第八章 偏导数与全微分

合集下载

微积分教学课件第8章多元函数微积分学第3节偏导数与全微分

微积分教学课件第8章多元函数微积分学第3节偏导数与全微分

xy
x2
y2
,
0,
x2 y2 0 ,
x2 y2 0
求 f x (0,0), f y (0,0).

f x (0,0)
lim
x0
f (0 x, 0) x
f (0, 0)
lim 0 0 0, x0 x
同理, f y (0,0) 0 .
8
偏导数存在与连续的关系
一元函数中在某点可导 连续,
x y ,
(x)2 (y)2
lim
x0 yx
xy /
x2 y2
x2 y2
xx
lim
x0
x
2
x
2
1 2
0,
所以 z [ f x (0,0)x f y (0,0)y] o( ) ,
即 f (x, y) 在(0,0) 处不可微.
13
定理2 如果函数 z f ( x, y) 在点( x0 , y0 ) 可微
分, 则函数在该点连续.
证明 事实上, 若 z Ax By o( ) ,
则 lim z 0 , 即
0
lim
( x ,y )( 0,0 )
f
( x0
x,
y0
y)
lim[
0
f
( x0 ,
y0 )
z]
f ( x0 , y0 ),
故函数 z f ( x, y) 在点( x0 , y0 ) 处连续.
dz z dx z dy x y
可微 可偏导 12
注:可偏导不一定可微,见下面反例.
xy
f
(
x,
y)
x2 y2
0
x2 y2 0 .

偏导数与全微分

偏导数与全微分

若二元函数z=f(x,y)在D内每一点都有偏导数 则此偏 内每一点都有偏导数, 在 内每一点都有偏导数 则此偏 注 (1) 若二元函数 的函数--------偏导函数 偏导函数. 导数也是 x, y 的函数 偏导函数
f x , f y , z x , z y , ......
∂z ∂f ∂z ∂f , , , , ...... ∂x ∂x ∂y ∂y
∂ ∂z ∂2z ( )= = z yx = f yx ; ∂ y ∂x ∂x ∂ y
混合偏导数
∂ ∂z ∂2z ( )= = z yy = f yy . 2 ∂y ∂y ∂y
定理 若 z = f (x, y) 的二阶混合偏导数 f x y , f y x 在 (x,y) 连续 连续, 则 f xy = f yx . 适用于三阶以上 2 2 ∂ z ∂ z y , . z = arctan , 例5 求 ∂y∂x ∂x∂y x y −y ∂z 1 = ⋅ (− 2 ) = 2 , 2 y 2 x x +y ∂x 1 + ( ) x 1 1 ∂z x = y 2 ⋅ x = x2 + y2 , ∂y 1+(x)
∂2z = 6 xy 2 ∂x 2
∂2z = 2 x 3 − 18 xy ∂y 2
∂2z ∂2z 2 2 = 6 x y − 9 y − 1= ∂y∂x ∂x∂y
∂3z = 6 y2 ∂x 3
§2
偏导数与全微分
一、 偏导数 1.偏导数的定义 1.偏导数的定义 的某邻域内有定义, 设 z = f (x,y)在点 ( x0 , y0 )的某邻域内有定义, 当 y 固定在 y0 时, , ) 得一元函数 f ( x , y0 ), 称 f ( x 0 + ∆ x , y0 ) − f ( x 0 , y0 ) lim ∆ x→0 ∆x 的偏导数, 为z = f (x,y)在点 ( x0 , y0 )处对 x 的偏导数, 记为 fx ( x0 , y0 ), 或 ∂ f ( x 0 , y 0 ) , , ) ∂x 或 ∂ z ( x 0 , y0 ) , ∂x f ( x0 + ∆x, y0 ) − f ( x0 , y0 ) ∂z 即 f x ( x 0 , y0 ) = x ( x 0 , y0 )= ∂ f ( x 0 , y 0 ) = lim ; ∂ ∂x ∆x→0 ∆x 类似的, 的偏导数为 类似的, z = f (x,y)在点 ( x0 , y0 ) 处对 y 的偏导数为 , ) f ( x0 , y0 + ∆ y) − f ( x0 , y0 ) ∂f ∂z f y ( x 0 , y0 ) = . = lim ( x0 , y0 ) = ( x 0 , y0 ) ∆ y→0 ∂y ∂y ∆y

多元函数微积分学

多元函数微积分学

3、 f ( x, y) f ( x, y) y x
x
y
4、 f ( x, y) 1, f ( x, y) 2 y.
x
y
二、隐函数的求导法则(重点)
(1) F( x, y) 0
隐函数存在定理 1 设函数F ( x, y)在点 P( x0 , y0 )的 某一邻域内具有连续的偏导数,且F( x0 , y0 ) 0, Fy ( x0 , y0 ) 0,则方程F ( x, y) 0在点 P( x0 , y0 )的
y
x y
3. 设 f ( x y, x y) x2 y2 , 求 f ( x, y) f ( x, y) .
x
y
4.设 f ( xy, x y) x2 y2 xy, 求 f ( x, y) , f ( x, y)
x
y
练习四答案
1、 dz esin xcos x (cos2 x sin2 x); dx
z 2ex2y y 2z 2ex2y x y
2z 2 e x2 y y x
2 z y2
4e x2 y
二、全微分概念
如果函数z f ( x, y)在点( x, y)的全增量 z f ( x x, y y) f ( x, y)可以表示为
z
uv tt
定理 2 如果u ( x, y)及v ( x, y)都在点
( x, y)具有对 x和 y 的偏导数,且函数z f (u,v)
在对应点(u, v )具有连续偏导数,则复合函数
z f [ ( x, y), ( x, y)]在对应点( x, y)的两个偏
导数存在,且可用下列公式计算

偏导数与全微分

偏导数与全微分

( x , y ) ≠ ( 0, 0 ) ( x , y ) = ( 0, 0 )
在点(0,0)处( C ).
A. 连续 偏导数存在; 连续,偏导数存在 偏导数存在 B. 连续,偏导数不存在; 连续 偏导数不存在 偏导数 C. 不连续 偏导数存在 不连续,偏导数存在 偏导数存在; D. 不连续 偏导数不存在 连续,偏导数不存在 偏导数不存在.
14
第三节 全 微 分
全微分的定义 可微的条件
第八章 多元函数微分法及其应用
15
全 微 分
一、全微分的定义
全增量. 为了引进全微分的定义, 为了引进全微分的定义 先来介绍 全增量. 全增量的概念 全增量的概念
设二元函数 z = f ( x , y ) 在点P ( x, y )的某邻
域内有定义, 当变量 x、y在点( x , y )处分别有 域内有定义
y
6
偏导数
xy 当( x , y ) ≠ (0,0), 2 2 例 f ( x, y) = x + y 0 当( x , y ) = (0,0).
求f ( x , y )的偏导数 .
解 当( x , y ) ≠ (0,0)时, y⋅ ( x 2 + y 2 ) − xy ⋅ 2 x y( y 2 − x 2 ) = 2 f x ( x, y) = 2 2 2 2 2 , (x + y ) (x + y ) 2 2 2 2 x⋅ ( x + y ) − xy ⋅ 2 y x( y − x ) f y ( x, y) = = 2 2 2 2 2 2 . (x + y ) (x + y ) 定义得 当( x , y ) = (0,0)时, 按定义得

偏导数与全微分的关系

偏导数与全微分的关系

偏导数与全微分的关系
偏导数与全微分的关系
偏导数及全微分是高等数学中重要的概念,用来描述一元函数、多元函数曲线特性及变化趋势。

而两者又有着密不可分的关系。

首先,偏导数是全微分的一部分,是全微分的基础。

它代表函数曲线在某一点的斜率,又叫函数的切线斜率,是函数曲线在某一点的变化率。

而全微分定义为函数在某一点的函数值及其方向对点中的变化率,所以它的意义是偏导数的概括,反映了函数曲线在某一点的斜率及方向的变化率,其值比偏导数更能体现函数曲线在该点的变化趋势。

其次,计算偏导数和全微分是有联系的。

若给定一个多元函数,要求偏导数则需要使用偏微分概念,因为偏微分是多元函数的偏导数。

而要计算全微分,首先要确定函数的偏导数,然后再求出全微分的求值。

最后,偏导数与全微分是相互联系的,彼此之间又有着千丝万缕的联系。

一般来说,计算多元函数的极值是依赖于偏导数的,而全微分是为了更全面地反映函数曲线的变化趋势。

所以,偏导数与全微分虽然各有不同的定义,但它们之间仍有密不可分的关系。

- 1 -。

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系

1。

偏导数代数意义偏导数是对‎一个变量求‎导,另一个变量‎当做数对x求偏导‎的话y就看‎作一个数,描述的是x‎方向上的变‎化率对y求偏导‎的话x就看‎作一个数,描述的是y‎方向上的变‎化率几何意义对x求偏导‎是曲面z=f(x,y)在x方向上‎的切线对y求偏导‎是曲面z=f(x,y)在x方向上‎的切线这里在补充‎点。

就是因为偏‎导数只能描‎述x方向或‎y方向上的‎变化情况,但是我们要‎了解各个方‎向上的情况‎,所以后面有‎方向导数的‎概念。

2。

微分偏增量:x增加时f‎(x,y)增量或y增‎加时f(x,y)偏微分:在deta‎x趋进于0‎时偏增量的‎线性主要部‎分detaz‎=fx(x,y)detax‎+o(detax‎)右边等式第‎一项就是线‎性主要部分‎,就叫做在(x,y)点对x的偏‎微分这个等式也‎给出了求偏‎微分的方法‎,就是用求x‎的偏导数求‎偏微分全增量:x,y都增加时‎f(x,y)的增量全微分:根号(detax‎方+detay‎方)趋于0时,全增量的线‎性主要部分‎同样也有求‎全微分公式‎,也建立了全‎微分和偏导‎数的关系dz=Adx+Bdy 其中A就是‎对x求偏导‎,B就是对y‎求偏导希望楼主注‎意的是导数‎和微分是两‎个概念,他们之间的‎关系就是上‎面所说的公‎式。

概念上先有‎导数,再有微分,然后有了导‎数和微分的‎关系公式,公式同时也‎指明了求微‎分的方法。

3.全导数全导数是在‎复合函数中‎的概念,和上面的概‎念不是一个‎系统,要分开。

u=a(t),v=b(t)z=f[a(t),b(t)]dz/dt 就是全导数‎,这是复合函‎数求导中的‎一种情况,只有这时才‎有全导数的‎概念。

dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)建议楼主在‎复合函数求‎导这里好好‎看看书,这里分为3‎种情况。

1.中间变量一‎元就是上面‎的情况,才有全导数‎的概念。

2.中间变量有‎多元,只能求偏导‎3.中间变两有‎一元也有多‎元,还是求偏导‎。

微积分第八章

微积分第八章
或f(x0,y0). 同一元函数一样,函数的定义域和对应法则是二元函数的两个 要素.对于以解析式表示的二元函数,其定义域就是使该式子有意义 的自变量的变化范围.对于实际问题,在求定义域时,除使该式子有 意义外,还要符合具体问题的实际意义. 二元函数的定义域比较复杂,可以是全平面,可以是一条曲线, 也可以是由曲线围成的部分平面等. 二元函数的定义域的求法同一元函数,可用不等式组或集合的 形式表示.
利用函数全增量的概念,连续定义可用另一种形式表述.
三、 二元函数的连续性
函数z=f(x,y)在点(x0,y0)的某邻域内有定义, 当自变量x,y分别由x0变到x0+Δx,y0变到y0+Δy时, 函数z=f(x,y)有增量
f(x0+Δx,y0+Δy)-f(x0,y0) 称其为函数z=f(x,y)在点(x0,y0)的全增量,记 为Δz,即
P0(x0,y0)处连续.
如果函数z=f(x,y)在区域D内各点都连续,则称函数
z=f(x,y)在区域D内连续.
三、 二元函数的连续性
对于闭区域上的连续函数z=f(x,y),则要求
函数z=f(x,y)在区域D内和边界上都连续.当点
P0(x0,y0)
D
中的P→P0是指P在区域D内所取的路线趋近于点
P0(x0,y0),极限中满足0<(x-x0)2+(y-y0)2<δ
图 8-7
一、多元函数的概念
定义域D就是曲面在xOy面上的投影区域. 例如,函数z=a2-x2-y2(a>0)的图形是球心在原点、 半径为a的上半球面(见图8-8).
图 8-8
二、 二元函数的极限
与一元函数情况类似,对于二元函数z=f(x,y),我们 需要考察当自变量x,y无限趋近于常数x0,y0时,即当点 P(x,y)无限逼近于点P0(x0,y0)时,对应的函数值的变化趋 势,这就是二元函数的极限问题.

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】1。

偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线这里在补充点。

就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。

2。

微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。

概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。

3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。

u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。

d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t)建议楼主在复合函数求导这里好好看看书,这里分为3种情况。

1.中间变量一元就是上面的情况,才有全导数的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档