牛顿运动定律几个计算题(经典家)

合集下载

历年高考物理力学牛顿运动定律经典大题例题

历年高考物理力学牛顿运动定律经典大题例题

历年高考物理力学牛顿运动定律经典大题例题单选题1、如图所示,有A、B两物体,m A=2m B,用细绳连接后放在光滑的斜面上,在它们下滑的过程中()A.它们的加速度a=g sinθB.它们的加速度a<g sinθC.细绳的张力F T≠0m B gsinθD.细绳的张力F T=13答案:A解析:AB.A、B整体由牛顿第二定律可得(m A+m B)g sinθ=(m A+m B)a解得a=g sinθA正确,B错误;B.对B受力分析,由牛顿第二定律可得m B gsinθ+T=m B a解得T=0故细绳的张力为零,CD错误。

故选A。

2、如图所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端。

开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()A.a A=a B=g B.a A=2g,a B=0C.a A=√3g,a B=0D.a A=2√3g,a B=0答案:D解析:水平细线被剪断前对A、B两小球进行受力分析,如图所示,静止时,由平衡条件得F T=Fsin60°Fcos60°=m A g+F1F1=m B g又m A=m B解得F T=2√3m A g水平细线被剪断瞬间,F T消失,弹力不能突变,A所受合力与F T等大反向,F1=m B g,所以可得a A=F Tm A=2√3g a B=0ABC错误,D正确。

故选D。

3、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。

现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。

再经过一段时间,物体的速度变为零。

如果这一过程物体的总位移为15m。

求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。

(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。

牛顿运动定律-最全面、经典题型

牛顿运动定律-最全面、经典题型

1. 如图所示,在光滑的水平 面上,有一物体A,质量为3kg, 当用F=10N 的力通过滑轮拉 物体A 时,物体做什么运动?绳子上的拉力是多大?若改用质量为1kg 的物体B 拉物体A 时,物体A 又做什么运动?绳子上的拉力又是多大? (g 取10m/s 2)2. 如图甲所示,物体A 与B 用一根不可伸长的轻绳连接,放置于光滑的水平面上,现用F=6N 的力拉物体A,则物体的加速度为多少?绳上的张力为多大?若图乙呢?AB2kg1kg F=6N图甲A B 2kg 1kg F=6N图乙3.如图所示,光滑水平面上静止放着长L=1.6m ,质量为M=3kg 的木块(厚度不计),一个质量为m=1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,(g 取10m/s2).ABF(1)为使物体与木板不发生滑动,F 不能超过多少? (2)如果拉力F=10N 恒定不变,求小物体所能获得的最大速度?(3)如果拉力F=10N ,要使小物体从木板上掉下去,拉力F 作用的时间至少为多少?4.水平传送带以v=2m/s 速度匀速运动,将物体轻放在传送带的A 端,它运动到传送带另一端B 所需时间为11s ,物体和传送带间的动摩擦因数μ=0.1,求:(1)传送带AB 两端间的距离?(2)若想使物体以最短时间到达B 端,则传送带的速度大小至少调为多少?(g=10m/s2)5.如图所示,传送带与地面倾角θ=37°,A→B 长度为L=16m ,传送带以v0=10m/s 的速率逆时针转动,在传送带上端A 无初速度地释放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数为0.5.求:物体从A 运动到B 需时间是多少?6.将金属块用压缩的轻弹簧卡在一个矩形箱子中,如图所示,在箱子的上顶板和下底板装有压力传感器,能随时显示出金属块和弹簧对箱子上顶板和下底板的压力大小.将箱子置于电梯中,随电梯沿竖直方向运动.当箱子随电梯以a=4.0m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0N ,下底板的传感器显示的压力为10.0N .取g=10m/s2,若上顶板传感器的示数是下底板传感器的示数的一半,则升降机的运动状态可能是( )A .匀加速上升,加速度大小为5m/s2B .匀速上升C .匀加速下降,加速度大小为5m/s2D .静止状态7.质量为50kg 的一学生从1.8m 高处跳下,双脚触地后,他紧接着弯曲双腿使重心下降0.6m ,则着地过程中,地面对他的平均作用力为多少?8.如图所示,在水平面上行驶的车厢中,车厢顶部悬挂一质量为m 的球,悬绳与竖直方向成α角,相对车厢处于静止状态,求箱子的运动状态?9.如图所示,一个箱子质量为M 放在水平地面上,箱子内有一固定的竖直杆,在杆上套着一个质量为m 的圆环,圆环沿着杆加速下滑,环与杆的摩擦力大小为f ,则此时箱子对地面的压力为( )A .等于MgB .等于(M+m )gC .等于Mg+ fD .等于(M+m )g- fAAB 1kgF=10N 3kg M mD. 合力先变大后变小,速度先变小后变大。

高中物理牛顿运动定律经典练习题

高中物理牛顿运动定律经典练习题

牛顿运动定律一、基础知识回顾:1、牛顿第一定律一切物体总保持,直到有外力迫使它改变这种状态为止。

注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。

(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。

2、惯性物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

3、对牛顿第一运动定律的理解(1)运动是物体的一种属性,物体的运动不需要力来维持。

(2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。

(3)定律说明了任何物体都有一个极其重要的性质——惯性。

(4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。

4、对物体的惯性的理解(1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。

(2)惯性只与物体本身有关而与物体是否运动,是否受力无关。

任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。

质量是物体惯性的唯一量度。

(3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。

物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。

(4)惯性不是力。

5、牛顿第二定律的内容和公式物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。

公式是:a=F合/ m 或F合 =ma6、对牛顿第二定律的理解(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。

反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。

(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。

【牛顿运动定律】高考必考题(详解版)

【牛顿运动定律】高考必考题(详解版)

1
上地张力先增大后减小
上地张力先增大后减小
地合力大小方向不变,且与
始终变大.2
D.

由,可知摩擦力为
,
代入数据为:
联立可得:,故C正确.
故选C.
相互作用
共点力平衡
多个力地动态平衡
由图可知,小车在桌面上是(填"从右向左"或"从左向右")运动地;
(1)该小组同学根据图地数据判断出小车做匀变速运动,小车运动到图(b)中点位置时地
速度大小为,加速度大小为
.(结果均保留位有效数字)
(2)3
4
实验步骤如下:
如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对
5
6。

高中物理牛顿运动定律经典练习题(含答案)

高中物理牛顿运动定律经典练习题(含答案)

牛顿运动定律练习一1.(2021年河南省十所名校高三第三次联考试题, 7) 如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为m的物块从斜面体上由静止释放,以加速度a=开始下滑,取出发点为参考点,那么图乙中能正确描述物块的速率v、动能E k、势能E P、机械能E、时间t、位移x关系的是2.(2021年河南省十所名校高三第三次联考试题, 2) 如下图,两个物体以相同大小的初速度从O点同时分别向x 轴正、负方向水平抛出,它们的轨迹恰好满足抛物线方程y=,那么以下说法正确的选项是〔曲率半径简单地理解为在曲线上一点附近与之重合的圆弧的最大半径〕A .物体被抛出时的初速度为B.物体被抛出时的初速度为C.O点的曲率半径为kD.O点的曲率半径为2k3.(湖北省七市2021届高三理综4月联考模拟试卷,6)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,该行星的质量是地球质量的5倍,直径是地球直径的1.5倍。

设想在该行星外表附近绕行星沿圆轨道运行的人造卫星的动能为Ek1,在地球外表附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为Ek2,那么Ek1: Ek2为A. 7.5B. 3.33C. 0.34.(山东省淄博市2021届高三下学期4月复习阶段性检测,7)在倾角为的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。

现用一平行于斜面向上的恒力F拉物块A 使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v。

那么此时A .拉力做功的瞬时功率为B .物块B满足C.物块A的加速度为D.弹簧弹性势能的增加量为5.(山东省淄博市2021届高三下学期4月复习阶段性检测,1)用比值法定义物理量是物理学中一种很重要的思想方法,以下物理量由比值法定义正确的选项是〔〕A .加速度B.磁感应强度C.电容D .电流强度6.(四川成都市2021届高中毕业班第三次诊断性检测,7)右图为某节能运输系统的简化示意图。

(完整版)牛顿定律练习题及答案

(完整版)牛顿定律练习题及答案

牛顿运动定律—练习题一、不定项选择题1.下列关于力和运动关系的说法中,正确的是()A.没有外力作用时,物体不会运动,这是牛顿第一定律的体现B.物体受力越大,运动的越快,这是符合牛顿第二定律的C.物体所受合外力为零,则速度一定为零;物体所受合外力不为零,则其速度也一定不为零D.物体所受的合外力最大时,而速度却可以为零;物体所受的合外力最小时,而速度却可以最大2.在国际单位制中,功率的单位“瓦”是导出单位,用基本单位表示,下列正确的是()A、焦/秒B、牛·米/秒C、千克·米2/秒2D、千克·米2/秒33.关于牛顿第三定律,下列说法正确的是( )A.作用力先于反作用力产生,反作用力是由于作用力引起的B.作用力变化,反作用力也必然同时发生变化C.任何一个力的产生必涉及两个物体,它总有反作用力D.一对作用力和反作用力的合力一定为零4.两物体A、B静止于同一水平面上,与水平面间的动摩擦因数分别为μA、μB,它们的质量分别为m A、m B,用平行于水平面的力F拉动物体A、B,所得加速度a与拉力F的关系如图中的A、B直线所示,则()A、μA=μB,m A>m BB、μA>μB,m A<m BC、μA=μB,m A=m BD、μA<μB,m A>m B5.如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的阻力恒定,则()A.物体从A到O点先加速后减速A OB B.物体运动到O点时所受的合外力为零,速度最大C.物体从A到O加速运动,从O到B减速运动D.物体从A到O的过程加速度逐渐减小6.在以加速度a匀加速上升的电梯中,有一个质量为m的人,下述说法正确的是 ( )A.此人对地球的吸引力为m(g+a) B.此人对电梯的压力为m(g-a)C.此人受的重力为m(g+a) D.此人的视重为m(g+a)7.如图所示,n个质量为m的相同木块并列放在水平面上,木块跟水平面间的动摩擦因数为μ,当对1木块施加一个水平向右的推力F时,木块4对木块3的压力大小为( )A .FB .3F /nC .F /(n -3)D .(n -3)F /n8.如图所示,吊篮A 、物体B 、物体C 的质量相等,弹簧质量不计,B 和C 分别固定在弹簧两端,放在吊篮的水平底板上静止不动。

牛顿运动定律-经典习题汇总

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题一、选择题1.下列关于力和运动关系的说法中,正确的是 ( )A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现B .物体受力越大,运动得越快,这是符合牛顿第二定律的C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动C .竖直向上做减速运动D .竖直向下做减速运动3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( )A .速度方向、加速度方向、合力方向三者总是相同的B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( )A .等于人的推力B .等于摩擦力C .等于零D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反B .F 1、F 2、F 3大小相等,方向相同C .F 1、F 2是正的,F 3是负的D .F 1是正的,F 1、F 3是零6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。

现对M 施加一个水平力F ,则以下说法中不正确的是( )A .若两物体一起向右匀速运动,则M 受到的摩擦力等于FB .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmgC .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M aD .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。

牛顿运动定律八大题型

牛顿运动定律八大题型
拓展:若在5s末撤去F,试求物体还能继 续前滑多远?
一:两类基本问题
类型二:已知运动求受力
【例2】一个滑雪的人,质量m=50kg,以 v0=2m/s的初速度沿山坡匀加速滑下,山 坡的倾角θ=370,在t=5s的时间内滑下的 路程x=60m,求滑雪人与山坡之间的动 摩擦因数μ(不计空气阻力)。
拓展1:若滑雪者以16m/s的初速度从坡底向上冲,试求 t1=1.0s和t2=3.0s两个时刻,滑雪者距离坡底的距离? 拓展2:若滑雪者回到坡底后仍能在水平面上继续滑行, 且μ值不变,不计转弯消耗,求它最后停在何处?
六:连接体问题
【变式1】光滑水平面上静止叠放着n个 完全相同的木块,质量均为m。今给第一 个木块一个水平方向的恒力F的作用,使 得n个木块一起向右做加速运动,如图所 示。求此时第k和k+1个木块之间的相互 作用力大小。
二:变加速问题
【变式】如图所示,自由下落的 小球,从它接触竖直放置的弹簧 开始,到小球速度为零的过程中, 小球的速度和加速度的变化情况 是( ) A.加速度变大,速度变小 B.加速度变小,速度变大 C.加速度先变小后变大,速度先变大后变小 D.加速度先变小后变大,速度先变小后变大
二:变加速问题
【拓展】质量为40kg的雪 撬在倾角θ=37°的斜面 上向下滑动(如图甲), 所受的空气阻力与速度成 正比。今测得雪撬运动的 v-t图像如图7乙所示,且 AB是曲线的切线,B点 坐标为(4,15),CD是 曲线的渐近线。试求空气 的阻力系数k和雪撬与斜 坡间的动摩擦因数μ。
二:瞬时性问题
【变式】如图所示,两根轻弹簧与两个质量都 为m的小球连接成的系统,上面一根弹簧的上端 固定在天花板上,两小球之间还连接了一根不 可伸长的细线。该系统静止,细线受到的拉力 大小等于4mg。在剪断了两球之间的细线的瞬间, 球A的加速度和球B的加速度分别是( )

牛顿运动定律

牛顿运动定律

练习1-5 牛顿运动定律一、填空题1.一切物体总保持静止或匀速直线运动状态,直到力迫使它改变这种状态为止。

这是牛顿第一定律。

2. 力是改变物体运动状态的原因。

3.物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

这就是牛顿第二定律。

4. 质量是物体惯性大小的量度。

5.两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

这是牛顿第三定律。

6.作用力和反作用力总是成对出现,同时产生,同时消失。

7.作用力和反作用力总是分别作用在两个物体上,各自产生各自的作用效果,不能平衡,不能抵消。

8.在力学的国际单位制中,长度、时间和质量的单位叫作基本单位,其他物理量的单位叫作导出单位。

9. 从牛顿运动定律可知:在不受外力作用或合外力为零时,物体将保持静止或匀速直线运动状态。

力是使物体产生加速度的原因。

10.质量为0.3kg的物体在0.6N的拉力作用下,产生的加速度为2m/s2。

11.一个物体受到4N的力,产生2m/s2的加速度。

要使它产生3m/s2的加速度,需要对它施加 6N 的力。

12.甲、乙两辆实验小车,在相同的力作用下,甲车产生的加速度为2m/s2,乙车产生的加速度为8m/s2,甲车的质量是乙车的 4 倍。

13.用弹簧秤在水平桌面上匀速拉动一物体,弹簧秤的读数是 2.94N;当以0.98m/s2的加速度使物体做匀加速直线运动时,弹簧秤的示数是 4.90N,则物体的质量是 2 kg。

14.在平直公路上行驶的卡车上放有一个木箱,当卡车做匀加速直线运动时,木箱可能向后滑动;当卡车做匀减速直线运动时,木箱可能向前滑动。

(填“匀加速”或“匀减速”)二、判断题1. 只有运动的物体才具有惯性,静止的物体没有惯性。

(× )2.受到外力作用的物体没有惯性,不受外力作用的物体才有惯性。

(×)3.物体的运动需要力来维持。

(× )4.力是改变物体运动速度的原因。

高考物理牛顿运动定律试题经典

高考物理牛顿运动定律试题经典

高考物理牛顿运动定律试题经典一、高中物理精讲专题测试牛顿运动定律1.某物理兴趣小组设计了一个货物传送装置模型,如图所示。

水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。

传送带BC 间距0.8L m =,以01/v m s =顺时针运转。

两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。

用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。

已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。

求:(1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2v mgcos θm r=解得: v 0.8m /s =对滑块在传送带上的分析可知:mgsin θμmgcos θ=故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v= 解得:t 1s =(2)滑块从K 至B 的过程,由动能定理可知:2f 1W W mv 2-=弹 根据功能关系有: p W E =弹 解得:f W 0.68J =2.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (255/s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/5v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .3.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=4.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m5.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o ,求:()1物资P 从B 端开始运动时的加速度.()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J . 【解析】 【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-=后段运动有:222212L s vt a t -=+, 解得:21t s =,到达A 端的速度226/A v v a t m s =+= 动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.6.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数;(2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ʹμ1m A gx A =12m A v A ʹ2 解得:v A ʹ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ʹ=0-12m A v A 2 解得 x A ʹ=0.08m x A ʹ=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.7.质量m =2kg 的物块自斜面底端A 以初速度v 0=16m/s 沿足够长的固定斜面向上滑行,经时间t =2s 速度减为零.已知斜面的倾角θ=37°,重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.试求:(1)物块上滑过程中加速度大小; (2)物块滑动过程摩擦力大小; (3)物块下滑所用时间.【答案】(1)8m/s 2;(2)4N ;(3)s【解析】 【详解】(1)上滑时,加速度大小(2)上滑时,由牛顿第二定律,得:解得(3)位移下滑时,由牛顿第二定律,得解得 由,解得=s8.5s 后系统动量守恒,最终达到相同速度vʹ,则()12mv Mv m M v +='+ 解得vʹ=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度vʹʹ, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭''解得233t s =故经过时间12310.91t t t s +=+=≈ 物块滑落.9.如图所示,一个质量为3kg 的物体静止在光滑水平面上.现沿水平方向对物体施加30N 的拉力,(g 取10m/s 2).求:(1)物体运动时加速度的大小; (2)物体运动3s 时速度的大小;(3)物体从开始运动到位移为20m 时经历的时间. 【答案】(1)10m/s 2(2)30m/s (3)2s 【解析】 【详解】(1)根据牛顿第二定律得:2230m/s 10m/s 3F a m ===; (2)物体运动3s 时速度的大小为 :103m/s 30m/s v at ==⨯=;(3)由位移与时间关系:212x at =则:2120m 102t =⨯⨯,则:2s t =. 【点睛】本题是属性动力学中第一类问题,知道受力情况来确定运动情况,关键求解加速度,它是联系力与运动的纽带.10.如图所示,在足够大的光滑水平桌面上,有一个质量为10-2kg 的小球,静止在该水平桌面内建立的直角坐标系xOy 的坐标原点O .现突然沿x 轴正方向对小球施加大小为2×10-2N 的外力F 0,使小球从静止开始运动,在第1s 末所加外力F 0大小不变,方向突然变为沿y 轴正方向,在第2s 后,所加外力又变为另一个不同的恒力F .求:(1)在第1末,小球的速率; (2)在第2s 末,小球的位移;(3)要使小球在第3s 末的速度变为零所加的恒力F(保留两位有效数字) 【答案】(1)2m/s (210m (3)2.8×10-2N 【解析】 【分析】 【详解】(1)根据牛顿第二定律F 0=ma 在第1s 末,根据速度时间关系v 1=at 解得:v 1=2m/s ;(2)在第1s 末,根据位移时间关系x 1=212at 在第2s 内,小球从x 轴正方向开始做类平抛运动: 在x 方向:x 2=v 1t 在y 方向:2212y at =位移:22122()x x y ++联立解得10m ,设位移与X 轴正方向的夹角为θ,sinθ=1010(3)在第2s 末,沿x 轴正方向速度仍为v 1=2m/s在y 方向分速度为v 2=at=2m/s ,此时速度与x 轴正方向的夹角为45° 所加恒力一定与速度方向相反,小球沿x 轴方向加速度1x v a t= 沿y 轴方向加速度2y v a t= 小球的加速度22x y a a a =+根据牛顿第二定律F=ma 联立解得F=2.8×10-2N 【点睛】(1)根据牛顿第二定律和速度时间关系联立求解;(2)第2s 内,小球从x 轴正方向开始做类平抛运动,分别求出x 方向和y 方向的位移,根据勾股定理求解小球的位移;(3)分别根据x方向和y方向求出小球的加速度,根据勾股定理求解小球总的加速度,根据牛顿第二定律求小球受到的力.。

牛顿运动定律计算题

牛顿运动定律计算题

1、如图,质量m=2kg的物体静止于水平地面的A处,A、B间距L=20m.用大小为30N,沿水平方向的外力拉此物体,经t0=2s拉至B处.(已知cos37°=0.8,sin37°=0.6.取g=10m/s2)(1)求物体与地面间的动摩擦因数μ;(2)用大小为30N,与水平方向成37°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t.2、如图所示,质量为m=2kg的物体在倾角为θ=30°的斜面上随着斜面一起沿着水平面以恒定水平加速度a=2m/s2加速运动,运动过程中物体和斜面始终保持相对静止,求物体受到的支持力和摩擦力.(g=10m/s2)3、如图所示为一风力实验示意图,一根足够长的固定细杆与水平面成θ=37°,质量为m=1kg的小球穿在细杆上静止于细杆底端O点,今用水平向右的恒定风力F作用于小球上,经时间t1=0.2s后撤去风力,小球沿细杆运动的一段v—t图象如图乙所示(取g=10m/s2,sin37°=0.6,cos37°=0.8)。

试求:(1)小球与细杆之间的动摩擦因数;(2)0~0.2s内风力F的大小;(3)撤去风力F后,小球经多长时间返回底部。

4、物体P放在粗糙水平地面上,劲度系数k=300N/m的轻弹簧左端固定在竖直墙壁上,右端固定在质量为m=1kg的物体P上,弹簧水平,如图所示。

开始t=0时弹簧为原长,P从此刻开始受到与地面成θ=37°的拉力F作用而向右做加速度a=1m/s2的匀加速运动,某时刻t=t0时F=10N,弹簧弹力F T=6N,取sin37°=0.6、cos37°=0.8,重力加速度g=10 m/s2。

求:(1)t=t0时P的速度;(2)物体与地面间的动摩擦因数μ。

5、如图所示,在光滑的水平面上停放着小车B,车上左端有一小物体A,A和B之间的接触面前一段光滑,后一段粗糙,且后一段的动摩擦因数,小车长,A的质量,B的质量,现用的水平力F向左拉动小车,当A到达B的最右端时,两者速度恰好相等,求A 和B间光滑部分的长度()。

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F与小环速度v随时间变化规律如图所示,取重力加速度g=10m/s2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°4.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.5.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv sh== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.6.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.7.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v =小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N Bv mg F m R-=解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.8.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。

牛顿运动定律计算题训练(最新整理)

牛顿运动定律计算题训练(最新整理)

牛顿运动定律应用题练习1.(12分)如图1所示,质量为0.78kg 的金属块放在水平桌面上,在与水平成37°角斜向上、大小为3.0N 的拉力F 作用下,以2.0m/s 的速度沿水平面向右做匀速直线运动.求:(1)金属块与桌面间的动摩擦因数.(2)如果从某时刻起撤去拉力,撤去拉力后金属块在桌面上滑行的最大距离.(sin37°=0.60,cos37°=0.80,g 取10m/s 2)2.(19分)如图2所示,质量显m 1=2kg 的木板A 放在水平面上,木板与水平面间的动摩擦因数为=0.1.木板在F =7N 的水平拉力作用下由静止开始向右做匀加速运动,经1μ过时间t =4s 时在木板的右端轻放一个质量为m 2=1kg 的木块B ,木块与木板间的动摩擦因数为=0.4.且木块可以看成质点.若要使木块不从木板上滑下来,求木板的最小长度.2μ3.(16分)如图3所示,光滑水平面上静止放着长L =1.6m ,质量为M =3kg 的木块(厚度不计),一个质量为m =1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,(g 取10m/s 2)(1)为使小物体不掉下去,F 不能超过多少?(2)如果拉力F =10N 恒定不变,求小物体所能获得的最大速度?图2图1图34.如图4所示,有一块木板静止在光滑水平面上,木板质量M = 4kg ,长L =1.4m ,木板右端放着一个小滑块,小滑块质量m = 1kg ,其尺寸远小于L ,它与木板之间的动摩擦因数μ=0.4,g = 10m/s 2。

(1)现用水平向右的恒力F 作用在木板M 上,为了使得m 能从M 上滑落下来,求F 的大小范围,(提示:即当F >20N ,且保持作用一般时间后,小滑块将从木板上滑落下来)(2)其它条件不变,恒力F = 22.8牛顿,且始终作用在M 上,求m 在M 上滑动的时间。

牛顿运动定律应用基础题(经典)

牛顿运动定律应用基础题(经典)

1.如图2所示,质量m=2.0kg的物体静止在光滑水平面上.t=0时刻,用F=8.0N的水平拉力,使物体由静止开始运动.(1)若水平面光滑,求:物体运动的加速度大小a;物体在通过的距离x=2m时物体速度大小v.(2)若物体与水平面间的动摩擦因数μ=0.2,求:物体运动的加速度大小a’;物体在t=2.0s时的速度大小v;F图22.如图2所示,质量m=1.0kg的物体静止在水平面上。

t=0时刻,用F=10N的与水平方向夹角θ=37°拉力,使物体由静止开始运动。

(已知:sin37°=0.6,cos37°=0.8)(1)若水平面光滑,求:物体运动的加速度大小a;物体在通过的距离x=4m时物体速度大小v.(2)若物体与水平面间的动摩擦因数μ=0.25,求:物体运动的加速度大小a’;物体在t=2.0s内的位移大小x.Fθ图23.如图2所示,一个质量m=2kg的物体放在水平面上。

对物体施加一个F=10N的斜向下的推力拉力,推力与水平方向夹角θ=37°,使物体由静止开始做匀加速直线运动,g取10m/s2。

(已知:sin37°=0.6,cos37°=0.8)(1)若水平面光滑,求:物体加速度的大小a;物体受到的支持力大小F N。

(2)若物体与水平面间的动摩擦因数μ=0.25,求:物体受到的摩擦力大小f;物体在t=2.0s时的速度大小v。

Fθ图24.如图2所示,质量m=2.0kg的物体,t=0s时由静止开始沿斜面加速下滑,斜面与水平面夹角θ=37°。

重力加速度g取10m/s2。

求:(已知:sin37°=0.6,cos37°=0.8)(1)若水平面光滑,求:物体运动的加速度大小a;物体在t=2.0s时的速度大小v.(2)若物体与斜面间的动摩擦因数μ=0.25,求:物体运动的加速度大小a’;物体在t=2.0s内的位移大小x.θ图25.如图2所示,质量m =1.0kg 的物体静止在斜面低端,用F =10N 的沿斜面向上的拉力使物体沿斜面向上做匀加速直线运动,已知斜面与水平方向的夹角θ=37°,g 取10m/s 2.(已知:sin37°=0.6,cos37°=0.8)求:(1)若水平面光滑,求:物体加速度的大小a ;物体在通过的距离x =2m 时物体速度大小v .(2)若物体与水平面间的动摩擦因数μ=0.25,求:物体运动的加速度大小a’;经过t =2.0s 时的速度大小v .6.如图1所示,用F =10N 的水平推力,使质量m =1.0kg 的物体由静止开始沿光滑斜面向上面做匀加速直线运动,已知斜面与水平方向的夹角θ=37°,g 取10m/s 2.(已知:sin37°=0.6,cos37°=0.8)求:(1)物体受到的支持力大小F N ;(2)物体加速度的大小a ;(3)物体在t =2.0s 时的速度大小v .图2Fθ图1Fθ。

牛顿运动定律练习题经典习题汇总

牛顿运动定律练习题经典习题汇总

牛顿运动定律专题一、选择题1.下列关于力和运动关系的说法中,正确的是 ( )A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现B .物体受力越大,运动得越快,这是符合牛顿第二定律的C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动C .竖直向上做减速运动D .竖直向下做减速运动3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( )A .速度方向、加速度方向、合力方向三者总是相同的B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( )A .等于人的推力B .等于摩擦力C .等于零D .等于重力的下滑分量5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反B .F 1、F 2、F 3大小相等,方向相同C .F 1、F 2是正的,F 3是负的D .F 1是正的,F 1、F 3是零6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。

现对M 施加一个水平力F ,则以下说法中不正确的是( )A .若两物体一起向右匀速运动,则M 受到的摩擦力等于FB .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmgC .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M aD .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。

临界问题 - - 牛顿运动定律经典题目

临界问题 -  - 牛顿运动定律经典题目

临界问题 - - 牛顿运动定律经典题目临界问题――――牛顿运动定律经典题目1、如图3―54,质量分别为m1、m2的A、B两木块叠放在光滑的水平面上,A与B的动摩擦因数为μ,若要保持A和B相对静止,则施于A的水平拉力F的最大值为多少?若要保持A和B相对静止,施于B的水平拉力F的最大值为多少?若把A从B的上表面拉出,则施于A的水平拉力最小值为多少?2、如图所示,质量为M的木板上放着一质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,加在小板上的力F为多大,才能将木板从木块下抽出?3、如图所示,小车上放着由轻弹簧连接的质量为mA=1kg,mB=0.5kg的A、B两物体,两物体与小车间的最大静摩擦力分别为4N和1N,弹簧的劲度系数k=0.2N/cm 。

①为保证两物体随车一起向右加速运动,弹簧的最大伸长是多少厘米?②为使两物体随车一起向右以最大的加速度向右加速运动,弹簧的伸长是多少厘米?4、如图3―52,平行于斜面的绳把小球系在倾角为θ的斜面上,为使球在光滑斜面上不相对运动,求斜面体水平运动的加速度.5、一个质量为0.2 kg的小球用细线吊在倾角θ=53°的斜面顶端,如图4,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.图36、如图所示,把长方体切成质量分别为m和M的两部分,切面与底面的夹角为θ,长方体置于光滑的水平面上。

设切面是光滑的,要使m和M一起在水平面上滑动,作用在m上的水平力F满足什么条件?7、如图3所示,质量为m=1kg的物块放在倾角为,斜面与物块间的动摩擦因数为的斜面体上,斜面质量为,地面光滑,现对斜面体施一水平推力F,要使物体m相对斜面静止,试确定推力F的取值范围。

()图38.一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图所示,m 与M 保持相对静止,一起沿倾角为θ的
光滑斜面下滑,则M 和m 间的摩擦力大小是多少?
2、两个物体重叠在一起的滑块,置于固定的倾角为θ的斜面
上,设A 、B 的质量分别为m 、M ,A 与B 的动摩擦因数为μ1,
B 与斜面间的动摩擦因数为μ2,两滑块都从静止开始以相同
的加速度沿斜面下滑,在这一过程中,A 受到的摩擦力为多
少?
3、如图3-50所示,已知斜面倾角30°,物体A 质量m A =0.4kg ,
物体B 质量m B =0.7kg ,H=0.5m ,B 从静止开始和A 一起运
动,B 物体落地时速度 v=2m /s .若g =10m/s 2,绳的质量
及绳的摩擦不计。

(1)物体与斜面间的动摩擦因数;(2)物体沿足够长斜面滑动的最大距离
4、如图在倾角为θ=370的足够长的固定斜面上,有一质量
m=1kg 的物体,物体与斜面间的动摩擦因数μ=0.2,物体受到
沿平行于斜面向上的轻细绳的拉力F=9.6 N 的作用,从静止开始运动,经2s 绳
子突然断了,求绳断后多长时间物体速度大小达到22m/s?绳断后多长时间物体速度大小为2m/s?
5、固定在水平面上的斜面倾角θ=370,长方体木块A的MN面上
钉着一颗小钉子,质量为1.5kg的光滑小球B,通过一细线与小
钉子相连接,细线与斜面垂直,木块与斜面间的动摩擦因数μ
=0.50.现将木块由静止释放,木块沿斜面下滑,求下滑过程中木块对小球支持力的大小.(g取10m/s2,sin370=0.6,cos370=0.8.)
6、质量为1kg的物体以一定的初速度v0=9.2m/s沿倾角为300
的斜面向上滑行,物体与斜面间的动摩擦因数为0.7,经2s后
物体滑行的距离是多少?
7、物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B 点前后速度大小不变)最后停在C点,每隔0.2s通过速度传感器测量物体的瞬
2
求:(1)斜面的倾角。

(2)物体与水平面间的动摩擦因数。

(3)t=0.6s时的瞬时速度。

8、如图所示,传送带与地面倾角θ=370,从A至B长度为16m,传送带以10m/s 的速率逆时针转动,在传送带上端A无初速度地放一个质量为
0.5kg的物体,它与传送带之间的动摩擦因数为0.5。

求物体从A
运动到B所需时间是多少?(sin370=0.6,cos370=0.8)
9、皮带运输机是靠货物和传送带之间的摩擦力把货物送往别处
的.如图13所示.已知传送带与水平面的倾角为θ=37°,以4
m/s的速率向上运行.在传送带的底端A处无初速地放上一质量
为0.5 kg的物体,它与传送带间的动摩擦因数为0.8.若传送带
底端A到顶端B的长度为25 m,则物体从A到B的时间为多少?(取
g=10 m/s2)。

相关文档
最新文档