广西柳州市2018届九年级数学上学期期末考试试题新人教版

合集下载

广西柳州市2018届九年级上学期数学期末考试试卷

广西柳州市2018届九年级上学期数学期末考试试卷

第1页,总16页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广西柳州市2018届九年级上学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 关于x 的一元二次方程(a 2﹣1)x 2+x ﹣2=0是一元二次方程,则a 满足( ) A . a≠1 B . a≠﹣1 C . a≠±1 D . 为任意实数2. 单词NAME 的四个字母中,是中心对称图形的是( )A . NB . AC . MD . E3. 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( )A .B .C .D .4. 如图,BC 是⊙O 的直径,点A 是⊙O 上异于B ,C 的一点,则⊙A 的度数为( )A . 60B . 70C . 80D . 905. 如图,P 是正⊙ABC 内的一点,若将⊙BPC 绕点B 旋转到⊙BP ′A ,则⊙PBP′的度数是( )答案第2页,总16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 45B . 60C . 90D . 1206. 如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=1,OB=5,则AB 的长为( )A . 2B . 4C . 6D . 47. 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x 名同学,则根据题意列出的方程是( )A . x(x+1)=132B . x(x -1)=132C . x(x+1)=132×D . x(x -1)=132×28. 已知点A(1,a)在抛物线y=x 2-4x+5上,则点A 关于原点对称的点的坐标为( ) A . (-1,-2) B . (-1,2) C . (1,-2) D . (1,2)9. 如图,⊙ABC 为⊙O 的内接三角形,AB=2,⊙C =30 ,则⊙O 的半径为( )A . 1B . 2C . 3D . 410. 如图,在平面直角坐标系中,抛物线y=ax 2+6与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y=2x 2 于B ,C 两点,则BC 的长为( )。

广西柳州市九年级上册数学期末考试试卷

广西柳州市九年级上册数学期末考试试卷

广西柳州市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·拱墅模拟) 四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A .B .C .D .2. (2分) (2019八下·嘉定期末) 如果关于的方程的解为负数,那么实数的取值范围是()A .B .C .D .3. (2分) (2015九上·山西期末) 有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角;③平行四边形;④等腰梯形;⑤圆。

将卡片背面朝上洗匀,从中抽取一张,正面图形满足既是轴对称图形,又是中心对称图形的概率是()A .B .C .D .4. (2分)(2018·新乡模拟) 抛物线y=(x﹣1)2+3的顶点坐标是()A . (1,3)B . (﹣1,3)C . (﹣1,﹣3)D . (1,﹣3)5. (2分)如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为()A . 正方形B . 菱形C . 矩形D . 直角梯形6. (2分) (2016八上·县月考) 已知:如图, ⊙O的两条弦AE,BC相交于点D,连结AC,BE.若∠ACB=60°,则下列结论中正确的是()A . ∠AOB=60°B . ∠ADB=60°C . ∠AEB=60°D . ∠AEB=30°7. (2分)如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有()A . 1种B . 2种C . 3种D . 4种8. (2分)(2019·贵港模拟) 下列一元二次方程中,没有实数根的是()A . 2x2+3=0B . x2=2xC . x2+4x﹣1=0D . x2﹣8x+16=09. (2分)设某代数式为A,若存在实数x0使得代数式A的值为负数,则代数式A可以是()A . |3﹣x|B . x2+xC .D . x2﹣2x+110. (2分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A . 18°B . 36°C . 54°D . 64°11. (2分)如图所示的抛物线是二次函数y=ax2+5x+4﹣a2的图象,那么a的值是()A . 2B . ﹣2C . ﹣D . ±212. (2分) (2018八上·孝感月考) 如图△ABC与△CDE都是等边三角形,且∠EBD=65°,则∠AEB的度数是()A . 115°B . 120°C . 125°D . 130°二、填空题 (共6题;共7分)13. (2分)(2020·鼓楼模拟) 已知方程2x2+4x﹣3=0的两根分别为x1、x2 ,则x1+x2=________,x1x2=________.14. (1分) (2020八下·北京期中) 如图,将矩形ABCD沿对角线AC折叠,E是点D的对称点,CE交AB于点F .若AB=16,BC=8,则BF的长为________.15. (1分) (2018九上·乐东月考) 已知二次函数,当x________时,函数值y随x的增大而增大.16. (1分)(2011·绵阳) 如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为________.17. (1分) (2017九上·柘城期末) 如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为________.18. (1分) (2019九上·丰南期中) 二次函数的图象如图所示,以下结论:① ;②;③ ;④其顶点坐标为;⑤当时,随的增大而减小;⑥ 中,正确的有________(只填序号)三、解答题 (共7题;共55分)19. (10分) (2016九上·无锡期末) 解下列方程:解一元二次方程(1)(x+3)2=5(x+3);(2) x2+4x-2=0.20. (10分)阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b),若a大于b,则小丽赢,否则小兵赢.利用概率的知识判断游戏公平吗?并说明理由.21. (5分)如图,在已知△ABC和△BAD中有以下四个判断:①AD=BC;②AC=BD;③∠C=∠D;④∠BAC=∠ABD.请你从中选择两个作为条件、一个作为结论,写出一个真命题并加以证明.22. (5分) (2017九上·东莞月考) 求抛物线y=x2-2x的对称轴和顶点坐标,并画出图象.23. (15分)(2017·南山模拟) 如图,抛物线y=-x2+(m-1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点F在直线AD上方的抛物线上,FG⊥AD于G,FH//x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.24. (5分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.25. (5分)已知一次函数y=kx+b ,当x=2时,y=2;当x=-4时,y=14,求k与b的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共55分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、23-3、25-1、。

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。

柳北区2018年九年级上《一元二次方程》期末复习试卷(含答案)(数学试卷新课标人教版)

柳北区2018年九年级上《一元二次方程》期末复习试卷(含答案)(数学试卷新课标人教版)

A . 5 个B . 6 个C . 7 个D . 8 个2017-2018 学年 九年级数学上册 期末复习 -- 一元二次方程 、选择题: 1. 下列方程是一元二次方程的是( ) A. ax 2+bx+c=0 B. x 2+2x=x 2 — 1 C. (x - 1)(x - 3)=0 D . =2 2. 用配方法解方程 x 2- 2x - 5=0 时,原方程应变形为 ( ) A . (x+1) 2=6 B . (x - 1) 2=6 C . (x+2) 2=9 D . (x - 2)2=9 3.已知m n 是方程 x 2-2x-1=0 的两实数根,则+的值为 ( ) A . -2 B . - C . D . 2 4. 已知 a , b 是方程 x 2+2013x+1=0 的两个根,则(1+2015a+a 2)(1+2015b+b 2)的值为(6. 方程ax 2+bx+c=0 (0)有实数根,那么成立的式子是(7. 若关于x 的方程x 2+ 2x + a=0不存在实数根,则a 的取值范围是 2 B . 1200+1200(1+x)+1200(1+x) 2=3600 2 D . 1200(1+x)+1200(1+x) 2=3600 9. 为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均 约为提高到若每年的年增长率相同,则年增长率为 ( ) A . B . C . D . 10. 要组织一次篮球联赛,赛制为单循环形式 (每两队之间都赛一场 ) ,计划安排 21 场比赛,则 参赛球队的个数是 5. A . 1 B . 2 C . 3 D . 已知关于x 的一元二次方程 mf+2x - 1=0有两个不相等的实数根,则 m 的取值范围是( A. m<- 1 B . m > 1 C. m< 1 且 m^ 0 D . m >— 1 且 m^ 0 2 A . b 2- 4ac > 0 2 B . b 2- 4ac < 0 2 C. b - 4ac w 0 D . A . a < 1 B . a > 1 C. a < 1 D . 8.某地 201 5年投入教育经费 1200万元,预计 201 7年投入教育经费 3600万元,若每年投入教 育经费的年平均增长率为 x ,则根据题意下列方程正确的是 2 A . 1200(1+x) 2=3600 2 C.1200(1 - x) 2=3600、填空题:11. 设m n 是一元二次方程 x 2 + 2x — 7=0的两个根,则 吊+ 3mrF n=12. 关于x 的一元二次方程(k-1)x 2-2X +仁0有两个不相等的实数根,则实数 k是 .13. 若n (n ^0)是关于x 的方程x 2+mx+2n=0的根,贝U m+n 的值为_14. 设m n 分别为一元二次方程 X 2+2X -2018=0的两个实数根,则 m+3m+n=15. 已知x=-1是方程x 2-ax+6=0的一个根,则 a= _______ .16. 某商品原价289元,经连续两次降价后售价为 256元,设平均每次降价的百分率为根据题意可列关于 x 的方程是 ______________ .三、解答题:17. 解方程:X 2+3X - 4=0 (公式法)18. 解方程:y 2+ 3y + 1=0;19. 解方程:(2x-1)(x + 3)=420. 解下列方程:(x - 2) 2=2x - 4.的取值范围 x ,那么21.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率•22.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:3请根据上面的信息,解决问题:(1)设AB=x米(x> 0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?23.如图,在△ ABC中,/ B=90°,点P从点A开始沿AB边向点B以1cm/s的速度移动,Q从点B开始沿BC边向C点以2cm/s的速度移动,如果点P、Q分别从A. B同时出发,几秒钟后,△ PBQ勺面积等2于8cm2?24.据媒体报道,我国2010 年公民出境旅游总人数约5 000 万人次,2012年公民出境旅游总人数约7 200 万人次.若2011 年、2012年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2013年仍保持相同的年平均增长率,请你预测2013年我国公民出境旅游总人数约多少万人次?25.某体育用品商店销售一批运动鞋,零售价每双240 元. 如果一次购买超过10 双,那么每多购1 双,所购运动鞋的单价降低6 元,但单价不能低于150 元,一位顾客购买这种运动鞋付了3600 元,这位顾客买了多少双?26.如图所示,在平面直角坐标系中,过点A (-, 0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2- 2x - 3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A. B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.参考答案1. C.2. B.3.A4.D5. D.6. D.7.B8. A9. B10. C.11.答案为:5_.12.答案为:k v 2 且2 1 .13.答案为:-2.14.答案为:2016.15.答案为:-7.16.答案为:289 ( 1 - x) 2=25617.答案为:X1= - 4, x2=1;18.答案为:y1=, y2=.19.答案为:X1=1,x 2=-3.5.20.解:方程移项得:(x - 2) 2- 2 (x - 2) =0,因式分解得:(x - 2) (X- 4) =0,解得:x i=2, X2=4.21.解:设该地区年到年高效节能灯年销售量的平均增长率为依据题意,列出方程化简整理,得:,解这个方程,得,••• ••••该地区年到年高效节能灯年销售量的平均增长率不能为负数• 仝土•-- 舍厶-・• •・答:该地区年到年高效节能灯年销售量的平均增长率为22.解:(1 )设AB=x米,可得BC=69+3- 2x=72 - 2x;(2)小英说法正确;矩形面积S=x ( 72 - 2x) =- 2 (x - 18) 2+648,•/ 72 - 2x> 0,••• x v 36,「. 0 v x v 36,•••当x=18时,S取最大值,此时x丰72 - 2x ,••面积最大的不是正方形.23.解:设x秒钟后,△ PBQ勺面积等于8亦,其中O v x v 6,由题意可得:2x (6- x)* 2=8解得x i=2, X2=4.经检验均是原方程的解. 答:2或4秒钟后,△ PB(的面积等于8cmt 24.解:( 1 )设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x) 2 =7200 ,解得x1 =0.2=20% , x2 = - 2.2 (不合题意,舍去) 答:这两年我国公民出境旅游总人数的年平均增长率为20%.( 2)如果2013 年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200 ( 1+x) =7200 X( 1+20% =8640 (万人次)答:预测2013 年我国公民出境旅游总人数约8640 万人次.25.设这位顾客买了x 双运动鞋,由题意得:解得:,T单价不能低于150元,•二x< 25,二x=20答:这位顾客买了20 双运动鞋.26.(1 )••• x2- 2x - 3=0,「. x=3 或x= - 1,• B (0, 3), C(0, - 1),「. BC=4(2)v A (- , 0) , B (0 , 3) , C( 0, - 1), • OA= OB=3 OC=1•O A=OE?OC•••/ A0C2 BOA=90 , •△AOC^ BOA CAO M ABO•/ CA0M BA0=/ AB0+M BA0=90,•/ BAC=90 , • AC丄AB;(3)设直线AC的解析式为y=kx+b,把A(-, 0)和C(0,- 1)代入y=kx+b,•,解得:,•直线AC的解析式为:y= - x- 1,•••DB=DC「・点D在线段BC的垂直平分线上,• D的纵坐标为1,•••把y=1 代入y= - x - 1,二x= - 2,二D的坐标为(-2, 1),(4)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把 B (0, 3)和 D (- 2, 1)代入y=mx+ n,「.,解得,•直线BD的解析式为:y=x+3,令y=0 代入y=x+3,「. x=- 3, • E (- 3, 0), • 0E=3• tan M BEC== BE0=30 ,同理可求得:/ AB0=30,•/ ABE=30 ,当PA=AB时,如图1,此时,/ BEA=Z ABE=30 , • EA=AB• P与E重合,• P的坐标为(-3, 0),当PA=PB寸,如图2,此时,/ PAB=Z PBA=30 ,•••/ ABE玄AB0=30,•/ PAB=M ABQ • PA// BC,•M PA0=90,•点P的横坐标为-,令x=-代入y=x+3, • y=2,「. P (-, 2),当PB=AB时,如图3,「.由勾股定理可求得:AB=2, EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F丄x轴于点F,••• P i B=AB=2 二EP=6- 2,「. sin / BEO= /• FP=3-,令y=3 -代入y=x+3, • x= - 3 ,• R (- 3, 3 -),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G丄x轴于点G• HB=AB=2 •- EF2=6+2,「. sin / BEO= • GP=3+,令y=3+代入y=x+3, • x=3,「. P2 (3, 3+),综上所述,当A. B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(-3, 0),(-, 2),(- 3,3-),( 3,3+).。

2018年广西自治区柳州市中考数学试卷含答案

2018年广西自治区柳州市中考数学试卷含答案

2018年广西柳州市中考数学试卷参考答案与试卷解读一、选择题<共12小题,每小题3分,满分36分)1.<3分)<2018•柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是< )2.<3分)<2018•柳州)在所给的,0,﹣1,3这四个数中,最小的数是<<D.A . 120°B . 30°C . 40°D .60°考点:平行线的性质.分析:根据两直线平行,同位角相等解答.解答: 解:∵直线l ∥OB ,∴∠1=60°.故选D .点评:本题考查平行线的性质,熟记性质是解题的关键.A . ﹣1=B . <)2=5C . 2a ﹣b=abD .=考点:分式的加减法;实数的运算;合并同类项.专题:计算题.分析: A 、原式利用平方根定义化简,计算即可得到结果;B 、原式利用平方根定义化简,计算即可得到结果;C 、原式不能合并,错误;D 、原式利用同分母分式的加法法则计算得到结果,即可做出判断.解答: 解:A 、原式=2﹣1=1;故选项错误;B 、原式=5,故选项正确;C 、原式不能合并,故选项错误;D 、原式=,故选项错误.故选B .点评: 此题考查了分式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.< )A .第一象限B.第二象限C.第三象限D.第四象限考点:轴对称的性质.分析:根据轴对称的性质作出选择.解答:解:如图所示,直角坐标系中的五角星关于y轴对称的图形在第一象限.故选:A.点评:本题考查了轴对称的性质.此题难度不大,采用了“数形结合”的数学思想.么这些志愿者年龄的众数是< )b5E2RGbCAPA .12岁B.13岁C.14岁D.15岁考点:条形统计图;众数.分析:根据众数的定义,就是出现次数最多的数,据此即可判断.解答:解:众数是14岁.故选C.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为< )p1EanqFDPwC.D.α的度数是< )x的方程x2+ax+b=0的解是< )DXDiTa9E3d,当合上开关时,至少有一个灯泡发光的概率是< )RTCrpUDGiT析:个灯泡发光的情况数,即可求出所求的概率.答:灯泡1发光灯泡1不发光灯泡2发光<发光,发光)<不发光,发光)灯泡2不发光<发光,不发光)<不发光,不发光)则P==0.75.的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x <y<用“>”或“<”填空).5PCzVD7HxACD=3,则AB= 5 .jLBHrnAILg考点:等腰梯形的性质.分析:根据等腰梯形的性质可得出AD=BC,再由BC=4,CD=3,得出AB 的长.解答:解:∵四边形ABCD为等腰梯形,∴AD=BC,∵BC=4,∴AD=4,∵CD=3,等腰梯形ABCD的周长为16,∴AB=16﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.16.<3分)<2018•柳州)方程﹣1=0的解是x= 2 .考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣x=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.<3分)<2018•柳州)将直线y=x向上平移7 个单位后得到直线y=x+7.考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答.解答:解:由“上加下减”的原则可知,将直线y=x向上平移7个单位所得直线的解读式为:y=x+7.故答案为:7.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18.<3分)<2018•柳州)如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:xHAQX74J0X①S1:S2=AC2:BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1•S2=S32.其中结论正确的序号是①②③.③根据面积公式即可判断.③若AC⊥BC,则S1•S2=S32正确,=ba a=S2=b b=S2=b2=a2b2abS32=a2b2S2=图.请你根据图表,完成下列问题:平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?LDAYtRyKfE考点:二元一次方程组的应用.分析:设大苹果的重量为xg,小苹果的重量为yg,根据图示可得:大苹果的重量=小苹果+50g,大苹果+小苹果=300g+50g,据此列方程组求解.解答:解:设大苹果的重量为xg,小苹果的重量为yg,由题意得,,解得:.答:大苹果的重量为200g,小苹果的重量为150g.点评:本题考查了二元一次方程组的应用,解答本题的关键是根据图形,找出等量关系,列方程组求解.,∠A=30°.①求BD和AD的长;②求tan∠C的值.考点:解直角三角形;勾股定理.专题:计算题.分析:<1)由BD⊥AC得到∠ADB=∠ADC=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD=AB=3,再得到AD=BD=3;<2)先计算出CD=2,然后在Rt△ADC中,利用正切的定义求解.解答:解:<1)∵BD⊥AC,∴∠ADB=∠ADC=90°,在Rt△ADB中,AB=6,∠A=30°,∴BD=AB=3,∴AD=BD=3;<2)CD=AC﹣AD=5﹣3=2,==.23.<8分)<2018•柳州)如图,函数y=的图象过点A<1,2).<1)求该函数的解读式;<2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;<3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.Zzz6ZB2Ltk,),根据矩形的面积公式,y=2=y=ABOC∴矩形的面积为定值.y=中k的几何意义,注意掌握过双曲线上任意一点引x轴、yBC于E,交△ABC的外接圆⊙O于D.dvzfvkwMI1<1)求证:△ABE∽△ADC;<2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.rqyn14ZNXI考点:相似三角形的判定与性质;菱形的判定;圆周角定理.专题:证明题.分析:<1)根据圆周角定理求出∠B=∠D,根据相似三角形的判定推出即可;<2)根据垂径定理求出OD⊥BC,根据线段垂直平分线性质得出OB=BD,OC=CD,根据菱形的判定推出即可.解答:证明:<1)∵∠BAC的角平分线AD,∴∠BAE=∠CAD,∵∠B=∠D,∴△ABE∽△ADC;<2)∵∠BAD=∠CAD,∴弧BD=弧CD,∵OD为半径,∴DO⊥BC,∵F为OD的中点,∴OB=BD,OC=CD,∵OB=OC,∴OB=BD=CD=OC,∴四边形OBDC是菱形.点评:本题考查了相似三角形的判定,圆周角定理,垂径定理,菱形的判定,线段垂直平分线性质的应用,主要考查学生的推理能力.P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.EmxvxOtOco<1)求线段PQ的长;<2)问:点P在何处时,△PFD∽△BFP,并说明理由.。

广西柳州市九年级上学期数学期末考试试卷

广西柳州市九年级上学期数学期末考试试卷

广西柳州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017九上·亳州期末) 抛物线y=﹣(x﹣2)2+3的顶点坐标是()A . (﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)2. (2分)若一组数据1、a、2、3、4的平均数与中位数相同,则a不可能是下列选项中的()A . 0B . 2.5C . 3D . 53. (2分)(2014·贺州) 如图是由5个大小相同的正方体组成的几何体,它的主视图是()A .B .C .D .4. (2分) (2019九上·湖北月考) 若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A . k>-1B . k>-1且k≠0C . k<-1D . k<-1或k=05. (2分) (2018九上·綦江月考) 如图,点A在第二象限中,轴于点B,轴于点C,反比例函数的图象交AB于点D,交AC于点E,且满足若的面积为2,则k的值为A .B .C .D .6. (2分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A,B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连结OD、OE、OC,对于下列结论:①AD+BC=CD;②∠DOC=90°;③S梯形ABCD=CD•OA;④.其中结论正确的个数是()A . 1B . 2C . 3D . 47. (2分)(2020·大通模拟) 如图,正比例函数与反比例函数的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A . (1,2)B . (-2,1)C . (-1,-2)D . (-2,-1)8. (2分)如图所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()对.A . 5B . 4C . 3D . 29. (2分) (2019九上·大邑期中) 2010年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A . 2(1+x)2=9.5B . 2(1+x)+2(1+x)2=9.5C . 2+2(1+x)+2(1+x)2=9.5D . 8+8(1+x)+8(1+x)2=9.510. (2分) (2018九上·建瓯期末) 把抛物线y= x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A . y=(x+1)2-3B . y=(x-1)2-3C . y=(x+1)2+1D . y=(x-1)2+111. (2分)(2015秋•衡阳校级期中)四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A´B´C´D´=()A . 1:9B . 1:3C . 1:4D . 1:512. (2分) (2017九上·深圳月考) 如图,对称轴为x=2的抛物线y=反比例函数(x>0)交于点B,过点B作x轴的平行线,交y 轴于点C,交反比例函数于点D,连接OB、OD。

(最新整理)2018年1月新人教版上学期九年级数学期末试卷(含答案)

(最新整理)2018年1月新人教版上学期九年级数学期末试卷(含答案)


P
O
11。 在半径为 6 的圆中,60°的圆心角所对的弧长等于
B

12. 在一个不透明的盒子中装有 2 个白球,n 个黄球,它们除颜色不同外,其余均相同.若从
九年级数学(上)期末测试 4—2
2018 年 1 月新人教版上学期九年级数学期末试卷(含答案)
中随机摸出一个球,它是白球的概率为 2 ,则 n=___________。
九年级数学(上)期末测试 4—1
一、选择题
2018 年 1 月新人教版上学期九年级数学期末试卷(含答案)
九年级数学期末试题
1.
若方程
x2
3x
1
0 的两根为
x1 、
x2
,则
x1 x2 x1 x2
的值为(
)
A.3 B.-3
C. 1
3
D. 1
3
2.二次函数 y (x 1)2 2 的最小值是 (

19、(6 分)如图是一个半圆形桥洞截面示意图,圆心为 O,直径 AB 是河底线,弦 CD 是水位线,
CD∥AB,且 AB = 26m,OE⊥CD 于点 E.水位正常时测得 OE∶CD=5∶24
(1)求 CD 的长;
(2)现汛期来临,水面要以每小时 4 m 的速度上
升,则经过
多长时间桥洞会刚刚被灌满?
A、2
B、—2
C、-1
D、1
3。 关于 x 的一元二次方程(m-1)x2-2mx+m=0 有两个实数根,那么 m 的取值范围是
()
A。 m〉0
B. m≥0
C。 m>0 且 m≠1
D. m≥0,且 m≠1
4. 下图中不是中心对称图形的是( )

广西九年级上学期数学期末试卷

广西九年级上学期数学期末试卷

广西九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017九上·重庆开学考) 已知关于x的方程(k﹣1)x2+2x=1是一元二次方程,则k的取值范围()A . k>0B . k≠0C . k>1D . k≠12. (2分) (2020九上·敦化期末) 下列函数是关于的反比例函数的是()A .B .C .D .3. (2分) (2020九上·湖州期中) 下列事件中,必然事件是()A . 2月份有31天B . 一个等腰三角形中,有两条边相等C . 明天的太阳从西边出来D . 投掷一枚质地均匀的骰子,出现6点向上4. (2分)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A . 30°B . 45°C . 60°D . 90°5. (2分) (2017九上·萝北期中) 如图,已知长方形的长为10cm,宽为4cm,则图中阴影部分的面积为()A . 20cm2B . 15cm2C . 10cm2D . 25cm26. (2分) (2017九上·钦州港月考) 已知⊙O的半径为5,点P到圆心O的距离为7,那么点P与⊙O的位置关系是()A . 点P在⊙O上B . 点P在⊙O内C . 点P在⊙O外D . 无法确定7. (2分) (2018九下·江阴期中) 下列命题是真命题的是()A . 菱形的对角线互相平分B . 一组对边平行的四边形是平行四边形C . 对角线互相垂直且相等的四边形是正方形D . 对角线相等的四边形是矩形8. (2分) (2018九上·北京期末) 若点(x1 , y1),(x2 , y2)都是反比例函数图象上的点,并且,则下列结论中正确的是()A . x1>x2B . x1<x2C . y随x的增大而减小D . 两点有可能在同一象限9. (2分)(2020·苏州) 如图,平行四边形的顶点A在x轴的正半轴上,点在对角线上,反比例函数的图像经过C、D两点.已知平行四边形的面积是,则点B的坐标为()A .B .C .D .10. (2分) (2020九上·鄞州期中) 如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A .B .C . 或D . 且11. (2分) (2021九下·金牛月考) 某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率.若设该公司11、12两个月营业额的月均增长率为x ,则可列方程为()A . 2500(1+)2=9100B . 2500(1+x)+2500(1+x)2=9100C . 500(1+x)=9100D . 2500[1+(1+x)+(1+x)2]=910012. (2分)抛物线y=-3x2-x+4 与坐标轴的交点个数是()A . 3B . 2C . 1D . 0二、填空题 (共5题;共5分)13. (1分) (2020七下·平阴期末) 如果(3m+n+3)(3m +n-3)=40,则3m +n的值为;14. (1分)小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为cm.15. (1分)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.16. (1分) (2019八下·吴兴期末) 如图,在平面直角坐标系中,已知A(-2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA',则A'的坐标为。

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。

若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级上学期期末数学试题(解析版)

2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。

广西壮族自治区柳州市广西柳江区2018届九年级上学期数学期中考试试卷及参考答案

广西壮族自治区柳州市广西柳江区2018届九年级上学期数学期中考试试卷及参考答案
20.
21.
22.
23.
24. 25.
26.
A . (1,3) B . (﹣1,3) C . (1,﹣3) D . (﹣1,﹣3) 6. 如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是( )
A . 等腰三角形 B . 直角三角形 C . 等腰直角三角形 D . 等边三角形 7. 一元二次方程x2+2x+2=0的根的情况是( ) A . 有两个相等的实数根 B . 有两个不相等的实数根 C . 只有一个实数根 D . 无实数根 8. 若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A . y=(x+2)2+3 B . y=(x﹣2)2+3 C . y=(x+2)2﹣3 D . y=(x﹣2)2﹣3 9. 某校成立“情暖校园”爱心基金会,去年上半年发给每个经济困难的学生600元,今年上半年发给了800元,设每半年 发给的资金金额的平均增长率为x,则下面列出的方程中正确的是( )
(1) 求抛物线的解析式; (2) 抛物线的对称轴上有一动点P,求出PA+PD的最小值; (3) 若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标. 参考答案 1. 2. 3. 4. 5. 6. 7. 8.
9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
14. 二次函数y=2(x-3)2-4的最小值为________.
15. 若x=2是一元二次方程x2+x﹣a=0的解,则a的值为________.
16. 16.若函数
是二次函数,则m的值为________.
17. 已知方程5x2+kx﹣10=0的一个根是﹣5,则它的另一个根是________.

九年级数学上学期期末考试试卷

九年级数学上学期期末考试试卷

九年级数学(人教版)上学期期末考试试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 若0<ab,化简二次根式2ab 的结果是( )A.a b - B. a b - C. a b -- D.a b2.已知x 、y 是实数,3x +4 +y 2-6y +9=0,则xy 的值是( )A .4 B .-4 C .94 D .-943.一个直角三角形的两条直角边分别为( C )A ...4.下列方程中,是一元二次方程的是( )A .32-=y xB .2(1)3x +=C .11322+=-+x x xD .29x =5.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( B )A .1B .2C .1或2D .06.一元二次方程042=-x的解是( )A .2=xB .2-=xC .21=x ,22-=xD .21=x ,22-=x7.二次三项式243x x -+配方的结果是( )A .2(2)7x -+ B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +-8.到三角形各顶点的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 9.三角形的两边长分别为3和6,第三边的长是方程2680xx -+=的一个根,则这个三角形的周长是( C )A.9B.11C.13D 、1410.如果⊙A 的半径是4cm ,⊙B 的半径是10cm ,圆心距AB =8cm ,那么这两个圆的位置关系是 ( ) A .外离 B .外切 C .相交 D .内切 11.一元二次方程2x 2-7x -15=0的根的情况是 ( )A .有两个正的实数根B .有两个负的实数根C .两根的符号相反D .方程没有实数根 12.如图,⊙O 中,∠AOB =110°,点C 、D 是 AmB ⌒上任两点,则∠C +∠D 的度数是( )A .110° B .55° C .70° D .不确定 13.过⊙O 内一点M 的最长弦长为10cm,最短弦长为8cm,那么OM 的长为( A )cm D.9cm14.图中∠BOD 的度数是( B )A .55° B .110° C .125° D .150°15.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A=100°,∠C=30°,则∠DFE 的度数是( C )A.55°B.60°C.65°D.70°(第14题) (第15题)15.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。

广西柳州市九年级数学上学期期末考试试题 新人教版-新人教版初中九年级全册数学试题

广西柳州市九年级数学上学期期末考试试题 新人教版-新人教版初中九年级全册数学试题

某某市2017-2018学年度九年级(上)期末质量抽测试题数学(考试时间:90分钟,全卷满分:100分)一、选择题(本题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)1.在单词NAME的四个字母中,是中心对称图形的是2.一个不透明的布袋里装有5个只有颜色不同的球,其中3个红球,2个白球,从布袋中随机摸出一个球,摸出红球的概率是A. B. C. D.3.如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为4.关于x的方程是一元二次方程,则满足≠≠-1 C. a≠5.如图,P是正△ABC内的一点,若将△BPC绕点B旋转到△BP’A,则∠PBP’的度数是6.如图,⊙O的直径CD垂直弦AB于点E,且CE=1,OB=5,则AB的长为A. C. 6 D. 47.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是A. B. C. D.8.已知点A(1,a)在抛物线上,则点A关于原点对称的点的坐标为A.(-l,-2)B.(-l,2)C. (1,-2)D.(1,2)9.如图.△ABC为⊙O的内接三角形,AB=2,∠C30,则⊙O的半径为A.lB.2C..3D.410.如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A与x轴平行的直线交抛物线于B、C两点,则BC的长为A. B. C. D.二、填空题(本题共6小题,每小题3分,满分18分)1l.方程的二次项系数是.12.已知正六边形的边长为2,则这个正六边形的边心距为.13.将抛物线向左平移2个单位,所得到的抛物线的解析式为.14.若扇形的半径为3,圆心角120,为则此扇形的弧长是.15.如图,在△ABC中,∠ACB=90,BC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D 为AB的中点,则△ABC的面积是.16.如图,圆心都在x轴正半轴上的半圆,半圆,…,半圆均与直线l相切,设半圆,半圆,…,半圆的半径分别是,,…,,则当直线l与x轴所成锐角为30时,且=1时,.三、解答题(本题共7小题,满分52分.解答应写必要的文字说明、演算步骤或推理过程)17.(5分)解方程:18.(6分)如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).(1)画出将△ABC绕坐标原点O逆时针旋转90图形.(2)填空:以A、B、C为顶点的平行四边形的第四个顶点D的坐标为.19.(6分)有三X正面分别标有数字1、2、3的卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中随机抽取一X,记下所标数字,不放回,再任意抽取一X,记下所标数字,将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数,求所组成的两位数是偶数的概率(请用“画树状图”或“列表”的方法写出过程).20.(6分)如图,在长为20cm,宽为16cm的矩形的四个角上截去四个全等的小正方形,使得剩下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.21.(8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)()满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用80元;每间空置的客房,宾馆每日需支出各种费用20元.当房价为多少元时,宾馆当日利润最大?求出最大利润(宾馆当日利润=当日房费收入一当日支出)22.(9分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC 的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是8,求线段BF的长23.(12分)在平面直角坐标系xoy中,抛物线(a≠O)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-4,O),抛物线的对称轴是直线x=-3,且经过A、C两点的直线为 .(1)求抛物线的函数表达式;(2)将直线AC向下平移m个单位长度后,得到的直线l与抛物线只有一个交点D,求m的值;(3)抛物线上是否存在点Q,使点Q到直线AC的距离为?若存在,请直接写出Q的坐标,若不存在,请说明理由参考答案及评分标准一、选择题:(每题3分,共30分)二、填空题:(每题3分,共18分)11.1 12. 3 13. ()223+=x y 14. π2 15. 23 16. 20163三、解答题:(共52分)17.解:()()012=--x x .............................................................. 3分02=-x 或01=-x ............................................................ 4分 21=x 或12=x ...................................................................... 5分18.解:(1)如图所示△DEF 为所求................................................ 3分(2))3,7(1-D 、)3,3(2D 、)3,5(3--D .............................................. 6分19.解:画树状图如下: 开始十位数 1 2 3个位数 2 3 1 3 1 2题号 1 2 3 4 5 6 7 8 9 10 答案 ACDCBCBABDD EF结果 12 13 21 23 31 32 ..................................................... 4分 即3162(==偶数)P ................................................................... 6分 20. 解:设小正方形的边长为xcm .根据题意得:()%801162042-⨯⨯=x ........................................................ 3分解得:4±=x ......................................................................... 4分x 为正数∴4=x ....................................................................... 5分答:小正方形的边长为cm 4. ............................................................ 6分21. 解:(1)设一次函数的解析式为b kx y +=由表可知,点(200,100)、点(300,50)在一次函数上∴{10020050300=+=+b k b k ........................................................... 2分解得: ............................................................ 3分∴y 与x 之间的函数表达式为:20021+-=x y .....................................4分 (2)设宾馆每日的利润为w 元. 根据题意得:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⨯-⎪⎭⎫ ⎝⎛+--=20021100202002180x x x w 6分14000230212-+-=x x()12450230212+--=x ...................................................... 7分∵21-=a∴w 有最大值,当230=x 时,12450=最大w200=b 21-=k答:当宾馆的房价为230元时,当日利润最大.最大利润为12450元. ................ 8分22.解:(1)证明:过点O 作OM ⊥AB ,垂足是M∵⊙O 与AC 相切于点D ∴OD ⊥AC∴∠ADO=∠AMO=90° .................................................. 1分 ∵△ABC 是等边三角形, AO ⊥BC∴OA 是∠MAD 的角平分线 .............................................. 2分 ∵OD ⊥AC ,OM ⊥AB∴OM=OD ............................................................ 3分∴AB 与⊙O 相切 ........................................................................ 4分(2)解:过点O 作ON ⊥BE ,垂足是N ,连接OF∵A B=AC ,AO ⊥BC ∴O 是BC 的中点 ∴482121=⨯==BC OB................................................. 5分 在直角△ABC 中,∠ABE=90°,∠MBO=60° ∴∠OBN=30°∵ON ⊥BE ,∠OBN=30°,OB=4 ∴221==OB ON ,322422=-=BN ................................ 6分 ∵AB ⊥BE∴四边形OMBN 是矩形∴32==OM BN ...................................................... 7分M∵32==OM OF 由勾股定理得()2223222=-=NF ................................... 8分∴2232+=+=NF BN BF ........................................... 9分 23.解:(1解得:21=a 21=x (2得044=+-k 解得1=k∴直线AC 的函数表达式为4+=x y .......................................... 5分∵直线l 是由直线AC 向下平移m 个单位得到的∴设直线l 的解析式为m x y -+=4 ∵直线l 与抛物线相交∴ .................................................................... 7分MN4312++=x x y m x y -+=4∵只有一个交点 ∴0=∆ 即:021422=⨯-m 2=m .................................................................... 8分(3)()12,221+-Q ........................................................ 9分()12,222+---Q ...................................................... 10分()36,263+-Q ......................................................... 11分()36,264+---Q ...................................................... 12分。

广西柳州科山中学20182018年九年级上期末考试数学卷

广西柳州科山中学20182018年九年级上期末考试数学卷

广西柳州科山中学20182018年九年级上期末考试数学卷是方程0342=-+x x 的两实数根,则1211x x +的值为_____ 11、某校2019年捐款1万元给希望工程,以后每年都捐款,计划到2019年共.捐款..4.75万元,设该校捐款的平均年增长率是x ,则可列方程为:12、如果32b a =,那么a a b=+___________ 13、两个相似三角形对应边的比为1:3,那么它们面积比为____14、如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,若AD=4,EF=6,则BC=(第14题) (第15题)15、如图,在△ABC 中,AB=AC=13,BC=10,则cosB=16、盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是17、在抛掷一枚均匀硬币的实验中,如果没有硬币,请写出你想到的替代物。

(写出一种即可)18.图(1)是一个面积为1的黑色正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。

如此继续作下去,则在得到的第5个图形中,所有黑色三角形的面积和是三、解答题:(19-26题每题8分,27、28题每题13分,共90分)19、(8分)计算:271245+20、(8分)计算:6tan 30°-3sin 60°-2sin 45°21、(8分)解方程:0322=-+x x 22、(8分)一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样。

小亮从布袋中摸出一个球后放回去搅匀,再摸出一个球。

请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率。

23、(8分)如图,为了测量电线杆的高度AB ,在离电线杆24米的C 处,用1.20米的测角仪CD 测得电线杆顶端B 的仰角α=30°,求电线杆AB 的高度。

广西柳州市三十五中2018年九年级上册期末复习卷数学解析版

广西柳州市三十五中2018年九年级上册期末复习卷数学解析版

2018年九年级数学上册期末复习卷一、选择题:1.已知x=3是关于x的方程x2+kx﹣6=0的一个根,则另一个根是()A.x=1 B.x=﹣1 C.x=﹣2 D.x=22.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.83.已知二次函数y=ax2+bx+1的大致图象如图所示,那么函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2﹣3 D.y=3(x-2)2﹣35.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠16.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥47.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3158.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°9.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C半径为()A.2.6 B.2.5 C.2.4 D.2.310.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm211.下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项的正确是()A.1.6<x<1.8 B.1.8<x<2.0C.2.0<x<2.2 D.2.2<x<2.412.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有( )A.2个B.3个C.4个D.5个二、填空题:13.已知关于x的方程x2+mx-3=0的一个根是1,则它的另一个根是.14.已知方程x2+kx﹣2=0的一个根是1,则另一个根是,k的值是.15.如图,△ABC内接于⊙O,BA=BC,∠ACB=28°,AD为⊙O的直径,则∠DAC的度数是.16.若圆锥的母线长为3cm,底面半径为2cm,则圆锥的侧面展开图的面积 cm2.17.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k= .18.抛物线的部分图象如图所示,则当y<0时,x的取值范围是_________.三、解答题:19.解方程:x2﹣2x﹣1=0 20.解方程:2x2-5x-3=0.21.已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.22.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,2AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.如图,抛物线y=﹣0.5x2+bx+c与x轴交于A.B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标,若不存在,请说明理由.参考答案1~5CDACC 6~10BBBCC 11~12AA11答案为:x=-3;12答案为:x1=﹣2,k=1.13答案为34°.14答案为:6πcm2.15答案为:3;16答案为:x<-1或x>3;17解:方程变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,解得:x1=1+,x2=1﹣;18解:∴x1=3,x2=-0.5.19解:把点(0,2)和(1,﹣1)代入y=x2+bx+c得,解这个方程组得,所以所求二次函数的解析式是y=x2﹣4x+2;因为y=x2﹣4x+2=(x﹣2)2﹣2,所以顶点坐标是(2,﹣2),对称轴是直线x=2.20(1)证明:如图,连接OA;∵OC=BC,2AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.21证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.22解:(1)∵OA=2,OC=3,∴A(﹣2,0),C(0,3),代入抛物线解析式得:,解得:b=,c=3,则抛物线解析式为y=﹣x2+x+3;(2)连接AD,交对称轴于点P,则P为所求的点,设直线AD解析式为y=mx+n(m≠0),把A(﹣2,0),D(2,2)代入得:,解得:m=,n=1,∴直线AD解析式为y=x+1,对称轴为直线x=,当x=时,y=,则P坐标为(,).。

广西柳州市2018年中考数学试题(含解析)

广西柳州市2018年中考数学试题(含解析)

2018年广西柳州市中考数学试卷一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣202.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C 的度数为()A.84°B.60°C.36°D.24°9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩()的扇形统计图,由图可知,学生的数学平均成绩在60≤<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=°.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是.15.(3.00分)不等式+1≥0的解集是.16.(3.00分)一元二次方程2﹣9=0的解是.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜场,负y场,则可列出方程组为.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8.00分)解方程=.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10.00分)如图,一次函数y=m+b的图象与反比例函数y=的图象交于A (3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A 作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.26.(10.00分)如图,抛物线y=a2+b+c与轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是轴下方抛物线上的一个动点,过点P作PF⊥轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q 为⊙H上的一个动点,求AQ+EQ的最小值.2018年广西柳州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.【分析】利用概率公式计算即可得.【解答】解:∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P (A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:7000000000=7×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,∴sinB==,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C 的度数为()A.84°B.60°C.36°D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【分析】根据“实际售价=原售价×”可得答案.【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩()的扇形统计图,由图可知,学生的数学平均成绩在60≤<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=46°.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式+1≥0的解集是≥﹣1.【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:≥﹣1.故答案为:≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(3.00分)一元二次方程2﹣9=0的解是1=3,2=﹣3.【分析】利用直接开平方法解方程得出即可.【解答】解:∵2﹣9=0,∴2=9,解得:1=3,2=﹣3.故答案为:1=3,2=﹣3.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜场,负y场,则可列出方程组为.【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜场,负y场,∵共踢了8场,∴+y=8;∵每队胜一场得2分,负一场得1分.∴2+y=14,故列的方程组为,故答案为.【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为5.【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股定理得:AE=,CE=,及ED的长,可得CD的长,证明△BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD==,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BF=,∴BC=+=5,故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.【分析】先化简,再计算加法即可求解.【解答】解:2+3=4+3=7.【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:12345投实心球序次成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.22.(8.00分)解方程=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣4=,解得:=4,经检验=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=2【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.24.(10.00分)如图,一次函数y=m+b的图象与反比例函数y=的图象交于A (3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=m+b,可得一次函数的解析式为y=2﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=m+b,可得,解得,∴一次函数的解析式为y=2﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A 作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.【分析】(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.26.(10.00分)如图,抛物线y=a2+b+c与轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是轴下方抛物线上的一个动点,过点P作PF⊥轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q 为⊙H上的一个动点,求AQ+EQ的最小值.【分析】(1)求出A、B、C的坐标,利用两根式求出抛物线的解析式即可;(2)求出直线AH的解析式,根据方程即可解决问题;(3)首先求出⊙H的半径,在HA上取一点,使得H=,此时(﹣,﹣),由HQ2=H•HA,可得△QH∽△AHQ,推出==,可得Q=AQ,推出AQ+QE=Q+EQ,可得当E、Q、共线时,AQ+QE的值最小,由此求出点E坐标,点坐标即可解决问题;【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(+3)(﹣),把C(0,﹣3)代入得到a=,∴抛物线的解析式为y=2+﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点,使得H=,此时(﹣,﹣),∵HQ2=1,H•HA=1,∴HQ2=H•H A,可得△QH∽△AHQ,∴==,∴Q=AQ,∴AQ+QE=Q+EQ,∴当E、Q、共线时,AQ+QE的值最小,最小值==.【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柳州市2017-2018学年度九年级(上)期末质量抽测试题数学(考试时间:90分钟,全卷满分:100分)一、选择题(本题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)1.在单词NAME的四个字母中,是中心对称图形的是A.NB.AC.MD.E2.一个不透明的布袋里装有5个只有颜色不同的球,其中3个红球,2个白球,从布袋中随机摸出一个球,摸出红球的概率是A. B. C. D.3.如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为A.60B.70C.80D.904.关于x的方程是一元二次方程,则满足A.a≠lB.a≠-1C. a≠土1D.为任意实数5.如图,P是正△ABC内的一点,若将△BPC绕点B旋转到△BP’A,则∠PBP’的度数是A.45B.60C.90D.1206.如图,⊙O的直径CD垂直弦AB于点E,且CE=1,OB=5,则AB的长为A. B.4 C. 6 D. 47.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是A. B. C. D.8.已知点A(1,a)在抛物线上,则点A关于原点对称的点的坐标为A.(-l,-2)B.(-l,2)C. (1,-2)D.(1,2)9.如图.△ABC为⊙O的内接三角形,AB=2,∠C30,则⊙O的半径为A.lB.2C..3D.410.如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A与x轴平行的直线交抛物线于B、C两点,则BC的长为A. B. C. D.二、填空题(本题共6小题,每小题3分,满分18分)1l.方程的二次项系数是 .12.已知正六边形的边长为2,则这个正六边形的边心距为 .13.将抛物线向左平移2个单位,所得到的抛物线的解析式为 .14.若扇形的半径为3,圆心角120,为则此扇形的弧长是 .15.如图,在△ABC中,∠ACB=90,BC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D 为AB的中点,则△ABC的面积是 .16.如图,圆心都在x轴正半轴上的半圆,半圆,…,半圆均与直线l相切,设半圆,半圆,…,半圆的半径分别是,,…,,则当直线l与x轴所成锐角为30时,且=1时, .三、解答题(本题共7小题,满分52分.解答应写必要的文字说明、演算步骤或推理过程)17.(5分)解方程:18.(6分)如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).(1)画出将△ABC绕坐标原点O逆时针旋转90图形.(2)填空:以A、B、C为顶点的平行四边形的第四个顶点D的坐标为 .19.(6分)有三张正面分别标有数字1、2、3的卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中随机抽取一张,记下所标数字,不放回,再任意抽取一张,记下所标数字,将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数,求所组成的两位数是偶数的概率(请用“画树状图”或“列表”的方法写出过程).20.(6分)如图,在长为20cm,宽为16cm的矩形的四个角上截去四个全等的小正方形,使得剩下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.21.(8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)()满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用80元;每间空置的客房,宾馆每日需支出各种费用20元.当房价为多少元时,宾馆当日利润最大?求出最大利润(宾馆当日利润=当日房费收入一当日支出)22.(9分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC 的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是8,求线段BF的长23.(12分)在平面直角坐标系xoy中,抛物线(a≠O)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-4,O),抛物线的对称轴是直线x=-3,且经过A、C两点的直线为 .(1)求抛物线的函数表达式;(2)将直线AC向下平移m个单位长度后,得到的直线l与抛物线只有一个交点D,求m的值;(3)抛物线上是否存在点Q,使点Q到直线AC的距离为?若存在,请直接写出Q的坐标,若不存在,请说明理由参考答案及评分标准一、选择题:(每题3分,共30分)二、填空题:(每题3分,共18分)11.1 12. 3 13. ()223+=x y 14. π215. 16. 20163三、解答题:(共52分)17.解:()()012=--x x ........................................................... 3分02=-x 或 01=-x .......................................................... 4分21=x 或 12=x ........................................................... 5分18.解:(1)如图所示△DEF 为所求................................................ 3分(2))3,7(1-D 、 )3,3(2D 、 )3,5(3--D ........................................... 6分19.解:画树状图如下:开始十位数1 2 3个位数 2 3 1 3 1 2结果 12 13 21 23 31 32 ............................................. 4分即3162(==偶数)P ............................................................ 6分 20. 解:设小正方形的边长为xcm .D EF根据题意得:()%801162042-⨯⨯=x ........................................................ 3分解得:4±=x ................................................................. 4分x 为正数∴4=x ..................................................................... 5分答:小正方形的边长为cm 4. ............................................................ 6分21. 解:(1)设一次函数的解析式为b kx y +=由表可知,点(200,100)、点(300,50)在一次函数上∴{10020050300=+=+b k b k .......................................................... 2分解得: ............................................................ 3分∴y 与x 之间的函数表达式为:20021+-=x y ..................................... 4分 (2)设宾馆每日的利润为w 元. 根据题意得:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⨯-⎪⎭⎫ ⎝⎛+--=20021100202002180x x x w 6分14000230212-+-=x x ()12450230212+--=x ...................................................... 7分∵21-=a∴w 有最大值,当230=x 时,12450=最大w答:当宾馆的房价为230元时,当日利润最大.最大利润为12450元. ................ 8分200=b 21-=k M22.解:(1)证明:过点O 作OM ⊥AB ,垂足是M∵⊙O 与AC 相切于点D ∴OD ⊥AC∴∠ADO=∠AMO=90° .................................................. 1分 ∵△ABC 是等边三角形, AO ⊥BC∴OA 是∠MAD 的角平分线 .............................................. 2分 ∵OD ⊥AC ,OM ⊥AB∴OM=OD ............................................................ 3分∴AB 与⊙O 相切 ...................................................... 4分(2)解:过点O 作ON ⊥BE ,垂足是N ,连接OF∵A B=AC ,AO ⊥BC ∴O 是BC 的中点 ∴482121=⨯==BC OB ................................................. 5分 在直角△ABC 中,∠ABE=90°,∠MBO=60° ∴∠OBN=30° ∵ON ⊥BE ,∠OBN=30°,OB=4 ∴221==OB ON ,322422=-=BN ................................ 6分 ∵AB ⊥BE∴四边形OMBN 是矩形∴32==OM BN ...................................................... 7分 ∵32==OM OF 由勾股定理得()2223222=-=NF ................................... 8分∴2232+=+=NF BN BF ........................................... 9分MN23.解:(1(2解得 1=k∴直线AC 的函数表达式为4+=x y .......................................... 5分∵直线l 是由直线AC 向下平移m 个单位得到的∴设直线l 的解析式为m x y -+=4 ∵直线l 与抛物线相交∴ ............................................... 7分∵只有一个交点∴0=∆即:021422=⨯-m 2=m ........................................................... 8分 (3)()12,221+-Q ........................................................ 9分 ()12,222+---Q ..................................................... 10分 ()36,263+-Q ........................................................ 11分 ()36,264+---Q ..................................................... 12分43212++=x x ym x y -+=4。

相关文档
最新文档