初中数学重点知识点,例题。

合集下载

初中数学重点梳理恒等式证明

初中数学重点梳理恒等式证明

初中数学重点梳理恒等式证明初中数学中的恒等式证明是一个重要的知识点,也是数学学习中的基础内容。

恒等式证明主要通过逐步推导,将一个式子转化为另一个等价的式子,从而证明恒等式成立。

下面是初中数学中常见的恒等式证明的一些重点梳理。

1.基本的恒等式:-交换律:a+b=b+a,a×b=b×a-结合律:(a+b)+c=a+(b+c),(a×b)×c=a×(b×c)-分配律:a×(b+c)=a×b+a×c2.等式转换的基本方法:-两边加减相等的量-两边乘除相等的量-合并同类项-提取公因式-分解因式3.恒等式证明的常见例题:- 证明两个三角函数的恒等式,如证明sin²θ + cos²θ = 1-证明平方差等式,如证明a²-b²=(a+b)(a-b)- 证明平方和等式,如证明(a + b)² = a² + 2ab + b²-证明乘法公式,如证明(a+b)×(a-b)=a²-b²4.使用排列组合证明恒等式:-利用组合数等恒等式,如证明C(n,r)=C(n,n-r)-利用排列数等恒等式,如证明A(n,m)=n!/(n-m)!-利用二项式定理等恒等式,如证明(a+b)ⁿ=C(n,0)aⁿ+C(n,1)aⁿ⁻¹b+...+C(n,n)bⁿ5.使用数学归纳法证明恒等式:数学归纳法是一种证明恒等式的常用方法,通过证明基础情况成立,以及假设n=k时等式成立,再证明n=k+1时等式成立来证明恒等式的真实性。

6.利用三角恒等关系证明恒等式:三角恒等关系是三角函数中常见的等式,通过变换、代入等方法,可以将一个三角函数的恒等式转化为另一个等价的恒等式。

7.利用代数运算规律证明恒等式:例如利用加法运算的逆元、乘法运算的逆元以及分配律等运算规律,可以将一个等式转化为另一个等价的等式。

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。

初中数学知识点大全(全部知识内容)

初中数学知识点大全(全部知识内容)

初中数学知识点大全(全部知识内容)第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

初中八年级数学重点知识点

初中八年级数学重点知识点

初中八年级数学重点知识点全等三角形1.翻转平移后,两个能完全重叠的三角形叫做全等三角形,两个三角形的三边和三个角相等。

2.三角形全等的判定(1)SSS(边边边)三边对应相等的三角形是全等三角形。

(2)SAS(边角边)两边及其夹角对应相等的三角形是全等三角形。

(3)ASA(角边角)两个角和它们的边对应于三角形的同余。

(4)AAS(角角边)两个角和一个角的对边对应相等三角形的同余。

(5)RHS(直角、斜边、边)在一对直角三角形中,斜边及另一条直角边相等。

3.角平分线(1)从一个角的顶点画一条射线,分成两个相同的角。

这条射线叫做这个角的平分线。

(2)性质①角平分线分得的两个角相等,都等于该角的一半。

②角平分线上的点到角的两边的距离相等。

四边形1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4.三角形的中线平行于三角形的第三条边,等于第三条边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

AC=BD8.矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。

9.菱形的定义:邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)12.正方形的定义:有直角的菱形或等邻边的矩形。

七年级代数式知识点及例题

七年级代数式知识点及例题

七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。

本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。

一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。

其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。

二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。

同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。

将同类项相加或相减得到的结果称为合并同类项。

例如:2x²+3x²=5x²,6xy-2xy=4xy。

2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。

例如:3(x+2)=3x+6。

3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。

三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。

将给定的数值代入代数式中,然后通过基本运算得出最终结果。

例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。

2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。

例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。

四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。

解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。

2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。

解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。

将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。

3. 求解未知数:已知3x+2=8,求x的值。

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0

x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .

初中数学知识点总结加例题

初中数学知识点总结加例题

初中数学知识点总结加例题一、数与代数。

(一)有理数。

1. 概念。

- 有理数包括整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 数轴:规定了原点、正方向和单位长度的直线。

- 相反数:绝对值相等,符号相反的两个数。

例如,3和 - 3互为相反数。

- 绝对值:一个数在数轴上所对应的点与原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

- 减法:减去一个数等于加上这个数的相反数。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。

- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。

- 计算1 + 5=6。

(二)实数。

1. 无理数:无限不循环小数,如√(2)、π等。

2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。

例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。

- 然后计算2 + 3-π=5-π。

- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。

(三)代数式。

1. 整式。

- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

- 多项式:几个单项式的和叫做多项式。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

2. 整式的乘除。

- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。

初中八年级数学重点知识点

初中八年级数学重点知识点

一、代数与方程1.一元一次方程与一元一次方程的应用:-解一元一次方程;-列方程、解方程解决实际问题。

2.一元二次方程与勾股定理:-解一元二次方程;-利用勾股定理解决实际问题。

3.平方根与立方根:-计算平方根与立方根;-应用平方根与立方根解决实际问题。

4.整式的加减运算:-整式的合并同类项;-整式的加减运算。

5.等比数列与指数函数:-等比数列的概念与性质;-利用等比数列解决实际问题;-指数函数的基本概念与性质。

二、平面图形与空间几何1.直角三角形与勾股定理:-直角三角形的性质与判定;-勾股定理的概念与应用。

2.平行线与平行四边形:-平行线的性质与判定;-平行四边形的性质与判定。

3.三角形的面积公式:-三角形面积公式的推导与应用。

4.相似与全等:-三角形相似与全等的概念与判定;-利用相似与全等解决实际问题。

5.空间几何体的表面积与体积:-立方体、长方体、棱柱的表面积与体积;-表面积与体积的单位换算。

三、数据与概率1.数据的整理、分析与应用:-数据的调查与整理;-数据的统计与分析。

2.平均数与中位数:-平均数的计算与应用;-中位数的计算与应用。

3.概率的基本概念与计算:-事件的概念与概率的计算;-用频率估计概率。

四、函数的初步认识1.函数的概念与表示:-自变量、因变量与函数的关系;-函数的表示及函数解析式。

2.函数的图象与性质:-函数图象的初步认识;-函数的单调性、奇偶性与周期性。

以上仅列举了初中八年级数学的一些重点知识点,详细内容可以根据教材内容进行查阅。

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

初中八年级数学重点知识点

初中八年级数学重点知识点

八年级数学是一个重要的阶段,涉及的知识点较多。

下面是八年级数学的重点知识点:一、代数部分1.代数的基本运算:包括加减乘除四则运算,以及带有小数、分数和负数的运算。

2.一元一次方程:学会列方程和解方程的基本方法,掌握一步、两步、多项式方程的解法。

3.一元一次方程组:理解方程组的概念,学会解二元一次方程组的方法。

4.字母代数式的化简:掌握常见代数式的运算规律,如同底数幂相加、同底数幂相乘等。

二、图形部分1.平面图形:学习平面图形的性质,如三角形内角和、等腰三角形的性质、平行四边形的性质等,了解平面图形的证明方法。

2.空间图形:了解常见的空间图形的名称、性质和投影方法,如长方体、正方体、棱柱、棱锥等。

3.相似图形:了解相似图形的概念和判定方法,学会计算相似图形的边长比例和面积比例。

4.长度、面积和体积的计算:学习计算长方形、三角形、圆的周长和面积,以及长方体、正方体、棱柱、棱锥的体积。

三、函数部分1.函数的概念:了解函数的定义、定义域和值域,学会用图象、数表和解析式表示函数。

2.函数的性质:学习函数的奇偶性、单调性、最大值和最小值等性质,能够根据函数图象判断函数的性质。

3.函数的应用:掌握函数的实际应用,如函数的表示和解决问题的方法。

四、概率与统计部分1.概率的计算:学习计算多个事件的概率,掌握事件的互斥和独立性质,了解事件的发生与否的概率。

2.统计的基本概念:学习统计的方法和概念,包括数据的收集和整理,以及频率、中位数、众数和均值的计算。

五、其他部分1.数列的概念与性质:了解数列的概念和基本性质,学会计算等差数列和等比数列的通项和前n项和。

2.平面向量:学习平面向量的概念、运算法则和坐标表示。

3.数型思维与解题方法:学会运用数型思维解决实际问题,掌握解题方法和策略。

以上列举了八年级数学的重点知识点,这些知识点在数学学习中是必不可少的基础。

学生在学习过程中应重点理解掌握,并能够将其应用到解决实际问题中。

初中数学全部知识点和经典练习题 PPT课件 图文

初中数学全部知识点和经典练习题 PPT课件 图文

3.反比例函数
考试内容:
反比例函数;反比例函数的图像和性质;反 比例函数的应用。
考试要求 (1)结合具体情境体会反比例函数的意义,根据 已知条件确定反比例函数表达式。 (2)会画反比例函数的图像,根据图像和解析表 达式 探索并理解其性质(k>0或k<0时图像的变化 情况) (3)能用反比例函数解决简单的实际问题。
4.考查函数与其它知识点的联系
评:函数与方程、不等式等许多知识点的 结合,使函数的学习更加丰富而灵动。
5.考查函数的应用(1)代数应用
例1 (2008年安徽省)刚回营地的两个抢险分队又接 到救灾命令:一分队立即出发往30千米的A镇;二分 队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参 加救灾。一分队出发后得知,唯一通往A镇的道路在 离营地10千米处发生塌方,塌方地形复杂,必须由 一分队用1小时打通道路,已知一分队的行进速度为 5千米/时,二分队的行进速度为(4+a)千米/时。
库有粮食100吨,乙库有粮食80吨,而A库的容量为70
吨,B库的容量为110吨。从甲、乙两库到A、B两库的
路程和运费如下表(表中“元/吨·千米”表示每吨
粮食运送1千米所需人民币)
路程(千米) 运费(元/吨·千米)
甲库 乙库 甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
②①当若甲甲、库乙运两往库A库各粮运食往吨A、,B请两写库出多将少粮吨食粮运食往时A,、总B两运 费库最的省总,运最费省y(的元总)运与费x是(多吨少)?的函数关系式
③②①若当判平顶断行点△于MA轴B的M的坐的直标形线为状与(,抛-并物2说,线明-交理1于)由C时。、,D求两抛点物,线以 C的D解为析直式径,的并圆画恰出好该与抛轴物相线切的,大求致该图圆形的。圆心坐标。

初中数学重点知识梳理整数与有理数的运算

初中数学重点知识梳理整数与有理数的运算

初中数学重点知识梳理整数与有理数的运算整数与有理数的运算是初中数学中的重点知识之一。

掌握好这一知识点对学习后续的数学内容具有重要意义。

本文将对初中数学中整数与有理数的运算进行梳理,并给出相关例题分析。

一、整数的四则运算整数的四则运算包括加法、减法、乘法和除法。

下面我们逐个进行讲解。

1. 加法运算整数的加法运算遵循以下规律:- 两个正整数相加,结果为正整数;- 两个负整数相加,结果为负整数;- 正整数与负整数相加,结果的符号取决于绝对值较大的整数的符号,并取大的绝对值。

2. 减法运算减法运算是加法运算的逆运算。

整数的减法运算可以转化为加法运算,即将减法转化为加法。

例如:a-b = a+(-b)。

3. 乘法运算整数的乘法运算符合以下规律:- 两个正整数相乘,结果为正整数;- 两个负整数相乘,结果为正整数;- 正整数与负整数相乘,结果为负整数。

4. 除法运算整数的除法运算遵循以下规律:- 两个正整数相除,结果为正整数或有限小数;- 两个负整数相除,结果为正整数或有限小数;- 正整数与负整数相除,结果为负整数或有限小数。

二、有理数的四则运算有理数的四则运算是对整数运算规律的扩展。

有理数包括整数和分数。

1. 加法运算有理数的加法运算法则如下:- 同号有理数相加,结果的符号与加数相同,绝对值为两数绝对值之和;- 异号有理数相加,结果的符号取决于绝对值较大的数的符号,并取大的绝对值。

2. 减法运算有理数的减法运算可以转化为加法运算。

即a-b可转化为a+(-b)。

3. 乘法运算有理数的乘法运算规律如下:- 两个有理数相乘,结果的符号由两个因数的符号决定;- 绝对值为两个因数的绝对值之积。

4. 除法运算有理数的除法运算符合以下规律:- 两个非零有理数相除,结果的符号由两个因数的符号决定;- 绝对值为两个因数绝对值的商。

三、运算顺序与计算技巧进行整数和有理数的运算时,需要注意运算顺序和相应的计算技巧:1. 运算顺序按照数学运算的先后顺序进行计算。

初二数学知识点归纳和练习题

初二数学知识点归纳和练习题

初二数学知识点归纳和练习题数学是一门重要且广泛应用于现实生活和各个学科领域的学科。

在初中阶段,数学知识的掌握对学生的学习和发展至关重要。

本文将针对初二数学课程中的主要知识点进行归纳和练习题,帮助学生巩固所学知识并提升解题能力。

一、代数运算1. 整数与有理数的运算- 加减法:同号相加,异号相减,结果的符号由绝对值较大的数决定。

- 乘法:同号取正,异号取负。

- 除法:除法的规则与乘法相同。

【例题】计算:(-5) × 3 - 2 × (-4) + (-1) × 62. 分数的运算- 分数的加减法:通分后,分子相加或相减,分母不变。

- 分数的乘法:分子相乘,分母相乘。

- 分数的除法:乘以倒数。

【例题】计算:3/4 + 2/5 - 1/6二、几何1. 几何图形的认识- 点、线、线段、射线、角等几何基本概念的理解和区分。

- 三角形、四边形、多边形等各种图形的特点。

【例题】判断下列图形是否是多边形:长方形、圆、五角星、菱形2. 角的性质- 相关角的性质- 平行线与转角- 锐角、钝角、直角的概念【例题】若角A的角度是45°,角B的补角是135°,求角A和角B 的关系。

三、函数与方程1. 一元一次方程- 一元一次方程的基本概念及解法。

- 一元一次方程在实际问题中的应用。

【例题】解方程3x - 5 = 102. 一元一次不等式- 一元一次不等式的基本概念及解法。

- 不等式在实际问题中的应用。

【例题】求解不等式2x + 4 ≤ 10四、统计与概率1. 数据的收集与整理- 调查、观察、实验等方式的数据收集。

- 数据的整理和图表的绘制。

【例题】某班级进行了一次问卷调查,调查结果如下:喜欢数学的学生人数为15人,不喜欢数学的学生人数为9人,其他学科也喜欢的学生人数为5人。

请绘制一张条形统计图表示上述情况。

2. 概率与事件- 基本概率公式:事件发生的可能性 = 有利结果数 / 总结果数。

中考数学知识点总结 实数 (6大知识点+例题) 新人教版

中考数学知识点总结 实数 (6大知识点+例题) 新人教版

中考数学知识点总结 实数 (6大知识点+例题) 新人教版基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

初中数学重点考点

初中数学重点考点

初中数学重点考点一、整数知识点1. 整数的概念和表示方法整数是由正整数、负整数和零组成的数集。

整数可以用带正负号的数表示,正整数前可不写正号,负整数前要写负号。

2. 整数的比较和大小关系对于两个整数 a 和 b,若 a > b,则称 a 大于 b;若 a < b,则称 a 小于 b;若 a = b,则称 a 和 b 相等。

3. 整数的加、减运算①两个正整数相加,结果仍为正整数;②两个负整数相加,结果仍为负整数;③正整数与负整数相加,结果的符号由绝对值较大的整数决定;④整数的减法可以通过加法变换为加法运算;⑤减一个整数等于加这个整数的相反数。

4. 整数的乘法和除法①两个整数相乘,符号由因数中负数的个数决定,负数的个数为奇数时,结果为负,负数的个数为偶数时,结果为正;②两个整数相除,同号得正,异号得负;③整数除以零没有意义。

5. 整数的混合运算整数的混合运算可以按照先乘除后加减的原则进行,也可以用括号改变运算次序。

二、平面图形知识点1. 点、线、面和体点是没有长、宽、高的,是几何图形的最基本元素;线是由一串连续的点组成的,没有宽度;面是由一定数量的线段所围成的,具有长和宽,但没有高度;体是由一定数量的面所围成的,具有三个维度:长、宽和高。

2. 角的概念和分类角是由两条射线共同起点组成的,可以用大写字母表示;角按大小可以分为锐角、直角、钝角和平角。

3. 直线、射线和线段的区别直线是由无数个点连成的,没有端点;射线有一个起点,通过起点的所有点都属于射线,没有终点;线段有两个端点,线段上的点是有限的。

4. 平行线和垂直线平行线是永远不相交的两条直线,它们的斜率相等;垂直线是相交成直角的两条直线。

5. 三角形和四边形三角形是由三条线段所围成的图形,根据边和角的性质可以分类为等边三角形、等腰三角形、直角三角形等;四边形是由四条线段所围成的图形,根据边和角的性质可以分类为矩形、正方形、平行四边形等。

初中数学知识要点及典型例题

初中数学知识要点及典型例题

初中数学知识要点及典型例题第一章实数第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值课标要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。

实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数.【例题经典】理解实数的有关概念例1 ①a 的相反数是-15,则a 的倒数是_______.②实数a 、b 在数轴上对应点的位置如图所示:0a b则化简│b-a │=______.③去年市林业用地面积约为10200000亩,用科学记数法表示为约______________________.例2.(-2)3与-23( ).(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 分析:考查相反数的概念,明确相反数的意义。

初中数学常考的知识点待定系数法

初中数学常考的知识点待定系数法

初中数学常考的知识点待定系数法待定系数法是初中数学中常用的一种解题方法,它主要用于解决带有未知系数的方程问题。

通过设定未知系数,列出方程,再根据已知条件以及方程的性质进行求解。

接下来,我将从待定系数法在一元一次方程、一元二次方程、及数列中的应用等方面进行详细介绍。

在初中数学中,一元一次方程通常是最早接触到的方程类型。

待定系数法可以用来解决一元一次方程中的问题。

例如,如下的一道例题:例题1:有一个三位数,各位数字之和为9,将它的各位数字反过来得到一个不同的三位数,再将这两个三位数相加,得到1332,求原数。

解析:设这个三位数为100a+10b+c,反过来得到的三位数为100c+10b+a。

根据已知条件列出方程为:(100a+10b+c)+(100c+10b+a)=1332化简得:101a+20b+101c=1332由于方程中含有三个未知数a、b和c,我们可以设定一个待定系数,假设a为一个未知数。

那么b和c就可以通过1332-101a得到。

代入方程可得:101a+20(1332-101a)+101(1332-101a)=1332解这个一元一次方程可得:a=144根据所设待定系数,可将b和c代入求得:b=10,c=18通过这道题目的解答过程不难看出,待定系数法在一元一次方程中的应用既能简化方程的形式,又能得到未知数的值,大大提高了问题的解答效率。

一元二次方程是初中数学中的重点和难点,待定系数法在解决一元二次方程问题中提供了一种有效的思路。

下面以一道例题为例进行解析:例题2:已知一元二次方程 x^2 + ax +b =0 的两根α 和β 之和等于 -1,乘积等于 3、求这个二次方程的解析式。

解析:设方程的解析式为 x^2 + ax +b =0,根据题目中所给条件,可以列出方程为:x^2 + ax + b = (x-α)(x-β) = 0展开得:x^2-(α+β)x+αβ=0根据题目中给出的条件α+β=-1和αβ=3,代入方程可得:x^2-(-1)x+3=0即:x^2+x+3=0所以这个二次方程的解析式为x^2+x+3=0。

初中数学知识点大全 中考必背核心考点

初中数学知识点大全 中考必背核心考点

初中数学知识点大全中考必背
核心考点
初中无理数知识点
在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0....等;
(4)某些三角函数,如sin60o等
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.
中考数学重点知识点
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

初中数学重点梳理:含绝对值的方程及方程组

初中数学重点梳理:含绝对值的方程及方程组

含绝对值方程知识定位绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程,本节我们通过一些实例的求解,旨在介绍数学竞赛中含绝对值方程的常见题型及其求解方法,本讲将通过例题来说明这些方法的运用。

知识梳理1、含绝对值的一次方程的解法(1)形如(0)ax b c a +=≠型的绝对值方程的解法:①当0c <时,根据绝对值的非负性,可知此时方程无解;②当0c =时,原方程变为0ax b +=,即0ax b +=,解得b x a=-; ③当0c >时,原方程变为ax b c +=或ax b c +=-,解得c b x a -=或c b x a--=. (2)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的非负性可知0cx d +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个方程ax b cx d +=+和()ax b cx d +=-+; ③分别解方程ax b cx d +=+和()ax b cx d +=-+;④将求得的解代入0cx d +≥检验,舍去不合条件的解.(3)形如(0)ax b cx d ac +=+≠型的绝对值方程的解法:①根据绝对值的定义将原方程化为两个方程ax b cx d +=+或()ax b cx d +=-+; ②分别解方程ax b cx d +=+和()ax b cx d +=-+. (4)形如()x a x b c a b -+-=<型的绝对值方程的解法:①根据绝对值的几何意义可知x a x b a b -+-≥-; ②当c a b <-时,此时方程无解;当c a b =-时,此时方程的解为a x b ≤≤;当c a b >-时,分两种情况:①当x a <时,原方程的解为2a b c x +-=; ②当x b >时,原方程的解为2a b c x ++=. (5)形如(0)ax b cx d ex f ac +±+=+≠型的绝对值方程的解法:①找绝对值零点:令0ax b +=,得1x x =,令0cx d +=得2x x =; ②零点分段讨论:不妨设12x x <,将数轴分为三个区段,即①1x x <;②12x x x ≤<;③2x x ≥;③分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.(6)形如(0)ax b cx d ex f a +++=+≠型的绝对值方程的解法:解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:①根据绝对值的非负性可知0ex f +≥,求出x 的取值范围;②根据绝对值的定义将原方程化为两个绝对值方程()ax b ex f cx d +=+-+和 ()()ax b ex f cx d +=-+-+;③解②中的两个绝对值方程.例题精讲【试题来源】【题目】若关于x 的方程||x-2|-1|=a 有三个整数解.则a 的值是多少?【答案】a=1【解析】 解: 若a <0,原方程无解,所以a ≥0.由绝对值的定义可知|x-2|-1=±a ,所以 |x-2|=1±a .(1) 若a >1,则|x-2|=1-a <0,无解|x-2|=1+a ,x 只能有两个解x=3+a 和x=1-a .(2) 若0≤a ≤1,则由|x-2|=1+a ,求得x=1-a 或x=3+a ;由|x-2|=1-a ,求得x=1+a 或x=3-a .原方程的解为x=3+a ,3-a ,1+a ,1-a ,为使方程有三个整数解,a 必为整数,所以a 只能取0或1.当a=0时,原方程的解为x=3,1,只有两个解,与题设不符,所以a ≠0.当a=1时,原方程的解为x=4,0,2,有三个解.综上可知,a=1.【知识点】含绝对值方程【适用场合】当堂例题【难度系数】4【试题来源】【题目】已知方程|x|=ax+1有一负根,且无正根,求a的取值范围【答案】a≥1【解析】解:设x为方程的负根,则-x=ax+1,即所以应有a>-1,反之,a>-1时,原方程有负根.设方程有正根x,则x=ax+1,即所以a<1,反之,a<1时,原方程有正根.综上可知,若使原方程有一负根且无正根,必须a≥1【知识点】含绝对值方程【适用场合】当堂练习【难度系数】3【试题来源】【题目】当a取哪些值时,方程|x+2|+|x-1|=a有解?【答案】a≥3【解析】解:(1)当x≤-2时,|x+2|+|x-1|=-2x-1≥-2(-2)-1=3.(2)当-2<x<1时,|x+2|+|x-1|=x+2-x+1=3.(3)当x≥1时,|x+2|+|x-1|=2x+1≥2·1+1=3.所以,只有当a≥3时,原方程有解【知识点】含绝对值方程【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是【答案】0【解析】解:根据关于x的方程|5x﹣4|+a=0无解,可得出:a>0,由|4x﹣3|+b=0有两个解,可得出:b<0,由|3x﹣2|+c=0只有一个解,可得出:c=0,故|a﹣c|+|c﹣b|﹣|a﹣b|可化简为:|a|+|b|﹣|a﹣b|=a﹣b﹣a+b=0【知识点】含绝对值方程【适用场合】当堂练习题【难度系数】3【试题来源】(北京市“迎春杯”竞赛题)【题目】│x+3│-│x-1│=x+1;【答案】为x=-5,-1,3【解析】解:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.【知识点】含绝对值方程【适用场合】当堂例题【难度系数】3【试题来源】(第15届江苏省竞赛题)【题目】已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.【答案】-3,6【解析】解:|x+2|+|1-x|=9-|y-5|-|1+y|,∴|x+2|+|1-x|+|y-5|+|1+y|=9,(1)当x≥1,y≥5时,x+2+x-1+y-5+y+1=9,2x+2y=12,x+y=6,(2)当-2≤x<1,-1≤y<5时,x+2+1-x+5-y+y+1=9,但-3≤x+y<6,(3)当x<-2,y<-1时,-x-2+1-x+5-y-1-y=9,-2x-2y=6,x+y=-3,故x+y最小值为-3,最大值为6.【知识点】含绝对值方程【适用场合】当堂练习题【难度系数】4【试题来源】【题目】讨论方程││x+3│-2│=k的解的情况【答案】如下解析【解析】解:(1)当k<0时,原方程无解(2)当k=0时,原方程有两解:x=-1或x=-5;(3)当0<k<2时,原方程化为│x+3│=2±k此时原方程有四解:x=-3±(2±k);(4)当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;(5)当k>2时,原方程有两解:x+3=±2(•2+k).【知识点】含绝对值方程【适用场合】当堂例题【难度系数】4【试题来源】(“华杯赛”邀请赛试题)【题目】设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.【答案】b=±3【解析】解:由题意得|x-a|=b±3,x-a=±(b±3)x-a=b+3,b-3,-b+3,-b-3有三个则其中两个相等,b+3和b-3,-b+3和-b-3不会相等所以b+3=-b+3,即b=0此时只有两个3和-3所以b+3=-b-3,即b=-3此时是0,-6,6,成立,b-3=-b+3,即b=3此时是0,-6,6,成立,b-3=-b-3,即b=0此时只有两个3和-3所以b=±3【知识点】含绝对值方程【适用场合】当堂练习题【难度系数】4【试题来源】【题目】若关于的方程|1﹣x|=mx有解,则实数m的取值范围【答案】m≥0或m<﹣1【解析】解: |1﹣x|=mx,①当x≥1时,x﹣1=mx,(1﹣m)x=1,m≠1时,x=,∴≥1,解得:0<m<1;②当x<1时,1﹣x=mx,(1+m)x=1,m≠﹣1时,x=,<1,∴1+m<0或1+m≥1,∴m<﹣1或m≥0;综上所述:解集是:m≥0或m<﹣1.【知识点】含绝对值方程【适用场合】当堂例题【难度系数】4【试题来源】【题目】已知关于x的方程|x+3|+|x﹣6|=a有解,那么a的取值范围是【答案】a≥9【解析】解:(1)当x≥6时,原方程化为x+3+x﹣6=a,∴x=≥6∴a≥9(2)当﹣3≤x<6时,原方程化为﹣x﹣3﹣x+6=a,∴x=<﹣3,∴a>9(3)当x<﹣3时,原方程化为﹣x﹣3+6﹣x=a∴x=<﹣3∴a>9综上,a≥9方程有解【知识点】含绝对值方程【适用场合】当堂练习题【难度系数】3【试题来源】【题目】已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是【答案】a>1或a≤﹣1【解析】解:①当ax﹣a≥0,a(x﹣1)>0,解得:x≥1且a≥0或x≤1且a≤0,②正根条件:x>0,x=ax﹣a,即x=>0,解得:a>1 或a<0,由①,即得正根条件:a>1且x≥1,或者a<0,0<x≤1,③负根条件:x<0,得:﹣x=ax﹣a,解得:x=<0,即﹣1<a<0,由①,即得负根条件:﹣1<a<0,x<0,根据条件:只有正根,没有负根,因此只能取a>1(此时x≥1,没负根),或者a≤﹣1(此时0<x≤1,没负根)综合可得,a>1或a≤﹣1【知识点】含绝对值方程【适用场合】当堂例题【难度系数】4【试题来源】【题目】适合|2a+7|+|2a﹣1|=8的整数a的值的个数有【答案】﹣3,﹣2,﹣1,0【解析】解:(1)当2a+7≥0,2a﹣1≥0时,可得|2a+7|+|2a﹣1|=8,2a+7+2a﹣1=8解得a=0.5解不等式2a+7≥0,2a﹣1≥0得,a≥﹣3.5,a≥0.5,所以a≥0.5,而a又是整式,故a=0.5不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得|2a+7|+|2a﹣1|=8,﹣2a﹣7﹣2a+1=8解得a=﹣3.5解不等式2a+7≤0,2a﹣1≤0得,a≤﹣3.5,a≤0.5,所以a≤﹣3.5,而a又是整数,故a=﹣3.5不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得|2a+7|+|2a﹣1|=8,2a+7﹣2a+1=8解得a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣3.5,a≤0.5,所以﹣3.5≤a≤0.5,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得|2a+7|+|2a﹣1|=8,﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0【知识点】含绝对值方程【适用场合】当堂例题【难度系数】5习题演练【试题来源】【题目】方程|3x|+|x﹣2|=4的解的个数是【答案】2【解析】解:①当x≥2时,由原方程,得3x+x﹣2=4,即4x﹣2=4,解得x=3/2(舍去);②当0<x<2时,由原方程,得3x﹣x+2=4,解得x=1;③当x<0时,由原方程,得﹣3x﹣x+2=4,解得x=﹣.综上所述,原方程有2个解【知识点】含绝对值方程【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个【答案】0,1【解析】解:从三种情况考虑:第一种:当x≥4/3时,原方程就可化简为:3x﹣4+3x+2=6,解得:x=4/3;第二种:当﹣2/3<x<4/3时,原方程就可化简为:﹣3x+4+3x+2=6,恒成立;第三种:当x≤﹣2/3时,原方程就可化简为:﹣3x+4﹣3x﹣2=6,解得:x=﹣2/3;所以x的取值范围是:﹣2/3≤x≤4/3,故符合条件的整数位:0,1【知识点】含绝对值方程【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个【答案】2【解析】解:根据题意,知(1)|x﹣2|﹣|x﹣6|=1,①当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=1,解得x=﹣1,不合题意,舍去;②当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=1,即﹣4=1,显然不成立;③当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=1,解得x=4.5;(2)|x﹣2|﹣|x﹣6|=﹣1,④当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=﹣1,解得x=﹣3,不合题意,舍去;⑤当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=﹣1,即﹣4=﹣1,显不成立;⑥当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=﹣1,解得x=3.5;综上所述,原方程的解是:x=4.5,3.5,共有2个【知识点】含绝对值方程【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则A.0,2,4全是根 B.0,2,4全不是根 C.0,2,4不全是根 D.0,2,4之外没有根【答案】A【解析】解:①当x≥4时,原方程化为x﹣4=0,解得x=4,在所给的范围x≥4之内,x=4是原方程的解;②当3≤x<4时,原方程化为4﹣x=0,解得x=4,不在所给的范围3≤x<4之内,x=4不是原方程的解;③当2≤x<3时,原方程化为x﹣2=0,解得x=2,在所给的范围2≤x<3之内,x=2是原方程的解;④当1≤x<2时,原方程化为2﹣x=0,解得x=2,不在所给的范围1≤x<2之内,x=2不是原方程的解;⑤当0≤x<1时,原方程化为x=0,在所给的范围0≤x<1之内,x=0是原方程的解;⑥当﹣1≤x<0时,原方程化为x=0,不在所给的范围﹣1≤x<0之内,x=0不是原方程的解;⑦当﹣2≤x<﹣1时,原方程化为x+2=0,解得x=﹣2,在所给的范围﹣2≤x<﹣1之内,x=﹣2是原方程的解;⑧当x<﹣2时,原方程化为﹣2﹣x=0,解得x=﹣2,不在所给的范围x<﹣2之内,x=﹣2不是原方程的解.综上,可知原方程的解为x=4,2,0,﹣2.故选A.【知识点】含绝对值方程【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】使方程|x﹣1|﹣|x﹣2|+2|x﹣3|=c恰好有两个解的所有实数c的取值范围【答案】c>3或1<c<3【解析】解:(1)当x<1时,原方程可化为:﹣x+1+x﹣2﹣2x+6=c,解得:x=,由<1,得:c>3;(2)当1≤x<2时,原方程可化为:x﹣1+x﹣2﹣2x+6=c,解得:c=3,有无数多解;(3)当2≤x<3时,原方程可化为:x﹣1﹣x+2﹣2x+6=c,解得:x=,由2≤<3,得:1<c≤3;(4)当x≥3时,原方程可化为:x﹣1﹣x+2+2x﹣6=c,解得:x=,由≥3,得:c ≥1.故当c>3时,原方程恰有两解:,;当1<c<3时,原方程恰有两解:,.故答案为:c>3或1<c<3【知识点】含绝对值方程【适用场合】随堂课后练习【难度系数】3含绝对值的方程组知识定位绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程,本讲主要介绍解含有绝对值的方程四种方法:定义法、平方法、零点分区法、数轴、取这几个方程的公共解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2013•遵义)如果+30m表示向东走30m,那么向西走40m表示为()A.+40m B.-40m C.+30m D.-30m显示解析试题篮(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位 D.精确到百万位VIP显示解析试题篮(2013•张家界)-2013的绝对值是()A.-2013 B.2013 C.12013D.-12013显示解析试题篮(2013•湛江)下列各数中,最小的数是()A.1 B.12C.0 D.-1显示解析试题篮(2013•湛江)国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为()A.213×106 B.21.3×107 C.2.13×108 D.2.13×109显示解析试题篮(2013•云南)-6的绝对值是()A.-6 B.6 C.±6 D.-16显示解析试题篮(2013•玉林)2的相反数是()A.2 B.-2 C.12D.-12显示解析试题篮(2013•玉林)我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨B.67.5×103吨C.6.75×104吨D.6.75×105吨显示解析试题篮(2013•永州)-12013的倒数为()A.12013B.-12013C.2013 D.-2013显示解析试题篮(2013•营口)据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为()A.5.475×1011 B.5.475×1010C.0.5475×1011 D.5475×108一、选择题.1.图中三角形的个数是()A.8个B.9个C.10个D.11个显示解析2.如图,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC是()A.△ABB′的边BB′上的中线B.△ABB′的边BB′上的高C.∠BAB′的平分线D.以上三种说法都正确显示解析3.如图,D,E分别是△ABC的边AC,BC的中点,则下列说法错误的是()A.DE是△BCD的中线 B.BD是△ABC的中线C.AD=DC,BE=EC D.∠C的对边是DE☆☆☆☆☆显示解析4.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.12cm2 D.14cm2★★☆☆☆显示解析5.已知三角形的两边长分别为5cm和8cm,则第三边的长度可能是()A.13cm B.6cm C.3cm D.2cm显示解析6.已知三条线段可以组成三角形,那么,它们的长度比可能是()A.1:2:4 B.1:3:4 C.3:4:7 D.2:3:4显示解析7.下列说法不正确的是()A.正多边形的各边都相等B.各边都相等的多边形是正多边形C.正三角形就是等边三角形D.六个角都相等的六边形是正六边形显示解析8.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13 B.17 C.22 D.17或22显示解析9.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个显示解析二、填空题.10.如图,图中三角形的个数为个,在△ABE中,AE所对的角是,∠ABC所对的边是,AD在△ADE中,是的对边,在△ADC中,AC是的对边.显示解析11.如图,已知∠1=12∠BAC,∠2=∠3,则∠BAC的平分线为,∠ABC的平分线为.显示解析12.如图,D、E是边AC的三等分点,则BD是三角形中边上的中线,BE是三角形中边上的中线.显示解析13.在△ABC中,AD是中线,则△ABD的面积△ACD的面积.(填“>”,“<”或“=”)★☆☆☆☆显示解析14.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 度.★☆☆☆☆显示解析15.一个等边三角形的角平分线、高、中线的总条数为条.显示解析16.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB、CD两个木条),这样做根据的数学道理是.★★★☆☆显示解析三、解答题.17.在等腰三角形ABC中,AD是底边上的中线,△ABC的周长为36cm,△ABD的周长为30cm,求AD的长.显示解析18.一块三角形花园,现在需要将这块地分成面积相等的四块分别种植不同的植物,请你设计出两种划分方案供选择,并画图说明.1.先化简,再求值.(1)3x3-[x3+(6x2-7x)]-2(x3-2x2-4x),其中x=-1;(2)5x2-(3y2+7xy)+(2y2-5x2),其中x=17,y=-12.显示解析二、解答.2.一个多项式加上5x2+3x-2的2倍得1-3x2+x,求这个多项式.显示解析3.如果关于x的多项式x4-(a-1)x3+5x2-(b+1)-1不含x3项和x项,求a,b的值.显示解析4.观察式子:a1=1×5+4=9,a2=2×6+4=16,a3=3×7+4=25,a4=4×8+4=36,…,请你猜想a15的形式是怎样的,值为多少?并用含有n的式子表示an.显示解析5.人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220-a).(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么?显示解析6.某商场计划投入一笔资金采购一批紧销商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利到月末在前次获利基础上又可获利10%.如果月末出售获利30%,但要付存储费700元.(1)若商场投入x元,请分别写出这两种方式的获利情况.(2)若商场准备投入3 000元,你认为应采用哪种方法较好?1.在下列各数中是无理数的有()3π,-0.333…,5,4,3.1415,2.010101…,76.0123456…(小数部分由相继的正整数组成).A.3个 B.4个C.5个D.6个显示解析2.边长为1的正方形的对角线的长是()A.整数 B.分数 C.有理数D.无理数☆☆☆☆☆显示解析3.如图,三个正方形围成一个直角三角形,64,400分别为所在正方形的面积,则图中字母所代表的正方形面积是()A.400+64 B.4002−642C.400-64 D.4002-642☆☆☆☆☆显示解析4.下列平方根中,已经化简的是()A.13B.20C.22D.121显示解析5.3的算术平方根是()A.3 B.-3 C.±3D.3显示解析6.如果一个数的立方根是这个数本身,那么这个数是()A.1 B.-1 C.±1 D.±1,0显示解析7.下列说法中正确的是()A.带根号的数都是无理数B.不带根号的数一定是有理数C.无理数是无限不循环小数D.无限小数都是无理数☆☆☆☆☆显示解析8.下列各式中正确的是()A.48−3=33B.9=±3 C.(−2)2=4 D.(−7)2=−7显示解析9.点P(-1,-3)关于y轴对称的点的坐标是()A.(-1,3)B.(1,3)C.(3,-1)D.(1,-3)显示解析10.下列4组数中,不能构成直角三角形的是()A.20,21,29 B.16,28,34C.3a,4a,5a(a>0)D.5,12,13显示解析二、仔细填一填(本大题共10个横线;每个横线3分,共30分)11.等腰三角形的腰长10cm,底边上的高是8cm,则这个三角形的底边为cm.显示解析12.大于−5且小于3的所有整数是.显示解析13.绝对值等于2的数是,81的平方根是.显示解析14.化简:|3.14-π|= .☆☆☆☆☆显示解析15.点A(x,y)是平面直角坐标系中的一点,若xy<0,则点A在第象限;若x=0,则点在.显示解析16.直角三角形两直角边长分别为5和12,则它斜边上的高为.☆☆☆☆☆显示解析17.若将三个数−3,7,15表示在数轴上,其中能被如图所示的墨迹覆盖的数是.显示解析18.观察下列各式:①1+13=213,②2+14=314,③3+15=415,…,根据以上规律,第n个等式应为:.显示解析三、用心画一画(每小题6分,共12分,保留作图痕迹)19.平面直角坐标系中,铅笔图案的五个顶点的坐标分别是(0,1),(4,1),(5,1.5),(4,2),(0,2).(1)描出铅笔图案的五个顶点在坐标系中的位置,并顺次连接各点形成铅笔图案;(2)将(1)图案向左平移5个单位,再向下平移3个单位,请作出平移后的图案.显示解析20.在数轴上作出10,并在4×4方格中作出面积为10的正方形.五、简答题(共14分,写出必要文字说明和计算步骤)23.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13.问AD⊥AB吗?试说明理由.显示解析24.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm.1.下列计算正确的是()A.(ab)6÷(ab)2=(ab)3 B.(-x)5÷(-x)3=-x2C.(y5)2÷y5=y2 D.(b5)4÷(b4)5=1显示解析2.下列计算正确的是()A.8x2÷2x2=4x2 B.-21m3n÷7mn=-3m3C.12x4y2÷(-2x2y)=-14x2y D.6x2y÷(-12xy)=-2x显示解析3.(6x4+5x2-3x)÷(-3x)的结果是()A.-2x3+5x2-3x B.-2x3-5x2+3xC.−2x3−53x+1 D.−2x2−53x显示解析4.下列计算正确的是()A.(mn)5÷(mn)3=mn2 B.1010÷1010=0C.(x+y)6÷(x+y)3•(x+y)2=x+y D.(m-3n)3÷(-m+3n)3=-1 显示解析5.计算[(-a2)3-3a2(-a2)]÷(-a)2的结果是()A.-a3+3a2 B.a3-3a2 C.-a4+3a2 D.-a4+a2显示解析二、填空题6.已知am÷a5=a2,则m= .显示解析7.()•(2xy2)=-43x3y2z.显示解析8.(4x3+8x2-12x)÷(-4x)= .显示解析9.()÷3a2=-2a3+3a-1.显示解析10.已知10x=3,10y=2,则102x-3y= .显示解析三、解答题11.计算:(1)x8÷x3•x2;(2)(-a4)3÷(a2)3÷a;(3)(-13)6÷(13)0÷(13)3;(4)(x+y)5÷(-x-y)3•(x-y)2.显示解析12.计算:(1)3x•(4x2y)2÷8xy;(2)6a7b8c÷(-2ab)•(12a);(3)(25y3-7xy2+23y5)÷(23y2);(4)(-15x3y+12xy2-xy)÷(-xy).显示解析13.先化简,再求值:[2a(a2b-ab2)+ab(ab-a2)]÷a2b,其中a=2006,b=2000.显示解析14.一个多项式乘3x,再加上x2-3x,得3x3-5x2,求这个多项式.显示解析15.(1)若33•9m+4÷272m-1的值为729,试求m的值;(2)已知3m=4,3m-4n=481,求2008n的值.中,是分式方程的有()A.4个B.3个C.2个D.1个3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()二、填空题(共1小题,每小题0分,满分0分)4.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.一、因式分解变式练习1.下面式子从左边到右边的变形是因式分解的是()A.x2-x-2=x(x-1)-2 B.(a+b)(a-b)=a2-b2C.x2-4=(x+2)(x-2) D.x-1=x(1-1x)☆☆☆☆☆显示解析2.下列等式从左到右的变形,属于因式分解的是()A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)显示解析3.下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y) D.4x2-2xy+y2=(2x-y)2显示解析4.如果81-xn=(9+x2)(3+x)(3-x),那么n的值为()A.2 B.4 C.5 D.6显示解析5.如果x-3是多项式2x2-5x+m的一个因式,则m等于()A.6 B.-6 C.3 D.-3显示解析二、填空题(共1小题)6.多项式x2+mx+5因式分解得(x+5)(x+n),则m= ,n= .1.五边形的内角和为()A.720°B.540°C.360°D.180°显示解析2.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个显示解析二、填空题(共2小题,每小题3分,满分6分)3.若一个多边形内角和等于1260°,则该多边形边数是.显示解析4.一个多边形所有内角都是135°,则这个多边形的边数为.显示解析三、解答题(共2小题,满分0分)5.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.☆☆☆☆☆显示解析6.一个多边形除去一个内角后,其余所有内角之和为1660°,试求这个多边形的边数.1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.18显示解析2.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24° C.30° D.36°显示解析3.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A.AAS B.SAS C.ASA D.SSS显示解析4.如图,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是()A.∠EAM=∠FAN B.BE=CF C.△ACN≌△ABM D.CD=DN显示解析5.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()A.两条边长分别为4,5,它们的夹角为βB.两个角是β,它们的夹边为4C.三条边长分别是4,5,5D.两条边长是5,一个角是β显示解析6.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD显示解析二、填空题(共4小题,每小题3分,满分12分)7.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= .显示解析8.在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是的.(填“正确”或“错误”)显示解析9.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a 于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为.显示解析10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.☆☆☆☆☆显示解析三、解答题(共3小题,满分0分)11.已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE 边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.求证:BE=CF.显示解析12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?VIP显示解析13.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE= .(2)设∠BAC=α,∠DCE=β:①如图1,当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B、C重合)移动时,α与β之间有什么数量关系?请直接写出你的结论1.在把a2x+ay-a2xy分解因式时,应提取的公因式是()A.a2 B.a C.ax D.ay显示解析2.观察下列各组式子,有公因式的是()①a+b和2a+b;②5m(a-b)和-a+b;③3(a+b)和-a-b;④(a+b)2和a2+b2.A.①②B.②③ C.③④ D.①④显示解析3.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.-1-3x+4y B.1+3x-4y C.-1-3x-4y D.1-3x-4y显示解析二、填空题(共2小题,每小题3分,满分6分)4.多项式-2ab+4a2b3的公因式是,另一个因式是.显示解析5.因式分解:(1)2x2-4x= ;(2)3ab2-a2b= .显示解析三、解答题(共1小题,满分0分)6.把下列各式因式分解:(1)-20a-15ax;(2)-4a3b3+6a2b-2ab;(3)-10a2bc+15bc2-20ab2C.1.下列各式从左到右的变形,正确的是()A.-x-y=-(x-y)B.-a+b=-(a+b)C.(y-x)2=(x-y)2 D.(a-b)3=(b-a)3显示解析2.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2☆☆☆☆☆显示解析3.把10a2(x+y)2-5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2 C.5(x+y)2 D.5a(x+y)2显示解析4.将多项式a(b-2)-a2(2-b)因式分解的结果是()A.(b-2)(a+a2)B.(b-2)(a-a2) C.a(b-2)(a+1)D.a(b-2)(a-1)显示解析5.下列因式分解正确的是()A.mn(m-n)-m(n-m)=-m(n-m)(n+1)B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)D.3x(x+y)-(x+y)2=(x+y)(2x+y)显示解析二、填空题(共5小题,每小题3分,满分15分)6.把多项式(x-2)2-4x+8因式分解开始出现错误的一步是解:原式=(x-2)2-(4x-8)…A=(x-2)2-4(x-2)…B=(x-2)(x-2+4)…C=(x-2)(x+2)…D.显示解析7.(1)-xy2(x+y)3+x(x+y)2的公因式是;(2)4x(m-n)+8y(n-m)2的公因式是.显示解析8.分解因式:(x+3)2-(x+3)= .☆☆☆☆☆显示解析9.因式分解:n(m-n)(p-q)-n(n-m)(p-q)= .显示解析10.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .显示解析三、解答题(共6小题,满分0分)11.将下列各式因式分解:(1)5a3b(a-b)3-10a4b3(b-a)2;(2)(b-a)2+a(a-b)+b(b-a);(3)(3a-4b)(7a-8b)+(11a-12b)(8b-7a);(4)x(b+c-d)-y(d-b-c)-c-b+d.显示解析12.若x,y满足2x+y=6x−3y=1,求7y(x-3y)2-2(3y-x)3的值.显示解析13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab-ac+bc-b2:(2)m2-mn+mx-nx;(3)xy2-2xy+2y-4.显示解析14.求使不等式成立的x的取值范围:(x-1)3-(x-1)(x2-2x+3)≥0.显示解析15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?显示解析16.已知x,y都是自然数,且有x(x-y)-y(y-x)=12,求x、y的值.1.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm显示解析2.如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A.AE=BE B.AC=BE C.CE=DE D.∠CAE=∠B显示解析3.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30° B.40° C.50° D.60°☆☆☆☆☆显示解析4.如图,地图上A地位于B地的正北方,C地位于B地的北偏东50°方向,且C地到A 地、B地的距离相等,那么C地位于A地的()A.南偏东50°方向B.北偏西50°方向C.南偏东40°方向D.北偏西40°方向显示解析5.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.8显示解析6.如图,∠MON内有一点P,PP1、PP2分别被OM、ON垂直平分,P1P2与OM、ON分别交于点A、B.若P1P2=10cm,则△PAB的周长为()A.6cm B.8cm C.10cm D.12cm显示解析二、填空题(共4小题,每小题0分,满分0分)7.如图所示,DE是△ABC的边AB的垂直平分线,分别交AB、BC于点D、E,AE平分∠BAC.若∠B=30°,DE=2,则AC= .显示解析8.如图所示,∠BAC=100°,若MP、NQ分别垂直平分AB、AC.若BC=10cm,则△APQ 的周长为,∠PAQ= .显示解析9.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= °.显示解析10.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.★☆☆☆☆显示解析三、解答题(共3小题,满分0分)11.如图所示,在△ABC中,PG为BC边的垂直平分线.且∠PBC=12∠A,BP的延长线交AC于点D,CP的延长线交AB于点E.求证:BE=CD.显示解析12.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD 垂直平分EF.VIP显示解析13.在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.1.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012-2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32-x)≥48 B.2x-(32-x)≥48 C.2x+(32-x)≤48 D.2x≥48显示解析2.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克) 8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200☆☆☆☆☆显示解析二、填空题3.某品牌自行车进价为每辆800元,标价为每辆1200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打折.显示解析4.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.显示解析三、解答题5.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?显示解析6.某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价及成活率见下表:种类单价(元)成活率甲60 88%乙80 96%(1)若购买树苗资金不超过44 000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?1.某公司准备与汽车租凭公司签订租车合同,以每月用车路程xkm计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示,其中x=0对应的函数值为月固定租赁费,则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D.甲租赁公司平均每公里收到的费用比乙租赁公司少显示解析二、解答题(共3小题,满分0分)2.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?显示解析3.某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.显示解析4.南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式:y乙=kx.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;(2)如果狮山公园铺设广场砖的面积为1600m2,那么公园应选择哪个工程队施工更合算?1.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6显示解析2.一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5 B.6 C.7 D.8显示解析3.我区某校初一数学兴趣小组对教材《多边形的内角和与外角和》的内容进行热烈的讨论,甲说:“多边形的边数每增加1,则内角和增加180°,”乙说:“多边形的边数每增加1,则外角和增加180°”,丙说:“多边形的内角和不小于其外角和”,丁说:“只要是多边形,不管有几边,其外角和都是360°”.你认为正确的是()A.甲和丁B.乙和丙C.丙和丁D.以上都不对显示解析4.一个多边形的每个内角都相等,每个内角与相邻外角的差为100°,那么这个多边形是()A.七边形B.八边形C.九边形D.十边形☆☆☆☆☆显示解析5.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为()A.72°B.108°或144°C.144°D.72°或144°显示解析二、填空题(共5小题,每小题3分,满分15分)6.九边形的外角和为°.显示解析7.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.显示解析8.如图所示,分别以n边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为个平方单位.★★☆☆☆显示解析9.一个正多边形的一个内角的度数比相邻外角的6倍还多12°,则这个正多边形的内角和为.显示解析10.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= .显示解析三、解答题(共2小题,满分0分)11.一个多边形的每个外角都相等,如果它的内角与外角的度数之比为3:2,求这个多边形的边数.显示解析12.已知一个多边形的内角和与外角和之和为2160°,求这个多边形的对角线的条数.。

相关文档
最新文档