﹣t2+3t,利用三角形的面积公式即可得到s和t的二次函数关系式利用函数的性质即可求出△APA′的最大面积,进而可求出点P的坐标.【解答】解:(1)∵四边形ABCD是平行四边形,将▱ABCD绕点C沿顺时针方向旋转90°,得到▱A′B′CD′,顶点A、B、C的坐标分别为A(0,4)、B(1,4)、C(0,1),∴D(﹣1,1)、A′(3,1),设抛物线的解析式为y=ax2+bx+c,将D(﹣1,1)、A(0,4)、A′(3,1)代入得:,解得:,∴y=﹣x2+2x+4或:y=﹣(x﹣1)2+5;(2)根据旋转:∠CED’=90°,∴△CED′∽△CAB,∴,即,∴;或易得:y BC=3x+1与,由得:E(,),∴;(3)易得:y AA'=﹣x+4设P(t,﹣t2+2t+4),则Q(t,﹣t+4),∴PQ=(﹣t2+2t+4)﹣(﹣t+4)=﹣t2+3t,∴,∴△APA’的最大面积为,此时,P(,).【点评】本题着重考查了待定系数法求二次函数解析式以及二次函数的性质、平行四边形的性质、相似三角形的判定和性质、函数图象的交点等知识点,综合性强,同时也考查了数形结合的数学思想方法.。

部编人教版九年级数学上册全册各单元检测试题共19套含答案可编辑

部编人教版九年级数学上册全册各单元检测试题共19套含答案可编辑

2016-2017学年九年级上一元二次方程测试题一、选择题(每小题3分,共30分)1.已知3是关于的方程012342=+-ax x 的一个解,则a 2的值是( ) A.11 B.12 C.13 D.142.用配方法解一元二次方程0242=+-x x 时,可配方得( )A. ()622=-xB. ()622=+xC. ()222=-xD. ()222=+x3.一元二次方程0122=--x x 的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程为( )A.()140012002002=++xB. ()()1400120012002002=++++x x C. ()140012002=+x D. ()()1400120012002=+++x x 5.关于x 的方程()01452=---x x a 有实数根,则a 满足( ) A. a ≥1 B. a >1且a ≠5 C. a ≥1且a ≠5 D. a ≠56.若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2015﹣a ﹣b 的值是( )A .2020B .2008C .2014D .20127.关于x 的方程(2﹣a )x 2+5x ﹣3=0有实数根,则整数a 的最大值是( )A .1B .2C .3D .48.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=99.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =± B .m =2 C .m= -2 D .2m ≠±10. 如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( ) A .a >–14 B .a ≥–14 C .a ≥–14且a ≠0 D .a >–14且a ≠0二、填空题(每小题3分,共30分)11.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .12.一元二次方程(x +1)(3x -2)=10的一般形式是 .13.方程23x x =的解是____14.已知两个连续奇数的积是15,则这两个数是______15.已知4)2)(1(2222=-+-+y x y x ,则22x y +的值等于 . 16、某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有 名学生,17、参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。

人教版九年级上学期数学《旋转》单元综合测试卷(含答案)

人教版九年级上学期数学《旋转》单元综合测试卷(含答案)
20.如图,在 中, , , ,点 是 中点,将 绕点 旋转得 ,则在旋转过程中点 、 两点间的最大距离是________.
三、解答题(本题共计8小题 ,共计60分 ,)
21.如图,正方形网格中,小格的顶点叫做格点,连接任意两个格点的线段叫做格点线段.
(1)如图1,格点线段A B、C D,请添加一条格点线段EF,使它们构成轴对称图形;
[答案]D
[解析]
[分析]
解直角三角形求出A B,再求出C D,然后根据旋转的性质可得A B=A D,然后判断出△A B D是等边三角形,根据等边三角形的三条边都相等可得B D=A B,然后根据C D=B C-B D计算即可得解.
[详解]∵∠B=60°,
∴∠C=90°-60°=30°,
∵A C= ,
∴A=2,B=3,
故选A.
[点睛]本题主要考查了关于原点对称的点的坐标特点,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
8.如图,将 绕点A按顺时针旋转一定角度得到 ,点B的对应点D恰好落在B C边上 若 , ,则C D的长为
A. B. C. D.1
(2)如图2,格点线段A B和格点C,在网格中找一格点D,使格点A、B、C、D四点构成中心对称图形;
(3)在(2)的条件下,如果每一小正方形边长为1,那么四边形A B C D的面积S为_________.
(请直接填写)
22.如图,将边长为 的等边 按图示方式,沿 轴正方向连续翻转 次,点 依次落在点 , , , ,…, 的位置.试写出 , , , 的坐标.
回答下列问题:
①在图 中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,案与解析

九年级数学上学期圆单元教案及试题(附答案)人教版

九年级数学上学期圆单元教案及试题(附答案)人教版

圆单元教案及单元试题(附答案)单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.第一课时圆(1)教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其它们的应用.教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学)1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.二、探索新知从以上圆的形成过程,我们可以得出:在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结.(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作弧AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示ABC叫做优弧,•小于半圆的弧(如图所示)AC或BC叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,•我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. 因此,我们可以得到:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(学生活动)请同学按下面要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM=BM ,AC BC =,AD BD =,即直径CD 平分弦AB ,并且平分AB 及ADB . 这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.下面我们用逻辑思维给它证明一下:已知:直径CD 、弦AB 且CD ⊥AB 垂足为M 求证:AM=BM ,AC BC =,AD BD =.分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、•OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB 在Rt △OAM 和Rt △OBM 中 OA OBOM OM=⎧⎨=⎩ ∴Rt △OAM ≌Rt △OBM ∴AM=BM∴点A 和点B 关于CD 对称 ∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,AC 与BC 重合,AD 与BD 重合. ∴AC BC =,AD BD =B进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径. 分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握. 解:如图,连接OC设弯路的半径为R ,则OF=(R-90)m∵OE ⊥CD∴CF=12CD=12×600=300(m )根据勾股定理,得:OC 2=CF 2+OF 2 即R 2=3002+(R-90)2 解得R=545∴这段弯路的半径为545m . 三、巩固练习教材P86 练习 P88 练习. 四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=•60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN=32m •是否需要采取紧急措施,•只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R . 解:不需要采取紧急措施设OA=R ,在Rt △AOC 中,AC=30,CD=18R 2=302+(R-18)2 R 2=900+R 2-36R+324解得R=34(m )连接OM ,设DE=x ,在Rt △MOE 中,ME=16342=162+(34-x )2162+342-68x+x 2=342 x 2-68x+256=0解得x 1=4,x 2=64(不合设) ∴DE=4∴不需采取紧急措施.五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.圆的有关概念;2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 3.垂径定理及其推论以及它们的应用. 六、布置作业1.教材P94 复习巩固1、2、3. 2.车轮为什么是圆的呢?第2课时圆(2)教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.ABO老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.二、探索新知如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题:如图所示的⊙O中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?B 'AB =''A B ,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴AB 与''A B 重合,弦AB 与弦A ′B ′重合 ∴AB =''A B ,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.B ''A A '(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:AB =''A B ,AB=A /B /.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等. (学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB与∠COD呢?D分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.(2)∵OE=OF,∴在Rt△AOE和Rt△COF中,又有AO=CO是半径,∴Rt△AOE≌Rt•△COF,∴AE=CF,∴AB=CD,又可运用上面的定理得到AB=CD解:(1)如果∠AOB=∠COD,那么OE=OF理由三、巩固练习教材P89 练习1 教材P90 练习2.四、应用拓展例2.如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.NP(3) (4)分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD理由:略五、归纳总结(学生归纳,老师点评)本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业教材P94-95 复习巩固4、5、6、7、8.第3课时圆(3)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?老师点评:(1)我们把顶点在圆心的角叫圆心角.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如图所示的⊙O,我们在射门游戏中,设E、F是球门,•设球员们只能在EF所在的⊙O其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?(学生分组讨论)提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB∴∠ABO=∠BAO∴∠AOC=∠ABO ∴∠ABC=12∠AOC (2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程.老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .(3)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.从(1)、(2)、(3),我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB∴BD=CD三、巩固练习1.教材P92 思考题.2.教材P93 练习.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.应用圆周角的定理及其推导解决一些具体问题.六、布置作业教材P95 综合运用9、10、11 拓广探索12、13.第四课时与圆有关的位置关系( 1 )教学内容1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.不在同一直线上的三个点确定一个圆.3.三角形外接圆及三角形的外心的概念.4.反证法的证明思路.教学目标1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题.重难点、关键1.•重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.2.难点:讲授反证法的证明思路.3.关键:由一点、二点、三点、•四点作圆开始导出不在同一直线上的三个点确定一个圆.教学过程一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图可知,圆外的点到圆心的距离大于半径;•圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外⇒d>r点P在圆上⇒d=r点P在圆内⇒d<r反过来,也十分明显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.下面,我们接下去研究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),•你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.lBAB(1) (2) (3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示.在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C•三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.即:不在同一直线上的三个点确定一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,•即点P为L1与L2点,而L1⊥L,L2⊥L,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心.作法:(1)在残缺的圆盘上任取三点连结成两条线段;(2)作两线段的中垂线,相交于一点.则O就为所求的圆心.三、巩固练习教材P100 练习1、2、3、4.四、应用拓展例2.已知梯形ABCD中,AB∥CD,AD=BC,AB=48cm,CD=30cm,高27cm,求作一个圆经过A、B、C、D四点,写出作法并求出这圆的半径(比例尺1:10)分析:要求作一个圆经过A、B、C、D四个点,应该先选三个点确定一个圆,•然后证明第四点也在圆上即可.要求半径就是求OC或OA或OB,因此,•要在直角三角形中进行,A不妨设在Rt △EOC 中,设OF=x ,则OE=27-x 由OC=OB 便可列出,•这种方法是几何代数解.作法分别作DC 、AD 的中垂线L 、m ,则交点O 为所求△ADC 的外接圆圆心. ∵ABCD 为等腰梯形,L 为其对称轴 ∵OB=OA ,∴点B 也在⊙O 上 ∴⊙O 为等腰梯形ABCD 的外接圆 设OE=x ,则OF=27-x ,∵OC=OB=解得:x=20∴=25,即半径为25m .五、归纳总结(学生总结,老师点评) 本节课应掌握:1. 点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d ,则;;.P d r P d r P d r ⇔>⎧⎪⇔=⎨⎪⇔<⎩点在圆外点在圆上点在圆内 2.不在同一直线上的三个点确定一个圆. 3.三角形外接圆和三角形外心的概念. 4.反证法的证明思想. 5.以上内容的应用. 六、布置作业教材P110 复习巩固 1、2、3.第五课时 与圆有关的位置关系( 2 )教学内容1.直线和圆相交、割线;直线和圆相切、圆的切线、切点;•直线和圆没有公共点、直线和圆相离等概念.2.设⊙O 的半径为r ,直线L 到圆心O 的距离为d直线L 和⊙O 相交⇔d<r ;直线和⊙O 相切⇔d=r ;直线L 和⊙O 相离⇔d>r . 3.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 4.切线的性质定理:圆的切线垂直于过切点的半径. 5.应用以上的内容解答题目. 教学目标(1)了解直线和圆的位置关系的有关概念.(2)理解设⊙O 的半径为r ,直线L 到圆心O 的距离为d ,则有:直线L 和⊙O 相交⇔d<r ;直线L 和⊙O 相切⇔d=r ;直线L 和⊙O 相离⇔d>r .(3)理解切线的判定定理:理解切线的性质定理并熟练掌握以上内容解决一些实际问题.复习点和圆的位置关系,引入直线和圆的位置关系,以直线和圆的位置关系中的d=r ⇔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(人教版)上学期单元试卷(八)
内容:24.3—24.4 总分:100分
一、选择题(本大题共10小题,每小题3分,共30分) 1.边长为a 的正六边形的面积等于( C ) A .
2
4
3a B .2a
C .
2
2
33a D .233a
2.用一个半径为6cm 的半圆围成一个圆锥的侧面,则此圆锥的底面圆的半径为( B ) A .2cm B.3cm C.4cm D.6cm
3.一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,•则该圆柱的底面圆半径是( C )
A .
π5 B .π8 C .π5或 π
8
D .π10或π16
4.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是( B )
A .9π
B .18π
C .27π
D .39π
5.△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F , 则点I 是△DEF ( C ) A .三条高的交点 B.三个内角平分线的交点 C. 三条角平分线的交点 D.三边垂直平分线的交点
6.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交 于点E ,若AD =2,BC =6,则⌒DE 的长为( A ) A .
3π2 B .3π4 C .3π
8
D .3π 7.如图2,在同心圆中,两圆半径分别为2、1,∠AOB=120°,•则阴影部分的面积为( B )
A .4π
B .2π
C .
4
3
π D .π 8. 如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内切圆,则AB B A 1
1的值为( B ) A .
2
1
B .
2
2
C . 41
D .
4
2
A M
D
E B
C
(第6题) (第7题) (第8题)
9.在正方形铁皮上剪下一个圆形和一个扇形,使之恰好围成圆锥模型。

设圆的半径为r , 大圆的半径为R ,那么r 与R 之间的关系是( D ) A .R =2r B .4
9
R r =
C .R =3r
D .R =4r 10.已知如图,圆锥的底面圆的半径为r (r >0),母线长OA 为3r ,C 为母线OB 的中点.在
圆锥的侧面上,一只蚂蚁从点A 爬行到点C 的最短线路长为( B ) A .r 23 B .r 233 C .r 3
3
D .r 33
(第9题) (第10题)
二、填空题(本大题共4小题,每小题3分,共12分)
11.一个圆锥形零件底面圆半径r 为4 cm ,母线l 长为12 cm ,则这个零件的展开图的圆心
角α的度数是 120。

12.如图,正六边形DEFGHI 的顶点都在边长为6cm 的正△ABC 的边上,则这个正六边形的
边长是 2
c m 。

13.如图,在△ABC 中,∠A=90°,BC=4cm ,分别以B ,C 为圆心的两个等圆外切,则图中
阴影部分的面积为 π 2
cm 。

14.如 图,在Rt △ABC 中,∠C=90°,AC=3.将其绕B 点顺时针旋转一周,则分别以BA ,
BC 为半径的圆形成一圆环.则该圆环的面积为 9π 。

(第12题) (第13题) (第14题)
三、(本题共2小题,每小题5分,满分10分)
15.有一圆柱形的油罐,如图,要从点A 起环绕油罐一圈......
建梯子,正好到A 点的正上方B 点,若油罐底面周长是12m ,高是5m ,问梯子最短是多少米?
15.13 m.
16.如图,半圆的直径AB=12,P 为AB 上一点,点C ,D 为半圆的三等分点,求其中阴影部
分的面积。

16. 6。

提示:连结OC 、OD ,证明阴影部分的面积等于扇形OCD 的面积。

四、(本题共2小题,每小题5分,满分10分)
17. 现有边长为a 的正方形花布,问怎样剪裁,才能得到一个面积最大的正八边形花布来做
一个形状为正八边形的风筝?
A
C
17.解:如图4,将正方形花布的四个角各截去一个全等的直角三角形,设
DF=GC=x ,
则,EF =
因为,EF=FG
2a x =-
,解得:22
x =
因此,应从正方形花布的四个角各截去一个全等的直角边22
的等腰直角三角形。

18.如图,⊙O 内切于△ABC ,切点分别为D 、E 、F ,若∠C =900
,AD =4,BD =6,求图中阴
影部分的面积。

1题图
18.π-4。

五、(本题共2小题,每小题6分,满分12分)
19.如图,已知圆锥的母线长OA=8,底面圆的半径r =2。

若一只小虫从A 点出发,绕圆锥
的侧面爬行一周后又回到了A 点,求小虫爬行的最短路线的长。

19.小虫爬行的最短路线的长是圆锥的展开图的扇形的弧所对的弦长,通
过计算,扇形的圆心角是90度,由勾股定理求得它的弦长是
20.如图,三个半径为r 的等圆两两外切,且与△ABC 的三边分别相切,求△ABC 的边长。

20.r )13(2 。

六、(本大题满分8分)
21.高晗和吴逸君两同学合作,将半径为1m 、圆心角为90°的扇形薄铁板围成一个圆锥筒,在计算圆锥的容积(接缝忽略不计)时,吴逸君认为圆锥的高就等于扇形的圆心O 到弦AB 的距离OC(如图),高晗说这样计算不正确。

你同意谁的说法?把正确的计算过程写出来。

21.
C
B
A . .
.
七、(本大题满分8分)
22.如图,在△OAB 中,OA=OB=2, ∠OAE=30°, ⊙O 切AB
、D, 求
图中阴影部分的面积。

22.解: 连接OE.
∵ ⊙O 切AB 于E, ∴ OE ⊥AB ,∴∠
OEA=90°。

在Rt △OEA 中, ∠OAE=30°, OA=2, ∴ OE=
2
1
OA=1, ∠AOE=60°。

∴ AE=.322=-OE OA 。

∵ OE ⊥AB ,OB = OA,
∴ BE = 2AE =23,∠AOB=2∠OBE=120°。

∴ S 阴影=S △OAB - S 扇形OCD =.3
331212π
π-=⋅-⋅OE OE AB 。

八、(本大题满分10分)
23.如图,把直角三角形△ABC 的斜边AB 放在直线l 上,按顺时针方向转动两次,使它转
到△A //B //C //
的位置,设BC=1,AC =3,则顶点A 运动到A '的位置时:
(1)点A 经过的路线有多长?
(2)点A 经过的路线与直线l 所围成的面积是多少?
23.(1)Rt △ABC 中,1
BC AC ==,230AB CAB =∠=,, 则点A 到A ''所经过的路线为:
ππππ2
3341803901802120//+=⨯+⨯=
+A A AA l l 弧弧。

点A 经过的路线与直线l 围成的面积为:
22
120219025
136********
πππ⋅⋅+⨯=+。

相关文档
最新文档