2.3.3向量数量积的坐标运算与度量公式
高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案
2.3.3 向量数量积的坐标运算与度量公式1.向量内积的坐标运算已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2.知识拓展非零向量a =(x 1,y 1)与b =(x 2,y 2)夹角θ的范围与坐标运算的数量积的关系是:(1)θ为锐角或零角⇔x 1x 2+y 1y 2>0; (2)θ为直角⇔x 1x 2+y 1y 2=0; (3)θ为钝角或平角⇔x 1x 2+y 1y 2<0.【自主测试1】若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( )A .3B .13C .-13 D .-3解析:由题意,得2x -6x =43,解得x =-13.答案:C2.用向量的坐标表示两个向量垂直的条件已知a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0.名师点拨解决两向量垂直的问题时,在表达方式上有一定的技巧,如a =(m ,n )与b =k (n ,-m )总是垂直的,当两向量的长度相等时,k 取±1.【自主测试2】已知a =(2,5),b =(λ,-3),且a ⊥b ,则λ=__________.解析:∵a ⊥b ,∴a·b =0,即2λ-15=0,∴λ=152.答案:1523.向量的长度、距离和夹角公式(1)向量的长度:已知a =(a 1,a 2),则|a |=a 21+a 22,即向量的长度等于它的坐标平方和的算术平方根.(2)两点之间的距离公式:如果A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.(3)向量的夹角的余弦公式:已知a =(a 1,a 2),b =(b 1,b 2),则两个向量a ,b 的夹角的余弦为cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22b 21+b 22.你会求出与向量a =(m ,n )同向的单位向量a 0的坐标吗?答:a 0=a |a |=1m 2+n 2(m ,n )=⎝ ⎛⎭⎪⎫m m 2+n 2,n m 2+n 2.【自主测试3-1】已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判断解析:由AB →=(1,1),BC →=(-4,2),CA →=(3,-3), 得AB →2=2,BC →2=20,CA →2=18. ∵AB →2+CA →2=BC →2,即AB 2+AC 2=BC 2,∴△ABC 为直角三角形. 答案:B【自主测试3-2】已知m =(3,-1),n =(x ,-2),且〈m ,n 〉=π4,则x 等于( )A .1B .-1C .-4D .4 解析:cos π4=3x +210×x 2+4, 解得x =1. 答案:A【自主测试3-3】已知a =(3,x ),|a |=5,则x =__________. 解析:由|a |2=9+x 2=25,解得x =±4.答案:±41.向量模的坐标运算的实质剖析:向量的模即为向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离;同样若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=x 2-x 12+y 2-y 12,即平面直角坐标系中任意两点间的距离公式.由此可知向量模的运算其实质即为平面直角坐标系中两点间距离的运算.2.用向量的数量积的坐标运算来分析“(a·b )·c =a ·(b·c )”不恒成立 剖析:设a =(x 1,y 1),b =(x 2,y 2),c =(x 3,y 3), 则a·b =x 1x 2+y 1y 2, b·c =x 3x 2+y 3y 2.∴(a·b )·c =(x 1x 2+y 1y 2)(x 3,y 3)=(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3),a·(b·c )=(x 1,y 1)(x 3x 2+y 3y 2)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3).假设(a·b )·c =a·(b·c )成立,则有(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3), ∴x 1x 2x 3+y 1y 2x 3=x 1x 3x 2+x 1y 2y 3,x 1x 2y 3+y 1y 2y 3=x 2x 3 y 1+y 1y 2y 3.∴y 1y 2x 3=x 1y 2y 3,x 1x 2y 3=x 2x 3 y 1. ∴y 2(y 1x 3-x 1y 3)=0,x 2(x 1y 3-x 3y 1)=0. ∵ b 是任意向量, ∴x 2和y 2是任意实数. ∴y 1x 3-x 1y 3=0. ∴a ∥c .这与a ,c 是任意向量,即a ,c 不一定共线相矛盾. ∴假设不成立.∴(a·b )·c =a·(b·c )不恒成立. 3.教材中的“思考与讨论”在直角坐标系xOy 中,任作一单位向量OA →旋转90°到向量OB →的位置,这两个向量的坐标之间有什么关系?你能用上述垂直的条件,证明下面的诱导公式吗?cos(α+90°)=-sin α,sin(α+90°)=cos α.反过来,你能用这两个诱导公式,证明上述两个向量垂直的坐标条件吗?把两向量垂直的坐标条件可视化.有条件的同学可用“几何画板”、“Scilab”等数学软件进行可视化研究.剖析:如图所示,在平面直角坐标系中,画出一单位圆,有A (cos α,sin α),B (cosβ,sin β),且β-α=90°,也就是β=α+90°.过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥x 轴于点N ,则△BNO ≌△OMA . ∴|OM →|=|NB →|,|ON →|=|MA →|.当点A 在第一象限时,点B 在第二象限, ∴|ON →|=-cos β,|NB →|=sin β, |OM →|=cos α,|MA →|=sin α,从而有-cos β=-cos(α+90°)=sin α, sin β=sin(α+90°)=cos α, 即cos(α+90°)=-sin α, sin(α+90°)=cos α.题型一 向量数量积的坐标运算【例题1】已知a =(-6,2),b =(-2,4),求a ·b ,|a |,|b |,〈a ,b 〉. 分析:直接套用基本公式a ·b =x 1x 2+y 1y 2,|a |=x 21+y 21,cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21x 22+y 22即可.解:a ·b =(-6,2)·(-2,4)=12+8=20. |a |=a ·a =-6,2×-6,2=36+4=210, |b |=-22+42=20=2 5.∵cos 〈a ,b 〉=a ·b |a ||b |=20210×25=22,且〈a ,b 〉∈[0,π], ∴〈a ,b 〉=π4.反思如果已知向量的坐标,则可以直接用公式来计算数量积、模和夹角等问题;如果向量的坐标是未知的,一般考虑用定义和运算律进行转化.〖互动探究〗设平面向量a =(3,5),b =(-2,1), (1)求a -2b 的坐标表示和模的大小; (2)若c =a -(a ·b )·b ,求|c |. 解:(1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), |a -2b |=72+32=58. (2)∵a ·b =-6+5=-1,∴c =a +b =(1,6),∴|c |=12+62=37. 题型二 平面向量垂直的坐标运算【例题2】在△ABC 中,AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,求k 的值.分析:对△ABC 的三个内角分别讨论,并利用坐标反映垂直关系. 解:当A =90°时,AB →·AC →=0, ∴2×1+3×k =0.∴k =-23.当B =90°时,AB →·BC →=0,BC →=AC →-AB →=(1-2,k -3)=(-1,k -3),∴2×(-1)+3×(k -3)=0.∴k =113.当C =90°时,AC →·BC →=0,∴-1+k (k -3)=0, ∴k =3±132.因此,△ABC 有一个角为直角时,k =-23,或k =113,或k =3±132.反思(1)若a =(x 1,y 1),b =(x 2,y 2),a ≠0,则向量a 与b 垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0.(2)向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,垂直是a ·b =0,而共线是方向相同或相反.题型三 数量积的坐标运算在几何中的应用 【例题3】已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)若四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两对角线所夹的锐角的余弦值.解:(1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD . (2)若四边形ABCD 为矩形, 则AB →⊥AD →,AB →=DC →. 设C 点的坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.∴C 点的坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),∴|AC →|=25,|BD →|=25,AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →| |BD →|=1625×25=45,∴矩形ABCD 的两条对角线所夹的锐角的余弦值为45.反思用向量法解决几何问题的关键是把有关的边用向量表示,然后把几何图形中的夹角、垂直、长度等问题都统一为向量的坐标运算即可,最后再回归到原始几何图形中进行说明.题型四 利用向量数量积的坐标运算证明不等式【例题4】证明:对于任意的a ,b ,c ,d ∈R ,恒有不等式(ac +bd )2≤(a 2+b 2)(c 2+d 2). 分析:设m =(a ,b ),n =(c ,d ),用m ·n ≤|m |·|n |即可,要注意等号成立的条件. 证明:设m =(a ,b ),n =(c ,d ),两向量夹角为θ,则m ·n =|m ||n |cos θ,∴ac +bd =a 2+b 2·c 2+d 2·cos θ,∴(ac +bd )2=(a 2+b 2)(c 2+d 2)cos 2θ≤(a 2+b 2)(c 2+d 2), 当且仅当m 与n 共线时等号成立. ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2)得证.反思本题直接利用代数方法也易得证.若从不等式的特征构造向量,利用向量的数量积和模的坐标运算来证,显得比较灵活,体现了向量的工具性.题型五 易错辨析【例题5】设平面向量a =(-2,1),b =(λ,-1)(λ∈R ),若a 与b 的夹角为钝角,则λ的取值范围是( )A .⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) B.(2,+∞) C .⎝ ⎛⎭⎪⎫-12,+∞ D .⎝ ⎛⎭⎪⎫-∞,-12 错解:由a 与b 的夹角为钝角,得a ·b <0, 即-2λ-1<0,解得λ>-12.故选C .错因分析:a ·b <0⇔a 与b 的夹角为钝角或平角.因此上述解法中需要对结论进行检验,把a 与b 的夹角为平角的情况舍去.正解:a ·b <0⇒(-2,1)·(λ,-1)<0⇒λ>-12.又设b =t a (t <0),则(λ,-1)=(-2t ,t ),所以t =-1,λ=2,即λ=2时,a 和b 反向,且共线,所以λ∈⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).故选A .1.设m ,n 是两个非零向量,且m =(x 1,y 1),n =(x 2,y 2),则以下等式中,与m ⊥n 等价的个数为( )①m ·n =0;②x 1x 2=-y 1y 2;③|m +n |=|m -n |;④|m +n |=m 2+n 2. A .1 B .2 C .3 D .4解析:①②中的等式显然与m ⊥n 等价;对③④中的等式的两边平方,化简,得m ·n =0,因此也是与m ⊥n 等价的,故选D .答案:D2.已知向量a =(-2,1),b =(-2,-3),则向量a 在向量b 方向上的投影的数量为( )A .-1313 B .1313C .0D .1 答案:B3.(2012·广东广州测试)已知向量a =(1,n ),b =(n,1),其中n ≠±1,则下列结论正确的是( )A .(a -b )∥(a +b )B .(a +b )∥bC .(a -b )⊥(a +b )D .(a +b )⊥b解析:∵a -b =(1-n ,n -1),a +b =(1+n ,n +1), ∴(a -b )·(a +b )=0, ∴(a -b )⊥(a +b ). 答案:C4.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c =__________.解析:根据a 和b 的坐标,求c 的坐标,再利用垂直建立关于k 的方程,求出k 后可得向量c .答案:⎝ ⎛⎭⎪⎫25,-155.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确的命题的序号是__________.答案:①②③6.设向量a =(1,-1),b =(3,-4),x =a +λb ,λ为实数,证明:使|x |最小的向量x 垂直于向量b .证明:因为|x |2=x ·x =|a |2+λ2|b |2+2λa ·b , 所以x 2=25λ2+14λ+2=⎝ ⎛⎭⎪⎫5λ+752+125.当5λ+75=0,即λ=-725时,|x |最小.此时x =a -725b =⎝ ⎛⎭⎪⎫425,325. 又425×3-325×4=0,所以向量x 与b 垂直.。
人教版高中必修4(B版)2.3.3向量数量积的坐标运算与度量公式教学设计
人教版高中必修4(B版)2.3.3向量数量积的坐标运算与度量公式教学设计一、教学目标1.掌握向量数量积的定义,并能够利用坐标运算求解向量数量积。
2.掌握向量数量积的度量公式,并能够灵活应用。
3.能够在实际问题中运用向量数量积解决几何问题。
二、教学重点和难点1.教学重点:向量数量积的坐标运算和度量公式的应用。
2.教学难点:向量数量积的概念和度量公式的证明。
三、教学方法与手段1.探究式教学:通过让学生自己发现向量数量积的性质和应用方法,激发其学习兴趣和求知欲。
2.讲授式教学:通过教师讲解向量数量积的定义、性质和应用,使学生全面理解该知识点。
3.互动式教学:通过师生互动,让学生积极参与讨论,提高教学效果。
4.录屏演示:通过PPT和教学软件,演示向量数量积的坐标运算和度量公式的应用,加深学生对知识点的理解。
四、教学内容和步骤第一步:向量数量积的概念和坐标运算公式1.讲解向量数量积的定义和性质,并给出两个向量的数量积的向量形式和标量形式。
2.教师以矢量坐标运算符 $ \cdot $ 为例,讲解向量数量积的坐标运算公式和求解方法。
3.设计数学实例,让学生自己动手计算两个向量的数量积,加深其对该知识点的理解。
第二步:向量数量积的度量公式1.讲解向量数量积的度量公式和应用方法,包括向量夹角余弦公式和向量模长公式。
2.教师以例题和练习题为例,演示应用向量数量积的度量公式解决几何问题的过程。
3.让学生自己设计一个实际问题,通过向量数量积的度量公式解决问题,提高其应用能力。
第三步:练习和巩固1.给学生准备一些模拟测试题目,让他们在课后进行复习和练习,巩固所学知识。
2.班内进行一次小测验,检验学生对该知识点的掌握程度,及时纠正学生存在的问题。
五、教学评价与反思在教学过程中,教师应该注意引导学生积极参与课堂活动,并及时纠正学生存在的问题,以达到高效的教学效果。
并在教学评价中,关注学生对向量数量积知识点的掌握情况,及时评价和反馈学生的学习成果,以便教师更好的指导学生。
2022-2021学年高二数学人教B版必修4学案:2.3.3 向量数量积的坐标运算与度量公式
2.3.3 向量数量积的坐标运算与度量公式明目标、知重点 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能依据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能依据向量的坐标求向量的夹角及判定两个向量垂直.1.平面对量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b=x 1x 2+y 1y 2. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面对量的长度(1)向量长度公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[情境导学] 在平面直角坐标系中,平面对量可以用有序实数对来表示,两个平面对量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面对量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现?平面对量的数量积还会是一个有序实数对吗?同时,平面对量的模、夹角又该如何用坐标来表示?通过回顾两个向量的数量积的定义向向量的坐标表示,在此基础上推导、探究平面对量数量积的坐标表示. 探究点一 平面对量数量积的坐标表示思考1 已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a ·b? 答 ∵a =x 1i +y 1j ,b =x 2i +y 2j , ∴a ·b =(x 1i +y 1j )·(x 2i +y 2j ) =x 1x 2i 2+x 1y 2i ·j +x 2y 1j ·i +y 1y 2j 2.又∵i ·i =1,j ·j =1,i ·j =j ·i =0,∴a ·b =x 1x 2+y 1y 2.思考2 若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,这就是平面对量数量积的坐标表示.你能用文字描述这一结论吗?答 两个向量的数量积等于它们对应坐标的乘积的和. 例1 已知a 与b 同向,b =(1,2),a·b =10. (1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵b·c =1×2-2×1=0,a·b =1×2+2×4=10, ∴a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).反思与感悟 两个向量的数量积是实数,这和前面三种运算性质不同.同时本例进一步验证了平面对量的数量积不满足结合律.跟踪训练1 若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________. 答案 (-16,-8) (-8,-12) 解析 ∵a·b =2×(-1)+3×(-2)=-8, ∴(a·b )·c =-8×(2,1)=(-16,-8). ∵b·c =(-1)×2+(-2)×1=-4, ∴a·(b·c )=(2,3)×(-4)=(-8,-12).探究点二 平面对量长度的坐标形式及两点间的距离公式思考1 若a =(x ,y ),如何计算向量的长度|a |? 答 ∵a =x i +y j ,∴a 2=(x i +y j )2=(x i )2+2xy i ·j +(y j )2 =x 2i 2+2xy i ·j +y 2j 2. 又∵i 2=1,j 2=1,i ·j =0, ∴a 2=x 2+y 2,∴|a |2=x 2+y 2, ∴|a |=x 2+y 2.思考2 若A (x 1,y 2),B (x 2,y 2),如何计算向量AB →的长度? 答 如图,∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2.例2 已知在△ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标. 解 设点D 坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3), BD →=(x -3,y -2),∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →, 即(x -3,y -2)=λ(-6,-3).∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0, ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.②由①②可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ∴|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).反思与感悟 在几何里利用垂直及长度来求解点的题型是一种常见题型,其处理方法:设出点的坐标,利用垂直及长度列出方程组进行求解.跟踪训练2 以原点和A (5,2)为两个顶点作等腰直角△OAB ,∠B =90°,求点B 和AB →的坐标. 解 设B (x ,y ),则|OB →|=x 2+y 2,∵B (x ,y ),A (5,2),∴|AB →|=(x -5)2+(y -2)2.又∵|AB →|=|OB →|,∴(x -5)2+(y -2)2=x 2+y 2.可得10x +4y =29,①又OB →=(x ,y ),AB →=(x -5,y -2),且OB →⊥AB →, ∴OB →·AB →=0,∴x (x -5)+y (y -2)=0, 即x 2-5x +y 2-2y =0,②由①②解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B ⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32. ∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72. 探究点三 平面对量夹角的坐标表示思考1 设向量a =(x 1,y 1),b =(x 2,y 2),若a ⊥b ,则x 1,y 1,x 2,y 2之间的关系如何?反之成立吗? 答 a ⊥b ⇔x 1x 2+y 1y 2=0.思考2 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示? 答 cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 例3 已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 解 设a 与b 的夹角为θ, 则a·b =(1,2)·(1,λ)=1+2λ.(1)由于a 与b 的夹角为直角,所以cos θ=0, 所以a·b =0,所以1+2λ=0,所以λ=-12.(2)由于a 与b 的夹角为钝角,所以cos θ<0且cos θ≠-1, 所以a·b <0且a 与b 不反向. 由a·b <0得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不行能反向.所以λ的取值范围为⎝⎛⎭⎫-∞,-12. (3)由于a 与b 的夹角为锐角,所以cos θ>0,且cos θ≠1, 所以a·b >0且a ,b 不同向.由a·b >0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为⎝⎛⎭⎫-12,2∪(2,+∞). 反思与感悟 由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a·b|a||b |来推断,可将θ分五种状况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角.∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2 答案 B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A.1 B. 2 C.2 D.4 答案 C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3.∴|a |=12+n 2=2.3.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值为________. 答案 5解析 ∵BC →=AC →-AB →=(2,3)-(k,1)=(2-k,2), AC →=(2,3),∴BC →·AC →=2(2-k )+6=0,∴k =5.4.已知平面对量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 答案 82解析 ∵a =(2,4),b =(-1,2),∴a ·b =2×(-1)+4×2=6, ∴c =a -6b , ∴c 2=a 2-12a ·b +36b 2 =20-12×6+36×5=128. ∴|c |=8 2.[呈重点、现规律]1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题供应了完善的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的力气.3.留意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2).则a ∥b ⇔x 1y 2-x 2y 1=0,a⊥b ⇔x 1x 2+y 1y 2=0.一、基础过关1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.-3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , 又a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.2.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.-17B.17C.-16D.16答案 A解析 由a =(-3,2),b =(-1,0), 知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0, ∴3λ+1+4λ=0,∴λ=-17.3.平面对量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B.23 C.4 D.12 答案 B解析 ∵a =(2,0),|b |=1, ∴|a |=2,a ·b =2×1×cos 60°=1. ∴|a +2b |=a 2+4·a ·b +4b 2=2 3.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79 D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 由①②解得x =-79,y =-73.5.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A.-π4 B.π6 C.π4 D.3π4答案 C解析 2a +b =2(1,2)+(1,-1)=(3,3), a -b =(1,2)-(1,-1)=(0,3), (2a +b )·(a -b )=9, |2a +b |=32,|a -b |=3.设所求两向量夹角为α,则cos α=932×3=22,∵α∈[0,π],∴α=π4.6.设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是________. 解 ∵θ为钝角,∴cos θ=a ·b|a ||b |<0, 即a ·b =-8+5x <0,∴x <85.∵a ∥b 时有-4x -10=0,即x =-52,当x =-52时,a =(2,-52)=-12b ,∴a 与b 反向,即θ=π.故a 与b 的夹角为钝角时,x <85且x ≠-52.7.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), 又(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.二、力气提升8.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B解析 由于m =(λ+1,1),n =(λ+2,2). 所以m +n =(2λ+3,3),m -n =(-1,-1). 由于(m +n )⊥(m -n ),所以(m +n )·(m -n )=0, 所以-(2λ+3)-3=0,解得λ=-3.9.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的正射影的数量为( ) A.322B.3152C. -322D.-3152答案 A解析 ∵AB →=(2,1),CD →=(5,5), ∴AB →在CD →方向上的正射影的数量为 AB →·CD →|CD →|=2×5+1×552+52=1552=322.10.平面对量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.答案 2解析 由于向量a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),所以a ·c =m +4+2(2m +2)=5m +8,b ·c =4(m +4)+2(2m +2)=8m +20. 由于c 与a 的夹角等于c 与b 的夹角, 所以a ·c |a ||c |=b ·c |b ||c |,即a ·c |a |=b ·c |b |,所以5m +85=8m +2025,解得m =2.11.在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0, ∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.12.设a =(1,2),b =(-2,-3),又c =2a +b ,d =a +m b ,若c 与d 夹角为45°,求实数m 的值. 解 ∵a =(1,2),b =(-2,-3), ∴c =2a +b =2(1,2)+(-2,-3)=(0,1), d =a +m b =(1,2)+m (-2,-3)=(1-2m,2-3m ), ∴c ·d =0×(1-2m )+1×(2-3m )=2-3m . 又∵|c |=1,|d |=(1-2m )2+(2-3m )2,∴cos 45°=c ·d|c ||d |=2-3m(1-2m )2+(2-3m )2=22. 化简得5m 2-8m +3=0,解得m =1或m =35.三、探究与拓展13.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值. (1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3), 又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →. 设C 点坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5). 由于AC →=(-2,4),BD →=(-4,2), 所以AC →·BD →=8+8=16>0, |AC →|=2 5,|BD →|=2 5. 设AC →与BD →夹角为θ,则 cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴矩形的两条对角线所成的锐角的余弦值为45.。
向量数量积的坐标运算与度量公式
02
向量数量积的性质
向量数量积的交换律
总结词
向量数量积的交换律是指两个向量的数量积与其顺序无关。
详细描述
根据向量数量积的定义,向量$mathbf{A}$和$mathbf{B}$的数量积可以表示为$mathbf{A} cdot mathbf{B}$ 或$mathbf{B} cdot mathbf{A}$,其结果相同。这意味着交换向量的顺序不会改变数量积的值。
向量数量积的分配律
总结词
向量数量积的分配律是指数量积满足分 配性质。
VS
详细描述
根据向量数量积的分配律,对于任意两个 向量$mathbf{A}$和$mathbf{B}$以及标 量$k$,有$k(mathbf{A} cdot mathbf{B}) = (mathbf{A}k) cdot mathbf{B} = mathbf{A} cdot (mathbf{B}k)$。这意味 着数量积满足分配性质,可以与标量进行 分配运算。
分配律
$(overset{longrightarrow}{a} + overset{longrightarrow}{b}) cdot overset{longrightarrow}{c} = overset{longrightarrow}{a} cdot overset{longrightarrow}{c} + overset{longrightarrow}{b} cdot overset{longrightarrow}{c}$。
向量数量积的坐标表示
坐标表示
向量$overset{longrightarrow}{a} = (a_1, a_2, ..., a_n)$和 $overset{longrightarrow}{b} = (b_1, b_2, ..., b_n)$的数量积为$a_1b_1 + a_2b_2 + ... + a_nb_n$。
向量的坐标表示与运算公式
向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。
2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。
向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。
- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。
2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。
- 几何意义:数乘就是把向量按比例放大或缩小。
3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。
- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。
4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。
- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。
5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。
- 几何意义:向量积表示一个向量相对于另一个向量的旋转。
以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。
2.3.2、2.3.3向量积的运算公式及度量公式概述.
张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x AB --=所以=||AB要点核心解读1.向量数量积的运算律 a b b a ⋅=⋅)1((交换律); )()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律). 2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c AB B A ⋅=⋅== ,)(00/c b a c OB OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②AB 的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a == 则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c cb b ac b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 -3所示,若,,b a ==则=,,b a D b a -=+由+==a b a ||||||,b 可知,60oABC =∠b 与D所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值.于是,4||,5||==b a且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,C ⋅有最大值?[解析] 由三角形法则构造P B 及Q C 的数量积转化为实数范围内求最大值,,.Q ,B B CA QA C A AP P =+-=即,--=--=A A C---=⋅∴AC AB C B ().AP (.Q P ⋅+⋅-=B A AC AP AP .)()22.r AC AB AP AB AP AC -⋅=⋅+- =-+)(=⋅+-⋅r AC ..2..cos ||.||2r A AB +-.cos 2+-=r A bc ⋅当与同向时,⋅最大为.||.||ra AP =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:Q B P 与 的夹角θ为何值时,.CQ BP ⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(,0k A B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标,考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角.[解析] 解法一:根据,|||||,|||22b a b a ==有又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a a b a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -= 得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+ 得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B b a 0,,以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠这时,,0b a BA b a C -=+=而|,|||||b a b a -==即 .||||||==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30 =∠AOC即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围,考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b ,0231213=⨯-⨯=⋅b a 故有.b a ⊥ 由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433t t k -=故 ,47)2(41)34(41222-+=-+=+t t t t t k 即当2-=t 时,t t k 2+有最小值为⋅-47 [点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x 5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题:①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ). )14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D 2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a=+=|2|,1||),0b a b 则( ). 3.A 32.B 4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-OB O ().OC B (,0)2=-则△ABC 的形状为( ).A .正三角形B .等腰三角形C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(),6,4(==O 且,//,0⊥则向量=0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D 7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ). ||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //. 8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足⋅=PA PM AP 则,2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅F E A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||ob a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-=(1)求||tb a +的最小值及相应的t 值;(2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明: ;)1(EF PA =.)2(EF PA ⊥16.平面内有向量)1,2(),1,5(B ),7,1(===OP O OA 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。
向量积和数量积的运算公式
向量积和数量积的运算公式向量积又称为叉积或矢量积,用符号"×"表示。
给定两个向量a和b,它们的向量积c可以表示为:c=a×b向量积的计算公式如下:1.向量积的计算方法有两种:几何法和代数法。
在几何法中,我们可以根据a和b的方向及其夹角来计算向量积。
而在代数法中,我们可以使用坐标来计算向量积。
2.几何法计算向量积的公式为:c = ,a,,b,sinθ n其中,a,表示向量a的模,b,表示向量b的模,θ表示a和b的夹角,n是一个垂直于平面的单位向量。
3.代数法计算向量积的公式为:c=(a2b3-a3b2)i+(a3b1-a1b3)j+(a1b2-a2b1)k其中,i、j和k是分别表示x、y和z轴的单位向量。
a1、a2和a3是向量a的坐标分量,b1、b2和b3是向量b的坐标分量。
4.叉积满足右手定则,即当右手的食指指向向量a的方向,中指指向向量b的方向时,大拇指所指的方向即为向量积c的方向。
5. 向量积的模可以通过公式,c, = ,a,,b,sinθ 来计算,其中θ为a和b的夹角。
向量积的运算公式非常重要,它有助于解决关于平面及其运动、力学等方面的问题,下面是一些应用案例:(1)力矩的计算:力矩可以通过向量积来计算。
对于一个由作用力F产生的力矩M,可以表示为:M=r×F其中,r是从力的作用点到旋转轴的矢量。
(2)平面的法向量计算:给定一平面上的两个向量a和b,可以通过叉积来计算平面的法向量n。
具体公式为:n=a×b法向量可以用来计算平面的方程以及平面上点的投影等问题。
(3)力的分解:向量积可以用于将一个力分解为两个分力的向量和。
假设力F的两个分力分别为F1和F2,那么可以计算得到:F=F1+F2其中,F1为向量积c的方向与F相同的分力,F2为向量积c的方向与F相反的分力。
(4)等式的转化:叉积可以用于将复杂的向量等式转化为不同形式的等式,以简化计算。
最新-2021版高中数学人教B版必修四课件:第二单元 233 向量数量积的坐标运算与度量公式 精品
π A.6
√B.π4
π
π
C.3
D.2
解析 ∵|a|= 10,|b|= 5,a·b=5,
∴cos〈a,b〉=|aa|·|bb|=
5 10×
5= 22.
又∵a,b的夹角范围为[0,π],∴a 与 b 的夹角为π4.
12345
解析 答案
2.已知向量B→A=12, 23,B→C= 23,12,则∠ABC 等于
12345
解答
规律与方法
1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同 的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以 优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形” 转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具. 2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何 问题,在学习中要不断地提高利用向量工具解决数学问题的能力.
3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、 记忆.若a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0,a⊥b⇔x1x2+ y1y2=0. 4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹 角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的 概念”和忽视“两向量夹角的范围”,稍不注意就会带来失误与错误.
答案
梳理
设a=(a1,a2),b=(b1,b2),则a·b= a1b1+a2b2 .即两个向量的数量 积等于相应坐标乘积的和.
知识点二 向量模的坐标表示及两点间距离公式
思考
若a=(a1,a2),试将向量的模|a|用坐标表示. 答案 ∵a=(a1,a2), ∴|a|2=a·a=(a1,a2)·(a1,a2) =a21+a22, ∴|a|= a21+a22.
向量数量积的坐标运算与度量公式
向量数量积的坐标运算与度量公式向量的数量积,也叫点积或内积,表示了两个向量之间的数值关系。
向量的数量积被定义为两个向量的相应分量的积的和。
设向量A和B的坐标分别为(A1,A2,A3)和(B1,B2,B3),则它们的数量积可以表示为:A·B=A1*B1+A2*B2+A3*B3向量的数量积具有以下几个重要的性质:1.A·B=B·A(数量积的交换律)数量积满足交换律,即A与B的数量积等于B与A的数量积。
2.A·(B+C)=A·B+A·C(数量积的分配律)数量积满足分配律,即A与向量B和向量C的和的数量积等于A与B的数量积加上A与C的数量积。
3.k(A·B)=(kA)·B=A·(kB)(数量积的结合律)数量积满足结合律,即向量A与k乘以B的数量积等于k乘以A与B的数量积,也等于A与k乘以B的数量积。
4.A·A≥0,当且仅当A=0时,A·A=0任意非零向量A与自身的数量积大于等于0,当且仅当A是零向量时,A与自身的数量积等于0。
数量积的几何意义是,它等于一个向量在另一个向量上的投影的长度乘以两个向量夹角的余弦值。
设向量A和向量B的夹角为θ,则有:cosθ = A·B / (,A, * ,B,)其中,A,和,B,分别表示向量A和向量B的长度。
这个公式说明了向量的数量积与夹角之间的关系。
当夹角θ等于90度时,cosθ等于0,所以此时A·B=0,即两个向量相互垂直;当夹角θ等于0度时,cosθ等于1,所以此时A·B等于两个向量的模的乘积,即数量积最大。
通过数量积的度量公式,我们可以计算出向量的模和夹角。
向量A的模可以通过数量积计算得出:A,=√(A·A)这里的√表示开方运算。
向量A和向量B的夹角可以通过数量积和模的计算得出:cosθ = A·B / (,A, * ,B,)θ = arccos(A·B / (,A, * ,B,))这里的arccos表示反余弦函数。
高二数学向量数量积的坐标运算与度量公式2
求 a b 及a、 b间的夹角θ
a b x1 x2 y1 y 2 a b 3 1 ( 1 ) ( x1 =5 x22) y 1 y2
cos
2 x1
2 y1
2 x2
2 y2
cos 2 2
5 32 (1) 2 12 (2) 2
a a | a |2 | a | aa
(4 ) ; 4、 若 | a | 2,则a a
5、若i , j分别为与x轴、y轴方向 相同的两个单位向量, 则i i ( 1 ); j j ( 1 ); i j j i ( 0 );
2 1 2 2
x y x y
2 1
2 2
5、向量垂直的判定
a b x1 x2 y1 y 2 0
;诺亚娱乐 诺亚娱乐 ;
达万年の战争,让彼此之间の仇恨已经刻到了骨头里,一见面必然是不死不休の局面.而此时一个妖族,就算他是堪比诸侯境の妖皇,今日也必定陨落.所以众人很轻松众,只是感觉第一次见到异族都有些兴奋和好奇. 轻声快速前行了十多里路,妖族の身影终于暴『露』在众人眼前,而结果众人一看, 内心深处都涌起一种失落感.在他们心中一直以为,妖族既然配上了妖这个字,那么应该长得妖气冲天,三头六臂,牛头马面,虎背熊腰什么の. 结果眼前这个看起来和和人类差不多,只是头比正常人大了点.手脚极其粗壮,头发是金『色』の长长の披在身后,鼻子比人类大又高,牙齿微微有些突起, 看起来有些狰狞,有些恐怖.而且这妖族身体上也长着长长の金『色』『毛』发,像个野人般.[ 这个妖族真小心翼翼,左看右看,慢慢の前行着.只是众人の到来,明显让他警觉了起来,也在第一时间发现了身后の一群人族.刹那间,他脸『色』变得死灰,巨吼一声,身子变得更
高中数学2-3-3向量数量积的坐标运算与度量公式课件新人教B版必修
[答案] B
[解析] 3x+1×(-3)=0,∴x=1.
3.已知A、B、C是坐标平面上的三点,其坐标分别为
A(1,2),B(4,1),C(0,-1),则△ABC的形状为( A.直角三角形 C.等腰直角三角形 [答案] C
→ =(3,-1),AC → =(-1,-3) [解析] AB →· → =3×(-1)+(-1)×(-3)=0 AB AC → |=|AC → |= 10∴△ABC 为等腰直角三角形. 且|AB
[点评] 处理有关垂直总是要注意利用a⊥b⇔a·b=
0(a,b是非零向量),或者利用a⊥b⇔a1b1+a2b2=0(a=(a1, a2),b=(b1,b2)).
[例2] 设a=(4,-3),b=(2,1),若a+tb与b的夹角为 45°,求实数t的值. [分析] 利用公式a·b=|a||b|cosθ建立方程,解t的值.
a-b=(cosα-cosβ,sinα-sinβ). 又∵(a+b)·(a-b) = (cosα + cosβ)(cosα - cosβ) + (sinα + sinβ)(sinα - sinβ) =cos2α-cos2β+sin2α-sin2β=0,
∴(a+b)⊥(a-b).
解法二:∵a=(cosα,sinα),b=(cosβ,sinβ), ∴(a+b)·(a-b)=a2-b2=|a|2-|b|2 =(cos2α+sin2α)-(cos2β+sin2β)=1-1=0, ∴(a+b)⊥(a-b).
二、填空题
5 .已知 a = (x - 2 , x + 3) , b = (2x - 3 ,- 2) ,若 a⊥b, 则x=________.
[答案]
[解析]
2
9 0 或2
∵a⊥b,∴a· b=(x-2)(2x-3)-2(x+3)=0
高一数学人教B版必修4课件:2-3-3 向量数量积的坐标运算与度量公式
9 ∴2x -9x=0,∴x=0 或 x= . 2
2
→ =(-1,2),OB → =(3,m),若OA → ⊥AB → ,则 6.已知向量OA m=________.
[解析]
→ =OB → -OA → =(4,m-2), AB
→ ⊥AB → ,∴OA →· → =0, ∵OA AB 即(-1,2)· (4,m-2)=0, • [答案 ] 4 ∴-1×4+2×(m-2)=0,解得 m=4.
∴λa+b=(-3λ-1,2λ) a-2b=(-3,2)-2(-1,0)=(-1,2) 由(λa+b)⊥(a-2b), 1 得 4λ+3λ+1=0,∴λ=-7.
• 二、填空题 9 [答案] 0 • 5.已知 a或 = 2(x-2,x+3),b=(2x-3,-2),
若 a⊥ ________. [解析 ] b,则 ∵a⊥x b= ,∴ a· b=(x-2)(2x-3)-2(x+3)=0
2
22 11 → → ∴OM=(2,1)或OM= 5 , 5 .
故存在点 M(2,1)或点
22 11 M 5 , 5 满足题意.
[例 4]
若 a=(λ,2),范围是
10 A.-∞, 3 6 6 10 B.-∞,-5∪-5, 3 10 C. 3 ,+∞ 10 D.-∞, 3
∴b⊥c,∴b 与 c 的夹角为 90° .
数学:2.3.3《向量数量积的坐标运算与度量公式》课件(1)(新人教B版必修4)
∴ AB ⋅ AC = 1× (−3) + 1× 3 = 0
△ABC是直角三角形 是直角三角形
变形:在∆ABC中,设 AB = (2,3), AC = (1, k ), 且 ∆ABC是直角三角形,求k的值。
解 : BC = AC − AB = ( − 1, k − 3) ∵ 又 ∆ ABC 是直角三角形 即( − 2, − 3) i ( − 1, k − 3) = 0 ∴ 2 − 3( k − 3) = 0 11 k = 3
1 ∴n = 2
变形: .已知 a = 4, b = 3, a与b的夹角为90 , 且 c = a + 2b, d = 2 a + k b,问 k 为何值时 (1) c ⊥ d (2) c∥d (3) c与 d的 夹角为锐角 ? 的夹角为锐角
°
a b . 注: a ⋅ b > 0不能保证向量与 的夹角为锐角
解: ∵ c ⊥d ,∴ c⋅ d =0, ∴ 即 a+(sinα−3)b⋅−ka+(sinα)b =0 也即 −ka +a⋅b⋅sinα
2
−k(sinα−3)a⋅b+ sinα(sinα−3b =0, )
2
2 2 1 3 又∵ a = ( 3, −1) , b =( , ),∴ a⋅ b =0,且 a = a = 4, 2 2
∴ a ⋅ b = x 1 i + y1 j ( x 2 i + y 2 j ( ) ⋅ )
= x1 x 2 i + x1 y2 i ⋅ j + x 2 y1 j ⋅ i + y1 y2 j
∵ i = 1, j = 1, i ⋅ j = j ⋅ i = 0
高中数学2.3.3向量数量积的坐标运算与度量公式学案新人教B版必修4
2。
3。
3 向量数量积的坐标运算与度量公式1.掌握向量数量积的坐标表达式,能进行平面向量数量积的坐标运算。
(重点)2.能运用数量积表示两个向量的夹角.计算向量的长度,会判断两个平面向量的垂直关系.(难点)[基础·初探]教材整理1 两向量的数量积与两向量垂直的坐标表示阅读教材P112“思考与讨论"以上内容,完成下列问题.1。
向量内积的坐标运算:已知a=(a1,a2),b=(b1,b2),则a·b=a1b1+a2b2.2。
用向量的坐标表示两个向量垂直的条件:设a=(a1,a2),b=(b1,b2),则a⊥b⇔a1b1+a2b2=0。
已知a=(1,-1),b=(2,3),则a·b=( )A。
5 B.4C。
-2 D.-1【解析】a·b=(1,-1)·(2,3)=1×2+(-1)×3=-1.【答案】D教材整理2 向量的长度、距离和夹角公式阅读教材P112~P113内容,完成下列问题。
1。
向量的长度:已知a=(a1,a2),则|a|=错误!。
2。
两点间的距离:如果A(x1,y1),B(x2,y2),则|错误!|=错误!。
3.两向量的夹角:设a=(a1,a2),b=(b1,b2),则cos<a,b>=错误!。
判断(正确的打“√”,错误的打“×”)(1)两个非零向量a=(x1,y1),b=(x2,y2),满足x1y2-x2y1=0,则向量a,b的夹角为0度.()(2)两个向量的数量积等于它们对应坐标的乘积的和。
()(3)若两个向量的数量积的坐标和小于零,则两个向量的夹角一定为钝角.()【解析】(1)×.因为当x1y2-x2y1=0时,向量a,b的夹角也可能为180°。
(2)√。
由向量数量积定义可知正确。
(3)×。
因为两向量的夹角有可能为180°。
【答案】(1)×(2)√(3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________解惑:_________________________________________________________疑问2:_________________________________________________________解惑:_________________________________________________________疑问3:_________________________________________________________解惑:_________________________________________________________[小组合作型]平面向量数量积的坐标运算(1)(2016·安溪高一检测)已知向量a=(1,2),b=(2,x),且a·b=-1,则x的值等于()A.12B.-错误!C。
向量的数量积运算的所有公式
向量的数量积运算的所有公式1.数量积定义公式:A·A=A₁A₁+A₂A₂+…+AAAA2.量积的坐标表示:设A=(A₁,A₂,…,AA)和A=(A₁,A₂,…,AA)是两个n维向量,则A·A=A₁A₁+A₂A₂+…+AAAA3.量积的几何表示:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖是A和A的长度,A是A和A之间的夹角。
4.正交性:当A·A=0时,A和A互相垂直,即A与A正交。
5.长度平方:A·A=‖A‖²即一个向量与自身的量积等于其长度的平方。
6.长度平方的展开:A·A=A₁²+A₂²+…+AA²7.向量之和的数量积:(A+A)·A=A·A+A·A8.向量乘以标量的数量积:(AA)·A=A(A·A)其中,A是标量。
9.向量乘法与交换律:A·A=A·A10.关于数乘的结合律:(AA)·A=A(A·A)=A·(AA)11.加法可分配律:A·(A+A)=A·A+A·A12.数乘可分配律:(A+A)A·A=AA·A+AA·A13. Einsteain求和约定:当上下两个指标相同时,指标重复出现的求和,例如:A·A=AᵢAᵢ,其中i=1,2,…,n,对于所有的i求和。
14.柯西-施瓦兹不等式:‖A·A‖≤‖A‖‖A‖,其中等号成立当且仅当A和B线性相关。
这些公式展示了向量的数量积运算的一些基本性质和计算公式。
通过利用这些公式,我们可以将向量的数量积运用于解决各种问题,例如计算向量的夹角、向量的投影等。
向量坐标运算公式总结
向量坐标运算公式总结向量是代表大小和方向的物理量,通常用箭头表示。
在数学和物理中,我们经常需要进行向量的坐标运算,来求解各种问题。
1.向量的加减法:向量加法的定义:设A和B是两个向量,其坐标分别为A(x1,y1,z1)和B(x2,y2,z2),则A+B=(x1+x2,y1+y2,z1+z2)。
向量减法的定义:设A和B是两个向量,其坐标分别为A(x1,y1,z1)和B(x2,y2,z2),则A-B=(x1-x2,y1-y2,z1-z2)。
2.标量与向量的乘法:标量与向量的乘法的定义:设A是一个向量,k是一个实数,其坐标为A(x, y, z),则kA = (kx, ky, kz)。
特别地,当k=0时,kA=(0,0,0),即零向量。
3.向量的数量积:向量的数量积也称为点积,表示两个向量间的夹角余弦值乘以两个向量的模的乘积。
设A和B是两个向量,其坐标分别为A(x1,y1,z1)和B(x2,y2,z2),则A·B=x1x2+y1y2+z1z2根据数量积的定义,我们可以利用数量积来计算向量之间的夹角:cosθ = A·B / (,A,× ,B,)其中,θ表示夹角,A,表示向量A的模。
4.向量的向量积:向量的向量积也称为叉积,表示两个向量所在平面的法向量。
设A和B是两个向量,其坐标分别为A(x1,y1,z1)和B(x2,y2,z2),则A×B=(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2)。
向量积的模等于两个向量构成的平行四边形的面积,即,A × B,= ,A,× ,B,× sinθ,其中θ表示A和B之间的夹角。
特别地,当A与B共线时,向量积等于零向量。
5.混合积:混合积是三个向量的数量积,表示三个向量所构成的平行六面体的有向体积。
设A、B和C是三个向量,其坐标分别为A(x1,y1,z1)、B(x2,y2,z2)和C(x3,y3,z3),则[ABC]=A·(B×C)=x1(y2z3-z2y3)+y1(z2x3-x2z3)+z1(x2y3-y2x3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.3《向量数量积的坐标运算与度量公式》学案 2013.5
【创设情境】
1.向量数量积定义: .
2.a b ⊥
⇔ .
3. 建立正交基底12{,}e e ,已知1212(,),(,)a a a b b b ==
.
推导:a b
=
【概念形成】 1.a =(x 1,y 1),b =(x 2,y 2)⇒a b = .
2.已知a =(x 1,y 1), b =(x 2,y 2),a b ⊥ ⇔ ,//a b
⇔ .
例:写出与向量(-2,3)垂直的三个向量 .
3. 已知a
=(x 1,y 1),则||a = .
4.如果A(x 1,y 1),B(x 2,y 2),则|AB
|= . 5.用坐标表示两个向量夹角cos <,a b
>= .
【例题选讲】
例1.已知a =(3,-1), b =(1,-2),求a b
,||a ,||b ,,a b <> 。
例2.已知点A(1,2)、B (2,3)、C (-2,5),求证AB ⊥AC
.
例3.已知a =(-2,2)、b =(4,3)、c =(1,5).(1)求(a ·b )·c 及a ·(b ·c
);
(2)求|a b + |;(3)求a 与b
的夹角的正弦值.
例4.已知点(1,2),(2,3),(2,5)A B C -,求证:AB AC ⊥
.
【巩固提高】
1. 已知点A(1,1)、B (-3,4)、C (0,8),试求△ABC 的三个内角.
2.写出与下列向量垂直的单位向量.
(1)a =(3,4) (2)b
=(-1,1)
(3)c =(-3,-4) (4)d
=(12,-5)
3.已知点 A(1,1)、B (5,3),有向线段AB 饶点A 旋转2
π
到AC 的位置,求点C 的坐标.
4.09辽宁)向量,a b 的夹角为
60,a =(2,0),||b =1,则|2a b + = .
5.若a =(λ,2),b =(-3,5),且a 与b
的夹角是钝角,求λ的取值范围.。