人教版八年级数学第十九章菱形练习题组及答案
八年级数学《菱形》练习题含答案
八年级数学《菱形》练习题随堂演练一、填空题1.菱形的对角线长为24和10,则菱形的边长为 ,周长为 .2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角为 , , , .3.菱形的两条对角线分别为3和7,则菱形的面积为 .4.已知在菱形ABCD 中,E ,F 是BC ,CD 上的点,且AE =EF =AF =AB ,则∠B= .5.已知菱形两邻角的比是1:2,周长为40cm ,则较短对角线的长是 .6.已知菱形的面积等于80cm 2,高等于8cm ,则菱形的周长为 .7.已知菱形ABCD 中AE ⊥BC ,垂足E ,F 分别为BC ,CD 的中点,那么∠EAF 的度数为 .8.顺次连结菱形各边的中点,所得的四边形为 形.二、选择题1.能够判定一个四边形是菱形的条件是( )A .对角线相等且互相平分B .对角线相等且对角相等C .对角线互相垂直D .两组对角分别相等且一条对角线平分一组对角2.菱形ABCD ,若∠A:∠B =2:1,∠CAD 的平分线AE 和边CD 之间的关系是( )A .相等B .互相垂直且不平分C .互相平分且不垂直D .垂直且平分3.已知菱形ABCD 的周长为40cm ,BD=34AC ,则菱形的面积为( ) A .96cm 2 B .94cm 2 C .92cm 2 D .90cm 24.菱形的周长等于高的8倍,则这个菱形较大内角是( )A .60°B .90°C .120°D .150°5.菱形具有而矩形不具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .对边平行且相等6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .邻边相等的四边形为菱形7.矩形具有而菱形不具有的性质是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直8.菱形的对角线把它分成全等的直角三角形的个数是( )A .4个B .3个C .2个D .1个三、解答题1.如图,在菱形ABCD中,延长AD到E,连结BE交CD于H,交AC于F,且BF=DE,求证:DH=HF.2.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.3.已知菱形的面积为24cm2,边长为5cm,求该菱形中一组对边之间的距离.4.已知:如图,在菱形ABCD中,BD是对角线,过D作DE⊥BA交BA延长线于点E,若BD=2DE,AB=4,求菱形的面积。
八年级数学下册19.2菱形1.菱形的性质练习(含答案)
19.2 菱形1.菱形的性质1.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为( C )(A)1 (B)(C)2 (D)22.如图,在菱形ABCD中,AB=5,对角线AC=6,过点A作AE⊥BC,垂足为E,则AE的长为( C )(A)4 (B)(C)(D)53.菱形的两条对角线的长分别是6和8,则这个菱形的周长是( B )(A)24 (B)20 (C)10 (D)54.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是 4 cm.5.如图,一活动菱形衣架中,菱形的边长均为16 c m,若墙上钉子间的距离AB=BC=16 cm,则∠1= 120°.6.如图,在菱形ACBD中,对角线AB,CD相交于点O,CE⊥AD于点E,若AB=16,CD=12,则菱形的面积是96 ,CE= 9.6 .第6题图7.(2018广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是(-5,4) .第7题图8.已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:因为四边形ABCD是菱形,所以CB=CD,CA平分∠BCD.所以∠BCE=∠DCE.又CE为公共边,所以△BCE≌△DCE.所以∠CBE=∠CDE.因为在菱形A BCD中,AB∥CD,所以∠AFD=∠FDC,所以∠AFD=∠CBE.9.(2018广东)如图,BD是菱形ABCD的对角线,∠CBD=75°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连结BF,求∠DBF的度数.解:(1)如图所示,直线EF即为所求.(2)因为四边形A BCD是菱形,∠CBD=75°,所以∠ABD=∠DBC=75°,DC∥AB,∠A=∠C.所以∠ABC=150°,∠ABC+∠C=180°.所以∠C=∠A=30°.因为EF是线段AB的垂直平分线,所以AF=FB.所以∠A=∠FBA=30°.所以∠DBF=75°-30°=45°.10.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连结EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.证明:(1)因为四边形ABCD是菱形,所以AD=CD,∠A=∠C.因为DE⊥AB,DF⊥BC,所以∠AED=∠CFD=90°.所以△ADE≌△CDF.(2)因为四边形ABCD是菱形,所以AB=CB.因为△ADE≌△CDF,所以AE=CF.所以AB-AE=C B-CF.所以BE=BF.所以∠BEF=∠BFE.11.(规律探索题)如图,两个连在一起的全等菱形的边长为1米,一个微型机器人由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,当微型机器人行走了2 019米时停下,求这个微型机器人停在哪个点?并说明理由.解:这个微型机器人停在D点.理由如下:因为两个全等菱形的边长为1米,所以微型机器人由A点开始按ABCDEFCGA顺序走一圈所走的距离为8×1=8米.因为2 019÷8=252……3,所以当微型机器人走到第252圈后再走3米正好到达D点.12.(拓展探究题)如图1,有一张菱形纸片ABCD,AC=8,BD=6.(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)解:(1)因为菱形的两条对角线长分别为6,8,所以对角线的一半分别为3,4,所以菱形的边长为5,所以图1平行四边形的周长为2×(5+8)=26; 图2平行四边形的周长为2×(5+6)=22.(2)如图3所示.。
人教版八年级数学下《菱形》拔高练习
《菱形》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有个()A.0B.1C.2D.32.(5分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A.(4,5)B.(5,4)C.(4,4)D.(5,3)3.(5分)如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE ∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP4.(5分)若菱形ABCD的对角线AC、BD的长分别是5cm、12cm,则菱形ABCD 的面积是()A.30 cm2B.36 cm2C.48 cm2D.60cm25.(5分)如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2B.4C.2D.2二、填空题(本大题共5小题,共25.0分)6.(5分)菱形的两邻角之比为1:2,一条较短的对角线长为6cm,则另一条对角线长为,这个菱形的面积为.7.(5分)如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC 于点F,垂足为E,连接BF、DF,则∠DFC的度数是.8.(5分)如图,将△ABC沿射线BC方向平移得到△DCE,当△ABC满足条件时(填一个条件),能够判定四边形ACED为菱形.9.(5分)如图,在▱ABCD中,E,F分别是AB,CD中点.当▱ABCD满足时,四边形EHFG是菱形.10.(5分)如图所示,菱形ABCD的对角线的长分别为3和6,P是对角线AC 上任一点(点P不与点A.C重合),且PE∥BC交AB于E,PF∥CD交AD 于F,则阴影部分的面积是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE ∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.12.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.13.(10分)如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为s时,四边形ACFE是菱形.14.(10分)如图,在△ABC中,点D、E分别是AB、AC的中点,连接BE,有BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若△ABC中BC=5,AC=12,求菱形BCFE的面积.15.(10分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.《菱形》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有个()A.0B.1C.2D.3【分析】由在▱ABCD中,O为AC的中点,易证得四边形AFCE是平行四边形;然后由一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠CFO,∵O为AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,∴四边形AFCE是平行四边形;①∵OE=OA,∴AC=EF,∴四边形AFCE是矩形;故错误;②∵EF⊥AC,∴四边形AFCE是菱形;故正确;③∵AC⊥AB,AB∥CD,∴AC⊥CD,∵E为AD中点,∴AE=CE=AD,∴四边形AFCE是菱形;故正确.故选:C.【点评】此题考查了菱形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.首先证得四边形AFCE是平行四边形是解决问题的关键.2.(5分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A.(4,5)B.(5,4)C.(4,4)D.(5,3)【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故选:B.【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.3.(5分)如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE ∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP【分析】根据菱形的性质解答即可.【解答】解:∵四边形CDPE是菱形,∴∠DCP=∠ECP,∴CP平分∠ACB,故选:A.【点评】此题考查菱形的性质,关键是根据菱形的性质解答.4.(5分)若菱形ABCD的对角线AC、BD的长分别是5cm、12cm,则菱形ABCD 的面积是()A.30 cm2B.36 cm2C.48 cm2D.60cm2【分析】根据菱形的对角线的长度即可直接计算菱形ABCD的面积.【解答】解:∵菱形的对角线长AC、BD的长度分别为5cm、12cm.∴菱形ABCD的面积S=BD×AC=×5×12=30cm2.故选:A.【点评】本题考查了菱形对角线互相平分的性质,本题中菱形ABCD的面积等于对角线乘积的一半是解题的关键.5.(5分)如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2B.4C.2D.2【分析】如图连接BD.首先证明△ADB是等边三角形,可得BD=4,再根据三角形的中位线定理即可解决问题.【解答】解:如图连接BD.∵四边形ABCD是菱形,∴AD=AB=4,∵∠A=60°,∴△ABD是等边三角形,∴BA=AD=4,∵PE=ED,PF=FB,∴EF=BD=2.故选:A.【点评】本题考查菱形的性质、三角形的中位线定理、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明△ADB是等边三角形.二、填空题(本大题共5小题,共25.0分)6.(5分)菱形的两邻角之比为1:2,一条较短的对角线长为6cm,则另一条对角线长为6cm,这个菱形的面积为18cm2.【分析】作出图形,根据菱形的邻角互补求出较小的内角为60°,从而判断出△ABC是等边三角形,再根据等边三角形的性质求出OB,然后根据菱形对角线互相平分可得BD=2OB,菱形的面积=×两对角线的乘积.【解答】解:如图,∵菱形的两邻角之比为1:2,∴较小的内角∠ABC=180°×=60°,∴△ABC是等边三角形,∴OB=×6=3cm,∴较长的对角线BD=2OB=2×3=6cm.∴菱形的面积=AC•BD=×6×6=18(cm2).故答案是:6cm;18cm2.【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记性质并求出△ABC是等边三角形是解题的关键,作出图形更形象直观.7.(5分)如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC 于点F,垂足为E,连接BF、DF,则∠DFC的度数是130°.【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;【解答】解:∵四边形ABCD是菱形,∴∠ACD=∠ACB=∠BCD=25°,∵EF垂直平分线段BC,∴FB=FC,∴∠FBC=∠FCB=25°,∴∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为:130°.【点评】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(5分)如图,将△ABC沿射线BC方向平移得到△DCE,当△ABC满足条件AC=BC时(填一个条件),能够判定四边形ACED为菱形.【分析】由题意可证四边形ACED是平行四边形,根据菱形的判定,可得满足条件.【解答】解:△ABC满足条件为AC=BC∵将△ABC沿射线BC方向平移得到△DCE∴AD=CE,AD∥CE∴四边形ACED是平行四边形∵AC=BC∴平行四边形ACED是菱形.故答案为AC=BC【点评】本题考查了菱形的判定,平移的性质,熟练运用平移的性质是本题的关键.9.(5分)如图,在▱ABCD中,E,F分别是AB,CD中点.当▱ABCD满足AB ⊥BC时,四边形EHFG是菱形.【分析】由题意可证四边形EHFG是平行四边形,△EBC≌△FCB,可得EC=BF,BH=CH,即可得EH=FH,则可证四边形EHFG是菱形.【解答】解:当▱ABCD满足AB⊥BC时,四边形EHFG是菱形.∵四边形ABCD是平行四边形,且AB⊥BC∴四边形ABCD是矩形∴∠ABC=∠DCB=90°,AB=CD,AB∥CD∵E是AB中点,F是CD中点,∴BE=CF=AE=DF∵BE=DF,AB∥CD∴ED∥BF同理可得:EC∥AF∴四边形EHFG是平行四边形.在△EBC与△FCB中,∵,∴△EBC≌△FCB(SAS)∴CE=BF,∴∠ECB=∠FBC,∴BH=CH,∴EH=FH,∴平行四边形EHFG是菱形,故答案为:AB⊥BC.【点评】本题考查了菱形的判定,平行四边形的判定与性质,利用这些性质和判定进行正确推理是本题的关键.10.(5分)如图所示,菱形ABCD的对角线的长分别为3和6,P是对角线AC 上任一点(点P不与点A.C重合),且PE∥BC交AB于E,PF∥CD交AD 于F,则阴影部分的面积是.【分析】由题意可得:S△ABC =,四边形AEPF是平行四边形,可得S△AEP=S▱ABCD=S△EFP ,即可得S阴影=S△ABC.【解答】解:∵菱形ABCD的对角线的长分别为3和6,∴S菱形ABCD=×3×6=9∴S△ABC=∵PE∥BC∥AD,PF∥CD∥AB∴S△AEP =S▱ABCD,S△EFP=S▱ABCD∴S△EFP =S△AEP∵S阴影=S四边形BCPE+S△EFP=S四边形BCPE+S△AEP=S△ABC∴S阴影=故答案为:【点评】本题考查了菱形的性质,平行四边形的判定和性质,熟练运用平行四边形的性质解决问题是本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE ∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的判定和菱形的判定解答即可.【解答】证明:(1)∵平行四边形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCF,∵DE∥AC,∴∠DAC=∠EDA,∴∠FCB=∠EDA,在△ADE与△BCF中,∴△ADE≌△BCF(SAS);(2)∵DE∥AC,且DE=AC,∴四边形EFCD是平行四边形,∴DC=EF,且DC∥EF,又∵AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠BAF+∠AED=180°,∴∠BAF+∠BFC=180°,又∠BF A+∠BFC=180°,∴∠BAF=∠BF A,∴BA=BF,∴四边形ABFE为菱形.【点评】此题考查菱形的判定,关键是根据平行四边形的判定、菱形的判定和全等三角形的判定解答.12.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点评】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.13.(10分)如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为或8s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为8s时,四边形ACFE是菱形.【分析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)①分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案;②若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【解答】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得:t=;当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得:t=8;综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.②若四边形ACFE是菱形,则有CF=AC=AE=8,则此时的时间t=8÷1=8(s);故答案是:或8;8.【点评】此题考查了平行四边形的判定,菱形的判定,全等三角形的判定与性质,等边三角形的性质,解题的关键是理解题意,学会用分类讨论的思想思考问题.14.(10分)如图,在△ABC中,点D、E分别是AB、AC的中点,连接BE,有BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若△ABC中BC=5,AC=12,求菱形BCFE的面积.【分析】(1)由题意可得:DE∥CB,BC=2DE=BE=EF,即可证四边形BCFE 是菱形;(2)连接BF交AC于点G,由题意可得EG=CG=3,根据勾股定理可求BG =4,即BF=8,根据菱形面积=×EC×BF,可求菱形BCFE的面积.【解答】证明:(1)点D、E分别是AB、AC的中点,∴BC∥DE,BC=2DE,∵BE=2DE,BE=EF∴EF=2DE∴BC=EF,且DE∥BC∴四边形BEFC是平行四边形又∵BE=EF∴四边形BCFE是菱形;(2)如图:连接BF交AC于点G∵点E是AC中点,AC=12,∴EC=6∵四边形BCFE是菱形∴EG=GC=3,BG=GF,EC⊥BF在Rt△BGC中,BG===4∴BF=8∴S菱形BCFE=×EC×BF=×8×6=24【点评】本题考查了菱形的性质和判定,三角形中位线定理,熟练运用菱形的判定是本题的关键.15.(10分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.【分析】(1)由题意可证BE=DE,四边形BEDF是平行四边形,即可证四边形BEDF为菱形;(2)过点D作DH⊥BC于点H,由题意可得BD=CD=6,根据30度所对的直角边等于斜边的一半,可求DH=3,即可求DF=BF的长,即可得菱形BEDF 的面积.【解答】解:(1)∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)如图:过点D作DH⊥BC于点H∵∠A=90°,∠C=30°,∴∠ABC=60°∴∠DBC=30°=∠C∴DB=DC=6∵DH⊥BC,∠C=30°∴DC=2DH=6∴DH=3∵DF∥AB,∴∠A=∠FDC=90°,且∠C=30°,DC=6∴DC=DF∴DF=2∵四边形BEDF为菱形∴BF=DF=2=BF×DH=2×3=6∴S四边形BEDF【点评】本题考查了菱形的性质与判定,30度所对的直角边等于斜边的一半,熟练运用菱形的性质与判定是本题的关键.。
初二数学下菱形(提高)知识讲解+巩固练习
菱形(提高)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、已知:如图所示,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=2,求菱形ABCD的周长.【答案与解析】证明:(1)连接DB,则由菱形性质得BD⊥AC.又因为EF⊥AC,所以EF∥BD,即ME∥BD.又因为点E是AB的中点,所以点M是AD的中点.所以AM=DM.(2)由(1)得DB∥EF.又BE∥DF,所以四边形EFDB是平行四边形.所以BE=DF=2.又因为12BE AB,即AB=2BE=2×2=4.所以菱形ABCD的周长为4×4=16.【总结升华】菱形四边相等,对角线互相垂直平分. 举一反三:【变式】(春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB 的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm4.(•青神县一模)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD 于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°5. 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为142cm ,四边形ABCD 面积是112cm ,则①②③④四个平行四边形周长的总和为( )A.48cmB.36cmC.24cmD.18cm6. 如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分的面积是( )A.3B.2C.3D.2二.填空题7. (•江西三模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为 .8.如图,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =_____.9.如图,菱形ABCD 的边长是2cm ,E 是AB 中点, 且DE ⊥AB ,则菱形ABCD 的面积为FA B CDHE G①②③④⑤cm.______210.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13. (•建湖县一模)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.15.如图,菱形ABCD 的边长为2,BD =2,E 、F 分别是边AD ,CD 上的两个动点(不与端点重合),且满足AE +CF =2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围. 【答案与解析】 一.选择题 1.【答案】B ; 2.【答案】A ;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°. 3.【答案】C ;【解析】设两条对角线的长为6,8k k .所以有()()2223410k k +=,∴2k =,所以两条对角线的长为12 ,16.4.【答案】B ;【解析】连接PA ,如图所示: ∵四边形ABCD 是菱形,∴∠ADP=∠CDP=∠ADC=36°,BD 所在直线是菱形的对称轴, ∴PA=PC ,∵AD 的垂直平分线交对角线BD 于点P , ∴PA=PD , ∴PD=PC ,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°; 故选:B .5.【答案】A ;【解析】菱形的面积等于11+142=18,设菱形边长为a ,则218,62a a ==,①②③④四个平行四边形周长的总和为菱形周长的2倍.6.【答案】A ;【解析】菱形的高分别是3和332,阴影部分面积=两个菱形面积-△ABD 面积-△DEF 面积-△BGF 面积=93152333333244+---=. 二.填空题7.【答案】. ;【解析】∵AECF 为菱形,∴∠FCO=∠ECO ,由折叠的性质可知,∠ECO=∠BCE ,又∠FCO+∠ECO+∠BCE=90°, ∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE , AB=AE+EB=3,∴EB=1,EC=2,∴BC=.8.【答案】5;【解析】菱形四条边相等. 9.【答案】23【解析】由题意∠A =60°,DE 310.【答案】5;53253; 【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和53,面积为125553322⨯⨯=11.【答案】512;【解析】431255AO BO OH AB ⨯⨯===. 12.【答案】()258,0,,08⎛⎫⎪⎝⎭; 【解析】由在菱形ABCD 中,AC =12,BD =16,E 为AD 中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP =OE 时,②当OE =PE 时,③当OP =EP 时去分析求解即可求得答案.三.解答题 13.【解析】 证明:(1)∵△ACF 是等边三角形, ∴∠FAC=∠ACF=60°,AC=CF=AF , ∵∠ACB=60°, ∴∠ACB=∠FAC , ∴AF ∥BC , ∵AM ∥FC ,∴四边形AMCF 是平行四边形, ∵AM ∥FC ,∠ACB=∠ACF=60°, ∴∠AMC=60°, 又∵∠ACB=60°,∴△AMC 是等边三角形, ∴AM=MC ,∴四边形AMCF 是菱形;(2)∵△BCE 是等边三角形, ∴BC=EC ,在△ABC 和△MEC 中 ∵,∴△ABC ≌△MEC (SAS ).14.【解析】证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,OB =OD ∵∠EDO =∠FBO, ∠OED =∠OFB ∴△OED ≌△OFB∴DE =BF 又∵ED ∥BF∴四边形BEDF 是平行四边形 ∵EF ⊥BD∴平行四边形BEDF 是菱形. 15.【解析】 解:(1)∵AE +CF =2=CD =DF +CF ∴AE =DF ,DE =CF , ∵AB =BD∴∠A =∠ADB =60° 在△BDE 与△BCF 中BD BC ADB C DE CF =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△BCF(2)由(1)得BE =BF ,∠EBD =∠CBF∴∠EBF =∠EBD +∠DBF =∠DBF +∠CBF =∠CBD =60°∴△BEF 是等边三角形(3)∵3≤△BEF 的边长<222S≤<S<11 / 11。
人教版2019年 八年级数学下册 菱形 精选练习(含答案)
2019年 八年级数学下册 菱形 精选练习一、选择题1.如图,菱形ABCD 中,AB=5,BD=6,则菱形的高为( )A.2.4B.4.8C.12D.242.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,若∠CDF=24°,则∠DAB 等于( )A .100°B .104°C .105°D .110°3.如图,在周长为12的菱形ABCD 中,AE=1,AF=2,若P 为对角线BD 上一动点,则EP+FP 的最小值为( )A.1B.2C.3D.44.如图,在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB ′E ,AB ′与CD 边交于点F,则B ′F 的长度为( )A.1B.C.2-D.2﹣25.如图,在菱形ABCD 中,∠ABC=60°,AB=1,E 为BC 的中点,则对角线BD 上的动点P 到E 、C两点的距离之和的最小值为( )A.43B.33C.23 D.216.如图,在菱形ABCD 中,AB=4cm ,∠ADC=120°,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A.1B.C.D.7.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动,可以添加一个条件,使四边形CBFE为菱形,下列选项中错误的是()A.BD=AEB.CB=BFC.BE⊥CFD.BA平分∠CBF8.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12mB.20mC.22mD.24m9.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合,若菱形ABCD的面积为4,则菱形ABCD的周长是( )A.8B.16C.8D.1610.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE⊥BC,垂足为E,则AE的长为( )A.8B.C.D.二、填空题11.如图,正方形ABCD的面积为18,菱形AECF的面积为6,则菱形的边长为.12.把两张宽为2 cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.13.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.14.如图,四边形ABCD和CEFG都是菱形,连接AG,GE,AE,若∠F=60°,EF=4,则△AEG面积为________.15.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为三、解答题17.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.18.如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.19.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.20.如图所示,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)①当AM为何值时,四边形AMDN是矩形?②当AM为何值时,四边形AMDN是菱形?21.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.22. (1)如图,纸片▱ABCD中,AD=5,S=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平▱ABCD移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1 图2答案1.B2.B.3.C4.C5.C.6.D7.A8.C9.A.10.C.11.答案为:;12.答案为:菱形,413.答案为:2.5;14.答案为:15.答案为:15.17.18.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.19.【解答】(1)证明:四边形ABCD是菱形,∴OA=OC=0.5AC,AD=CD,∵DE∥AC且DE=0.5AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∴OE=AD,∴OE=CD;(2)解:∵AC⊥BD,∴四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=.∴在Rt△ACE中,AE==.解:(1)略;(2)PC2=PE PF20. (1)证明:∵四边形ABCD是菱形,∴ND∥AM,21.解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即=8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2××3×4=20(cm2).。
八年级数学下册菱形知识点及同步练习(含答案)
学科:数学 教学内容:菱形学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题. 学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质 (2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △.设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算. 重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用. 难点:运用菱形的性质及识别方法,灵活地解答一些问题. 易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件.例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( ) (2)两边相等的平行四边形为菱形.( ) 错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×) 正解:(2)(×) (2)(×) 运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格 错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D 又∵E ,F 分别为BC ,CD 的中点,∴BE =DF ∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF , ∴△ABE ≌△ADF ∴AE =AF 典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180° 所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180° 所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形, ∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60° ∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF 又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60° ∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法. 例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C 因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形. 从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。
八年级数学《菱形》练习题 (含答案)
八年级数学《菱形》练习题一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm24.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1:3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE 是否是菱形?为什么?13.菱形ABCD的周长为20 cm,两条对角线的比为3:4,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.参考答案一、1.C2.D3.B4.B5.D二、6.2 cm7.44厘米8.176 cm29.8 cm 5 cm10.4 cm三、11.四边形AEDF是菱形,AE=E D.12.□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC13.24 cm214.9.6 cm。
八年级数学菱形的性质和判定(人教版)(基础)(含答案)
对角线相等的平行四边形是矩形,故D选项不能判断.
故选D
试题难度:三颗星知识点:略
7.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,则∠CDE的度数为( )
A.30° B.25°
C.20° D.35°
答案:A
解题思路:
在菱形ABCD中,AD∥BC,AD=AB,∠B=∠ADC
∴∠DAE=∠AEB
∵∠DAE=∠B=80°
∴∠B=∠AEB,∠ADC=80°
∴AB=AE
∴AE=AD
在等腰三角形ADE中,
∵∠DAE=80°
∴∠ADE=50°
∴∠CDE=∠ADC-∠ADE=30°
故选A
试题难度:三颗星知识点:略
8.如图,在菱形ABCD中,∠ADC=50°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数为( )
答案:B
解题思路:
选项A:
对角线相等的平行四边形是矩形,故A选项错误;
选项B:
有一组邻边相等的平行四边形是菱形,是菱形的定义,
故B选项正确;
选项C:
角是直角的平行四边形是矩形,故D选项错误.
故选B
试题难度:三颗星知识点:略
4.如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC于点E,则AE的长是( )
菱形的对角线:互相垂直、平分,每一条对角线平分一组对角,C错,D对.
故选C
试题难度:三颗星知识点:略
2.菱形具有而平行四边形不具有的性质是( )
A.对角线互相平分B.邻角互补
C.每条对角线平分一组对角D.对角相等
答案:C
解题思路:
概念辨析,考查平行四边形和菱形的性质,需要对比菱形和
人教版初中数学19.2《菱形》同步练习(含答案)
19.2.1 菱形的性质运用菱形的有关知识进行计算和说理专题练习题1.已知菱形的周长为16 cm,一条对角线长为4 cm,则菱形的4个角分别为()A.30°,150°,30°,150°B.45°,135°,45°,135°C.60°,120°,60°,120°D.以上都不对2.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC相交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°3.如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED=50°,则∠CBO=____度.4.如图,在菱形ABCD中,∠ABC=120°,对角线AC,BD相交于点O,AE平分∠CAD,分别交OD,CD于F,E 两点,求∠AFO的度数.5.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC的长为____cm.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.245B.125C .5D .4 7.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为____.8.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和4时,则阴影部分的面积为____.9.如图,O 是菱形ABCD 对角线AC 与BD 的交点,CD =5 cm ,OD =3 cm, 过点C 作CE ∥DB ,过点B 作BE ∥AC ,CE 与BE 相交于点E .(1)求OC 的长;(2)求四边形OBEC 的面积.10.如图,在菱形ABCD 中,∠BAD =44°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连结DF ,则∠CDF 等于( )A .112°B .114°C .116°D .118°11.在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为 .12.如图,四边形ABCD 是菱形,CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD 交AD 的延长线于点F ,求证:DF =BE .13.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD 于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.14.如图,在菱形ABCD中,F是BC上任意一点,连结AF交对角线BD于点E,连结EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?请说明理由.15.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是____.16.如图1,在菱形ABCD中,点E,F分别为AB,AD的中点,连结CE,CF.(1)求证:CE=CF;(2)如图2,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.答案:1. C2. C3. 504. ∵在菱形ABCD中,∠ABC=120°,∴∠BAD=60°,∵对角线AC,BD相交于点O,∴∠BAC=∠CAD=30°,∠DOA =90°,∵AE平分∠CAD,∴∠OAF=15°,∴∠AFO的度数为90°-15°=75°5. 266. A7. 308. 109. (1)∵四边形ABCD是菱形,∴AC⊥BD,∴在Rt△OCD中,OC=CD2-OD2=52-32=4 (cm)(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形,又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形,∵OB=OD,∴S四边形OBEC=OB·OC=4×3=12(cm2)10. B11. 45°或105°12. 连结AC ,∵四边形ABCD 是菱形,∴AC 平分∠DAB ,CD =BC ,∵CE ⊥AB ,CF ⊥AD ,∴CE =CF ,∠CFD =∠CEB =90°,∴Rt △CDF ≌Rt △CBE (HL ),∴DF =BE13. (1)连结AC ,BD ,并且AC 和BD 相交于点O ,∵AE ⊥BC ,且AE 平分BC ,∴AB =AC =BC ,∴BE =12BC =2,∴AE =42-22=23,S =BC ·AE =4×23=83, ∴菱形ABCD 的面积是83(2)∵AC =AB =AD =CD ,△ADC 是等边三角形,∵AF ⊥CD , ∴∠DAF =30°,又∵CG ∥AE ,AE ⊥BC , ∴四边形AECG 是矩形,∴∠AGH =90°, ∴∠AHC =∠DAF +∠AGH =120°14. (1)连结AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE =EC(2)点F 是线段BC 的中点.理由:在菱形ABCD 中,AB =BC , 又∵∠ABC =60°,∴△ABC 是等边三角形,∴∠BAC =60°, ∵AE =EC ,∴∠EAC =∠ACE ,∵∠CEF =60°, ∴∠EAC =12∠CEF =30°,∴∠EAC =12∠BAC ,∴AF 是△ABC 的角平分线,∵AF 交BC 于点F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点 15.17216.(1)易证△BCE ≌△DCF (SAS ),∴CE =CF(2)延长BA 与CF ,交于点G ,∵四边形ABCD 是菱形,∴∠B =∠D ,AB =BC =CD =AD ,AF ∥BC ,AB ∥CD ,∴∠G =∠FCD ,∵点F 为AD 的中点,且AG ∥CD ,易证△AGF ≌△DCF (AAS ),∴AG =CD ,∵AB =CD ,∴AG =AB ,∵△BCE ≌△DCF ,∴∠ECB =∠DCF =∠G ,∵∠CHB =2∠ECB ,∴∠CHB =2∠G ,∵∠CHB =∠G +∠HCG ,∴∠G =∠HCG ,∴GH =CH ,∴CH =AH +AG =AH +AB。
八年级数学下册《菱形》同步练习题及答案解析
八年级数学下册《菱形》同步练习题及答案解析一.选择题1.已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm22.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°3.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BC B.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合4.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°5.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为()A.45°B.50°C.60°D.70°6.如图,菱形ABCD的两条对角线相交于点O,若AC=6,菱形的面积等于12,则菱形ABCD的周长等于()A.4B.2C.D.47.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2C.2D.18.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED的度数为()A.15°B.20°C.25°D.30°9.菱形的一个内角是60°,边长是3cm,则这个菱形的较短的对角线长是()A.B.C.3cm D.10.平行四边形ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD为菱形的是()A.AC⊥BD B.∠ABD=∠CBD C.AB=BC D.AC=BD11.如图,在菱形ABCD中,AC与BD相交于点O,AB=AC,点E在BC上,且∠CAE=15°,AE与BD 相交于F,下列结论不正确的是()A.∠EBF=30°B.BE=BF C.F A>EF D.OE⊥BC12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.B.C.D.513.下列说法中,错误的是()A.对顶角相等B.对角线互相垂直的平行四边形是菱形C.两直线平行,同位角相等D.两边及一角对应相等的两个三角形全等14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB 长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16B.15C.14D.1315.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°二.填空题(共5小题)16.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.18.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF 的面积为4cm2,则△BDH的面积是cm2.19.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF ⊥AD于F.则OE+OF=.20.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是.三.解答题(共5小题)21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形.(2)若BD=30,MN=16,求菱形BNDM的周长.22.如图,平行四边形ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,∠DAB=60°,求四边形AFED的面积.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D 作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.25.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.参考答案与解析一.选择题1.解:∵菱形的两条对角线的长分别为6cm和8cm;∴这个菱形的面积=×6×8=24(cm2);故选:B.2.解:∵四边形ABCD是菱形;∴OD=OB,AB∥CD,BD⊥AC;∵DH⊥AB;∴DH⊥CD,∠DHB=90°;∴OH为Rt△DHB的斜边DB上的中线;∴OH=OD=OB;∴∠1=∠DHO;∵DH⊥CD;∴∠1+∠2=90°;∵BD⊥AC;∴∠2+∠DCO=90°;∴∠1=∠DCO;∴∠DHO=∠DCA;∵四边形ABCD是菱形;∴DA=DC;∴∠CAD=∠DCA=20°;∴∠DHO=20°;故选:A.3.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.4.解:过A作AE⊥BC;由题意知AE⊥BC,且E为BC的中点;则△ABC为等腰三角形即AB=AC,即AB=AC=BC;∴∠ABC=60°;∴∠BAD=180°﹣∠ABC=180°﹣60°=120°.故选:C.5.解:∵四边形ABCD是菱形;∴AD=AB;∴∠ABD=∠ADB=(180°﹣∠A)=75°;由作图可知,EA=EB;∴∠ABE=∠A=30°;∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°;故选:A.6.解:∵菱形的面积等于12;∴AC•BD=12;∵AC=6;∴BD=4;∵菱形ABCD对角线互相垂直平分;∴BO=OD=2,AO=OC=3;∴AB===;∴菱形的周长为4.故选:D.7.解:如图,∵四边形ABCD是菱形,周长为8;∴AB=BC=CD=AD=2,AD∥BC;∴∠B+∠BAD=180°;∴∠B=180°﹣120°=60°;∴△ABC为等边三角形;∴AC=AB=2;即该菱形较短的对角线长为2;故选:C.8.解:∵四边形ABCD是菱形,∠ABC=140°;∴∠ABD=∠CBD=∠ABC=70°,BO=DO;∵DE⊥BC;∴OE=OD=OB,∠BDE=20°;∴∠ODE=∠OED=20°;故选:B.9.解:如图,∵菱形的一个内角是60°,边长是3cm;∴AB=BC=3cm,△ABC是等边三角形;∴AC=AB=3cm;即这个菱形的较短的对角线长为3cm;故选:C.10.解:A、∵四边形ABCD是平行四边形,AC⊥BD;∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形;∴AB∥CD;∴∠ABD=∠CDB;又∵∠ABD=∠CBD;∴∠CDB=∠CBD;∴BC=DC;∴平行四边形ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AB=BC;∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC=BD;∴平行四边形ABCD是矩形,故选项D不符合题意;故选:D.11.解:如图在菱形ABCD中,AB=CB=AD=CD;∵AB=AC;∴AB=CB=AD=CD=AC;∴△ABC和△ADC都是等边三角形;∴∠ABC=∠BAC=∠ACB=60°;∵BD=BD(公共边)∴△ABD≌△CBD(SSS);∴∠ABD=∠CBD=∠ABC=30°;∴∠EBF=30°.∴A正确;∵∠ABC=∠BAC=60°,∠CAE=15°;∴∠BAE=60°﹣15°=45°;∴∠BEF=180°﹣60°﹣45°=75°;∴∠BFE=180°﹣30°﹣75°=75°;∴∠BEF=∠BFE;∴BE=BF.∴B正确;过点F作FG∥BC,交AD于点G;∵AB=BC>BE;∴F A>EF;∴C正确;假设OE⊥BC正确,则∠BEO=90°;∵∠BEF=75°;∴∠OEA=90°﹣75°=15°=∠CAE;∴OE=OA=OC;∴∠OEC=∠OCE=60°;∵∠OEC=60°与OE⊥BC相矛盾;∴假设不成立;∴OE⊥BC错误;∴D不正确.故选:D.12.解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O;∵两条纸条宽度相同;∴AE=AF.∵AB∥CD,AD∥BC;∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD;∴四边形ABCD是菱形;∴AO=CO=1,BO=DO,AC⊥BD;∴BO===2;∴BD=4;∴四边形ABCD的面积==4;故选:A.13.解:A、对顶角相等,本选项说法正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,本选项说法正确,不符合题意;C、两直线平行,同位角相等,本选项说法正确,不符合题意;D、两边及其夹角对应相等的两个三角形全等,本选项说法错误,符合题意;故选:D.14.解:连接EF,AE与BF交于点O,如图;∵AO平分∠BAD;∴∠1=∠2;∵四边形ABCD为平行四边形;∴AF∥BE;∴∠1=∠3;∴∠2=∠3;∴AB=EB;同理:AF=BE;又∵AF∥BE;∴四边形ABEF是平行四边形;∴四边形ABEF是菱形;∴AE⊥BF,OB=OF=6,OA=OE;在Rt△AOB中,由勾股定理得:OA===8;∴AE=2OA=16.故选:A.15.解:∵四边形ABCD为菱形;∴AB∥CD,AB=BC;∴∠MAO=∠NCO,∠AMO=∠CNO;在△AMO和△CNO中;;∴△AMO≌△CNO(ASA);∴AO=CO;∵AB=BC;∴BO⊥AC;∴∠BOC=90°;∵∠DAC=26°;∴∠BCA=∠DAC=26°;∴∠OBC=90°﹣26°=64°.故选:B.二.填空题16.解:∵四边形ABCD是菱形;∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°;∴AC=4,∠AOB=90°;∴∠ABO=30°;∴AB=2OA=4,OB=2;∴BD=2OB=4;∴该菱形的面积是:AC•BD=×4×4=8.故答案为:8.17.解:根据作图,AC=BC=OA;∵OA=OB;∴OA=OB=BC=AC;∴四边形OACB是菱形;∵AB=2cm,四边形OACB的面积为4cm2;∴AB•OC=×2×OC=4;解得OC=4cm.故答案为:4.18.解:如图,连接FH;∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E;∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2);∴BD∥FH;∴△BDH的面积=△BDF的面积;∴△BDH的面积=S△BDC+S△BCF=8.5(cm2);故答案为8.5.19.解:如图,连接AC交BD于点G,连接AO;∵四边形ABCD是菱形;∴AC⊥BD,AB=AD=10,BG=BD=8;根据勾股定理得:AG===6;∵S△ABD=S△AOB+S△AOD;即BD•AG=AB•OE+AD•OF;∴16×6=10OE+10OF;∴OE+OF=9.6.故答案为:9.6.20.解:如图,设CD与AB1交于点O;∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高;∴AE=;由折叠易得△ABB1为等腰直角三角形;∴S△ABB1=BA•AB1=2,S△ABE=1;∴CB1=2BE﹣BC=2﹣2;∵AB∥CD;∴∠OCB1=∠B=45°;又由折叠的性质知,∠B1=∠B=45°;∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2;∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.三.解答题21.(1)证明:∵AD∥BC;∴∠DMO=∠BNO;∵MN是对角线BD的垂直平分线;∴OB=OD,MN⊥BD;在△MOD和△NOB中;;∴△MOD≌△NOB(AAS);∴OM=ON;∵OB=OD;∴四边形BNDM是平行四边形;∵MN⊥BD;∴平行四边形BNDM是菱形;(2)解:由(1)可知,OB=BD=15,OM=ON=MN=8,四边形BNDM是菱形;∴BN=DN=DM=BM;∵MN⊥BD;∴∠BON=90°;∴BN===17;∴菱形BNDM的周长=4BN=68.22.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD;∴∠DEA=∠F AE;∵AE平分∠BAD;∴∠DAE=∠F AE;∴∠DEA=∠DAE∴AD=ED;∵AD=AF;∴DE=AF;∴四边形AFED是平行四边形;又∵AD=ED;∴平行四边形AFED是菱形;(2)解:过D作DG⊥AF于G,如图所示:∵∠DAB=60°;∴∠ADG=90°﹣60°=30°;∴AG=AD=2;∴DG===2;由(1)得:四边形AFED是菱形;∵AF=AD=4;∴菱形AFED的面积=AF×DG=4×2=8.23.(1)证明:∵AD∥BC;∴∠ADB=∠CBD;∵BD平分∠ABC;∴∠ABD=∠CBD;∴∠ADB=∠ABD;∴AD=AB;∵AB=BC;∴AD=BC;∵AD∥BC;∴四边形ABCD是平行四边形;又∵AB=BC;∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形;∴AC⊥BD,OB=OD,OA=OC=AC=2;在Rt△OCD中,由勾股定理得:OD==4;∴BD=2OD=8;∵DE⊥BC;∴∠DEB=90°;∵OB=OD;∴OE=BD=4.24.(1)证明:∵四边形ABCD是平行四边形;∴OB=OD=BD;∵BD=2AB;∴AB=OB;∵AE∥BD,OE∥AB;∴四边形ABOE是平行四边形;∵AB=OB;∴四边形ABOE是菱形;(2)解:连接BE,交OA于F,如图所示:∵四边形ABOE是菱形;∴OA⊥BE,AF=OF=OA=1,BF=EF=BE;∵S四边形ABOE=4;S四边形ABOE=OA•BE=×2×BE=BE;∴BE=4;∴BF=2;∴OB===;∴BD=2OB=2.25.(1)证明:∵DE∥BC,EC∥AB;∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线;∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°;∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6;∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形;∴DE=BC=6.∴.。
初二数学菱形练习题及答案
初二数学菱形练习题及答案题1:在菱形ABCD中,已知AB的对角线交于点O,同时AO=5cm,OC=3cm。
求菱形的周长。
解:首先,我们知道菱形的对角线互相垂直且交于其顶点的角是90度。
因此,我们可以利用勾股定理求得菱形的边长。
设菱形的一条边的长度为x,则另一条边的长度也为x(因为菱形的边长相等)。
由勾股定理可得:x² = 5² - 3²x² = 25 - 9x² = 16x = √16x = 4因此,菱形的边长为4cm。
由于菱形的边长相等,所以菱形的周长为4 x 4 = 16cm。
答:菱形的周长为16cm。
题2:在菱形EFGH中,已知EF的对角线交于点I,EI=8cm,IF=10cm。
求菱形的面积。
解:菱形的面积可以通过对角线的乘积除以2来求得。
因此,我们可以利用已知的对角线长度求得菱形的面积。
设菱形的一个对角线的长度为d1,另一个对角线的长度为d2,则菱形的面积为:面积 = (d1 x d2) / 2在这道题中,已知EI=8cm,IF=10cm,所以菱形的面积为:面积 = (8 x 10) / 2= 80 / 2= 40答:菱形的面积为40平方厘米。
题3:在菱形IJKL中,已知IJ的对角线交于点M,IM=6cm。
若菱形的周长是24cm,求菱形的面积。
解:首先,我们可以利用周长的性质来求得菱形的边长。
设菱形的边长为x,则菱形的周长为4x。
根据题目中的条件,我们可以得到以下等式:4x = 24解方程可得:x = 24 / 4x = 6因此,菱形的边长为6cm。
由于菱形的对角线互相垂直,所以可以将菱形划分为两个直角三角形。
菱形面积等于两个直角三角形的面积之和。
设菱形的对角线的长度依次为d1和d2,菱形面积为S。
则有公式:S = (d1 x d2) / 2在这道题中,已知IM=6cm,所以另一条对角线的长度为6cm。
代入公式可以求得菱形的面积:S = (6 x 6) / 2= 36 / 2= 18答:菱形的面积为18平方厘米。
人教版八年级下册数学菱形同步练习题
菱形一、1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm24.如图,在菱形ABCD中,对角线AC、BD相交于点O,则{HYPERLINK "" |(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.二1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.5.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.86.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.参考答案一、课前预习(5分钟训练)1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角答案:B2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形答案:C3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm2解析:S菱形=×6×8=24(cm2).答案:C4.如图,在菱形ABCD中,对角线AC、BD相交于点O,则(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.答案:(1)BC CD 四条边(2)△ABD、△ABC、△ADC、△BCD △AOB、△BOC、△COD、△DOA △AOB △COB △COD 垂直平分平分一组对角(3)对角线所在的直线二、课中强化(10分钟训练)1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm解析:OE是Rt△BOC的斜边BC上的中线,故OE=BC=AD=3 cm.答案:C2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形解析:连结矩形的两条对角线,则相邻两边中点的连线是三角形的中位线.由三角形的中位线等于第三边的一半及矩形两条对角线相等可得中点四边形的各边都相等,故顺次连结矩形各边中点所得的四边形是菱形.答案:C3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形解析:因为等边三角形的三条边都相等,所以用它拼成的四边形的四条边都相等,而四条边都相等的四边形是菱形,因此选D.答案:D4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.解析:由菱形的邻角互补,可知菱形的另一组内角是60°,60°内角所对的对角线是较短的.根据有一个角是60°的等腰三角形是等边三角形可推出菱形边长是10,因此菱形周长是40.答案:405.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.解:菱形两对角线将其分割为四个全等的直角三角形.设AO=x,因为四边形ABCD为菱形,所以AO=CO,BO=DO,AC⊥BD.又因为AC∶BD=1∶,所以AO∶BO=1∶,BO=.在Rt△ABO中,因为AB2=BO2+AO2,所以AB2=()2+x2=22.所以x=1.所以AO=1,BO=.所以AC=2,BD=.所以菱形的面积为×2×=.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.答案:证明:∵∠ACB=90°,DE是BC的中垂线,∴E为AB边的中点.∴CE=AE=BE.∵∠BAC=60°,∴△ACE为正三角形.在△AEF中,∠AEF=∠DEB=∠BAC=60°,而AF=CE,又CE=AE,∴AE=AF.∴△AEF也为正三角形.∴∠CAE=∠AEF=60°.∴AC EF.∴四边形ACEF为平行四边形.又CE=AC,∴平行四边形ACEF为菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?解:(方案一)S菱形=S矩形-4S△AEH=12×5-4××6×=30(cm2).(方案二)设BE=x,则CE=12-x,∴AE=.因为四边形AECF是菱形,则AE2=CE2,∴25+x2=(12-x)2.∴x=.∴S菱形=S矩形-2S△ABE=12×5-2××5×≈35.21(cm2).经比较可知,(方案二)张丰同学所折的菱形面积较大.三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形解析:根据菱形的判定定理:对角线互相垂直平分的四边形是菱形.答案:D2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm解析:因菱形四边相等,所以每边都为8,其对角线平分一组对角,根据一个角是60°,可求得.答案:C3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°解析:由菱形为中心对称图形可知B正确.答案:B4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°解析:因为AE垂直平分BC,所以AB=AC.又因为AB=BC,所以△ABC为等边三角形.∠BAC=60°,∠EAC=30°.同理可证∠FAC=30°,△AEF是等边三角形,所以∠AEF=60°.答案:C5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.8解析:∵ABCD为菱形,∴AB=BC.又∵∠ABC=60°,∴△ABC为等边三角形.∴AB=BC=AC=4,∠ABO=30°,∠AOB=90°.在△AOB中,OB==.∴BD=BO+OD=.答案:B6.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.解:添加条件:对角线相等.理由:连结AC、BD.在△ABC中,∵AE=BE,BF=CF,∴EF为△ABC的中位线.∴EF=.同理可得FG=,GH=,HE=.又∵AC=BD(添加条件),∴EF=FG=GH=HE.故四边形EFGH为菱形.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.答案:证明:在ABCD中,OD=OB,OA=OC,AB∥CD,∴∠OBG=∠ODE.又∵∠BOG=∠DOE,∴△OBG≌△ODE.∴OE=OG.同理OF=OH.∴四边形EFGH是平行四边形.又∵EG⊥FH,∴四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.答案:证明:如图,把菱形花坛分成9个菱形,由此可得至少有一个小菱形里要栽两株花,因为小菱形的对角线长为m,所以至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.答案:证明:∵EF垂直平分AC,∴EF⊥AC,AO=CO.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠AEO=∠CFO.∴△AOE≌△COF.∴OE=OF.∴四边形AECF是平行四边形.又∵AC⊥EF,∴四边形AFCE是菱形.- 11 -。
人教版数学八年级下册:第十九章 一次函数 专题练习(附答案)
第十九章一次函数专题练习小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A B C D 4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A B C D 类型3动点问题中判断函数图象5.如图,在矩形ABCD 中,AB =3,BC =4,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A B C D 6.如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A B C D类型4 从函数图象中获取信息7.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是( )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为 .小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )A B C D5.如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A(1,-2),则k = ,b = .6.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为 .7.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y 随x 的增大而增大. 请你根据他们的叙述构造满足上述性质的一个函数: .9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.12.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)y的值随x值的增大而;(3)求图象与x轴的交点A,与y轴的交点B的坐标;(4)在(3)的条件下,求出△AOB的面积.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b ――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ; ④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1 k 2,且b 1 b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为 ; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为 ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是 .2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为 ; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k = .思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.小专题(四)一次函数与坐标轴围成的三角形【教材母题】点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象;(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.小专题(五)一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行李质量为50 kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数关系式;(2)求旅客最多可免费携带行李的质量.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?参考答案:小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( B )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( C )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(B)A B CD4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( C )A B CD类型3动点问题中判断函数图象5.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( D )A B CD6.如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( A )A B C D类型4从函数图象中获取信息7.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( D )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为7.小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( D ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( C )A .第一象限B .第二象限C .第三象限D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( C )A .第一象限B .第二象限C .第三象限D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( A )A B C D5.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则k=2,b=-4.6.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.7.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为-1.8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y随x的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:y=2x-1(答案不唯一).9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是m>n.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为(2n-1,2n-1).11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.解:(1)∵正比例函数y =kx 经过点(5,-10), ∴-10=5k ,解得k =-2. ∴这个函数的解析式为y =-2x.(2)将x =4代入y =-2x ,得y =-8≠-2, ∴点A(4,-2)不在这个函数图象上. (3)∵k =-2<0, ∴y 随x 的增大而减小. ∵x 1>x 2,∴y 1<y 2.12.已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象; (2)y 的值随x 值的增大而增大;(3)求图象与x 轴的交点A ,与y 轴的交点B 的坐标; (4)在(3)的条件下,求出△AOB 的面积.解:(1)函数图象如图所示. (3)A(-2,0),B(0,4). (4)由(3)可知,OA =2,OB =4, ∴S △AOB =12OA·OB=12×2×4=4.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ;④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1=k 2,且b 1≠b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为y =2x +2; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为y =-x ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是(0,4).2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为y =2x -9; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k =-34.思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.解:(1)直线y =-2x +4与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,4). 设关于x 轴对称的直线解析式为y =mx +n ,则该直线经过点(2,0),(0,-4), ∴直线解析式为y =2x -4.设关于y 轴对称的直线解析式为y =sx +t ,则该直线经过点(-2,0),(0,4), ∴直线解析式为y =2x +4.(2)直线y =kx +b 关于x 轴对称的直线解析式为y =-kx -b ,关于y 轴对称的直线解析式为y =-kx +b.小专题(四) 一次函数与坐标轴围成的三角形【教材母题】 点P(x ,y)在第一象限,且x +y =8,点A 的坐标为(6,0).设△OPA 的面积为S.(1)用含x 的式子表示S ,写出x 的取值范围,画出函数S 的图象; (2)当点P 的横坐标为5时,△OPA 的面积为多少? (3)△OPA 的面积能大于24吗?为什么?解:(1)∵点A 和点P 的坐标分别是(6,0),(x ,y), ∴S =12×6×y =3y.∵x +y =8,∴y =8-x. ∴S =3(8-x)=24-3x. ∴S =-3x +24. ∵点P 在第一象限,∴x >0,y >0,即x >0,8-x >0.∴0<x <8. 图象如图所示.(2)当x =5时,S =-3×5+24=9. (3)不能.理由:令S >24,则-3x +24>24.解得x <0. ∵由(1),得0<x <8, ∴△OPA 的面积不能大于24.在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B(-3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.解:(1)由题意,得点C 的坐标为(-2,1). 设直线l 1的解析式为y =kx +c , ∵点B(-3,3),C(-2,1)在直线l 1上,∴⎩⎪⎨⎪⎧-3k +c =3,-2k +c =1.解得⎩⎪⎨⎪⎧k =-2,c =-3. ∴直线l 1的解析式为y =-2x -3.(2)把点B 的坐标代入y =x +b ,得3=-3+b , 解得b =6.∴y =x +6.∴点E 的坐标为(0,6). ∵直线y =-2x -3与y 轴交于点A , ∴A 的坐标为(0,-3).∴AE =6+3=9. ∵B(-3,3),∴S △ABE =12×9×|-3|=13.5.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.解:(1)当x =0时,y =-13x +1=1.∴点B 的坐标为(0,1). 当y =0时,-13x +1=0,解得x =3.∴点A 的坐标为(3,0). 过点C 作CE ⊥x 轴,垂足为E ,∵△ABC 为等腰直角三角形,∠BAC =90°, ∴∠BAO +∠CAE =90°,AB =CA. 又∵∠BAO +∠ABO =90°, ∴∠ABO =∠CAE.在△ABO 和△CAE 中,⎩⎨⎧∠AOB =∠CEA ,∠ABO =∠CAE ,AB =CA ,∴△ABO ≌△CAE(AAS). ∴AE =BO =1,CE =AO =3. ∴OE =AO +AE =4. ∴点C 的坐标为(4,3).(2)过点P 作PF ⊥x 轴,垂足为F , 设直线BC 的解析式为y =kx +b(k ≠0). 将B(0,1),C(4,3)代入y =kx +b ,得 ⎩⎨⎧b =1,4k +b =3,解得⎩⎪⎨⎪⎧k =12,b =1. ∴直线BC 的解析式为y =12x +1.∴S =12OA·PF =12×3×(12x +1)=34x +32(0<x <4).(3)不能.理由如下: 当S =92时,34x +32=92,解得x =4. ∵0<x <4,∴△OPA 的面积不能等于92.小专题(五) 一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数关系式;(2)求旅客最多可免费携带行李的质量.解:(1)设y 与x 的函数关系式为y =kx +b.将(20,2),(50,8)代入y =kx +b ,得⎩⎨⎧20k +b =2,50k +b =8,解得⎩⎪⎨⎪⎧k =15,b =-2.∴当行李的质量x 超过规定时,y 与x 之间的函数关系式为y =15x -2. (2)当y =0时,15x -2=0, 解得x =10.答:旅客最多可免费携带行李10 kg.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解:(1)设销售甲种特产x 吨,则销售乙种特产(100-x)吨,根据题意,得10x +(100-x)×1=235,解得x =15.∴100-x =85.答:这个月该公司销售甲、乙两种特产分别为15吨、85吨.(2)设利润为w 元,销售甲种特产a 吨,根据题意,得w =(10.5-10)a +(1.2-1)×(100-a)=0.3a +20.∵0≤a ≤20,∴当a =20时,w 取得最大值,w 最大=26.答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意,得⎩⎨⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80. 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m ≤3(100-m),解得m ≤75,利润w =1 000m +400(100-m)=600m +40 000,∵600>0,∴w 随m 的增大而增大.∴m =75时,w 有最大值为85 000元.4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元.根据题意,得⎩⎨⎧20x +15y +7 000=24 000,10x -5y +1 000=2 000,解得⎩⎪⎨⎪⎧x =400,y =600.答:甲种办公桌每张400元,乙种办公桌每张600元.(2)设甲种办公桌购买a 张,则乙种办公桌购买(40-a)张,购买的总费用为M 元, 则M =400a +600(40-a)+2×40×100=-200a +32 000,∵a ≤3(40-a),∴a ≤30.∵-200<0,∴M 随a 的增大而减小.∴当a =30时,M 取得最小值,最小值为26 000元.答:购买甲、乙两种办公桌分别为30张、10张时,费用最少,为26 000元.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?解:(1)设每一个篮球的进价是x 元,则每一个排球的进价是90%x 元,依题意,得 3 600x +10=3 60090%x, 解得x =40.经检验,x =40是原方程的解.90%x =90%×40=36.答:每一个篮球的进价是40元,每一个排球的进价是36元.(2)设文体商店计划购进篮球m 个,总利润y 元,则y =(100-40)m +(90-36)(100-m)=6m +5 400.依题意,得⎩⎪⎨⎪⎧0<m <100,100-m ≥3m. 解得0<m ≤25且m 为整数.∵k =6>0,∴y 随m 的增大而增大.∴m =25时,y 最大,这时y =6×25+5 400=5 550.100-25=75(个).答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5 550元.6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?解:(1)y 甲=0.8x.y 乙=⎩⎪⎨⎪⎧x (0<x<2 000),0.7x +600(x ≥2 000). (2)当0<x<2 000时,0.8x<x ,到甲商店购买更省钱;当x ≥2 000时,若到甲商店购买更省钱,则0.8x<0.7x +600,解得x<6 000;若到乙商店购买更省钱,则0.8x>0.7x +600,解得x>6 000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6 000.故当购买金额按原价小于6 000元时,到甲商店购买更省钱;当购买金额按原价大于6 000元时,到乙商店购买更省钱;当购买金额按原价等于6 000元时,到甲、乙两商店购买一样.7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y 与x 的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?解:(1)由图可得,起点A 与终点B 之间相距3 000米.(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点.(3)设甲龙舟队的y 与x 的函数关系式为y =kx.把(25,3 000)代入,可得3 000=25k ,解得k =120.∴甲龙舟队的y 与x 的函数关系式为y =120x(0≤x ≤25).设乙龙舟队的y 与x 函数关系式为y =ax +b.把(5,0),(20,3 000)代入,可得⎩⎨⎧0=5a +b ,3 000=20a +b ,解得⎩⎪⎨⎪⎧a =200,b =-1 000. ∴乙龙舟队的y 与x 的函数关系式为y =200x -1 000(5≤x ≤20).(4)令120x =200x -1 000,可得x =12.5.即当x =12.5时,两龙舟队相遇.当x <5时,令120x =200,则x =53(符合题意); 当5≤x <12.5时,令120x -(200x -1 000)=200,则x =10(符合题意);当12.5<x ≤20时,令200x -1 000-120x =200,则x =15(符合题意);当20<x ≤25时,令3 000-120x =200,则x =703(符合题意). 综上所述,甲龙舟队出发53分钟或10分钟或15分钟或703分钟时,两支龙舟队相距200米.。
人教版八年级数学下《菱形》基础练习
《菱形》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)在菱形ABCD中,AC、BD为对角线,若AC=4,BD=8,则菱形ABCD 的面积是()A.12B.16C.24D.322.(5分)已知菱形ABCD的对角线AC、BD的长分别为10cm、24cm,则这个菱形的周长为()A.13cm B.26cm C.48cm D.52cm3.(5分)如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠DAB+∠ABC=180°B.AB=BCC.AB=CD,AD=BC D.∠ABC=∠ADC,∠BAD=∠BCD 4.(5分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分5.(5分)在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB长为()A.2B.cm C.3cm D.2cm二、填空题(本大题共5小题,共25.0分)6.(5分)已知菱形的面积为24cm2,一条对角线长为6cm,则这个菱形的边长是厘米.7.(5分)如图,在菱形ABCD中,AC=8,AD=6,则菱形的面积等于.8.(5分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD是菱形,所添条件为(写出一个即可)9.(5分)如图,四边形ABCD为平行四边形,请你添加一个合适的条件使其成为菱形.(只需添加一个即可)10.(5分)如图所示,在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠AEF的大小是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在菱形ABCD中,DE⊥AB,垂足为点E,且E为边AB的中点.(1)求∠A的度数;(2)如果AB=4,求对角线AC的长.12.(10分)已知,如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF 于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.13.(10分)如图,在ABCD中,AD>AB,AE平分∠BAD,交BC于点E,过点E作EF∥AB交AD于点F.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠EBA=120°,求AE的大小.14.(10分)如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积.15.(10分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC =4,求菱形的周长.《菱形》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)在菱形ABCD中,AC、BD为对角线,若AC=4,BD=8,则菱形ABCD 的面积是()A.12B.16C.24D.32【分析】根据菱形面积=ab.(a、b是两条对角线的长度),可求菱形ABCD 的面积.【解答】解:∵菱形ABCD的面积=AC×BD∴菱形ABCD的面积=×4×8=16故选:B.【点评】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.2.(5分)已知菱形ABCD的对角线AC、BD的长分别为10cm、24cm,则这个菱形的周长为()A.13cm B.26cm C.48cm D.52cm【分析】由题意可得菱形对角线互相垂直平分,根据勾股定理可求菱形边长,即可求菱形的周长.【解答】解:设对角线AC,BD相交于O∵四边形ABCD是菱形∴AC⊥BD,AO=CO=5,BO=DO=12∴AB==13∴菱形ABCD的周长=13×4=52故选:D.【点评】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.3.(5分)如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠DAB+∠ABC=180°B.AB=BCC.AB=CD,AD=BC D.∠ABC=∠ADC,∠BAD=∠BCD 【分析】根据题意可得四边形ABCD是平行四边形,根据平行四边形的性质可判断.【解答】解:根据题意可得AB∥CD,AD∥BC∴四边形ABCD是平行四边形∴AD=BC,AB=CD,∠ABC=∠ADC,∠BAD=∠BCD,∠DAB+∠ABC=180°故选:B.【点评】本题考查了菱形的判定与性质,平行四边形的性质和判定,熟练运用平行四边形的判定和性质解决问题是本题的关键.4.(5分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分【分析】根据平行四边形、菱形的判定和性质一一判断即可;【解答】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(5分)在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB长为()A.2B.cm C.3cm D.2cm【分析】根据菱形的性质,可求∠ABD=60°,AC⊥BD,则可求AB的长.【解答】解:如图:连接BD,交AC于O∵ABCD为菱形∴AC⊥BD,AO=CO=AC=3cm,∠ABD=∠ABC=60°∴∠BAO=30°∴AB=2BO,AO=BO∴BO=cm,AB=2cm故选:D.【点评】本题考查了菱形的性质,熟练利用菱形的性质解决问题是本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)已知菱形的面积为24cm2,一条对角线长为6cm,则这个菱形的边长是5厘米.【分析】根据菱形的面积公式可得菱形的另一对角线长,再根据菱形的对角线互相垂直平分利用勾股定理可求出边长.【解答】解:设菱形的另一对角线长为xcm,由题意:×6×x=24,解得:x=8,菱形的边长为:=5(cm),故答案为5.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形的对角线互相垂直、平分.7.(5分)如图,在菱形ABCD中,AC=8,AD=6,则菱形的面积等于16.【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【解答】解:如图:设AC与BD的交点为O∵四边形ABCD是菱形∴AO=CO=4,BO=DO,AC⊥BD∴DO==2∴BD=4=×AC×BD∵S菱形ABCD=×4×8=16∴S菱形ABCD故答案为:16【点评】本题考查了菱形的性质,熟练运用菱形的性质解决问题是本题的关键.8.(5分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD是菱形,所添条件为AB=AD(写出一个即可)【分析】根据一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形可得解.【解答】解:根据一组邻边相等的平行四边形是菱形,则可添加条件为:AB=AD(AD=CD,BC=CD,AB=BC)也可添加∠1=∠2,根据平行四边形的性质,可求AD=CD.根据对角线互相垂直的平行四边形是菱形,则可添加条件为:AC⊥BD.故答案为:AB=AD(答案不唯一)【点评】本题考查了菱形的判定,平行四边形的性质,熟练掌握菱形的判定是本题的关键.9.(5分)如图,四边形ABCD为平行四边形,请你添加一个合适的条件AB =BC(AC⊥BD)使其成为菱形.(只需添加一个即可)【分析】根据菱形的判定可得.【解答】解:∵AB=BC(一组邻边即可),且四边形ABCD为平行四边形∴四边形ABCD是菱形∵AC⊥BD,且四边形ABCD为平行四边形∴四边形ABCD是菱形.故答案为AB=BC(AC⊥BD)【点评】本题考查了菱形的判定,熟练掌握菱形的判定是本题的关键.10.(5分)如图所示,在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠AEF的大小是60°.【分析】由菱形的性质可证△ABC,△ACD都是等边三角形,可得∠B=∠ACF =∠BAC=60°,则可证△ABE≌△ACF,可得AE=AF,即可证△AEF是等边三角形,即可求∠AEF的大小.【解答】解:连接AC∵四边形ABCD是菱形∴AB=BC=CD=AD,∠B=∠D=60°∴△ABC,△ACD都是等边三角形∴AC=AB,∠B=∠ACD=60°=∠BAC∵∠BAC=60°=∠EAF∴∠BAE=∠CAF又∵AC=AB,∠B=∠ACD=60°∴△ABE≌△ACF′∴AE=AF且∠EAF=60°∴△AEF是等边三角形∴∠AEF=60°故答案为60°【点评】本题考查了菱形的性质,全等三角形的判定,等边三角形的性质,证明△ABE≌△ACF是本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在菱形ABCD中,DE⊥AB,垂足为点E,且E为边AB的中点.(1)求∠A的度数;(2)如果AB=4,求对角线AC的长.【分析】(1)根据线段垂直平分线的性质可得DB=AD,即可证△ADB是等边三角形,可得∠A=60°(2)由题意可得∠DAC=30°,AC⊥BD,可得DO=2,AO=2,即可求AC 的长.【解答】解:连接AC,BD(1)∵四边形ABCD是菱形∴AD=AB∵E是AB中点,DE⊥AB∴AD=DB∴AD=DB=AB∴△ADB是等边三角形∴∠A=60°(2)∵四边形ABCD是菱形∴AC⊥BD,∠DAC=∠DAB=30°,AO=CO,DO=BO∵AD=BA=4∴DO=2,AO=DO=2∴AC=4【点评】本题考查了菱形的性质,熟练运用菱形性质解决问题是本题的关键.12.(10分)已知,如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF 于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.【分析】(1)先证明四边形ABEF是平行四边形,再证明邻边相等即可证明.(2)作FG⊥BC于G,根据S=•AE•BF=BE•FG,先求出FG即可解菱形ABEF决问题.【解答】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)解:作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S=•AE•BF=BE•FG,菱形ABEF∴GF=,∴S=BC•FG=.平行四边形ABCD【点评】本题考查平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是利用面积法求出高FG,记住菱形的三种判定方法,属于中考常考题型.13.(10分)如图,在ABCD中,AD>AB,AE平分∠BAD,交BC于点E,过点E作EF∥AB交AD于点F.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠EBA=120°,求AE的大小.【分析】(1)由题意可得四边形ABEF是平行四边形,由AE平分∠BAD,可得AB=BE,则结论可得(2):连接BF交AE于点O;则BF⊥AE于点O.由题意可得AB=4,∠AOB =90°,∠BAE=30°,可得AO的长即可求AE的长.【解答】(1)证明:∵ABCD∴BC∥AD,即BE∥AF∵EF∥AB∴四边形ABEF为平行四边形∵AE平分∠BAF∴∠EAB=∠EAF∵BC∥AD∴∠BEA=∠EAF∴∠BEA=∠BAE∴AB=BE∴四边形ABEF是菱形(2)解:连接BF交AE于点O;则BF⊥AE于点O∵BA=BE,∠EBA=120°∴∠BEA=∠BAE=30°∵菱形ABEF的周长为16∴AB=4在Rt△ABO中∠BAO=30°∴由勾股定理可得:AO=∴AE=【点评】本题考查了菱形的判定,等腰三角形的性质和判定,关键是利用这些性质和判定解决问题.14.(10分)如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积.【分析】(1)由CE∥BD、EB∥AC可得出四边形OBEC为平行四边形,由菱形的性质可得出∠BOC=90°,进而可得出四边形OBEC为矩形,根据矩形的性质即可证出OE=CB;(2)设OC=x,则OB=2x,利用勾股定理可得出BC=x,结合BC=OE=2,可求出x的值,进而可得出OC、OB的值,再利用菱形的面积公式即可求出结论.【解答】(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形,∴OE=CB.(2)解:设OC=x,则OB=2x,∴BC==x.∵BC=OE=2,∴x=2,∴OC=2,OB=4,∴S=AC•BD=2OC•OB=16.菱形ABCD【点评】本题考查了矩形的判定与性质、勾股定理以及菱形的性质,解题的关键是:(1)证出四边形OBEC为矩形;(2)利用勾股定理结合OE的长度,求出OB、OC的值.15.(10分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC =4,求菱形的周长.【分析】由在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,可求得OA与OB的长,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,∴OA=AC═×4=2,OB=BD=×2=1,AC⊥BD,∴AB==,∴菱形的周长为4.【点评】此题考查了菱形的性质.注意菱形的对角线互相平分且垂直且互相平分定理的应用是解此题的关键.。
人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)
菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。
人教版数学八年级下册18.2菱形测试试题
人教版数学八年级下18.2.2 菱形测试题一.选择题(每题 3 分,共 30 分)1.如图,菱形花坛ABCD的边长为6m,∠A=120°,此中由两个正六边形构成的图形部分栽花,则栽花部分图形的周长为()A.12mB.20mC.22mD.24m2.如图,在菱形 ABCD中,对角线 AC 与 BD 交于点 O, OE⊥ AB,垂足为 E,若∠ ADC=130°,则∠ AOE的大小为()A.75 °B.65 °C.55 °D.50 °3.如图,在□ ABCD中, AB=5,AD=6,将□ ABCD沿 AE 翻折后,点 B 恰巧与点 C 重合,则折痕 AE 的长为()A.33B.215C.D.44.菱形不具备的性质是()A.四条边都相等B.对角线相等C.既是轴对称图形,又是中心对称图形D.对角线相互垂直且相互均分5.如图,在菱形ABCD中,对角线AC, BD 交于点 O, E 为 AD 的中点,菱形ABCD的周长为28,则 OE 的长等于()B.4C.7D.146.菱形不具备的性质是()A.四条边都相等B.对角线必定相等C.是轴对称图形D.是中心对称图形7.平面直角坐标系中,四边形 ABCD的极点坐标分别是 A(-3,0),B( 0,2), C(3,0),D ( 0, -2),则四边形 ABCD是()A.矩形B.菱形C.正方形D.梯形8.如图,在菱形 ABCD中,E 是 AC 的中点, EF∥ CB,交 AB 于点 F,假如 EF=3,那么菱形 ABCD 的周长为()A.24B.18C.12D.99.如图,在菱形 ABCD中,∠ B=60°,AB=1,延伸 AD 到点 E,使 DE=AD,延伸 CD到点 F,使DF=CD,连结 AC, CE, EF,AF,则以下描绘正确的选项是()A.四边形 ACEF是平行四边形,它的周长是4B.四边形 ACEF是矩形,它的周长是2+23C.四边形 ACEF是平行四边形,它的周长是43D.四边形 ACEF是矩形,它的周长是4+4310..图,在菱形 ABCD中, AC=62,BD=6,E 是 BC边的中点, P,M 分别是 AC,AB 上的动点,连结 PE, PM,则 PE+PM 的最小值是()A.63B.36C.2二.填空题(每题 3 分,共 18 分)11.如图,四边形ABCD是平行四边形,若AB=,则四边形ABCD是菱形 .【菱形的判断(定义法)】有一组邻边的四边形是菱形.12.菱形 ABCD中,∠ A=60°,其周长为 24cm,则菱形的面积为cm2.13.如图,四边形 ABCD是菱形,,若∠ABO=30°,∠ CBO=,∠ ADO=30°,∠ CDO=30°.结论:菱形的对角线;而且每一条对角线均分一组对角.14.如图,四边形ABCD是平行四边形,AC丄,则四边形ABCD是菱形 .【判断定理一】对角线的平行四边形是菱形.15.如图,四边形ABCD是菱形,若AB=1,则 BC=,CD=,AD=.结论:菱形的四条边都.16.已知菱形的边长为 3,一个内角为 60°,则该菱形的面积是.17.菱形 OACB在平面直角坐标系中的地点如下图,点 C 的坐标是( 6,0),点 A 的纵坐标是 1,则点 B 的坐标为.18.如图,四边形ABCD是平行四边形,若AB=AD,则四边形ABCD是.【菱形】有一组邻边的四边形叫做菱形.三.解答题(共66 分)19 如图,矩形ABCD的对角线AC, BD 交于点 O,且 DE∥ AC, CE∥ BD.(1)求证:四边形 OCED是菱形;(2)若∠ BAC=30°,AC=4,求菱形 OCED的面积 .20.矩形,菱形因为其特别的性质,为拼图供给了方便,因此墙面瓷砖一般设计为矩形,图案也以菱形居多.如图,是一种长 30cm ,宽 20cm 的矩形瓷砖, E、F、G、H 分别是矩形ABCD 各边的中点,暗影部分为淡黄色,中间部分为白色,现有一面长 4.2m ,宽 2.8m 的墙壁准备贴瓷砖.问:这面墙壁最少要贴这类瓷砖多少块?所有贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?此中淡黄色的菱形有多少个?21.如图,菱形ABCD的边长为8,∠ ABC=60°,求对角线AC的长 .22.如图,在△ ABC 中,∠ ABC=90°,点 D 为 AC的中点,过点作BD 的平行线,交 CE的延伸线于点 F,在 AF 的延伸线上截取(1)求证:四边形 BDFG是菱形;(2)若 AC=10, CF=6,求线段 AG 的长度 .C 作 CE⊥ BD 于点 E,过点 A FG=BD,连结 BG、 DF.23.如图,在△ABC中, AD⊥BC 于点 D,点 E、F 分别是 AB、AC 上的点,且 ED∥ AC,DF∥AB,当知足什么条件时,四边形 AEDF是菱形?人教版数学八年级下18.2.2 菱形测试题答案选择题(每题 3 分,共 30 分)1.答案: B.解:如图:∵四边形 ABCD为菱形,且∠ A=120 ,°∴∠ FAE=60. °∵EFGMNH 为正六边形,∴∠ BMG=60 °,∠ AFE=60 ,°MG=GF=AF,∴△ BGM 和△ AEF均为等边三角形,∴E F=AF, BG=MG.∴B G=GF=FA=2,∴正六边形的边长为 2.又∵ 正六边形有一个公共边OE,∴可得两个六边形的周长为 6 × 2+6 × 2-4=20,∴可得栽花部分的图形周长为20m.应选 B.2.如图,在菱形 ABCD中,对角线 AC 与 BD 交于点 O, OE⊥ AB,垂足为 E,若∠ ADC=130°,则∠ AOE的大小为()A.75 °B.65 °C.55 °D.50 °3.答案: D.解:∵翻折后点 B 恰巧与点 C 重合,∴AE⊥ BC, BE=CE.∵BC=AD=6,∴BE=3,∴A E=AB2-BE2=4.应选 D.4.答案: B.解:A.菱形的四条边都相等,不切合题意;B.菱形的对角线相互垂直且均分,不必定相等,切合题意;C.菱形既是轴对称图形,又是中心对称图形,不切合题意;D.菱形的对角线相互垂直且相互均分,不切合题意,应选 B.5.答案: A.解:∵菱形 ABCD的周长为28,∴菱形的边长AB=BC=CD=AD=7.∵四边形 ABCD为菱形,∴B O=OD.又∵ E 为 AD 边的中点,∴OE 为三角形 ABD 的中位线,∴O E=1/2AB=3.5.6.答案: B.解:菱形的四条边都相等,既是轴对称图形,又是中心对称图形,但对角线不必定相等.应选 B.7.答案: B.解:∵A(-3, 0), B( 0,2), C( 3, 0), D( 0,-2),∴AO=CO, DO=BO,∴四边形 ABCD为平行四边形.∵AC⊥BD,∴四边形 ABCD是菱形 .应选 B.8.答案: A.解:∵ E 是 AC 中点,∵E F∥ BC,交 AB 于点 F,∴EF 是△ ABC的中位线,∴E F=12BC,三角形中位线性质∴B C=6,∴菱形 ABCD的周长是 4 × 6=24.菱形的四条边相等应选 A.9.答案: B.解:∵ DE=AD, DF=CD,∴四边形 ACEF是平行四边形 .∵四边形 ABCD为菱形,∠ B=60 ,°∴∠ B=∠D=60 .°∵AD=CD,∠ D=60 ,°∴△ ACD是等边三角形,∴A C=AD=CD=1.∵A E=AD+DE, CF=CD+DF, AD=CD=1∴A E=CF=2.∵四边形 ACEF是平行四边形,AE=CF,∴四边形 ACEF是矩形,∴∠ FAC=90. °在Rt△ ACF中, CF=2, AC=1.∴A F=2AG=3,∴矩形 ACEF的周长为: (1+3)× 2=23+2.应选 B.10答案: C.解:如图,作点 E 对于AC 的对称点E′,过点E′作E′M⊥ AB 于点M ,交AC 于点P,则此时PE+PM 获得最小值 .∵点 E、 E′对于直线AC 对称,∴P E=PE ′.∴PE+PM=PE ′ +PM=E ′ M.∵四边形 ABCD是菱形,∴点 E′在 CD 上,∵A C=62, BD=6,∴AB=(32)2+32=33.∵S 菱形 ABCD=12AC?BD=AB?E ,′M∴12 × 62 ×6=33?EM,′解得:E′M=26.即PE+PM的最小值是 26.应选 C.填空题(每题 3 分,共 18 分)11.答案: AD 或 BC;相等;平行.解:有一组邻边相等的平行四边形叫做菱形,所以若AB=AD 或AB=BC时,四边形ABCD是菱形 .12.答案: 18313.答案: AC⊥ BD; 30°;相互垂直 .解:∵四边形 ABCD是菱形,∴A B=BC=CD=DA,∴点 A、 C 在 BD 上的垂直均分线上,∴AC⊥BD,∴∠ CBO=∠ ABO=30 .°结论:菱形的对角线相互垂直;而且每一条对角线均分一组对角.14.答案: BD;相互垂直 .解:依据对角线相互垂直的平行四边形是菱形可知:当AC⊥ BD 时,四边形ABCD是菱形 .15.答案: 1; 1;1;相等 .解:∵四边形 ABCD是菱形,∴AB=CD, AD=BC,且 AB=BC,∴A B=BC=CD=AD=1,即菱形的四边都相等 .9316.答案:2解:因为菱形的一个内角是60°,所以较短的对角线与菱形的一组邻边构成一个等边三角形,即较短的对角线为3,依据勾股定理可求得较长的对角线的长为33,93则这个菱形的面积 =1/2×3×33=217.答案:( 3, -1) .解:连结AB 交 OC于点 D,∵四边形 ABCD是菱形,∴AB⊥ OC, OD=CD, AD=BD,∵点 C 的坐标是( 6, 0),点 A 的纵坐标是1,∴O C=6, BD=AD=1,∴O D=3,∴点 B 的坐标为( 3, -1).18.答案:菱形;相等;平行.解:有一组邻边相等的平行四边形叫做菱形,所以四边形ABCD是菱形 .解答题(共66 分)19证明:( 1)∵ DE∥ OC,CE∥ OD,∴四边形 OCED是平行四边形 .∵四边形 ABCD是矩形,∴AC=BD, OC=1/2AC,OD=1/2BD,∴OC=OD,∴四边形 OCED是菱形 .(2)在矩形 ABCD中,∠ABC=90°,∠ BAC=30°,AC=4,∴BC=2,∴A B=DC=2 3 .如图:连结OE,交 CD 于点 F.∵四边形 OCED为菱形,∴F为 CD中点,∴O F=1/2BC=1,∴O E=2OF=2,1OE CD1 2 2 3 2 3∴S 菱形 OCED=2220.解:( 1)∵ 墙壁的长为 4.2 米,宽为 2.8 米,∴墙壁的面积为 4.2× 2.8=11.平76方米 .30 厘米 =0.3 米,20 厘米 =0.2 米,同理可得瓷砖的面积为0.3 × 0.2==0.06平方米 .∴起码需要的瓷砖数为11.76/0.06=196 块 .(2)因为矩形中间的菱形各边都相等,当摆出菱形最多时,墙壁的长摆下的瓷砖数为 4.2/0.3=14 个,墙壁的宽摆下的瓷砖为 2.8/0.2=14 个 .每四个和△AHG 全等的三角形构成一个新的菱形,共有三角形数为196×4=784个 .∵周围共有 (14+14)× 4-4=108个三角形不可以构成菱形,∴新构成最多的菱形数为(784-108 )/4=169 个,即淡黄色的菱形有169 个,∴出现的菱形数为196+169=365 个 .∵这些菱形的面积都相等,∴这面墙璧最多会出现365 个面积相等的菱形 .21.解:∵四边形 ABCD是菱形,∴A B=BC.又∵∠ ABC=60°.∴△ ABC是等边三角形.∴A C=AB=8.22.证明:( 1)∵ AG∥ BD, FG=BD,∴四边形 BDFG是平行四边形 .∵CE⊥ BD,∴C F⊥ AG.∵BD、FC分别△ ABC和△ AFC斜边上的中线,∴B D=DF=1/2AC,∴四边形 BDFG是菱形 .(2)∵四边形 BDFG为菱形,∠ ABC=90°,点 D 是 AC的中点,∴G F=DF=1/2AC=5.∵C F⊥ AG,∴AF=AC 2CF 2= 10262=8,∴A G=AF+FG=8+5=13.23.解:当 AB=AC时,四边形AEDF是菱形 .∵DE∥ AC, DF∥AB,∴四边形 AFDE为平行四边形,∠EAD=∠FDA.∵AD⊥ BC, AB=AC,∴AD 是∠ BAC的均分线,∴∠ EAD=∠ FAD,∴∠ FDA=∠ FAD,∴A F=DF(等角平等边 ),∴四边形 AEDF为菱形 (一组邻边相等的平行四边形是菱形).。
八年级数学下学期第19章 矩形、菱形、正方形检测题(附答案.析解)
第19章矩形、菱形、正方形检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. (2018·四川凉山中考)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.172.下列命题中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相平分且相等的四边形是正方形3.(2018·陕西中考)如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN,若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.454.(2018·成都中考)如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则的长为()A.1B.2C.3D.45.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、DA、CD、BC的中点.若,,则图中阴影部分的面积为()A.3B.4C.6D.86.如图所示,将一圆形纸片对折后再对折,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A B C D7.如图,在菱形中,,∠,则对角线等于()A.20 B.15 C.10 D.58.如图,小亮用六块形状、大小完全相同的等腰梯形拼成一个四边形,则图中∠的度数是()A.B. C.D.9.(2018·山东威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF10.若正方形的对角线长为2 cm,则这个正方形的面积为()A.4B.2C.D.二、填空题(每小题3分,共21分)11.(2018·南京中考)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O 处,折痕为EF,若菱形ABCD的边长为 2 cm,∠A=120°,则EF=cm.12.(2018·山东潍坊中考)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形.(只需添加一个即可)13.已知菱形的边长为5,一条对角线长为8,则另一条对角线长为_________.14.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.15.(2018·北京中考)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.16.如图,在矩形ABCD中,对角线AC与BD相交于点O,且cm,则BD的长为________cm,BC的长为_______cm.17.(2017·江西中考)如图,在矩形ABCD中,点E,F分别是AB,CD的中点,连接DE和BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.三、解答题(共49分)18.(8分)(2018·南京中考)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P 是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.19.(8分)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接____________ ;(2)猜想:______________=_______________;(3)试证明你的猜想.ABDO第16题图20.(8分)如图,在正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,请找出图中和BE相等的线段,并说明你的结论.21.(8分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.22.(9分)已知:如图,在△ABC中,,M为底边BC上任意一点,过点M分别作AB、AC的平行线,交AC于点P,交AB于点Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.23.(8分)(2018·山东青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=时,四边形MENF是正方形(只写结论,不需证明)第19章矩形、菱形、正方形检测题参考答案1.C 解析:根据菱形的性质得到AB=BC=4,由∠B=60°得到△ABC是等边三角形,所以AC=4.则以AC为边长的正方形ACEF的周长为16.2.C 解析:两条对角线互相平分的四边形是平行四边形,A错;两条对角线互相平分且相等的四边形是矩形,B错;两条对角线互相垂直平分且相等的四边形是正方形,D错.故选C.3. C 解析:设AB=x,AM=y,则BM=MD=2x-y.在Rt△ABM中,根据勾股定理有BM2=AB2+AM2,即(2x-y)2=x2+y2,整理得3x=4y,所以x=43y,故AMMD=423yy y⨯-=53yy=35.4.B 解析:因为四边形ABCD是矩形,所以CD =AB=2.由于沿BD折叠后点C与点C′重合,所以=CD=2.5.B 解析:∵矩形ABCD的面积为,∴阴影部分的面积为,故选B.6.C7.D 解析:在菱形中,由∠= ,得∠.又∵,∴△是等边三角形,∴.8.A 解析:观察图形,在等腰梯形的一个上底角顶点处有三个上底角,因而等腰梯形上底角等于,所以.9.D 解析:本题综合考查了直角三角形、线段的垂直平分线的性质与菱形、正方形的判定方法等知识.因为EF垂直平分BC,所以BE=EC,BF=FC.又BE=BF,所以BE=EC=CF=FB,所以四边形BECF为菱形.如果BC=AC,那么∠ABC=90°÷2=45°,则∠EBF=90°,能证明四边形BECF为正方形.如果CF⊥BF,那么∠BFC=90°,能证明四边形BECF为正方形.如果BD=DF,那么BC=EF,能证明四边形BECF为正方形.当AC=BF时,可得AC=BE=EC=AE,此时∠ABC=30°,则∠EBF=60°,不能证明四边形BECF为正方形.点拨:判定一个四边形是正方形一般有两种方法:一是先证明它是矩形,再证明一组邻边相等或证明对角线互相垂直;二是先证明它是菱形,再证明有一个角是直角或证明对角线相等.10.B 解析:如图,正方形ABCD中,,则,即,所以,所以正方形的面积为2 ,故选B.11. 3解析:本题综合考查了菱形的性质、勾股定理和三角形中位线的性质.连接BD,AC.∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD.∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°-60°=30°.∵∠AOB=90°,∴AO=12AB=12×2=1(cm).由勾股定理得BO=3cm,∴DO=3cm.∵点A沿EF折叠后与O重合,∴EF⊥AC,EF平分AO.∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=12BD=12×(3+3)=3(cm).12.OA=OC或AD=BC或AD∥BC或AB=BC等(答案不唯一)解析:本题主要考查了菱形的判定方法,属于条件开放型题目.对角线互相垂直平分的四边形是菱形;四条边都相等的四边形是菱形;有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.13.6 解析:∵菱形的两条对角线互相垂直平分,∴根据勾股定理,可求得另一条对角线长的一半为3,则另一条对角线长为6.14.28 解析:由勾股定理得,又,,所以所以五个小矩形的周长之和为15. 20 解析:本题考查了矩形的性质、三角形中位线的性质和勾股定理.在Rt△ABC中,因为AB=5,BC=AD=12,由勾股定理可得AC=13.因为O是矩形ABCD的对角线AC的中点,M是AD的中点,所以OM==2.5,=6.5,,所以四边形ABOM的周长=AB+BO+OM+MA=5+6.5+2.5+6=20.16.4 解析:因为cm,所以cm.又因为,所以cm.,所以(cm).6解析:在Rt△ADE中,M为DE中点,故S△AEM=S△ADM,所以S△AEM=12S△AED,同理S△BNC=12S△BFC,S□DMNF=12S□BEDF,所以S阴影=12S矩形ABCD=12AB·BC=12×2×36.18.分析:本题考查了全等三角形和正方形的判定.(1)根据SAS定理可证明△ABD≌△CBD,从而得∠ADB=∠CDB.(2)先根据“有三个角是直角的四边形是矩形”证得四边形MPND是矩形,再根据“角平分线上的点到角两边的距离相等”得PM =PN ,从而证得矩形MPND 是正方形.证明:(1)∵ BD 平分∠ABC , ∴ ∠ABD =∠CBD . 又∵ BA =BC ,BD =BD , ∴ △ABD ≌△CBD . ∴ ∠ADB =∠CDB . (2)∵ PM ⊥AD ,PN ⊥CD , ∴ ∠PMD =∠PND =90°.又∵ ∠ADC =90°,∴ 四边形MPND 是矩形. 由(1)知∠ADB =∠CDB ,又PM ⊥AD ,PN ⊥CD , ∴ PM =PN .∴ 四边形MPND 是正方形.点拨:(1)证明三角形全等是证明角相等或线段相等的常用方法;(2)因为角平分线上的点到角两边的距离相等,所以遇到角平分线和两条垂线段时通常考虑这两条垂线段 相等.19.分析:观察图形可知应该是连接AF ,可通过证△ABF 和△ADE 全等来实现.解:(1)如图,连接AF. (2).(3)∵ 四边形ABCD 是菱形, ∴ , ∴ ∠∠, ∴ ∠∠.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB ∴ △ABF ≌△ADE ,∴.20.解:和BE 相等的线段是AF.理由如下: 因为四边形ABCD 是正方形, 所以,∠∠°.因为CE ⊥BF ,所以∠∠°.又因为∠∠°,所以∠∠.在△AFB 和△BEC 中,⎪⎩⎪⎨⎧∠=∠∠=∠=,,,ECB ABF A ABC BC AB 所以△≌△,所以.21.(1)证明:在矩形ABCD 中,,且,∴.(2)解:△ABF ≌△DEA .证明如下:在矩形ABCD 中,∵ BC ∥AD , ∴ ∠∠.∵ DE ⊥AG ,∴ ∠°. ∵ ∠°,∴ ∠∠.又∵,∴ △ABF ≌△DEA .22.分析:(1)根据平行四边形的性质可得对应角相等,对应边相等,从而不难求得其周长;(2)根据中位线的性质及菱形的判定说明. 解:(1)∵ AB ∥MP ,QM ∥AC , ∴ 四边形APMQ 是平行四边形,∠∠,∠∠.∵ ,∴ ∠∠, ∴ ∠∠,∠∠.∴,.∴ 四边形AQMP 的周长.(2)当点M 是BC 的中点时,四边形APMQ 是菱形,理由如下: ∵ 点M 是BC 的中点,AB ∥MP ,QM ∥AC , ∴ QM ,PM 是三角形ABC 的中位线. ∵,∴.又由(1)知四边形APMQ 是平行四边形,∴平行四边形APMQ是菱形.23.分析:本题考查了矩形的性质以及菱形和正方形的判定.(1)用SAS证明△ABM和△DCM全等.(2)先证四边形MENF是平行四边形,再证它的一组邻边ME和MF相等.(3)由(2)得四边形MENF是菱形,当它是正方形时,只需使∠BMC是直角,则有∠AMB+ ∠CMD=90°.又∵∠AMB=∠CMD,∴△AMB和△CMD都是等腰直角三角形.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.又∵MA=MD,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.理由:∵CF=FM,CN=NB,∴FN∥MB.同理可得:EN∥MC,∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴MB=MC.又∵ME=12MB,MF=12MC,∴ME=MF.∴平行四边形MENF是菱形. (3)解:2∶1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学菱形练习题组
姓名___________班级__________学号__________分数___________
一、选择题
1.把菱形ABCD 沿对角线AC 的方向移动到菱形A′B′C′D′的位置,它们重叠部分的四边形A ′FCE 是( )
A
B C D E A ′ B ′
C ′
D ′ F
A .正方形
B .矩形
C .菱形
D .不确定
2.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是B C .CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )
A . 32
B . 33
C . 34
D . 3
A
D F E
B
3.已知菱形的周长为96㎝,两个邻角的比是1︰2,这个菱形的较短对角线的长是( ) A .21㎝ B .22㎝ C .23㎝ D .24㎝ 4.若菱形周长为52cm ,一条对角线长为10cm ,则其面积为( ) A .240 cm 2 B .120 cm 2 C .60 cm 2 D .30 cm 2
5.如图,下列条件之一能使平行四边形ABCD 是菱形的为( )
①AC BD ⊥ ②90BAD ∠=
③AB BC = ④AC BD =
A .①③
B .②③
C .③④
D .①②③
6.如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是( )
A .DE 是△ABC 的中位线
B .AA '是B
C 边上的中线 C .AA '是BC 边上的高
D .AA '是△ABC 的角平分线
A
D
E
A
B
C
D
7.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )
A .2
10cm
B .2
20cm
C .2
40cm
D .2
80cm
A
B
D
8.若菱形的边长为1cm ,其中一内角为60°,则它的面积为 ( ) A
2
B
2 C .22cm D
.2 9.一个菱形两条对角线之比为1︰2,一条较短的对角线长为4cm ,那么菱形的边长为( ) A .2cm B .4cm C
.(2+ D .
二、填空题
12.如图,菱形ABCD 的边长为2,45ABC ∠=
,则点D 的坐标为 .
13.如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .
B
A
H
C
C
O
14.菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD 的面积是 ,对角线BD 的长是 .
15.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使得该菱形为正方形.
A
B C
D
D C B
A
O O
16.如图,菱形ABCD 中,O 是对角线AC BD ,的交点,5cm AB =,4cm AO =,则
BD =____________cm .
O
A B
C
D
17.菱形的对角线长分别为6和8,则菱形的边为 ,菱形的面积为 。
18.己知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC
AM
的值是 .
19.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 (只需写出一个即可,图中不能再添加别的“点”和“线”).
A
B
C
D
F
E
20.如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是
_____________. B
三、证明题
21.矩形ABCD 的对角线相交于点O ,DE //AC ,CE //DB ,CE 、DE 交于点E ,请问:四边形DOCE 是什么四边形?请说明理由.
E
O
A
B
C
D
22.在矩形ABCD 中,AB =6cm , BC =8cm ,若将矩形对角线BD 对折,使B 点与D 点重合,四边形EBFD 是菱形吗?请说明理由,并求这个菱形的边长.
E
F
D
A
C B
八年级数学菱形练习题组答案
一、选择题
1.(922)C .;2.(3635)B .;3.(10433)D .;4.(10444)D .;5.(3631)A .; 6.(3639)D .;7.(814)B .;8.(7592)A .;9.(10436)D .;10.(6148)D .; A D
E P C B
F
二、填空题
11.(3608)1
n -⎝⎭
;12.(
3602)(2;13.(7625)
3;14.(6916
)2,;
15.(6169);16.(3616)6;17.(5905)5,24;18.(3610)2或2
3
;19.(7606)AC ⊥EF 或AF =CF 等; 20.(4349)4; 三、证明题
21.(7624)答:四边形DOCE 为菱形 证明:∵DE ∥AC ,CE ∥BD ∴四边形DOCE 为平行四边形 ∴DE =OC
又∵四边形ABCD 为矩形 ∴OC =OD ∴DE =OD
∴四边形DOCE 为菱形.
22.(7586)四边形EBFD 是菱形。
菱形的边长为
4
25;。