齿轮机构综合

合集下载

齿轮传动机构

齿轮传动机构
通常: 小轮x1 >0,大轮x2 <0 中心距a,啮合角α’不变 (高度变位)
机械原理—齿轮机构 正传动 x1+x2 >0
中心距a↑,啮合角α’↑
机械原理—齿轮机构 负传动 x1+x2 <0
中心距a↓,啮合角α’↓
机械原理—齿轮机构
齿 轮 传 高 角 动 度 度 类 负 正 零 变 变 型 传 传 ::传 位 :x 位 xx 1 11 动 动 x x动 x 2 22 0 00
问题2:G1、G3为同一基圆上所生成的两条反向渐
开线,试问 K1K2 和
K1' K
' 2
有何关系?
K1K2 K1'K2'
6.同一基圆上所生成的两条 反向渐开线为法向等距曲线。
机械原理—齿轮机构
Байду номын сангаас
4.3.3 渐开线方程
1.渐开线的压力角
cosK
rb rK
2.渐开线方程
K
rKrb/coαK s
invKKtgKK
C点:啮合节点,简称节点
机械原理—齿轮机构
齿廓啮合基本定律 齿廓接触点的公法线始终通过中心连线上一 定点,速比恒定。
节圆:由节点决定的圆 共轭齿廓 凡满足齿廓啮合基本定律而相互啮合的一对 齿廓
机械原理—齿轮机构

两头牛背上的架子称为轭,轭使两头牛同步 行走。共轭即为按一定规律相配的一对。
机械原理—齿轮机构
rb—基圆半径; BK—渐开线发生线 θK—渐开线上K点的展角
机械原理—齿轮机构
4.3.2 渐开线的性质
1.渐开线的发生线展直前后长度不变;
弧ABKB
机械原理—齿轮机构

机械基础-齿轮机构

机械基础-齿轮机构

齿轮啮合几何
要考虑齿轮啮合的接触比例和角度。
齿轮材料
应选择合适的材料以满足承载和耐磨的要求。
润滑和冷却
确保齿轮运转时有适当的润滑和冷却。
结论和要点
• 齿轮机构是机械系统中常见的传动装置。 • 它们具有不同的种类和工作原理。 • 齿轮机构在许多领域中有广泛的应用。 • 优点包括高效能量传递和精确的动力转换。 • 设计时需要考虑参数和材料选择。
机械基础-齿轮机构
齿轮机构是机械系统中常见的传动装置,由一组齿轮组成。它们在各种机械 领域中起着重要作用,实现了精确的动力转换和传递。
齿轮机构的定义
齿轮机构是由相互啮合的齿轮组成的机械装置。它们通过齿廓的啮合传递运 动和力量。
齿轮机构的种类
直齿轮
最常见的类型,齿轮齿条是直的。
锥齿轮
齿轮轴倾斜,可实现角度传动。
2 机械制造
齿轮机构用于工厂设备和机械运行的传动系统。
3 航天工业
齿轮机构用于控制和导航飞行器,实现精确的运动控制。
齿轮机构的优缺点
优点
• 高效能量传递 • 精确的动力转换 • 可靠性和耐久性
缺点
• 噪音和振动 • 需要润滑和维护 • 有限的速度和扭矩范围
齿轮机构的设计考虑因素
齿轮模数
决定齿轮尺寸和啮合性能的参数。
斜齿轮
齿条倾斜,产生平滑的齿轮啮合。
行星齿轮
中心齿轮包围周围的行星齿轮,实现高速与低 速的转换。
齿轮机构的工作原理
1
啮合
齿轮通过齿廓的啮合,沿着相对方向旋转。
2
转速比
齿轮数量和直径确定了转速的比例。
3
传递力量
齿轮之间的啮合使能量和力量得以传递。
齿轮机构的应用领域

齿轮机构

齿轮机构

齿轮机构(Gears)是现代机械中应用最广泛的一种传动机构,与其它传动机构相比,齿轮机构的优点是:结构紧凑,工作可靠,效率高,寿命长,能保证恒定的传动比,适用的范围广。

齿轮机构可以分为定传动比齿轮机构和变传动比齿轮机构。

本章仅讨论定传动比的齿轮机构。

齿轮机构的类型很多,根据其传动轴线的相对位置,它可分为三类:1、平行轴齿轮机构(Gears with Parallel Axes)两齿轮的传动轴线平行,这是一种平面齿轮机构,如表5-1所示。

它可分为:外啮合齿轮机构(有直齿轮、斜齿轮和人字齿轮传动三类)内啮合齿轮机构(有直齿轮和斜齿轮传动两类)齿轮齿条机构(有直齿条和斜齿条传动两类)点击表中图形,观察各类齿轮传动的运动特点和齿形。

表5-1 平行轴齿轮机构2、相交轴齿轮机构(Gears with Intersecting Axes)两齿轮的传动轴线相交于一点,这是一种空间齿轮机构,如表5-2所示。

它有直齿圆锥齿轮传动、斜齿圆锥齿轮传动和曲线齿圆锥齿轮传动。

表5-2 相交轴齿轮机构ff3、交错轴齿轮机构(Gears with Skew Axes)两齿轮的传动轴线为空间任意交错位置,它也是空间齿轮机构,如表5-3所示。

表5-3 交错轴齿轮机构此外,还有实现变传动比运动的非圆齿轮机构(Non-circular Gear),如下图所示。

图5-2一、斜齿圆柱齿轮齿廓曲面的形成渐开线直齿齿廓曲面的生成原理如图5-33a 所示,发生面S在基圆柱上作纯滚动时,其上与基圆柱母线平行的直线KK所展成的渐开面即为直齿轮的齿面。

(a) (b) (c)图5-33斜齿轮的齿面形成原理如图5-34a所示,发生面S 沿基圆柱纯滚动时,其上一条与基圆柱母线呈βb角的直线KK所展成的渐开螺旋面就是斜齿轮的齿廓曲面。

(a) (b) (c)图5-34一对直齿轮啮合时,齿面的接触线与齿轮的轴线平行(图5-33b),而一对斜齿轮啮合时,齿面接触线是斜直线(图5-34b),接触线先由短变长,而后又由长变短,直至脱离啮合。

第四章齿轮机构

第四章齿轮机构
1、齿轮各部分名称和尺寸 齿数—Z (1)、基圆 db(rb) (2)、齿顶圆da(ra) (3)、齿根圆df(rf) (4)、分度圆 d(r) 测量基准
(5)、在任意圆上dk 齿槽宽ek 齿厚SK 齿距PK= ek+SK
基节 Pb
基节—基圆上的齿距
周节 P
周节—分度圆上的齿距
P=s+e=2s=2e
总之,齿轮与齿条啮合时,不论是否标准安装,齿轮分度圆与节 圆总是重合的,啮合角 恒等于分度圆压力角 。只是在非标准安装 时,齿条的节线与其分度线不再重合。
§4-6 渐开线齿轮的加工方法及根切现象
齿轮加 工方法
铸造法 热轧法
冲压法 粉末冶金法 模锻法 成形法
铣削 拉削
切制法 (最常用)
插齿
范成法 滚齿 (展成法 共轭法 剃齿 包络法)
轮齿廓上由齿顶 向齿根移动;
终止啮合点:主动轮的齿顶点与从动轮的齿根处某点
接触,在啮合线N1N2上为主动轮的齿顶 圆与啮合线N1N2的交点B1。
——实际啮合线 齿廓工作段,齿廓非工作段
——理论啮合线
2、连续传动条件
要求:前一对轮齿脱离啮合时,后一对轮齿必须已经进入啮合 或刚刚进入啮合

B1B2 Pb 或
磨齿
一、齿轮轮齿的加工方法 1.成形法(仿形法)
成形法是在普通铣床上用轴向剖面形状与被切齿轮齿 槽形状完全相同的铣刀切制齿轮的方法,如图所示。铣完 一个齿槽后,分度头将齿坯转过3600/z,再铣下一个齿槽 ,直到铣出所有的齿槽。
成形法加工方便易行,但精度难以保证。由于渐开线齿廓形状取 决于基圆的大小,而基圆半径rb=(mzcosα)/2,故齿廓形状与m、z 、α有关。欲加工精确齿廓,对模数和压力角相同的、齿数不同的 齿轮,应采用不同的刀具,而这在实际中是不可能的。生产中通常 用同一号铣刀切制同模数、不同齿数的齿轮,故齿形通常是近似的 。表中列出了1-8号圆盘铣刀加工齿轮的齿数范围。

齿轮机构工作原理

齿轮机构工作原理

齿轮机构工作原理
齿轮机构是一种常用的传动机构,由两个或多个齿轮组成。

它的工作原理是利用齿轮的啮合传递动力和运动。

齿轮机构的传动方式主要有平面齿轮传动和立体齿轮传动两种。

平面齿轮传动是将两个平行轴或交叉轴上的齿轮通过啮合来传递动力和运动。

立体齿轮传动是将两个相交或同轴的齿轮通过啮合来传递动力和运动。

在齿轮机构中,一般将驱动轮称为主动轮,被驱动轮称为从动轮。

主动轮通常由电动机或手动操作来提供动力,从动轮则通过主动轮的转动来带动其他机械部件的运动。

齿轮的工作原理是利用其齿形的设计特点。

齿轮的齿顶、齿槽和齿侧都有一定的几何形状,在啮合时能够产生相互啮合的传动关系。

当主动轮转动时,其齿顶与从动轮的齿槽相啮合,通过齿顶和齿槽之间的啮合力矩传递动力和运动。

齿轮机构的传动比是由齿轮的模数、齿数和啮合方式决定的。

通过改变主动轮和从动轮的齿数或改变齿轮的模数,可以改变齿轮机构的传动比,实现不同的传动效果。

总的来说,齿轮机构工作原理是利用齿轮的啮合传递动力和运动,通过改变齿轮的参数可以调整传动比,实现不同的传动效果。

同时,齿轮机构还具有传递动力平稳、传动效率高和传动精度好等优点,被广泛应用于各种机械设备中。

第四章 齿轮机构

第四章  齿轮机构
rf
rb ra
2)齿根圆: 过各轮齿的齿槽底 部所作的圆。直径、半 径分别用df、rf表示。
O
图4-6
21/48
3)齿厚:
沿任意圆周所量得的
轮齿的弧线厚度,称为该
sk
ek
圆周的齿厚sk 。
4)齿槽宽: 沿任意圆周所量得的 相邻两齿之间的齿槽的弧 长,称为该圆周的齿槽宽
rf
rb
ra
ek 。
O
22/48
32/48
三、标准直齿轮各部分尺寸的计算公式(应熟记)
d=mz
ha= ha*m p =πm s = e = p / 2=πm /2
hf =(ha*+ c*)m
h = ha+ hf da= d +2 ha=(z+2ha*)m
pb=πdb/z=πm cosα= p cosα
a = m ( z1+z2 ) /2—标准中心距 d′=d—当中心距为标准中心距时
∴πm1 cosα1=πm2 cosα2 ∴m1 cosα1= m2 cosα2 (式中m1 、m2 和α1、α2分别为两轮的模数和压力角)
34/48
m1 cosα1= m2 cosα2 ∵ 模数和压力角都是标准值 ∴必须使: m1 = m2 = m,α1=α2=α
∴ 渐开线齿轮正确啮合的条件是: 两轮的模数和压力角应分别相等 传动比: i12=ω1 /ω2= r2′/r1′= rb2/ rb1 = r2 cosα2 / r1 cosα1 = r2 / r1= m2z2 / m1z1 = z2/z1
b
A
θk
rk
O 基圆
渐开线的切线,故BK为法线。
图4-3
15/48

机械设计常用机构

机械设计常用机构

机械设计常用机构机械设计是一门综合性的学科,涉及到各种各样的机构和装置。

在机械设计中,机构是非常重要的一部分,它负责传递和转换力、运动和能量,从而实现机械装置的各项功能。

在机械设计中,常用的机构有很多种。

这些机构可以根据其功能、结构和运动特性进行分类和归纳。

下面,我将对一些常用的机构进行介绍。

一、连杆机构连杆机构是机械设计中最基本也是最常用的一种机构。

它由杆件和关节组成,通过杆件的连接和关节的运动,实现力和运动的传递。

连杆机构广泛应用于各种机械装置中,如汽车发动机的连杆机构、拉杆机构等。

二、齿轮机构齿轮机构是一种通过齿轮的相互啮合来传递运动和力的机构。

齿轮机构具有传动比恒定、传递力矩大、传递效率高等特点,广泛应用于各种传动装置中,如汽车变速器、机床传动等。

三、减速机构减速机构主要通过齿轮、皮带等传动元件将输入的高速运动转换为输出的低速运动。

减速机构在机械设计中非常常见,用于满足不同场合的运动速度要求。

四、滑块机构滑块机构是一种通过滑块在导轨上做直线运动来实现运动转换和力传递的机构。

滑块机构广泛应用于各种机械装置中,如工具机的进给机构、压力机的传动机构等。

五、摆线机构摆线机构是一种通过连杆和摆线来实现直线运动的机构。

它通过摆线的特殊形状和连杆的运动,将旋转运动转换为直线运动,广泛应用于各种机械装置中,如剪切机的摆线滑块机构、织机上纬缸的摆线机构等。

六、万向节机构万向节机构是一种通过球面和容器来实现输动与变动传动的机构。

它具有结构简单、运动灵活等优点,广泛应用于汽车、船舶和航空等领域。

以上介绍的只是机械设计中的一小部分常用机构,还有很多其他的机构在实际设计中也扮演着重要的角色。

在进行机械设计时,我们需要根据具体的应用要求和设计目标选择合适的机构,合理地组合和运用这些机构,以实现设计的目的。

总结起来,机械设计中常用的机构有连杆机构、齿轮机构、减速机构、滑块机构、摆线机构和万向节机构等。

这些机构在机械装置中起着重要的作用,通过它们的运动和力传递,实现了各种功能和要求。

齿轮机构的工作原理

齿轮机构的工作原理

齿轮机构的工作原理
齿轮机构是一种常见的传动机构,由多个齿轮组成。

它的基本工作原理是利用不同大小齿轮之间的啮合关系来传递动力和运动,实现输入输出轴的转动。

在齿轮机构中,通常有一个驱动轴和一个被动轴。

驱动轴通过输入动力,使得驱动轴上的齿轮转动。

被动轴则通过与驱动轴上的齿轮啮合,使得被动轴上的齿轮产生与之相同方向或相反方向的转动。

根据齿轮之间的啮合方式和传动比例的不同,齿轮机构可以实现不同的速度和扭矩传递。

齿轮机构的传动原理主要有两种:平行轴传动和垂直轴传动。

在平行轴传动中,输入轴和输出轴的轴线平行,齿轮平行于轴线。

在垂直轴传动中,输入轴和输出轴的轴线垂直,齿轮垂直于轴线。

无论是平行轴传动还是垂直轴传动,齿轮机构的工作原理都是基于齿轮的啮合。

齿轮的传动比例由齿轮的齿数决定,常用公式为传动比=输出齿轮齿数/输入齿轮齿数。

传动比决定了输出
轴的转速和扭矩与输入轴的关系。

在实际应用中,齿轮机构常常根据具体需求设计出不同的结构形式,例如直齿轮、斜齿轮、锥齿轮等。

不同的齿轮结构具有不同的特点和适用范围。

齿轮机构广泛应用于各种机械设备中,如汽车传动、工程机械、工业生产线等领域。

通过合理设计和选择合适的齿轮,可以实现高效、可靠的动力传递和运动控制。

第四章 齿轮机构

第四章 齿轮机构

根据两轴的相对位置: 10.1.1 Planar Gear Mechanisms平面齿轮机构 are used to transmit motion and power between parallel shafts.
10.1.2 Spatial Gear Mechanisms空间齿轮机构 are used to transmit motion and power between nonparallel shafts.
相交轴: 圆锥齿轮传动(直齿、曲齿) 交错轴: 交错轴斜齿轮、蜗杆传动 齿轮传动最基本的要求:瞬时传动比恒定、承载力强 工程上常用渐开线、摆线、圆弧齿齿廓
10.1 齿轮机构的类型 • 圆柱齿轮 ----- 定传动比齿轮
• 非圆柱齿轮---- 传动比非常数
In this chapter, only circular gears are considered.在本章中 只讨论圆柱齿轮传动。
分度圆处:齿距p、齿厚S、齿槽宽e←不加注明、下标 三. 各直径计算:
齿顶高ha=ha*m
齿根hf=(ha*+c*)m 全齿高h=ha+hf ha*,c*-齿顶高、 顶隙系数,表(4-2)
→常用标准值
p s e m d Z p Zm m p 模数表(4-2)
分度圆:
§4-4渐开线标准齿轮各部分名称及基本尺寸
一.基本名称
p.54
齿厚sk, 齿槽宽 ek 齿顶圆 da 齿根圆df
齿距pk=sk+ek (节距) 齿数 Z pk 压力角α k
k
k
k

dk
Z
dk
pk
Zຫໍສະໝຸດ (4 - 4)二. 分度圆及各尺寸关系

2024年机械设计基础课件!齿轮机构H

2024年机械设计基础课件!齿轮机构H

机械设计基础课件!齿轮机构H机械设计基础课件:齿轮机构一、引言齿轮机构是机械设计中应用最广泛的一种传动机构,其结构简单、传动效率高、可靠性好,广泛应用于各种机械设备中。

齿轮机构由齿轮副组成,包括齿轮、轴、轴承等零部件。

本课件将介绍齿轮机构的基本原理、分类、传动比计算、齿轮啮合条件、齿轮强度计算等内容。

二、齿轮机构的基本原理齿轮机构是利用齿轮的啮合来实现两轴之间的运动和动力传递的装置。

当两个齿轮啮合时,主动齿轮转动,通过齿轮啮合将动力传递给从动齿轮,从而实现运动的传递。

齿轮的啮合原理是基于齿廓曲线的几何关系,齿廓曲线是齿轮啮合的基础。

三、齿轮机构的分类齿轮机构根据齿轮的形状和布置方式可以分为多种类型,常见的有直齿轮机构、斜齿轮机构、蜗轮蜗杆机构等。

1.直齿轮机构:直齿轮机构是齿轮齿面与轴线垂直的齿轮机构,其传动平稳、噪音低,但承载能力相对较小。

2.斜齿轮机构:斜齿轮机构是齿轮齿面与轴线呈一定角度的齿轮机构,其传动效率高、承载能力强,但噪音相对较大。

3.蜗轮蜗杆机构:蜗轮蜗杆机构是利用蜗杆和蜗轮的啮合来实现传动的,其传动比大、传动平稳,但效率相对较低。

四、齿轮机构的传动比计算齿轮机构的传动比是指主动齿轮与从动齿轮转速的比值。

传动比的计算公式为:传动比=从动齿轮齿数/主动齿轮齿数在实际应用中,根据工作需求确定传动比,然后根据传动比选择合适的齿轮齿数,以满足设计要求。

五、齿轮啮合条件1.齿廓重合条件:齿轮啮合时,齿廓必须保持连续接触,避免齿廓间的冲击和滑动。

2.齿顶隙条件:齿轮啮合时,齿顶之间应保持一定的间隙,以避免齿顶干涉。

3.齿根隙条件:齿轮啮合时,齿根之间应保持一定的间隙,以避免齿根干涉。

4.齿侧隙条件:齿轮啮合时,齿侧之间应保持一定的间隙,以允许润滑油的进入和排出。

六、齿轮强度计算齿轮强度计算是齿轮设计的重要环节,主要包括齿面接触强度计算和齿根弯曲强度计算。

1.齿面接触强度计算:齿面接触强度计算是确定齿轮齿面接触应力是否满足材料屈服极限的要求。

齿轮机构及其设计

齿轮机构及其设计

5.齿轮与齿条啮合传动
特点 啮合线切于齿轮基圆并垂直于齿条齿廓 标准安装或非标准安装 d = d =
分度圆、节圆、压力角、啮合角
分度圆与节线相切
连续传动条件
重合度 分析:1) =1 表示在啮合过程中,始终只有一对齿工作; 1 2 表示在啮合过程中,有时是一对齿啮合, 有时是两对齿同时啮合。 重合度传动平稳性承载能力。
21 25
26 34
35 54
55 134
135
每把刀的刀刃形状,按它加工范围的最少齿数齿轮的齿形来设计。
§6 渐开线齿廓的切制原理、根切和最少齿数
2.范成法
1
切削 (沿轮坯轴向) 进刀和让刀 (沿轮坯径向) 范成运动 (模拟齿轮啮合传动)
2
刀具与轮坯以i12=1/2=Z2 /Z1回转
3
用同一把刀具,通过调节i12 ,就可以加工相同模数、相同压力角 ,不同齿数的齿轮。
渐开线方程:{
rK = ———
rb
cosaK
inv aK = tg aK - aK .
aK
aK
qK
K
rK
rb
O
N
A
四、渐开线齿廓的啮合特点
1.啮合线为一直线
啮合线—
啮合点 (在固定平面上) 的轨迹线.
两齿廓所有接触点的公法线均重合, 传动时啮合点沿两基圆的内公切线移动。
3. 侧隙为零的中心距
无侧隙啮合条件:
S1' = e2' ; e1' = S2'
S1= e2 = e1= S2
标准齿轮: S = e = m/2
▲当两标准齿轮按分度圆相切来安装, 则满足传动条件。 正确安装

第四章 齿轮机构

第四章 齿轮机构

pk
sk ek
rk
ra
rf
齿厚s K 齿顶圆da ( ra ) 齿槽宽e K 齿根圆d f ( rf ) 齿距( 周节) pK 基 圆 d b ( rb ) pK sK e K
rb
任意圆dK (rK )
外齿轮
• • • • • • • 分度圆 齿顶高 齿根高 齿全高 齿槽宽 齿 厚 齿 宽
§4-4 齿轮各部分名称及标准直齿轮的几 何尺寸计算 一.各部分名称及符号:
齿距:在任意直径d k的圆周上, 齿槽宽:在任意直径d的圆周上, 齿厚:在任意直径dkk的圆周上, 轮齿:齿轮圆周上每个用于啮合的凸起部分 齿顶圆:轮齿顶部所确定的圆,daf、ra 齿根圆:齿槽底部所确定的圆,d 、rf 齿槽:相邻两轮齿之间的空间部分 齿槽两侧齿廓间的弧长,ekk 轮齿两侧齿廓间的弧长,s 相邻两齿同侧齿廓间的弧长,pk=sk+ek
§4-6渐开线齿轮加工原理
• 加工方法: 铸造法、热轧法、冲压法、模锻法、粉末冶金法、 切削法、电加工法等; • 按照齿轮轮廓形成原理不同,切削法分为: 仿形法(成型法) 用与齿形相同的刀具切削去 切削法 范成法
齿槽部分
利用一对齿轮相啮合时,其 共轭齿廓互为包络线的原理
1.成形法
1)成形铣刀铣制
b
r
ha hf h
e s
b
二.直齿圆柱齿轮的基本参数
1.齿数:一个齿轮的轮齿总数。用z表示 2.模数: 分度圆周长:
p
d=p z
d
p

z
是一个无理数,不利于齿轮几何 尺寸的计算和测量,人为规定: = p m(模数)
有关模数的说明:
• 模数m是齿轮几何尺寸计算的一个基本 参数,同时也是衡量齿轮承载能力的一 个重要标志。 • 当齿数z一定时,m越大,齿距p越大, 轮齿也越厚,相应的抗弯能力也越高。 • 为了便于设计和制造,m已经标准化。

机械设计基础课件齿轮机构H

机械设计基础课件齿轮机构H

垂直轴传动
蜗杆蜗轮机构主要用于垂直轴之间的传动,具有 较大的传动比和自锁功能。
螺旋齿形
蜗杆和蜗轮的齿形为螺旋形,可实现连续、平稳 的传动。
高效率与低噪音
蜗杆蜗轮机构传动效率高,噪音低,适用于各种 高精度、低噪音要求的场合。
2024/1/26
18
其他特殊类型齿轮机构
2024/1/26
非圆齿轮机构
非圆齿轮机构可实现变传动比传动,满足某些特殊机械装置的需 求。
2024/1/26
工业革命时期
随着工业革命的兴起,金属加工技 术的进步促进了齿轮机构的快速发 展,出现了各种高精度、高效率的 齿轮传动装置。
现代时期
随着计算机技术和先进制造技术的 不断发展,现代齿轮机构设计更加 精确、制造更加精细,应用领域也 更加广泛。
6
02
齿轮机构基本原理
2024/1/26
7
齿轮传动比计算
10
03
齿轮机构设计方法与步骤
2024/1/26
11
设计目标确定与参数选择
确定设计目标
明确齿轮机构的使用场合、传递 功率、转速等要求。
选择齿轮参数
根据设计目标,选择合适的齿轮 模数、齿数、压力角等参数。
确定齿轮精度等级
根据使用要求和制造成本,选择 合适的齿轮精度等级。
2024/1/26
12
齿轮类型选择及优缺点比较
啮合特点
齿轮传动具有恒定的传动 比,且传动平稳、噪音小 、效率高。
9
齿轮受力分析及强度计算
受力分析
根据齿轮的啮合原理,分 析齿轮受到的径向力、圆 周力和轴向力。
2024/1/26
强度计算
根据齿轮的受力情况,进 行齿面接触强度和齿根弯 曲强度计算。

机械原理第九章齿轮机构讲解

机械原理第九章齿轮机构讲解

齿轮齿条机构
(2)斜齿圆柱齿轮(helical gear)
外啮合齿轮机构 内啮合齿轮机构
齿轮齿条机构
(3)人字齿轮(double-helical gear)
由螺旋角相反、大小 相等的两个斜齿圆柱 齿轮拼接而成。
二、空间齿轮机构
两齿轮的轴线不平行 相对运动为空间运动
(1)圆锥齿轮机构(bevel gear mechanism)
节曲线是齿轮的动瞬心线,齿轮的啮 合传动相当于其两节曲线作无滑动的 纯滚动。
点P为节点
分析:
K1 K
K2
P
O1
O2
i12
1 2
O2 P O1P
(1)节点P为中心线上的一个固定点的情况
(2)节点P在中心线上按一定规律移动的情况
二、共轭齿廓的形成
凡能满足齿廓啮合基本定律的一对齿廓称为共轭齿廓。
共轭齿廓啮合时,两齿廓在啮合点相切,其啮合点的公 法线通过节点P。理论上,只要给定一齿轮的齿廓曲线, 并给定中心距和传动比i12,就可以求出与之共轭的另一 齿轮的齿廓曲线。 共轭齿廓可以用包络线法、齿廓法线法或动瞬心线法等 方法求得。
k
inv K
=
tan K
K
为使用方便,有些书将不同压力角的渐开线函数
invK=tanK-K 以表格的形式给出,K以度为单位,而 θK=invK 的单位为弧度。
一、渐开线的形成
发生线(generationg line) KB
B
K
A O
rb
基圆(base circle)
K A
rb
K A
rb
K A rb
B
O rb
*1)KB=AB
n

工学第四章齿轮机构

工学第四章齿轮机构
cosαK = rb / rK〔应熟记此公式〕 ρK = rb tanαK = rK sinαK
假设rK = rb ,那么αK=0,即渐开线起始点A处的压力角为0
18
5、渐开线的形状取决于基圆的大小。即同一基圆展开的 渐开线的形状完全相同。
在相同压力角处: 〔如图4-4〕 rb↓→渐开线越弯曲,曲率半径↓;
图4-3
15
二、渐开线的特性
根据渐开线的形成过程,渐开线的特性有:
1、 BK= AB。 发生线在基圆上滚过的
长度BK等于基圆上被滚过的 圆弧长度AB。
2、渐开线上任一点的法线 必切于基圆;或者说基 圆的切线必为渐开线某 一点的法线。
B

Vk k
k
K
Fn
rK
A

O
rb
16
3、线段BK是渐开线在K点的曲率半径〔 用ρK 表示〕, B点是渐开线在K点的曲率中心。
26
§4—4 渐开线标准齿轮(Standard Involute Gears)
一、齿轮各局部的名称和符号
图4-6所示为标准直齿圆柱外齿轮的一局部。 齿:齿轮上每一个用于啮合
的凸起局部称为齿。每 一个轮齿的齿形是由2 段渐开线、3段圆弧、2 段过渡曲线所构成。
图4-6
27
1〕齿顶圆(addendum circle): 过齿轮各轮齿顶端所作的圆。
rb↑→渐开线越平直,曲率半径↑; rb→∞,那么渐开线成为直线,齿
条的齿廓是直线的渐开线。
6、基圆内无渐开线。 ∵ 渐开线是从基圆开始向外展开的。
图4-4
对齿轮加工,这话的意思是:刀具在基圆内所切的曲
线不是渐开线。 19
7、同一基圆上任意两条渐开线〔不管是同向还是反向〕 沿公法线方向的对应点之间的距离处处相等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

渐开线齿廓的形成及特性
直角坐标方程:
x = OC-DB = rb sinu y =BC+DK = rb cosu + rbusinu
式中u称为滚动角: u=θk+αk
y K(x,y)
A Du B
rb u
u
x
O
C
渐开线齿廓的啮合特性
1、渐开线齿廓能保证定传动比传动
两齿廓在任意点K啮合时,过K作两齿廓 的法线N1N2,是基圆的切线,为定直线。
由于上述特性,工程上广泛采用渐开线作为齿轮 的齿廓曲线。
O1
ω1
rb1
N1
K P C2 C1
ω2 O2
渐开线直齿轮的基本参数
一、外齿轮
sk
1、名称与符号
齿顶圆—— da、ra 齿根圆—— df、rf 齿厚——sk
rb rf
ra
O
渐开线直齿轮的基本参数
齿槽宽—— ek 齿距 (周节)—— pk= sk +ek
K
A1 A2
θk
θk
o1
o2
B1
B2 B3
o3
渐开线齿廓的形成及特性
⑥ 同一基圆上任意两条渐开线的公法线处处相等。 C
两条反向渐开线: 由性质①和②有:
AB = AN1 + N1B = A1N1 + N1B1 = A1B1
AB = AN2 + N2B = A2N2 + N2B2 = A2B2
∴ A1B1 = A2B2
o1
t
vk2
ω1
n
i12=ω1/ω2=O2 P /O1P
vk1
k
P
齿廓啮合基本定律: 互相啮合的一对齿轮在任一位置啮合时的传动比,
n
ω2
t
都与连心线O1O2被其啮合齿廓在接触点的公法线所分 成的两线段成反比。
o2
齿廓啮合基本定律
分点P称为节点。P点分别在与两齿轮固定的平 面内的轨迹称为节线。显然一对齿轮的啮合相当于两 齿轮的节线在作纯滚动。
2、渐开线的特性
① AB = BK; ② 渐开线上任意点的法线切于基圆
③ B点为曲率中心,BK为曲率半径。 渐开线起始点A处曲率半径为0。
k 渐开线
t A θk rk
r
t
发生线 B
b
O
基圆
渐开线齿廓的形成及特性
2、渐开线的特性
④ 渐开线形状取决于基圆 当rb→∞,变成直线。
⑤ 基圆内无渐开线。 ⑥ 同一基圆上任意两条渐开线公法线处处相等。
两轮中心连线也为定直线,故交点P必为 定点。
ω1
rb1
N1
K K’ P C2 C1 N2
i12=ω1/ω2=O2P/ O1P=const
rb2
工程意义:i12为常数可减少因速度变化所产生的
ω2
附加动载荷、振动和噪音,延长齿轮的使用寿命,
提高机器的工作精度。
O2
2、齿廓间正压力方向不变
N1N2是啮合点的轨迹,称为啮合线
始终不变。
渐开线齿轮传力性能好。
rb2 ω2
O2
渐开线齿廓的啮合特性
3、运动可分性
△ O1N1P≌△O2N2P 故传动比又可写成:
i12=ω1/ω2=O2P/ O1P = rb2 /rb1 ——基圆之反比。
实际安装中心距略有变化时,不影响i12,这 一特性称为运动可分性,对加工和装配很有 利。
N2 rb2
啮合线又是接触点的法线,正压力总是沿法线方向,故正压力方向不变。 该特性对传动的平稳性有利。
渐开线齿廓的啮合特性
极限啮合点:N1 、N2
ω1
rb1
啮合角:啮合线和两齿轮节圆的内公切线之
N1
间的夹角,在数值上恒等于节圆压力角,用 a’表示。
N2
K K’ P C2 C1
渐开线齿轮在传动过程中,啮合线和啮合角
人字齿齿轮运动

圆锥齿轮
传递相交运动 斜齿
曲线齿
空间齿轮传动
交错轴斜齿轮传动
传递交错轴运动 蜗杆涡轮
准双曲面齿轮
齿廓啮合基本定律
共轭齿廓 一对能实现预定传动比(i12=ω1/ω2)规律的啮合齿廓。
1、齿廓啮合基本定律
一对齿廓在K点接触时,速度不相等:
但法向速度应相等:vkn1=vkn2
根据三心定律,P点为相对瞬心:
A2
A1 A
N1 N2
O rbC’ C”B1 NhomakorabeaE1
B2 E2 B
E
两条同向渐开线:
A1E1 = A2E2 B1E1 = A1E1-A1B1 B2E2 = A2E2-A2B2
B1E1 = B2E2
渐开线齿廓的形成及特性
)
3、渐开线方程式
压力角:啮合时K点正压力方向与速度方向所 夹锐角为渐开线上该点之压力角αk。
如果要求传动比为常数,则O2 P /O1P为常数,P 必为一个定点。两节线为节圆,相切于P点,两节圆 作纯滚动。
如果传动比不恒定,则O2P /O1P为不是常数, 节线为非圆曲线。
ω1
ω2
o1
t ω1
vk2
n
vk1
k
P
n ω2
t
o2
1
2 非圆齿轮
齿廓啮合基本定律
理论上可以实现传动比的共轭齿廓很多,但要完全满足使用要求和制 造要求的不多。
第5章 齿轮机构综合
主讲教师:何俊
本章教学内容
齿轮机构的应用及其分类 渐开线齿廓及其传动特点 渐开线直齿轮的基本参数及几何尺寸 渐开线直齿轮的啮合传动 渐开线直齿轮的变位修正 斜齿圆柱齿轮传动 蜗杆传动 圆锥齿轮传动
本章教学目的
对齿轮传动的啮合原理有所了解 能熟练掌握齿轮的基本参数和几何尺寸的计算
2、齿廓曲线的选择
渐开线(17世纪)
摆线(16世纪) 变态摆线 圆弧(20世纪) 抛物线
应用最广
渐开线具有很好的传动性能,而且便于制造、安装、测量和互换使 用等优点。
渐开线齿廓的形成及特性
1、渐开线的形成
―条直线在圆上作纯滚动时,直线上任 一点的轨迹 BK-发生线, 基圆-rb θk-AK段的展角
法向齿距 (周节) pn = pb
分度圆——人为规定的 计算基准圆
ha h hf
表示符号: d、r、s、e,p= s+e
齿顶高ha 齿根高 hf 齿全高 h= ha+hf 齿宽—— B
p
s
e
Bpk
sk
ek pn
pb
αk =∠BOK rb=rk cosαk
极坐标方程:
tgαk= BK/rb =AB/rb = rb(θk+αk)/rb
θk = tgαk-αk
αk k
vk
rk A
θk αk B
rb O
上式称为渐开线函数,用invαk 表示:
θk =invαk =tgαk-αk
rk rb/cosk k invk tank k
方法
齿轮传动的特点
传递动力大,效率高 寿命长,工作平稳,可靠性高 能保证恒定的传动比,实现任意夹角两轴间的
运动 制造、安装精度要求高,成本高 不宜作轴间距离过大的传动
齿轮传动分类
内啮合
直齿圆柱齿轮传动 外啮合
平面齿轮传动
齿轮齿条
准双曲面齿轮
内啮合
斜齿圆柱齿轮传动 外啮合
齿
齿轮齿条
轮 传
相关文档
最新文档