圆锥曲线与方程复习课
2021_2022学年高中数学第3章圆锥曲线与方程章末复习课学案北师大版选修2_1
第3章 圆锥曲线与方程1.三种圆锥曲线的定义、标准方程、几何性质椭圆双曲线 抛物线定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹平面内与一个定点F和一条定直线l (l 不经过点F )距离相等的点的轨迹标准方程(以焦点在x轴为例) x 2a 2+y 2b 2=1 (a >b >0)x 2a 2-y 2b 2=1 (a >0,b >0)y 2=2px(p >0) 关系式 a 2-b 2=c 2a 2+b 2=c 2图形封闭图形无限延展, 有渐近线无限延展, 无渐近线 对称性 对称中心为原点 无对称中心 两条对称轴一条对称轴顶点 四个两个一个离心率 0<e <1 e >1 e =1 准线方程 x =-p 2决定形 状的因素 e 决定扁平程度e 决定开口大小2p 决定 开口大小统一定义圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e2.椭圆的焦点三角形设P 为椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点(不在x 轴上),F 1,F 2为焦点且∠F 1PF 2=α,那么△PF 1F 2为焦点三角形(如图).(1)焦点三角形的面积S =b 2tan α2;(2)焦点三角形的周长L =2a +2c . 3.待定系数法求圆锥曲线标准方程 (1)椭圆、双曲线的标准方程求椭圆、双曲线的标准方程包括“定位〞和“定量〞两方面,一般先确定焦点的位置,再确定参数.当焦点位置不确定时,要分情况讨论.①可将椭圆方程设为Ax 2+By 2=1(A >0,B >0,A ≠B ),其中当1A >1B 时,焦点在x 轴上,当1A <1B时,焦点在y 轴上.②双曲线方程可设为Ax 2+By 2=1(AB <0),当1A <0时,焦点在y 轴上,当1B<0时,焦点在x轴上.(2)抛物线的标准方程对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为y 2=ax (a ≠0)或x 2=ay (a ≠0). 4.双曲线及渐近线的设法技巧(1)由双曲线标准方程求其渐近线方程时,把标准方程中的1换成0,即可得到两条渐近线的方程.(2)如果双曲线的渐近线为x a ±y b =0时,它的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).5.抛物线的焦点弦问题抛物线过焦点F 的弦长|AB |的一个重要结论. (1)y 2=2px (p >0)中,|AB |=x 1+x 2+p ; (2)y 2=-2px (p >0)中,|AB |=-x 1-x 2+p ; (3)x 2=2py (p >0)中,|AB |=y 1+y 2+p ; (4)x 2=-2py (p >0)中,|AB |=-y 1-y 2+p . 6.直线与圆锥曲线有关的问题(1)直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,那么有:①Δ>0⇔直线与圆锥曲线相交于两点; ②Δ=0⇔直线与圆锥曲线相切于一点; ③Δ<0⇔直线与圆锥曲线无交点.提醒:直线与双曲线、直线与抛物线有一个公共点应有两种情况:一是相切;二是直线与双曲线渐近线平行、直线与抛物线的对称轴平行.(2)直线l 截圆锥曲线所得的弦长|AB |=〔1+k 2〕〔x 1-x 2〕2或⎝ ⎛⎭⎪⎫1+1k 2〔y 1-y 2〕2,其中k 是直线l 的斜率,(x 1,y 1),(x 2,y 2)是直线与圆锥曲线的两个交点A ,B 的坐标,且(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,x 1+x 2,x 1x 2可由一元二次方程的根与系数的关系整体给出.圆锥曲线的定义及应用【例1】 (1)F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,P 是椭圆上任一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为点Q ,那么点Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线(2)设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[思路探究] (1)借助角平分线的性质及相关曲线的定义求解;(2)要求|PF 1||PF 2|的值,可考虑利用椭圆的定义和△PF 1F 2为直角三角形的条件,求出|PF 1|和|PF 2|的值,但Rt △PF 1F 2的直角顶点不确定,故需要分类讨论.(1)A [延长垂线F 2Q 交F 1P 的延长线于点A ,如图. 那么△APF 2是等腰三角形,∴|PF 2|=|AP |, 从而|AF 1|=|AP |+|PF 1|=|PF 2|+|PF 1|=2a . ∵O 是F 1F 2的中点,Q 是AF 2的中点, ∴|OQ |=12|AF 1|=a .∴Q 点的轨迹是以原点O 为圆心,半径为a 的圆.] (2)解:由题意知,a =3,b =2,那么c 2=a 2-b 2=5,即c =5,由椭圆定义知|PF 1|+|PF 2|=6,|F 1F 2|=2 5.①假设∠PF 2F 1为直角,那么|PF 1|2=|F 1F 2|2+|PF 2|2,|PF 1|2-|PF 2|2=20,即⎩⎪⎨⎪⎧|PF 1|-|PF 2|=103,|PF 1|+|PF 2|=6,解得|PF 1|=143,|PF 2|=43.所以|PF 1||PF 2|=72.②假设∠F 1PF 2为直角,那么|F 1F 2|2=|PF 1|2+|PF 2|2.即20=|PF 1|2+(6-|PF 1|)2,解得|PF 1|=4,|PF 2|=2或|PF 1|=2,|PF 2|=4(舍去.)所以|PF 1||PF 2|=2.运用定义解题主要表达在以下几个方面:(1)在求动点的轨迹方程时,如果动点所满足的几何条件符合某种圆锥曲线的定义,那么可直接根据圆锥曲线的方程写出所求的动点的轨迹方程;(2)涉及椭圆或双曲线上的点与两个焦点构成的三角形问题,常常运用圆锥曲线的定义并结合三角形中的正、余弦定理来解决;(3)在求有关抛物线的最值问题时,常利用定义,把抛物线上某一点到焦点的距离转化为到准线的距离,并结合图形的几何意义去解决.1.(1)点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过点M ,N 与圆C 相切的两直线相交于点P ,那么P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.(1)A [设PM ,PN 与⊙C 分别切于点E ,F ,如图,那么|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB | =4-2=2<|MN |,∴P 点的轨迹是以M ,N 为焦点,实轴长为2的双曲线的右支(除去右顶点).∴所求轨迹方程为x 2-y 28=1(x >1).](2)解:抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如下图,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小,且最小值为|MD |=2-(-2)=4,所以|PM |+|PFP 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3.圆锥曲线简单性质的应用【例2】 (1)椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n2=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±152yB .y =±152xC .x =±34y D .y =±34x (2)椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .[思路探究] (1)由椭圆和双曲线有公共的焦点可得m ,n 的等量关系,从而求出双曲线的渐近线方程;(2)写出AB 的直线方程,由F 1到直线AB 的距离为b7得出a ,c 的关系,求椭圆的离心率e .(1)D [由题意,3m 2-5n 2=2m 2+3n 2,∴m 2=8n 2,令x 22m 2-y 23n 2=0,y 2=3n 22m 2x 2=316x 2,∴y =±34x ,即双曲线的渐近线方程是y =±34x .] (2)由A (-a ,0),B (0,b ),得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b=b ax ,即bx -ay +ab =0.又F 1(-c ,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b 7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2, 整理,得8c 2-14ac +5a 2=0,即8×⎝ ⎛⎭⎪⎫c a 2-14×c a +5=0,∴8e 2-14e +5=0.∴e =12或e=54(舍去). 综上可知,椭圆的离心率e =12.1.(变结论)在本例(1)条件不变的情况下,求该椭圆的离心率. [解] 题意可知,该椭圆的焦点在x 轴上,故 椭圆的离心率e =1-5n 23m2=1-5n 224n 2=11412.2.(变条件)在本例(2)条件换为“F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,〞求椭圆离心率的取值范围.[解] ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2. 由题意知椭圆上的点在该圆的外部, 设椭圆上任意一点P (x ,y ),到|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22. ∵0<e <1,∴0<e <22.1.本类问题主要有两种考察类型:(1)圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考察重点; (2)圆锥曲线的性质求其方程.2.对于求椭圆和双曲线的离心率,有两种方法: (1)代入法就是代入公式e =c a求离心率;(2)列方程法就是根据条件列出关于a ,b ,c 的关系式,然后把这个关系式整体转化为关于e 的方程,解方程即可求出e 的值.直线与圆锥曲线的位置关系2程是________.(2)向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ). ①求点Q (x ,y )的轨迹C 的方程;②设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.8x -y -15=0 [(1)设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减,得(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,得k AB =8. 设直线方程为y =8x +b ,代入点(2,1)得b =-15; 故所求直线方程为y =8x -15.](2)①由题意得,a +3b =(x +3,3y ),a -3b =(x -3,3y ),∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0,即(x +3)(x -3)+3y ·3y =0, 化简得x 23+y 2=1,∴点Q 的轨迹C 的方程为x 23+y 2=1.②由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1.得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(ⅰ)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,那么x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,∴AP ⊥MN .那么-m +3k 2+13mk =-1k,即2m =3k 2+1, ②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故m 的取值范围是⎝ ⎛⎭⎪⎫12,2.(ⅱ)当k =0时,|AM |=|AN |, ∴AP ⊥MN ,m 2<3k 2+1. 即为m 2<1,解得-1<m <1.综上,当k ≠0时,m 的取值范围是⎝ ⎛⎭⎪⎫12,2, 当k =0时,m 的取值范围是(-1,1).解决圆锥曲线中的参数范围问题与求最值问题类似,一般有两种方法:(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等关系式,通过解不等式求参数范围.2.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3,问:是否存在常数λ,使得k 1+k 2=λk 3?假设存在,求λ的值;假设不存在,请说明理由.[解] (1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上,得1a 2+94b 2=1.① 依题设知a =2c ,那么b 2=3c 2.②将②代入①,解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)由题意可设AB 的斜率为k , 那么直线AB 的方程为y =k (x -1). ③代入椭圆方程3x 2+4y 2=12,并整理,得 (4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),那么有 x 1+x 2=8k 24k 2+3,x 1x 2=4〔k 2-3〕4k 2+3. ④在方程③中令x =4,得M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.注意到A ,F ,B 三点共线,那么有k =k AF =k BF , 即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-〔x 1+x 2〕+1.⑤将④代入⑤,得k 1+k 2=2k -32·8k24k 2+3-24〔k 2-3〕4k 2+3-8k24k 2+3+1=2k -1. 又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.函数与方程的思想【例4】 椭圆G :x 24+y 2=1.过点(m ,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值. [解] (1)由得a =2,b =1,所以c =a 2-b 2= 3.所以椭圆G 的焦点坐标为(-3,0),(3,0),离心率为e =c a =32. (2)由题意知|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32.此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ).由⎩⎪⎨⎪⎧y =k 〔x -m 〕,x 24+y 2=1,得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),那么 x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2.又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1,即m 2k 2=k 2+1.所以|AB |=〔x 2-x 1〕2+〔y 2-y 1〕2=〔1+k 2〕[〔x 1+x 2〕2-4x 1x 2]=〔1+k 2〕⎣⎢⎡⎦⎥⎤64k 4m 2〔1+4k 2〕2-4〔4k 2m 2-4〕1+4k 2=43|m |m 2+3. 由于当m =±1时,|AB |=3,所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞).因为|AB |=43|m |m 2+3=43|m |+3|m |≤2, 当且仅当m =±3时,|AB |=2, 所以|AB |的最大值为2.1.函数思想是解决最值问题最有利的武器.通常用建立目标函数的方法解有关圆锥曲线的最值问题.2.方程思想是从分析问题的数量关系入手,通过联想与类比,将问题中的条件转化为方程或方程组,然后通过解方程或方程组使问题获解,在求圆锥曲线方程、直线与圆锥曲线的位置关系的问题中经常利用方程或方程组来解决.3.如下图,过抛物线y 2=2px 的顶点O 作两条互相垂直的弦交抛物线于A 、B 两点.(1)证明直线AB 过定点; (2)求△AOB 面积的最小值.[解] (1)证明:当直线AB 的斜率不存在时,AB ⊥x 轴,又OA ⊥OB ,∴△AOB 为等腰直角三角形,设A (x 0,y 0),那么y 20=2px 0,∴x 0=2p ,直线AB 过点(2p ,0).当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -a ),A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=2px ,y =k 〔x -a 〕,消去x 得ky 2-2py -2pak =0,那么y 1y 2=-2pa .又OA ⊥OB .∴y 1y 2=-x 1x 2.由方程组消去y ,得k 2x 2-(2k 2a +2p )x +k 2a 2=0, 那么x 1·x 2=a 2.因此,a 2=2pa .∴a =2p ..下载后可自行编辑修改,页脚下载后可删除。
圆锥曲线的复习课说课课件-高二上学期数学人教A版(2019)选择性必修第一册
教学策略分析
第一章
教师引导,学生思考
发现问题,解决问题
教学设计
教学过程
动手实践,抽象概括
回忆联想,类比分析
重难点分析
重点
重点
圆锥曲线统一定义的
生成、理解、应用
难 点
圆锥曲线的统一定义的
生成以及对对统一性深
层次的理解
教学过程
教学过程
提出问题
定义比较
提出猜想
动态直观让学生直观感知,
培养学生直观想象、数形
结合的核心素养。
.
.
.
.
03 .探究思考,生成定义
问题3:为了研究问题的方便,不妨从标准方程入手,若椭圆方
程
+
= ( > > )上一点(, ),与定点为(, )的
距离和它到定直线: = 的距离之比是常数e,你能寻求定
02
定义比较,提出猜想
问题2:点M与定点F(2,0)的距离和它到定直线: = 8的
距离的比是1:2,求M点的轨迹方程,并说明轨迹是什么图
形?
教学过程
03
探究思考,生成定义
设计意图:让学生类
比,大胆猜想,不断提出
自己主张,完善自己的想
法,过程,由此主观能动
性得以较好的体现。通过
GGB软件演示,生动形象、
直线的方程吗?
.
教学过程
.
教学过程
03
探究思考,生成定义
设计意图:通过发挥学
生主观能动性,大胆探索,
主动求知,真相展示自己
的见解,不乏新的想法,
显示了学生的思维广阔,
达到了学生的最近发展区。
[数学教案]圆锥曲线(复习课)
圆锥曲线(复习课)教学目的1.理解椭圆、双曲线的第一定义及椭圆、双曲线和抛物线的统一定义,并能利用定义求出与圆锥曲线有关的量,也能利用定义求出圆锥曲线方程.2.掌握椭圆、双曲线、抛物线的标准方程及相应图象,并掌握相应的性质:图形范围、对称性、顶点、长轴、短轴、实轴、虚轴、焦距、焦点、离心率、准线、渐近线.3.掌握中心在(h,k)的椭圆和双曲线的方程及顶点在(h,k)的抛物线的方程及相应图形与性质(性质同2).4.掌握方程Ax2+Cy2+Dx+Ey+F=0所表示的曲线的分类.5.理解解析几何用代数方法研究图形的几何性质的学习特点.重点难点重点一是熟练掌握圆锥曲线的标准方程及相应的图形和性质,以及中心在(h,k)的椭圆、双曲线和顶点在(h,k)的抛物线的方程及相应图形和性质,特别要注意形与数的一一对应.重点二是掌握圆锥曲线的定义,能在已知条件合适时,自觉地想到利用定义求圆锥曲线方程,或利用定义求圆锥曲线有关的量.难点在于不易利用平面几何知识选择最简便的方法去解决问题.解析几何固然是用代数方法研究几何问题,但毕竟它仍是几何问题,因而几何图形原有的性质也不能抛弃不用.教学过程椭圆、双曲线和抛物线是解析几何重点研究的曲线.研究的主要内容是椭圆、双曲线和抛物线的形成,即它们的定义及相应的方程;又由方程的代数性质研究曲线的几何性质;圆锥曲线的一般方程是怎样分类的,从而知道它们可表示不同的圆锥曲线;经过平移后圆锥曲线的方程和相应性质.在整个复习课的过程中,强调数形结合的思想方法,利用图形探索解题方法及解的不同情况,特别是有关中心在(h,k)的椭圆、双曲线和顶点在(h,k)的抛物线的问题,更要依据数形结合解决问题,而尽可能避免使用坐标平移公式.突出利用方程思想实施待定系数法求圆锥曲线方程.并注意利用定义得方程和求有关圆锥曲线的量.同时不能忽视平面几何的图形性质的利用.一、复习定义对于圆锥曲线的统一定义,圆锥曲线上一点到焦点的距离与到相应准线距离之比为正常数e,当0<e <1时,动点轨迹为椭圆;当e=1时,动点轨迹为抛物线;当e>1时,动点轨迹为双曲线.(利用计算机《几何画板》演示随e的变化,动点曲线由椭圆到抛物线到双曲线的变化).例1抛物线y2=8px(p>0)上一点M到焦点的距离为a,则点M到y轴的距离为______.分析过M点作MH⊥y轴于H,则所求即|M H|.由定义知M点到焦点的距离a=M点到准线的距离,所以延长MH交准线于M′,则|M M′|=a,而抛物线顶点到准线的距离为2p,故|M H|=|M M′|-2p=a-2p.例2双曲线实轴长为2a,过焦点F1的弦的两个端点A,B均在左支上,且|AB|=m,F2为右焦点,则△ABF2的周长是______.分析由第一定义有|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,两式相加得|AF2|+|BF2|-(|AF1|+|BF1|)=4a,即|AF2|+|BF2|-|AB|=4a,所以|AF2|+|BF2|=4a+m,则△ABF2的周长=|AB|+|AF2|+|BF2|=m+4a+m=4a+2m.分析不妨设|PF1|=m,|PF2|=n,由第一定义知m+n=2a=20,又则P点坐标为______.例3一动圆与两已知圆O1:x2+y2+4x+3=0和圆O2:x2+y2-4x-5=0都内切,则动圆圆心轨迹为[]A.椭圆B.双曲线一支C.抛物线D.两条相交直线分析整理⊙O1:(x+2)2+y2=1,⊙O2:(x-2)2+y2=9.从草图易知与⊙O1,⊙O2均内切的圆的半径R>1且R>3.设动圆圆心为P,由内切定义有|PO1|=R-1,|PO2|=R-3;两式相减得|PO1|-|PO2|=2,即动圆圆心P到两定点O1(-2,0),O2(2,0)的距离之差为常数2,且2<|O1O2|=4,因为|PO1|>|PO2|,故P点轨迹是以O1,O2为焦点(即2c=4,c=2),以2a=2(即实轴为2)的双曲线的右支,应选B.评述由以上几例可知在求有关圆锥曲线的各个量时,经常需要用到圆锥曲线的定义(包括第一定义和第二定义),因而利用定义解题的意识一定要加强,否则不考虑定义,往往会没有思路和方法,一筹莫展.二、复习方程、图形及性质(教师在黑板上画出中心在原点的两种椭圆和双曲线的图形,并画出顶点在原点的四种抛物线的图形.然后提问学生,让学生叙述这些图形的几何性质;范围,对称性,顶点,焦点,长轴,短轴,实轴,虚轴,焦距,准线,离心率,渐近线.还要复习“等轴双曲线”及“共轭双曲线”的概念).例4曲线x2+ky2=1的准线与y轴平行,则实数k的取值范围是[]A.(-∞,0)∪(1,+∞)B.(0,1)C.(1,∞)D.(-∞,0)这个双曲线的离心率等于[]A.2B.3分析由已知有2a+2c=2(2b),即a+c=2b.即有了关于a,b,c的一个方程,再有关系式a2+b2=c2,即可确定离心率e,由(a+c)2=4b2,a2+b2=c2得a2+2ac+c2=4(c2-a2),整理为3c2-2ac-5a2=0,方程两边同除以例5抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y+12=0上,则此抛物线方程是______.分析由已知抛物线为标准方程,且焦点在x轴上,则焦点纵坐标为0,而焦点又在直线3x-4y+12=0上,将y=0代入直线方程,得3x+12=0,=4,p=8,故抛物线方程为y2=-16x.以m的值有3个,故选C.本小题充分体现了分类讨论的思想.例20已知A,B是抛物线y2=4x上的两个点,O为坐标原点,若|OA|=|OB|,且抛物线的焦点恰为△AOB的垂心,则直线AB的方程是[]A.x=2B.x=3C.x=5D.x=6分析因为△AOB中有|OA|=|OB|,A,B为抛物线y2=4x上的两个点,所以由抛物线关于x轴对称知,AB⊥x轴,也即A,B两点横的弦长等于[]分析本题表面看是中心在(2,-1)的椭圆问题.但仔细分析所求的量“过已知椭圆的一个焦点且与它的长轴垂直的弦长”,不与椭圆位置有关,所以考虑中心在原点的与已知椭圆形状相同的椭圆,求出上述量本题要深入体会数形结合的数学思想,发现形的位置变化了,但其中一些量并未变化.例6AB为经过抛物线y2=4x的焦点且倾角为45°的弦.则△AOB的面积是______.分析由已知弦所在直线AB的方程为y=x-1.与y2=4x联立,消y例7以椭圆的一个焦点F为圆心作一个圆,使该圆过椭圆的中心O并且与椭圆交于M、N两点,若|MF|=|M O|,则椭圆的离心率为分析求离心率只需找到关于a,b,c的一个方程即可.本题在⊙F中,已知|M F|=|M O|,且|FO|=|FM|=r,所以|OM|=|OF|=c,由等边△=c2,化简为4a2b2-b2c2-3a2c2=0,将b2=a2-c2代入得4a2(a2-c2)-c2·(a2-c2)-3a2c2=0,化简为c4-8a2c2+4a4=0,方程两边同除以a4得e4-8e2+4=0,评述本题若设椭圆两焦点为F1,F2,连结MF2,MO,MF1.由等边△OMF2有|M O|=|M F2|=|OF2|=c,且|OF1|=c,则|F1F2|=2|MO|,一个三角形一边上的中线等于此边之半,则这个三角形为Rt△,即∠比较两种解法得到的a,b,c的方程,可知评述中的解法捷便得多.这就是充分利用圆锥曲线的定义及图形的平面几何性质的优越性.本例还可用许多方法得到a,b,c的不同方程来求e,但均不如评述中的方便简捷.例8抛物线x2=2y上离点A(0,a)(a>0)最近的点恰好是顶点,该结论成立的充要条件是[] A.a>0B.a≥1分析在抛物线x2=2y上任取一点P(x,y),|PA|2=x2+(y-a)2=2y+(y-a)2=y2+(2-2a)y+a2(y≥0),记y0=a-1.当P点为抛物线顶点O(0,0)时,即y=0时|P A|2取得最小值的充要条件是y0≤0,即a-1≤0,又已知a>0,则a的取值范围是(0,1),故选D.评述自例11以后,问题都比较综合,涉及到直线、圆、函数、最值、平面几何、圆锥曲线定义等各方面知识,需要训练转化的数学思想,将条件逐步转化到已掌握的知识内容上去,从而使问题得以解决.(老师在引导学生寻找解题思路时,应着重渗透转化的数学思想).三、复习圆锥曲线的分类及中心在(h,k)的椭圆、双曲线和顶点在(h,k)的抛物线的方程及对应图形与性质.(圆锥曲线的分类学生遗忘得比较厉害,还需认真复习知识点.)中心在(h,k)的椭圆、双曲线和顶点在(h,k)的抛物线的方程及对应图形与性质的复习与“二”处相同,强调数形结合得性质,切忌死记硬背结论).例9若抛物线y2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标为[]A.(1,0)B.(2,0)C.(3,0)D.(-1,0)分析抛物线顶点在(-1,0),到准线x=-3的距离为2,则焦点到顶点的距离也为2,故焦点坐标为(1,0),应选A.例10焦点是(2,1)和(2,-3),半径轴长为3的椭圆方程是______.例29抛物线(y+2)2=4(x+a)的焦点坐标是(0,-2),则a的值等于[]A.-1B.1C.2D.-2则顶点应为(-1,-2),故-a=-1,即a=1,故选B.例11平移坐标轴,把原点移至O′(-2,0),在新坐标系中双曲线方程x2-2y2-2ax=0可化为标准方程则此双曲线在原坐标系中的渐近线方程是即中心在(a,0),又依题设知中心为点(-2,0),故a=-2.所以双曲线已知双曲线方程求渐近线如本例,这样易掌握方法.方程为[ ]A.y2=18(x-5)B.y2=8(x-5)C.y2=-36(x-5)D.y2=-36(x+5)分析已知双曲线的右焦点(5,0),左顶点(-4,0),即分别为所方程为y2=-2p(x-5)=-36(x-5),应选C.例12若k∈R,讨论方程(9-k)x2+(25-k)y2=(9-k)(25-k)表示的曲线.①当k<9时,25-k>0,9-k>0,方程表示的曲线是椭圆.②当k=9时,方程化为(25-9)y2=0,即y=0,表示直线.③9<k<25时,9-k<0,25-k>0,方程表示的曲线是双曲线.④k=25时,方程化为(9-k)x2=0;即x=0,表示直线.⑤k>25时,9-k<0,25-k<0,方程无轨迹.能力训练1.如图1,已知椭圆中心O是坐标原点,F为它的左焦点,A为左顶点,l1,l2为准线,l1交x轴于B;P,Q两点在椭圆上,且PM⊥l1于M,PN⊥l2于N,QF⊥OA,则下列比值等于椭圆离心率的有()个.[]A.1B.2 C.4D.52.已知P1(x1,y1)、P2(x2,y2)是抛物线y2=2px(p>0)上两个不同的点,则y1y2=-p2是直线P1P2通过焦点的[] A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.焦点在x轴上,以y轴为准线,且到点A(5,0)最近距离为A.y2=2(x-1)B.y2=4(x-1) C.y2=18(x-9)D.y2=36(x-9)4.将抛物线y2=4x进行平移,使其焦点变为(3,2),则此时其顶点坐标变为[]A.(4,2)B.(2,2) C.(1,2)D.(-1,2)5.若a∈R,则方程x2+4y2sinα=1所表示的曲线必定不是[]A.直线B.圆C.双曲线D.抛物线6.有下列命题:①圆(x-2)2+(y-1)2=1关于点A(1,2)对称的圆的方程是(x-3)2+(y-3)2=1;③顶点在原点,对称轴是坐标轴,且经过点(-4,-3)的抛物线方程只其中正确命题的序号为[ ]A.②、④B.①、③C.①、②D.③、④7.点A的坐标为(2,3),F为抛物线y2=2x的焦点,P在抛物线上移动,若|PA|+|PF|取最小值,则P点的坐标是______.8.双曲线的两条渐近线分别是3x-4y-2=0和3x+4y-10=0,一条准线为5y+4=0,则双曲线方程是______.9.过抛物线y2=-4x的焦点且与直线y=2x所成的角为45°的直线方程为______ .10.在坐标系XOY下,椭圆4x2+9y2+8x-36=0与新轴x′和y′在正半轴处都相切,则新原点的旧坐标是______.答案提示1.C2.C3.A4.C5.C6.B7.C8.C9.C10.A10.3x+y+3=0或x-3y+1=0。
高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质
3
a
在双曲线 C 上,若△AF1F2 的周长为 10,则△AF1F2 的面积为(
)
A. 15
B.2 15
C.15
D.30
(2)已知|z+ 5i|+|z- 5i|=6,则复数 z 在复平面内所对应的点 P(x,y)的轨迹方程
是椭圆的右焦点,若 AF⊥BF,则 a=
答案 3+ 3
.
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形 AF1BF
π
为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.
为
.
(3)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x
Hale Waihona Puke 轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程
为
答案 (1)A
.
2
(2)
9
2
+ =1
4
3
(3)x=2
解析 (1)由题意得
e=
所以双曲线方程为
=
2
1 + 2
=
3
1 + 2=2,所以 a2=1.
2
即 x±2y=0,故 B 正确;
2 5
5
e1·
e2= 5 × 2 =1,所以 C1 与 C2 的离心率互为倒数,故 C
高中数学《圆锥曲线-复习课》课堂实录
圆锥曲线复习课(一)课堂实录一、创设情境、引入课题1.圆锥曲线的实际背景.[师]我们知道用平面截圆锥,通过改变平面与圆锥轴线的夹角,可得到不同的截口曲线.如用一个垂直于圆锥的轴的平面截圆锥,截口曲线是什么?[生] 圆[师] 改变平面与圆锥轴线的夹角,截口曲线又是什么?(播放动画)[生]椭圆、双曲线、抛物线[师]用不同的平面去截圆锥,可得到的截口曲线分别是:圆、椭圆、双曲线、抛物线,我们把它们统称为圆锥曲线.圆锥曲线与科研、生产及人类生活有着紧密的关系,它在刻画现实世界和解决实际问题中有重要作用.2.圆锥曲线在高考中的地位[师]在近几年的高考中圆锥曲线试题一直稳定在三(或二)个选择题,一个填空题,一个解答题,分值约为30分左右, 占总分值的20%,是高考重点考查内容.今天我们就一起来复习这部分的内容.(板书课题)3.展示本章知识框架.[师]首先我们来看看本章的知识框架(出示幻灯片5)本章我们学习了三大圆锥曲线的定义、标准方程及几何性质,本节课我们重点复习三大圆锥曲线的定义.二、复习建构[师]请同学们快速完成问题1并通过问题1回顾三大圆锥曲线的定义.(出示幻灯片7)问题1[生]第(1)小问的轨迹是椭圆,第(2)小问的轨迹是双曲线,第(3)小问的轨迹是抛物线.[师]很好!请说明理由.[生] 根据三大圆锥曲线的定义而得到的.[师]若将第(1)小问的6改为4,第(2)小问的2改为4,它们的轨迹又是什么?(出示幻灯片8、9)[生]线段和射线(学生回顾归纳,教师补充特殊情况)(出示幻灯片10)1、P 为动点,F 1、F 2为定点,L 为定直线椭圆:| PF 1 |+ | PF 2 |=2a(2a>|F 1F 2| )当2a=|F 1F 2|时,轨迹是线段F 1F 2双曲线: | | PF 1 |-| PF 2 | | =2a(2a<|F 1F 2| )当2a=|F 1F 2|时,轨迹是两条射线;212122(2,0),(2,0)6,2,2F F P PF PF P PF PF P PF P x P -+===-1已知:,为平面内一动点(1)若则的轨迹是?(2)若-则的轨迹是?(3)若等于点到直线的距离,则的轨迹是?抛物线:| PF2 |=d(P到定直线L的距离)F2不在L上当F2在L上时,轨迹是直线三、探索研究、归纳猜想[师]通过对问题1的交流及对定义的回顾,椭圆、双曲线的定义是用动点与两定点的距离的和(或差)的形式给出的,而抛物线的定义则用动点与定直线距离的比的形式给出的,椭圆和双曲线的定义能否也用动点与定直线距离的比的形式给出呢?[生]可以、不可以(大部分同学说可以,少部分同学说不可以)[师]好,到底可不可以呢?请同学们完成问题2(出示幻灯片11)问题2:点(,)M x y与定点(4,0)F的距离和它到直线25:4l x=的距离的比是常数45,求点M的轨迹.(46P例6)[师]请罗婷给大家展示一下.[生][师] 罗婷讲得很有条理,请你告诉大家你求的椭圆方程中的?,?,?a b c=== [生]5,3,4a b c===[师]大家观察这个定点(4,0)F恰好是什么?定直线是什么?常数45又是什么?[生]焦点、准线、离心率[师]现在把这个常数45换成54,改变相应的定点和定直线,动点的轨迹又是什么?[生]双曲线[师]好,请大家快速的检证一下,完成变式(出示幻灯片13)(学生快速检证,果然是双曲线)变式:点(,)M x y与定点(5,0)F的距离和它到直线16:5l x=的距离的比是常数54,求点M的轨迹.(59P例5)22224,545925225125910M lMFdx yx yM→==+=+=∴解:由题意知:即将上式两边平方化简得:即是长轴为,短轴为6的椭圆[师] 对比问题2和变式,你有什么发现?(出示幻灯片15)[生] 椭圆和双曲线的定义也能用动点与定直线距离的比的形式给出.[师]请大家结合这两个特殊问题以及抛物线的定义猜想一般圆锥曲线的另外一种定义.(学生归纳,教师补充)(出示幻灯片16、教师板书) 归纳猜想2.M 为动点,F 为定点,l 为定直线()M l MFe F l d →=∉(1) 0<e<1轨迹为椭圆;(2) e=1轨迹为抛物线;(3) e>1轨迹为双曲线[师]三大圆锥曲线还有其它的生成方式吗?请同学们完成问题3(出示幻灯片17)问题3:设点A ,B 的坐标分别是(5,0),(5,0)-.直线AM ,BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹的方程.(41P 例3) [师]请宋阳给大家展示一下.[生][师] 宋阳同学讲得很好,很有条理,大家有没有补充的?[生]因为两直线的斜率存在,所以5x ≠±[师]很好,若将问题3中的“49-”改为“59-或69-”,动点的轨迹又是什么? [生]依然是椭圆[师] 很好,若将问题3中的的“49-”改为“49”;或将“斜率之积” 改为“斜率的差”动点的轨迹又是什么?请大家完成变式一、二(出示幻灯片18)变式一:点A ,B 的坐标分别是(5,0),(5,0)-.直线AM ,BM 相交于点M ,且它们的斜率之积是49,试求点M 的轨迹方程.(55P 探究) 变式二:点A ,B 的坐标分别是(1,0),(1,0)-.直线AM ,BM 相交于点M ,且直2244,95591100259AM BM y y k k x x x y =-=-+-+=解:设点M 的坐标为(x,y),由题意知即化简,得点M 的轨迹方程为线AM 的斜率与直线BM 的斜率的差是2,求点M 的轨迹方程.(74P B 组第3题)[师]请周月同学给大家展示一下[生] 变式一 变式二[师] 周月同学讲得非常清晰,同时也考虑了5x ≠±,1x ≠±的情况,很不错.[师]对比问题3和变式,你有什么发现?(出示幻灯片19)[生]当动点与两定点所确定的直线的斜率之积为负数时,动点的轨迹是椭圆,为正数时,轨迹是双曲线,当动点与两定点所确定的直线的斜率之差为常数时,动点的轨迹是抛物线.(学生自主归纳,教师补充)归纳猜想(出示幻灯片20、教师板书)3.M 为动点,A 、B 为定点若(0,1)AM BM k k a a a ⋅=<≠-且,轨迹是椭圆若(0)AM BM k k a a ⋅=>,轨迹是双曲线若(0)AM BM k k a a -=≠,轨迹是抛物线思考:若AM BM k k a ÷=轨迹是什么?若AM BM k k a +=轨迹是什么?(出示幻灯片21)四、反思小结、优化认知1.本节课你有哪些收获?2.圆锥曲线的生成方式是否是唯一的,还可以用什么来刻画圆锥曲线?3.本节课我们用到了哪些数学思想和方法?[师] 本节课我们练习的题目,全部来自教材中的例题和习题,通过对它们的研究和对比,我们又对圆椎曲线的定义进行了再认识,我们发现生成圆椎曲线的方式并不是唯一的,可用动点和两定点距离的差与和的形式给出,也可用动点和两定点所确定直线斜率的形式呈现,也可以用动点和定点及定直线距离的比值给出,课后希望大家阅读教材相关内容,加强对圆锥曲线的认识.五、作业回馈,落实目标(出示幻灯片22)2244,(5)95591(5)100259AM BM y y k k x x x x y x ==≠±+--=≠±解:设点M 的坐标为(x,y),由题意知即化简,得点M 的轨迹方程为22,2(1)111(1)AM BM y y k k x x x y x x -=-=≠±+-=-+≠±解:设点M 的坐标为(x,y),由题意知即化简,得点M 的轨迹方程为1.阅读教材,回归定义.(1)阅读教材5051P ,“用几何画板探究点的轨迹:椭圆”(2)阅读教材76P ,“圆锥曲线的离心率与统一方程” 2.80P A 组第10题,B 组第5题,62P B 组第3题 42P 第4题。
复习课 圆锥曲线与方程
[题组训练]
x2 y2 2.(全国卷Ⅰ)一个圆经过椭圆 + =1 的三个顶点,且圆心在 16 4 x 轴的正半轴上,则该圆的标准方程为________.
x2 y2 3.方程 + =1 表示曲线 C,给出以下命题: 4-t t-1 ①曲线 C 不可能为圆; ②若 1<t<4,则曲线 C 为椭圆; ③若曲线 C 为双曲线,则 t<1 或 t>4; 5 ④若曲线 C 为焦点在 x 轴上的椭圆,则 1<t< . 2 其中真命题的序号是________(写出所有正确命题的序号).
[考点精要]
直线与圆锥曲线有关的问题 (1)直线与圆锥曲线的位置关系,可以通过讨论直线方程 与曲线方程组成的方程组的实数解的个数来确定,通常消去 方程组中变量 y(或 x )得到关于变量 x (或 y)的一元二次方程(不 能忽略对二次项系数是否为 0 的讨论 ),考虑该一元二次方程直线与圆锥曲线相切于一点; Δ <0⇔直线与圆锥曲线无交点.
[类题通法] 求解离心率三种方法 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲 线)的焦点在 x 轴上还是 y 轴上都有关系式 a2-b2=c2(a2+b2=c2) c 以及 e=a,已知其中的任意两个参数,可以求其他的参数,这是 基本且常用的方法. (2)方程法:建立参数 a 与 c 之间的齐次关系式,从而求出其 离心率,这是求离心率的十分重要的思路及方法. (3)几何法:求与过焦点的三角形有关的离心率问题,根据平 面几何性质以及椭圆 (双曲线)的定义、几何性质,建立参数之间 的关系,通过画出图形,观察线段之间的关系,使问题更形象、 直观.
1 心率等于 ,则 C 的方程是 2 x2 y2 A. + =1 3 4 x2 y2 C. + =1 4 2
高三复习课圆锥曲线方程
高三复习课圆锥曲线方程高考试题中,解析几何试题的分值一般占20%左右,而圆锥曲线的内容在试卷中所占比例又一直稳定在14%左右,选择、填空、解答三种题型均有.选择、填空题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法的运用;以圆锥曲线为载体的解答题设计中,重点是求曲线的方程和直线与圆锥曲线的位置关系讨论,它们是热中之热.解答题的题型设计主要有三类:(1)圆锥曲线的有关元素计算.关系证明或范围的确定;(2)涉及与圆锥曲线平移与对称变换、最值或位置关系的问题;(3)求平面曲线(整体或部分)的方程或轨迹.近年来,高考中解析几何综合题的难度有所下降.随着高考的逐步完善,结合上述考题特点分析,预测今后高考的命题趋势是:将加强对于圆锥曲线的基本概念和性质的考查,加强对于分析和解决问题能力的考查.因此,教学中要注重对圆锥曲线定义、性质、以及圆锥曲线基本量之间关系的掌握和灵活应用.高考第二阶段的复习,应在继续作好知识结构调整的同时,抓好数学基本思想、数学基本方法的提炼,进行专题复习;做好“五个转化”,即从单一到综合、从分割到整体、从记忆到应用、从慢速摸仿到快速灵活、从纵向知识到横向方法.这一复习过程,要充分体现分类指导、分类要求的原则,内容的选取一定要有明确的目的性和针对性,要充分发挥教师的创造性,更要充分考虑学生的实际,要密切注意学生的信息反馈,防止过分拔高,加重负担.因此,在圆锥曲线这一章的复习中,设计了分类复习、分层复习、层层递进的复习步骤.二、基础知识梳理(一)概念及性质1.椭圆及其标准方程第一定义、第二定义;标准方程(注意焦点在哪个轴上);椭圆的简单几何性质(a、b、c、e的几何意义,准线方程,焦半径);椭圆的参数方程x=acosθ,y=bsinθ,当点P在椭圆上时,可用参数方程设点的坐标,把问题转化为三角函数问题.2.双曲线及其标准方程:第一定义、第二定义(注意与椭圆类比);标准方程(注意焦点在哪个轴上);双曲线的简单几何性质(a、b、c、e的几何意义、准线方程、焦半径、渐近线). 3.抛物线及其标准方程:定义以及定义在解题中的灵活应用(抛物线上的点到焦点的距离问题经常转化为到准线的距离);标准方程(注意焦点在哪个轴上、开口方向、p 的几何意义)四种形式; 抛物线的简单几何性质(焦点坐标、准线方程、与焦点有关的结论). (二)常见结论、题型归类及应对思路:1.中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为Ax 2+Bx 2=1.2.共渐近线x ab y ±=的双曲线标准方程为λλ(2222=-by a x 为参数,λ≠0).3.焦半径、焦点弦问题(1) 椭圆焦半径公式:在椭圆2222by a x +=1中,F 1、F 2分别左右焦点,P(x 0,y 0)是椭圆是一点,则:①|PF 1|=a+ex 0 ② |PF 2|=a-ex 0过椭圆12222=+by a x (a>b>0)左焦点的焦点弦为AB ,则)(221x x e a AB ++=,过右焦点的弦)(221x x e a AB +-=.(2)双曲线焦半径公式:设P (x 0,y 0)为双曲线12222=-by a x (a>0,b>0)上任一点,焦点为F 1(-c ,0),F 2(c ,0),则:①当P 点在右支上时,0201,ex a PF ex a PF +-=+=;②当P 点在左支上时,0201,ex a PF ex a PF -=--=;(e 为离心率) (3)抛物线焦半径公式:设P (x 0,y 0)为抛物线y 2=2px(p>0)上任意一点,F 为焦点,则20px PF +=;y 2=2px (p<0)上任意一点,F 为焦点,则20p x PF +-=;抛物线y 2=2px (p>0)的焦点弦(过焦点的弦)为AB ,A (x 1,y 1)、B(x 2,y 2),则有如下结论:①AB =x 1+x 2+p ;②y 1y 2=-p 2,x 1x 2=42p . (4)椭圆、双曲线的通径(最短弦)为a b 22,焦准距为p=cb 2,抛物线的通径为2p ,焦准距为p ; 双曲线12222=-by a x (a>0,b>0)的焦点到渐进线的距离为b. 4.直线和圆锥曲线相交时的一般弦长问题一般地,若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为 A(x 1,y 1)、B(x 2,y 2),则弦长 ]4))[(1(1212212122x x x x k x x k AB -++=-⋅+=]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的解题思想. 5.中点弦问题处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x 1,y 1)、B(x 2,y 2)为椭圆12222=+by a x (a>b>0)上不同的两点,M(x 0,y 0)是AB 的中点,则K AB K OM =22a b -;对于双曲线12222=-by a x (a>0,b>0),类似可得:K AB K OM =22a b ;对于y 2=2px (p ≠0)抛物线有 K AB =212y y p +;另外,也可以用韦达定理来处理.6.求与圆锥曲线有关的轨迹问题的常用方法(1)直接法:直接通过建立x 、y 之间的关系,构成F(x ,y)=0,是求轨迹的最基本的方法;(2)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;(3)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;(4)代入法(相关点法或转移法):若动点P(x ,y)依赖于另一动点Q(x 1,y 1)的变化而变化,并且Q(x 1,y 1)又在某已知曲线上,则可先用x 、y 的代数式表示x 1、y 1,再将x 1、y 1带入已知曲线得要求的轨迹方程;(5)参数法:当动点P (x ,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.三、重点、难点分析重点 圆锥曲线的概念、性质难点 圆锥曲线的概念、性质等的综合应用 四、课时安排第一课时 圆锥曲线的概念、性质类问题 第二课时 直线和圆锥曲线关系类问题 第三课时 与圆锥曲线有关的轨迹类问题说明:问题的类别、知识是相互联系的,因此课时分类也不是绝对的. 五、分课时讲解例题第一课时 圆锥曲线概念、性质类问题例1.(02北京)已知椭圆2222135x y m n +=和双曲线2222123x y m n -=有公共的焦点,那么双曲线 的渐近线方程是 ( )()2A x y =±()2B y x =±()4C x y =±()4D y x =± 分析:本题主要考查圆锥曲线的几何性质,即椭圆、双曲线焦点求法和双曲线渐近线方程 求法.由双曲线方程判断出公共焦点在x轴上,∴椭圆焦点,双曲线焦点,∴22223523m n m n -=+,∴228m n =, 又∵双曲线渐近线为6n y x =.∴代入228m n =,m =,得y x =,∴选D. 例2.(02全国文11)设(0,)4πθ∈,则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为( )1()(0,)2A 1()(2B (2)C ()D +∞ 分析:本题主要考察三角函数和二次曲线的基本知识以及基本的推理计算技能.有一定的综合性,涉及的知识面比较大.解一:因为(0,)4πθ∈,所以cot θ>0,tan θ>0,方程所表示的二次曲线是双曲线,离心率必然大于1.从而排除A 、B 、C ,得D.解二:依题设知二次曲线是双曲线,半实轴长a 和半虚轴长b 分别为a ==b ==所以半焦距c ==,离心率为ce a==因为(0,)4πθ∈,所以e 的取值范围为)+∞,选D .第二课时 直线和圆锥曲线关系类问题直线与圆锥曲线的位置关系,是高考考查的重中之重,在高考中多以高档题、压轴题出现.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用,解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.例3.<2004年天津高考·理工第22题,文史第22题[只做第(1)和(2)问],本小题满分14分> 椭圆的中心是原点O ,它的短轴长为F (c ,0)(0>c )的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点. (1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3理工类考生做)设AP AQ λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-.本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.(I)解:由题意,可设椭圆的方程为22221(x y a a b+=>由已知得2222,2().a c a c c c ⎧-=⎪⎨=-⎪⎩解得2.a c ==所以椭圆的方程为22162x y +=,离心率3e = (II)解: 由(I)可得(3,0).A设直线PQ 的方程为(3).y k x =-由方程组22162(3)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(31)182760.k x k x k +-+-= 依题意212(23)0,k ∆=->得33k -<<设 1122(,),(,),P x y Q x y 则212218,31k x x k +=+ ① 2122276..31k x x k -=+ ②由直线PQ 的方程得 1122(3),(3).y k x y k x =-=-于是2212121212(3)(3)[3()9].y y k x x k x x x x =--=-++ ③1212.0,0.OPOQ x x y y =∴+= ④由①②③④得251,k =从而(k = 所以直线PQ 的方程为30x -=或30.x +-=(III)证明:1122(3,),(3,).AP x y AQ x y =-=-由已知得方程组1212221122223(3),,162 1.62x x y y x y x y λλ-=-⎧⎪=⎪⎪⎨+=⎪⎪+=⎪⎩ 注意1,λ>解得 251.2x λλ-=因11(2,0),(,),F M x y -故112112(2,)((3)1,)11(,)(,).22FM x y x y y y λλλλλ=--=-+---=-=-而2221(2,)(,),2FQ x y y λλ-=-=所以 .FM FQ λ=-例4.已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=.(Ⅰ)求双曲线G 的渐近线的方程; (Ⅱ)求双曲线G 的方程;(Ⅲ)椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.讲解:(Ⅰ)设双曲线G 的渐近线的方程为:y kx =,则由渐近线与圆2210200x y x +-+=相=所以,12k =±.双曲线G 的渐近线的方程为:12y x =±.(Ⅱ)由(Ⅰ)可设双曲线G 的方程为:224x y m -=. 把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33A B A B mx x x x ++==- (*)∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上,∴ ()()()2PA B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将(*)代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. (Ⅲ)由题可设椭圆S的方程为:(222128x ya a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩.两式作差得:()()()()12121212228x x x x y y y y a-+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a -=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x y a -=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上(也即化线段的关系为横坐标(或纵坐标)之间的关系)是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具).第三课时 与圆锥曲线有关的轨迹类问题解析几何主要研究两大类问题:一是根据题设条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.解答轨迹问题时,若能充分挖掘几何关系,则往往可以简化解题过程. 例5.(2004. 福建理)(本小题满分12分)如图,P 是抛物线C :y=12x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围.本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力. 解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ①得y '=x .∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x ,∴直线l 的方程为y -21x 12=-11x (x -x 1),方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点 x 0=221x x +=-11x , ∴ y 0=21x 12-11x (x 0-x 1).消去x 1,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).方法二: 由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2), 则x 0=2121x x y y --=k l =-11x ,∴x 1=-1x , 将上式代入②并整理,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b). 分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'.y=21x 2 由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③y=kx+by 1+y 2=2(k 2+b),则y 1y 2=b 2.方法一:∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b=2. ∵y 1、y 2可取一切不相等的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2bb k +. 当b>0时,||||||||SQ ST SP ST +=b 22)(2b b k +=b b k )(22+=b k 22+2>2;当b<0时,||||||||SQ ST SP ST +=-b 22)(2bb k +=b b k -+)(22. 又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>bb b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x by -.则x 1y 2-b x 1=x 2y 1-b x 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b =122212122121x x x x x x -⋅-⋅=-21x 1x 2.∴||||||||SQ ST SP ST +=||||||||21y b y b +|1|21x x -|1|21x x -||12x x +||21x x ≥2.∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 下面是探究型的存在性问题:例6.(2004湖北理)(本小题满分12分)直线22:1:21l y kx C x y =+-=与双曲线的右支交于不同的两点A 、B.(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力. 解:(Ⅰ)将直线22121,l y kx C x y =+-=的方程代入双曲线的方程后整理得22(2)220.k x kx -++=……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.022022,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为11(,)x y 、22(,)x y ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x k k x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由FA ⊥FB 得:.0)1)(1())((.0))((21212121=+++--=+--kx kx c x c x y y c x c x 即整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及c =代入③式化简得 .066252=-+k k解得(2,)k k ==-舍去可知k =使得以线段AB 为直径的圆经过双曲线C 的右焦点. 高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题.四、思维能力训练(一)选择题1.(04年天津理4、文5)设P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为1320,x y F -=、F2分别是双曲线的左、右焦点,若1||3PF =,则2||PF = ( )A. 1或5B. 6C. 7D. 92.(04重庆高考理10、文10)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .733.(04湖北理)已知椭圆221169x y +=的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( )A .95B .3C .7D .944.(04 福建理)如图,B 地在A 地的正东方向4 km 处,C地在B 地的北偏东30°方向2 km 处,河流的没岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km.现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( )A .(27-2)a 万元B .5a 万元C .(27+1) a 万元D .(23+3) a 万5.(04 辽宁卷)已知点(2,0)A -、(3,0)B ,动点2(,)P x y PA PB x ⋅=满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.[04全国(山东山西河南河北江西安徽)理8、文8]设抛物线y2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 ( )A .[-12,12] B .[-2,2] C .[-1,1] D .[-4,4] (二)填空题1.(2004年重庆高考·理工类第16题)对任意实数K ,直线:y kx b =+与椭圆:)20(s in 41c o s 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________.2.(2004年湖南高考·理工类第16题)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点Pi (i=1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为 .(三)解答题1.设抛物线过定点()1,0A -,且以直线1x =为准线.(Ⅰ)求抛物线顶点的轨迹C 的方程;(Ⅱ)若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.2.(2004. 辽宁卷)(本小题满分12分) 设椭圆方程为2214y x +=,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点, 点P 满足1()2OP OA OB =+,点N 的坐标为11(,)22,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程;(2)||NP 的最小值与最大值.3.已知常数0>a ,向量(0,)(1,0)c a i ==,,经过原点O 以c i λ+为方向向量的直线与经过定点(0,)A a 以2i c λ-为方向向量的直线相交于点P ,其中R ∈λ.试问:是否存在两个定点E F 、,使得PE PF +为定值,若存在,求出E F 、的坐标;若不存在,说明理由.五、小结圆锥曲线方程这章扩展开的内容比较多,比较繁杂,对学生来说不一定要把所有的结论一一记住,关键是掌握圆锥曲线的概念实质以及直线和圆锥曲线的关系.因此,在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键,同时勿忘用定义解题.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.(3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程. 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置;定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m >0,n >0);定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义.(5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用.(6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将“曲线”化成“方程”,将“形”化成“数”,使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法、定义法、几何法、代入转移法、参数法、交轨法等.解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围.(7)参数方程和极坐标的内容,请大家熟练掌握公式,后用化归的思想转化到普通方程即可求解.高考是注重能力的考试,特别是学生运用数学知识和方法分析问题和解决问题的能力,更是考查的重点. 数学能力的提高在于解题的质量而非解题的数量,复习过程中要重在研究解题方向和策略、推理,要着眼抽象思维水平的提高.要善于从题目的条件和求解(或求证)的过程中提取有用的信息,作为于记忆系统中的数学认知结构,提取相关的知识,推动题目信息的延伸,归结到某个确定的数学关系,从而形成一个解题的行动序列,这就是解题方向.题目信息与不同数学知识的结合,可能会形成多个解题方向,先取其中简捷的路径,就得到题目的最优解法.解题过程中不断进行这样的思考和操作,将使数学能力得到有效地提高.。
《圆锥曲线与方程》复习课教案
一、课题:《圆锥曲线与方程》的复习二、教学目的:1、通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。
2、通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的思想以及“应用数学”的意识3、结合教学内容对学生进行运动变化、自我总结和对立统一的观点的教育 三、教学方法:讲授法、练习法四、教学重点:自我总结并引导学生对三种曲线的标准方程和图形、性质的总结 五、教学难点:做好思路分析,引导学生找到解题的落足点,使学生能够自己独立对知识进行总结 六、教学过程: (一)知识梳理: 1.曲线与方程⑴曲线C 上的点与二元方程()0,=y x f 的实数解建立如下关系: ①曲线上的点的坐标都是这个方程的解; ②以上这个方程的解为坐标的点都是曲线上的点.⑵求曲线的方程的一般步骤①建系;②设点;③列方程;④化简;⑤检查. 2.圆锥曲线的定义⑴平面内满足()212122F F a a PF PF >=+的点P 的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化.⑵平面内满足()212122F F a a PF PF <=-的点P 的轨迹叫做双曲线,()212122F F a a PF PF <=-表示焦点2F 对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化.⑶平面内与一个顶点F 与一条定直线l (不经过点F )距离相等的点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化. 3.圆锥曲线的标准方程椭圆、双曲线有两种形式的标准方程,抛物线有四种形式的标准方程.根据曲线方程的形式来确定焦点的位置,根据焦点的位置选择恰当的方程形式. 4.圆锥曲线的简单几何性质⑴圆锥曲线的范围往往作为解题的隐含条件. ⑵双曲线焦点位置不同,渐近线方程不同.⑶椭圆有四个顶点,双曲线有两个顶点,抛物线有一个顶点⑷椭圆、双曲线有两条对称轴和一个对称中心,抛物线只有一条对称轴. ⑸圆锥曲线中基本量p e c b a ,,,,的几何意义及相互转化. 6.直线与圆锥曲线的位置关系⑴直线与圆锥曲线的公共点个数等于由它们的方程构成的方程组解的个数. ⑵直线与椭圆有一个公共点,直线与椭圆相切,但直线与双曲线、抛物线不一定相切,双曲线与平行于渐近线的直线,抛物线与平行(重合)于轴的直线,都只有一个公共点但不相切.7.直线与圆锥曲线相交的弦长⑴求弦长的方法是将直线与圆锥曲线的方程联立后,求出两点坐标,利用两点间距离公式,常用的方法是结合韦达定理,如直线b kx y +=与圆锥曲线相交于()()2211,,,y x B y x A 两点,弦长()21221241x x x x k AB -++=.⑵过抛物线焦点的弦长问题结合定义来解决能化简计算. 8.元圆锥曲线有关的“中点弦”弦的中点坐标与斜率可由曲线方程得到关系,此法称为“点差法”,灵活运用科简化计算,但要以直线与曲线相交为前提,即消元后的方程判别式大于零. 9.当直线过x 轴上的点()0,m M 时,设直线方程为m ty x +=与抛物线方程()022>=p px y 联立消元后的方程较简。
圆锥曲线复习+课件
在其他数学分支中的地位和作用
圆锥曲线在解析几何、微积分、线性代数等数学分支中都有 重要应用。
圆锥曲线在解决物理、工程、经济等领域的问题中也有广泛 应用,例如物理学中的光学、力学问题,经济学中的供需关 系、最优问题等。
物体运动轨迹
在物理学中,圆锥曲线被用来描述各种 物体的运动轨迹。例如,当物体在重力 的作用下自由下落时,其运动轨迹可能 是一个抛物线;当物体沿着斜面滑下时 ,其运动轨迹可能是一个螺旋线。
VS
粒子运动
在量子力学和粒子物理学中,粒子在强磁 场中的运动轨迹通常被描述为复杂的曲线 ,这些曲线的形状和变化规律对于理解粒 子的性质和行为至关重要。
THANKS
感谢观看
圆锥曲线在几何学中的应 用
在几何学中,圆锥曲线被广泛应用于解决各 种问题,如轨迹问题、最值问题等。
现代圆锥曲线的研究方向和成果
圆锥曲线与代数几何的结合
现代数学家将圆锥曲线与代数几何相结合,研究了一些深层次的问题,如圆锥曲线的分类、几何不变量等。
圆锥曲线在物理学中的应用
在物理学中,圆锥曲线被应用于解决一些实际问题,如行星运动轨迹的计算、光学问题等。
• 解析
首先求出圆心A到抛物线准线的距离,然后与圆的半径进行比较,得 出圆与抛物线的位置关系。
解答题2
已知椭圆C的中心在原点,焦点在x轴上,且经过两个点$P_1(1,1)$和 $P_2( - frac{1}{5}, - frac{9}{5})$,求椭圆C的标准方程。
• 解析
根据椭圆的性质和给定的两个点,我们可以列出方程组解出椭圆的标 准方程。
06
圆锥曲线复习题及解析
高中数学第二章圆锥曲线与方程章末复习课ppt课件
C.钝角三角形 D.随m,n变化而变化
类型二 圆锥曲线的性质及其运用
∴ba2=12,ba= 22,
答案 解析
(2)知抛物线y2=4x的准线与双曲线 代入双曲线方程-可得a2=15, y2=1交于A,B两点,点F为抛物 线的焦点,假设△FAB为直角三角形,那么该双曲线的离心率于是c= a2+1=是56. ____.
类型三 直线与圆锥曲线的位置关系
所以 x1+x2=1+4k22k2,y1+y2=k(x1+x2)-2k=1-+22kk2.
(1)求椭圆的规范方程; 解答
所以 AB 的中点坐标为(1+2k22k2,1+-2kk2).
(2)过右焦点F2的直线l交椭圆于A,B两点,假设y轴上一点M(0①当k≠0时,,AB的中垂线方程为y-1+-2kk2=-1k(x-1+2k22k2), )满足 |MA|=|MB|,求直线l的斜率k的值. 解答
所以 sin ∠F1PF2=82711,所以
=12|PF1|·|PF2|·sin ∠F1PF2
S △ F P =12×3×9×82711=4
1
11.即△F1PF2 的面积为 4
F2
11.
跟踪训练 1 已知椭圆xm2+y2=1(m>1)和双曲线xn2-y2=1(n>0)有相同的焦 点 F1,F2,P 是它们的一个交点,则△F1PF2 的形状是
设P为椭圆 xa22+yb22 =1(a>b>0)上恣意一点(不在x轴上),F1,F2为焦点且 ∠F1PF2=α,那么△PF1F2为焦点三角形(如图).
1.由双曲线标准方程求其渐近线方程时,最简单实用的办法是:把标准方
程中的 1 换成 0,即可得到两条渐近线的方程.如双曲线Байду номын сангаасx22-by22=1(a>0,b>0)
人教A版选修2-1高中数学《第二章圆锥曲线与方程复习课》ppt课件省名师优质课赛课获奖课件市赛课一等
为焦点且∠F1PF2=α,则△PF1F2为焦点三角形.
(1)焦点三角形旳面积 S b2 tan .
2
(2)焦点三角形旳周长L=2a+2c.
3.双曲线渐近线旳设法技巧
(1)由双曲线原则方程求其渐近线方程时,最简朴实用旳方法
是:把原则方程中旳1换成0,即可得到两条渐近线旳方程.如
双曲线
x2 a2
y2 b2
阶段复习课 第二章
【答案速填】
①
x2 a2
y2 b2
1(a>b>0)
②
y2 a2
x2 b2
1(a>b>0)
③(±a,0)(0,±b)或(0,±a),(±b,0)
④2a ⑤2b ⑥(-c,0),(c,0)
⑦2c ⑧ c a
⑨
x2 a2
y2 b2
1(a, b>0)
⑩ ybx a
yax b
y2=±2px(p>0)
主题一 圆锥曲线旳定义及应用 【典例1】(2023·合肥高二检测)双曲线16x2-9y2=144旳左、 右两焦点分别为F1,F2,点P在双曲线上,且|PF1|·|PF2|=64,求 △PF1F2旳面积.
【自主解答】双曲线方程16x2-9y2=144化简为x2 y2 1,
9 16
即a2=9,b2=16,所以c2=25,
得直线FA旳方程为 x y 即 1,
ae 1 e2 a
1 e2 x ey ae 1 e2 0.
因为原点O到直线FA旳距离为 2 b ae 1 e2 ,
2
所以 2 1 e2 a 解ae得1 e2 .
2
e 2. 2
(2)设椭圆C旳左焦点 F( 2有a,0关) 直线l:2x+y=0旳对称点为
高中数学《圆锥曲线与方程-复习课》课件
复习目标
1)掌握椭圆的定义,标准方程和椭圆的几何性质 2)掌握双曲线的定义,标准方程和双曲线的几何 性质 3)掌握抛物线的定义,标准方程和抛物线的几何 性质 4)能够根据条件利用工具画圆锥曲线的图形,并 了解圆锥曲线的初步应用。
课前热身
(1) 求长轴与短轴之和为20,焦距为 4的5椭
①、②式两边分别相加,得 |O1P|+|O2P|=12
即
( x 3)2 y 2 ( x 3)2 y 2 12
化简并整理,得 3x2+4y2-108=0
即可得
x2 y2 1
36 27
所以,动圆圆心的轨迹是椭圆,它的长轴、短轴分别
为 12、6 3.
解法2:同解法1得方程 ( x 3)2 y 2 ( x 3)2 y 2 12
解得: x 3 5 则: y 1 5
A(3 5,1 5); B(3 5,1 5)
kOB
1 3
5 5
, kOA
1 3
5, 5
kOB
• kOA
1 3
5 • 1 5 3
5 1 5 1 5 95
∴OA⊥OB
证法2:同证法1得方程 x2-6x+4=0
由一元二次方程根与系数的关系,可知
x1+x2=6,
一、知识回顾
椭圆
圆
锥 双曲线
曲
线 抛物线
标准方程 标准方程 标准方程
几何性质
第二定义
几何性质 第二定义
综合应用 统一定义
几何性质
椭圆、双曲线、抛物线的标准方程和图形性质
几何条件 标准方程
椭圆
双曲线
抛物线
与两个定点
与两个定点的 与一个定点和
高中数学 第二章 圆锥曲线与方程阶段复习课课件 a选修11a高二选修11数学课件
交于 C,D 两点,且满足||CADB||=543,求直线 l 的方程.
[思路探究]
2021/12/8
(1)利用定义解题.(2)利用勾股定理和弦长公式来解.
第二十五页,共三十五页。
b= 3, [解] (1)由题设知ac=12,
b2=a2-c2,
解得 a=2,b= 3,c=1, ∴椭圆的方程为x42+y32=1.
2021/12/8
第十五页,共三十五页。
[跟踪训练]
2.(1)以 x 轴为对称轴,通径长为 8,顶点为坐标原点的抛物线方程是( )
A.y2=8x B.y2=-8x C.y2=8x 或 y2=-8x D.x2=8y 或 x2=-8y
C [由题意知 2p=8,故选 C.]
2021/12/8
第十六页,共三十五页。
___ax_22+__by_22_=__1__或
__ax_22_-__by_22_=__1__或 __y_2=__2_p_x___或 y2=
__a_y22_+__bx_22_=__1____ (a>b>0) _ay_22_-__bx_22_=__1(a>0,b>0) -2px 或_x_2_=__2_p_y__
因此双曲线方程为 x2-y32=1.
[答案]
2021/12/8
(1)D
(2)x2-y32=1
第十四页,共三十五页。
[规律方法] 求圆锥曲线方程的一般步骤 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定 量”的步骤. (1)定形——指的是二次曲线的焦点位置与对称轴的位置. (2)定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭 圆的焦点不确定在哪个坐标轴上时,可设方程为 mx2+ny2=1(m>0,n>0). (3)定量——由题设中的条件找到“式”中待定系数的等量关系,通过解 方程得到量的大小.
高中数学《圆锥曲线与方程》 章末复习
《圆锥曲线与方程》知识系统整合规律方法收藏求轨迹方程的几种常用方法(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x,y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x,y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:选择一个(或几个)与动点变化密切相关的量作为参数,用参数表示动点的坐标(x,y),即得动点轨迹的参数方程,消去参数,可得动点轨迹的普通方程.学科思想培优一、圆锥曲线的定义、方程及性质(1)在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的三角形问题时,常用定义结合解三角形的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用. [典例1] 已知抛物线C :y 2=2px (p >0)的焦点为F ,P (1,m )是抛物线C 上的一点,且|PF |=2.(1)若椭圆C ′:x 24+y 2n =1与抛物线C 有共同的焦点,求椭圆C ′的方程; (2)设抛物线C 与(1)中所求椭圆C ′的交点为A ,B ,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.解 (1)因为P 到焦点的距离等于P 到准线的距离,所以PF =1+p2=2,p =2, 故抛物线的方程为C :y 2=4x .又由椭圆C ′:x 24+y 2n =1,可知4-n =1,所以n =3,故所求椭圆的方程为x 24+y 23=1. (2)由⎩⎨⎧x 24+y 23=1,y 2=4x ,消去y 得到3x 2+16x -12=0,解得x 1=23,x 2=-6(舍去).所以A ⎝ ⎛⎭⎪⎫23,236,B ⎝ ⎛⎭⎪⎫23,-236,则双曲线的渐近线方程为y =±6x .由渐近线6x ±y =0,可设双曲线方程为6x 2-y 2=λ(λ≠0). 由点P (1,m )在抛物线C :y 2=4x 上, 解得m 2=4,P (1,±2),因为点P 在双曲线上,所以6-4=λ=2, 故所求双曲线方程为3x 2-y 22=1.拓展提升(1)圆锥曲线的定义是推导标准方程和几何性质的基础,也是解题的重要工具,灵活运用定义,可避免很多复杂的计算,提高解题效率,因此在解决圆锥曲线的有关问题时,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合、方程等思想结合运用.二、直线与圆锥曲线的位置关系(1)直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,则有:Δ>0⇔直线与圆锥曲线相交于两点;Δ=0⇔直线与圆锥曲线相切于一点;Δ<0⇔直线与圆锥曲线无交点.(2)直线l 截圆锥曲线所得的弦长 |AB |=(1+k 2)(x 1-x 2)2或⎝ ⎛⎭⎪⎫1+1k 2(y 1-y 2)2,其中k 是直线l 的斜率,(x 1,y 1),(x 2,y 2)是直线与圆锥曲线的两个交点A ,B 的坐标,且(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,x 1+x 2,x 1x 2可由一元二次方程的根与系数的关系整体给出.[典例2] 已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.解 (1)依题意可设椭圆方程为x 2a 2+y 2=1(a >1),则右焦点F (a 2-1,0).由题设,知|a 2-1+22|2=3,解得a 2=3.故所求椭圆的方程为x 23+y 2=1. (2)设点P 为弦MN 的中点.由⎩⎨⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1.①所以x P =x M +x N 2=-3mk3k 2+1.从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk .又|AM |=|AN |,所以AP ⊥MN .则-m +3k 2+13mk =-1k ,即2m =3k 2+1.② 把②代入①得2m >m 2,解得0<m <2. 由②得k 2=2m -13>0,解得m >12.故所求m 的取值范围是⎝ ⎛⎭⎪⎫12,2.拓展提升有关直线与圆锥曲线综合问题的求解方法(1)将直线方程与圆锥曲线方程联立,化简后得到关于x (或y )的一元二次方程,则直线与圆锥曲线的位置关系有三种情况:①相交:Δ>0⇔直线与椭圆相交;Δ>0⇒直线与双曲线相交,但直线与双曲线相交不一定有Δ>0,如当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故Δ>0是直线与双曲线相交的充分不必要条件;Δ>0⇒直线与抛物线相交,但直线与抛物线相交不一定有Δ>0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故Δ>0也仅是直线与抛物线相交的充分条件,而不是必要条件.②相切:Δ=0⇔直线与椭圆相切;Δ=0⇔直线与双曲线相切;Δ=0⇔直线与抛物线相切.③相离:Δ<0⇔直线与椭圆相离;Δ<0⇔直线与双曲线相离;Δ<0⇔直线与抛物线相离.(2)直线与圆锥曲线的位置关系,涉及函数、方程、不等式、平面几何等诸多方面的知识,形成了求轨迹、最值、对称、取值范围、线段的长度等多种问题.解决此类问题应注意数形结合,以形辅数的方法;还要多结合圆锥曲线的定义,根与系数的关系以及“点差法”等.三、圆锥曲线中的定点与定值问题解决定点与定值问题应灵活应用已知条件巧设变量,在变形过程中要注意各变量之间的关系,善于捕捉题目信息,注意消元思想的应用.[典例3] 设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O .证明 因为抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,所以经过点F 的直线AB的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0.若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2=-p 2. 因为BC ∥x 轴,且点C 在准线x =-p2上, 所以点C 的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率为k =y 2-p 2=2p y 1=y 1x 1,即k 也是直线OA 的斜率, 所以A ,O ,C 三点共线, 所以直线AC 经过原点O .[典例4] 设椭圆E :x 2a 2+y 21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解 (1)因为焦距为1,所以2a 2-1=14, 解得a 2=58.故椭圆E 的方程为8x 25+8y 23=1.(2)证明:设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c, 直线F 2P 的斜率kF 2P =y 0x 0-c. 故直线F 2P 的方程为y =y 0x 0-c(x -c ). 当x =0时,y =cy 0c -x 0,即点Q 的坐标为⎝ ⎛⎭⎪⎫0,cy 0c -x 0. 因此,直线F 1Q 的斜率kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q , 所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1. 化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限, 解得x 0=a 2,y 0=1-a 2,即点P 在定直线x +y =1上.拓展提升圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,解决此类问题的主要方法是通过研究直线与曲线的位置关系,把所给问题进行化简,通过计算获得答案;或是从特殊位置出发,确定定值,然后给出一般情况的证明.四、圆锥曲线中的最值(或范围)问题 1.最值问题的求解方法(1)建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值.(2)建立不等式模型,利用基本不等式求最值. (3)数形结合,利用相切、相交的几何性质求最值.2.求参数范围的常用方法[典例5] 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)圆A 的方程整理可得(x +1)2+y 2=16,点A 的坐标为(-1,0),如图.因为|AD |=|AC |,所以∠ACD =∠ADC .因为EB ∥AC ,所以∠EBD =∠ACD ,故∠EBD =∠ACD =∠ADC .所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4. 由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)解法一:当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到 m 的距离为2k 2+1,所以|PQ |=242-⎝⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1.故四边形MPNQ 的面积 S =12|MN |·|PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).解法二:设∠MBA =θ(θ∈(0,π)),则在△MAB 中运用余弦定理,有|MA |2=|MB |2+|AB |2-2·|MB |·|AB |·cos θ,结合|MA |+|MB |=4可解得|MB |=32-cos θ.同理可得|NB |=32+cos θ,从而|MN |=|MB |+|NB |=124-cos 2θ. 此时直线PQ 的方程为x cos θ=y sin θ+cos θ. 于是圆的弦长|PQ |=242-⎝⎛⎭⎪⎫2cos θcos 2θ+sin 2θ2=44-cos 2θ.则四边形MPNQ 的面积S =12·|MN |·|PQ |=244-cos 2θ∈[12,83),故四边形MPNQ 面积的取值范围是[12,83).拓展提升圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式的知识,以及数形结合、设参、转化、代换等途径来解决.五、圆锥曲线中的存在性问题 1.解决存在性问题的关注点求解存在性问题,先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. 2.存在性问题的解题步骤[典例6] 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解 (1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上得,1a 2+94b2=1,① 依题设知a =2c ,则b 2=3c 2,② ②代入①,解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)解法一:由题意可设直线AB 的斜率为k , 则AB 的方程为y =k (x -1),③代入椭圆方程3x 2+4y 2=12,并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3,④在方程③中令x =4,得M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.由于A ,F ,B 共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1,⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1,又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意. 解法二:设B (x 0,y 0)(x 0≠1), 则直线FB 的方程为y =y 0x 0-1(x -1), 令x =4,求得M ⎝ ⎛⎭⎪⎫4,3y 0x 0-1,数学•选修2-1[A]从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1), 联立⎩⎪⎨⎪⎧ y =y 0x 0-1(x -1),x 24+y 23=1,得A ⎝ ⎛⎭⎪⎪⎫5x 0-82x 0-5,3y 02x 0-5, 则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1), 直线PB 的斜率为k 2=2y 0-32(x 0-1), 所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3, 故存在常数λ=2符合题意.拓展提升存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,学生应结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识有较高的要求.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18,19课时 第二章《圆锥曲线与方程》复习课导学案
设计人:黄清 审核人:李锁详 日期:2013/12/6 班级:___________ 组名: ____________ 姓名:___________ 【教学目标】
1. 知识与技能:掌握三种曲线的定义,标准方程,几何图形及简单性质.
2. 过程与方法:能根据三种曲线的几何性质解决一些简单问题,从而培养学生 分析,归纳推理能力.
3. 情感态度与价值观:通过三种曲线的学习,让学生进一步体会曲线和方程的 对应关系及数形结合思想.
【教学重点】三种曲线的简单几何性质及初步运用.
【教学难点】三种曲线的性质在实际问题中的应用及数形结合思想,方程思想, 转化的思想在研究问题和解决问题中的运用. 【教学过程】 一.复习回顾
1.抛物线的几何性质: 标准方程
()220y px p => ()220y px p =-> ()220x py p => ()220x py p =-> 图像
开口方向
对称轴 范 围
顶点坐标 焦点坐标 准线方程
离心率 通径长
焦点弦AB
()()
2211,,,y x B y x A
=AB =AB =AB =AB
=21y y =21x x
=21y y =21x x
2.椭圆的几何性质
标准方程 22
221(0)x y a b a b +=>> 22
22
1(0)y x a b a b +=>> 简图
对称轴 对称中心
范围
长短轴
顶点坐标 焦点坐标
焦距 离心率
c b a ,,之间的
关系
3.双曲线的几何性质:
标准方程 ()0,012
2
22>>=-b a b y a x
()0,012
2
22>>=-b a b x a y 图形
性质
焦点 焦距 范围 对称 顶点
轴 离心率 渐近线
c b a ,,之间的
关系
二.自主学习
1.已知椭圆的对称轴为坐标轴,离心率3
2
=e ,短轴长为58,求椭圆的方程.
2.已知椭圆经过点()
2,2-和点⎪⎪⎭
⎫
⎝⎛-214,1,求它的标准方程.
3.已知抛物线24x y =,求该抛物线的焦点坐标.
4.已知双曲线0369422=+-y x ,求它的焦点坐标.
三. 问题探究
1.抛物线的焦点在x 轴上,直线3-=y 与抛物线交于点A ,5=AF ,求抛物线的标准方程.
2.若双曲线14922
22=-k
y k x 与圆没有公共点,求实数k 的取值范围.
3.平面内有两个定点4,,=AB B A ,P 为平面内一个动点,求满足:2=-PB PA 的动点P 的轨迹方程.
四.拓展训练
1.已知双曲线与椭圆125
92
2=+
y x 共焦点,它们的离心率之和为514,求双曲线的方程.
2.设双曲线()0,0122
22>>=-b a b
y a x 的一条渐近线与抛物线12+=x y 只有一个公
共点,求双曲线的离心率.
五.反思小结 1.我的问题 2.我的收获。