专题05+恒成立问题,能成立问题的处理方法高考数学二轮复习之重难点微专题突破训练含解析
恒成立能成立问题总结(详细)
恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
1、函数法(1)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数有:],[),0()(n m x k b kx x f ∈≠+=⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立 例1 若不等式对满足的所有都成立,求的范 围。
m mx x ->-21222≤≤-m m x解析:将不等式化为:,0)12()1(2<---x x m 构造一次型函数:)12()1()(2---=x m x m g 原命题等价于对满足的,使恒成立。
22≤≤-m m 0)(<m g由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得,所以的范围是。
231271+<<+-x x )231,271(++-∈x 小结:解题的关键是将看来是解关于的不等式问题转化为以为变量,为参数x m x 的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式对恒成立,求实数的取值范围。
01<-ax []2,1∈x a (2)对于的一切实数,不等式恒成立,求40≤≤p 342-+>+p x px x 的取值范围。
(答案:或)x (二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。
高考数学导数恒成立问题的解法及例题
高考数学导数恒成立问题的解法
对于恒成立问题,一般采取的方法有两种:一是利用函数的单调性,二是利用函数的最值。
1. 利用函数的单调性
如果函数f(x)在区间D上单调,可以根据函数的单调性来解决问题。
例如,不等式f(x) > 0在区间D上恒成立,那么只需要找到满足f(x)min > 0的x值即可。
2. 利用函数的最值
如果函数f(x)在区间D上不是单调的,那么可以转化为求函数的最值问题。
例如,不等式f(x) > 0在区间D上恒成立,可以转化为求f(x)的最小值,只要最小值大于0,那么不等式就恒成立。
例题:已知函数f(x) = x2 + ax + 4在区间[-1,2]上都不小于2,求a的取值范围。
解法:首先根据题意得到函数f(x) = x2 + ax + 4在区间[-1,2]上的最小值为2,然后根据二次函数的性质得到对称轴为x=-b/2a=-a/2。
我们需要分三种情况讨论:
1. 当-a/2≤-1时,即a≥2时,函数在[-1,2]上是增函数,只需要满足f(-1)=1-a+4≥2即可,解得a≤3,所以2≤a≤3;
2. 当-a/2≥2时,即a≤-4时,函数在[-1,2]上是减函数,只需要满足
f(2)=4+2a+4≥2即可,解得a≥-4,但是此时a没有合适的取值,故舍去;
3. 当-1<-a/2<2时,即-4<a<2时,函数在对称轴左侧是减函数,右侧是增函数,只需要满足f(-a/2)=(-a/2)2-a2/4+4≥2即可,解得-4<a≤-2。
综上可得a的取值范围为:[-4,-2]∪[2,3]。
高中数学丨解题技巧「不等式恒成立」问题的8种解决策略分享
高中数学丨解题技巧「不等式恒成立」问题的8种解决策略分
享
不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.纵观历年高考数学压轴题,无一不是涉及有关不等式恒成立、求参数取值范围的问题。
这类题型意在考查考生的逻辑思维能力、运算求解能力,考察的核心素养是逻辑推理、数学运算考生对于这类问题感到难以寻求问题解决的切入点和突破口.
恒成立与有解问题的解决策略大致分四类:
①构造函数,分类讨论;
②部分分离,化为切线;
③完全分离,函数最值;
④换元分离,简化运算;
这里对这一类问题整理了八种方法解决不等式恒成立问题,同学们可以收藏或打印一份,word打印版在文末获取。
需要打印版的同学可私信关键字“恒成立8种解法”。
来免费领取。
很多时候,我们认为努力是好的,对么?显然不对,努力的方向,如果与你的目标背道而驰,其实就是在做负功清北总结出高中《一体化学习法》课程,
这个方法能够使学生摆脱已经固化的思维方式,直击高中生在高考复习时错误的学习方法、容易忽视的知识点、容易忽视的学习技巧,给出了不同的对策,帮助高考生在备考过程中有效提高成绩。
需要的同学也可通过私信来免费领取。
数学高考复习中恒成立问题及解题策略
数学高考复习中恒成立问题及解题策略
数学高考复习中常见的恒成立问题包括:三角函数、平面几何、立体几何、数列等方面的常见恒等式是否成立。
解决这些问题需要
我们掌握以下策略:
1. 掌握基本定义。
了解三角函数、平面几何、立体几何、数列
等基本定义,理解它们的概念和性质,这是解决恒成立问题的前提。
2. 理解证明步骤。
对于一些基本的恒等式,如三角函数的基本
恒等式、半角公式等,需要深入理解其证明步骤,这样能解决很多
基本的恒成立问题。
3. 对比特殊情况。
对于一些复杂的恒等式,可以考虑先验证一
些特殊情况,如取特殊的几个值来代入验证,这样可以对恒等式是
否成立有一个大致的判断。
4. 利用常见定理。
多运用常见的几何定理或性质的结论,如勾
股定理、中线定理、垂直平分线定理等,也可以用对等三角形、相
似比、余弦、正弦等基本知识来解决。
5. 探索新的思路。
对于一些比较难的恒等式,可以多思考,开
拓思路,寻找新的解题方法,这样可以解决不同的问题,丰富解题
经验。
总之,解决恒成立问题需要我们理解基本定义和证明步骤,利
用特殊情况和常见定理,同时具有创新和探索的精神。
高考数学二轮核心考点突破:专题05-函数与导数的综合应用(含答案)
专题05 函数与导数的综合运用【自主热身,归纳提炼】1、函数f (x )=13ax 3+12ax 2-2ax +2a +1的图像经过四个象限的充要条件是________.【答案】-65<a <-316【解析】:由f ′(x )=ax 2+ax -2a =0得x =1或x =-2,结合图像可知函数的图像经过四个象限的充要条件是⎩⎪⎨⎪⎧a <0,f 1>0,f -2<0或⎩⎪⎨⎪⎧a >0,f 1<0,f -2>0,解得-65<a <-316.2、 在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值为________.3、已知点A (0,1),曲线C :y =log a x 恒过点B ,若P 是曲线C 上的动点,且AB →·AP →的最小值为2,则实数a =________.【答案】e思路分析 根据条件,要求AB →·AP →的最小值,首先要将它表示成点P (x ,log a x )的横坐标x 的函数,然后再利用导数的方法来判断函数的单调性,由此来求出函数的最小值.点A (0,1),B (1,0),设P (x ,log a x ),则AB →·AP →=(1,-1)·(x ,log a x -1)=x -log a x +1.依题f (x )=x -log a x +1在(0,+∞)上有最小值2且f (1)=2,所以x =1是f (x )的极值点,即最小值点.f ′(x )=1-1x ln a=x ln a -1x ln a.若0<a <1,f ′(x )>0,f (x )单调递增,在(0,+∞)无最小值,所以a >1.设f ′(x )=0,则x =log a e ,当x ∈(0,log a e)时,f ′(x )<0;当x ∈(log a e ,+∞)时,f ′(x )>0,从而当且仅当x =log a e 时,f (x )取最小值,所以log a e =1,a =e.解后反思 本题的关键在于要能观察出f (x )=x -log a x +1=2的根为1,然后利用函数的极小值点为x =1来求出a 的值,因而解题过程中,不断地思考、观察很重要,平时学习中,要养成多思考、多观察的习惯. 4、 已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数的底,则满足f (e x)<0的x 的取值范围为________. 【答案】(0,1)思路分析 注意到条件f (e x )<0,让我们想到需要研究函数f (x )的单调性,通过函数的单调性将问题进行转化化简. 【答案】: -1e【思路分析】 若ba 的最小值为λ,则b a≥λ恒成立,结合题意必有λa -b ≤0恒成立.由f (x )=(ln x +e x )-ax -b ≤0恒成立,得f ⎝ ⎛⎭⎪⎫1e =-1e a -b ≤0.猜想a >0,从而b a ≥-1e . f ′(x )=1x+(e -a )=e -a x +1x(x >0),当e -a ≥0,即a ≤e 时,f (e b )=(e -a )e b>0,显然f (x )≤0不恒成立. 当e -a <0,即a >e 时,当x ∈⎝⎛⎭⎪⎫0,1a -e 时,f ′(x )>0,f (x )为增函数;当x ∈⎝ ⎛⎭⎪⎫1a -e ,+∞时,f ′(x )<0,f (x )为减函数,所以f (x )max =f ⎝⎛⎭⎪⎫1a -e =-ln(a -e)-b -1. 由f (x )≤0恒成立,得f (x )max ≤0,所以b ≥-ln(a -e)-1,所以得b a ≥-ln a -e -1a.设g (x )=-ln x -e -1x(x >e),g ′(x )=xe -x +ln x -e +1x 2=ee -x+ln x -e x2. 由于y =e e -x +ln(x -e)为增函数,且当x =2e 时,g ′(x )=0,所以当x ∈(e,2e)时,g ′(x )<0,g (x )为减函数;当x ∈(2e ,+∞)时,g ′(x )>0,g (x )为增函数,所以g (x )min =g (2e)=-1e ,所以b a ≥-1e,当a=2e ,b =-2时,b a 取得最小值-1e.解后反思 在考试时,到上一步就可以结束了,胆大一点,到猜想a >0这步就可结束了.现证最小值能取到,当b a =-1e 时,f ⎝ ⎛⎭⎪⎫1e =0应该是极大值,所以f ′⎝ ⎛⎭⎪⎫1e =2e -a =0,此时a =2e ,b =-2,f (x )=ln x -e x+2,易证f ⎝ ⎛⎭⎪⎫1e =0也是最大值,证毕.8、若函数f (x )=x 2||x -a 在区间[0,2]上单调递增,则实数a 的取值范围是________.【答案】(-∞,0]∪[3,+∞)思路分析 含绝对值的函数需要去绝对值转化为分段函数,本题已知函数在[0,2]上为增函数,则需先讨论函数在[0,+∞)上的单调性,自然地分a ≤0和a >0两个情况进行讨论,得到函数在[0,+∞)上的单调性,结合函数单调性得到23a ≥2,从而解出a 的取值范围.先讨论函数在[0,+∞)上的单调性.当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3, 0≤x ≤a ,x 3-ax 2, x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2,令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减;②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值范围是(-∞,0]∪[3,+∞).【关联1】、若函数f (x )=⎪⎪⎪⎪⎪⎪e x2-a e x (a ∈R )在区间[1,2]上单调递增,则实数a 的取值范围是________. 【答案】: ⎣⎢⎡⎦⎥⎤-e 22,e 22 【解析】:【思路分析】 本题所给函数含有绝对值符号,可以转化为g (x )=e x2-ae x 的值域和单调性来研究,根据图像的对称性可得g (x )=e x2-aex 只有单调递增和单调递减这两种情况.设g (x )=e x2-ae x ,因为f (x )=|g (x )|在区间[1,2]上单调递增,所以g (x )有两种情况:①g (x )≤0且g (x )在区间[1,2]上单调递减. 又g ′(x )=e x 2+2a2·e x,所以g ′(x )=e x 2+2a2·ex≤0在区间[1,2]上恒成立,且g (1)≤0. 所以⎩⎪⎨⎪⎧2a ≤-e x2,e 2-ae≤0,无解.②g (x )≥0且g (x )在区间[1,2]上单调递增,即g ′(x )=e x 2+2a2·ex≥0在区间[1,2]上恒成立,且g (1)≥0,所以⎩⎪⎨⎪⎧2a ≥-e x 2,e 2-ae≥0,解得a ∈⎣⎢⎡⎦⎥⎤-e 22,e 22.综上,实数a 的取值范围为⎣⎢⎡⎦⎥⎤-e 22,e 22.【关联2】、若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.【答案】: (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解. 函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|. 令g(x)=x 3+(2-a)x 2+(1-2a)x -a ,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a). 令g′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1.又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-1,2a -13,(a ,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a≥72,又因为a>-1,故a≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值范围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.9、 已知函数f (x )=⎩⎪⎨⎪⎧-|x 3-2x 2+x |, x <1,ln x , x ≥1,若对于∀t ∈R ,f (t )≤kt 恒成立,则实数k 的取值范围是________.【答案】: [1e ,1] 【思路分析】 本题条件“∀t ∈R ,f (t )≤kt ”的几何意义是:在(-∞,+∞)上,函数y =f (t )的图像恒在直线y =kt 的下方,这自然提示我们利用数形结合的方法解决本问题.令y =x 3-2x 2+x ,x <1,则y ′=3x 2-4x +1=(x -1)·(3x -1),令y ′>0,即(x -1)(3x -1)>0,解得x <13或x >1.又因为x <1,所以x <13.令y ′<0,得13<x <1,所以y 的增区间是(-∞,13),减区间是(13,1),所以y极大值=427.根据图像变换可作出函数y =-|x 3-2x 2+x |,x <1的图像.又设函数y =ln x (x ≥1)的图像经过原点的切线斜率为k 1,切点(x 1,ln x 1),因为y ′=1x ,所以k 1=1x 1=ln x 1-0x 1-0,解得x 1=e ,所以k 1=1e .函数y=x 3-2x 2+x 在原点处的切线斜率k 2=y ′x =0=1.因为∀t ∈R ,f (t )≤kt ,所以根据f (x )的图像,数形结合可得1e≤k ≤1.10、 已知a 为常数,函数f(x)=xa -x 2-1-x2的最小值为-23,则a 的所有值为________. 【答案】: 4,14解法1(构造三角形) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,由根号内的结构联想到勾股定理,从而构造△ABC 满足AB =a ,AC =1,AD ⊥BC ,AD =x ,则BD =a -x 2,DC =1-x 2,则S △ABC =12BC ·AD =12x(a -x 2+1-x 2)=12AB ·AC ·sin ∠BAC ≤12AB ·AC =12a ,当且仅当∠BAC =π2时,△ABC 的面积最大,且最大值为12 a.从而g(x)=x (a -x 2+1-x 2)|a -1|=2|a -1|S △ABC ≤a |a -1|,所以a |a -1|=23,解得a =4或a =14.解法2(导数法,理科) 由题意得函数f(x)为奇函数. 因为函数f(x)=x a -x 2-1-x2,所以f ′(x)=(a -x 2-1-x 2)-x ⎝ ⎛⎭⎪⎫-2x 2a -x 2--2x 21-x 2(a -x 2-1-x 2)2=a -x21-x 2-x2(a -x 2-1-x 2)a -x 21-x2,a ≠1.令f ′(x)=0,得x 2=a -x21-x 2,则x 2=a a +1.因为函数f(x)的最小值为-23,且a>0.由a -x21-x 2-x 2>0,得a -(a +1)x 2>0.①当0<a<1时,a -x 2-1-x 2<0,函数f(x)的定义域为[-a ,a],由f ′(x)>0得-a ≤x<-aa +1或aa +1<x ≤a ;由f ′(x)<0得-aa +1<x<a a +1,函数f(x)在[-a ,-a a +1),⎝ ⎛⎦⎥⎤a a +1,a 上为增函数,在(-a a +1,aa +1)上为减函数. 因为f(-a)=a 1-a >f ⎝⎛⎭⎪⎫a a +1=a a -1,所以f(x)min =f ⎝⎛⎭⎪⎫a a +1=a a -1=-23,解得a =14. ②当a>1时,a -x 2-1-x 2>0,函数f(x)的定义域为[-1,1],由f ′(x)>0得-aa +1<x<a a +1;由f ′(x)<0得-1≤x<-aa +1或a a +1<x ≤1,函数f(x)在⎝⎛⎭⎪⎫-aa +1,a a +1上为增函数,在⎣⎢⎡⎭⎪⎫-1,-a a +1,⎝ ⎛⎦⎥⎤a a +1,1上为减函数. 因为f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1<f(1)=1a -1,所以f(x)min =f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1=-23,解得a =4. 综上所述,a =4或a =14.解法3(构造向量) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,设向量a =(a -x 2,x 2),b =(x 2,1-x 2),a 与b的夹角为θ,则有a ·b =|a |·|b |cos θ≤|a |·|b |,即(a -x 2,x 2)·(x 2,1-x 2)≤(a -x 2)+x 2·x 2+(1-x 2), 亦即a -x 2·x 2+x 2·1-x 2≤a ,亦即x (a -x 2+1-x 2)≤a , 当且仅当a 与b 同向时等号成立,即a -x 2·1-x 2-x 2·x 2=0,亦即x 2=aa +1时,取等号.即x (a -x 2+1-x 2)的最大值为a ,从而g (x )的最大值为a |a -1|,即有a |a -1|=23,解得a =4或a =14.解后反思 1. 最值的求法通常有如下的方法:(2)解法1(根的分布) 当x 0>1时,则f(x 0)>0,又b =3-a ,设t =f(x 0),则题意可转化为方程ax +3-ax -c =t(t >0) 在(0,+∞)上有相异两实根x 1,x 2, (6分)即关于x 的方程ax 2-(c +t)x +(3-a)=0(t >0)在(0,+∞)上有相异两实根x 1,x 2. 则x 1,2=c +t ±(c +t )2-4a (3-a )2a,所以⎩⎪⎨⎪⎧0<a <3,Δ=(c +t )2-4a (3-a )>0,x 1+x 2=c +ta >0,x 1x 2=3-a a >0,得⎩⎪⎨⎪⎧0<a <3,(c +t )2>4a (3-a ),c +t >0.所以c >2a (3-a )-t 对任意t ∈(0,+∞)恒成立. 因为0<a <3,所以2a (3-a )≤2×a +3-a 2=3(当且仅当a =32时取等号). 又-t <0,所以2a (3-a )-t 的取值范围是(-∞,3),所以c ≥3. 故c 的最小值为3.(10分)解法2(图像法) 由b =3-a ,且0 <a <3,得g ′(x)=a -3-a x 2=ax 2-(3-a )x 2=0,得 x =3-aa或x =-3-a a (舍),则函数g(x)在⎝⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增. 又对任意x 0>1,f(x 0)为(0,+∞)上的任意一个值,若存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0),则g(x)的最小值小于或等于0. 即g ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c ≤0,(6分) 即c ≥2a (3-a )对任意 a ∈(0,3)恒成立. 又2a (3-a )≤a +(3-a)=3,所以c ≥3.当c =3时,对任意a ∈(0,3),x 0∈(1,+∞),方程g(x)-f(x 0)=0化为ax +3-a x -3-f(x 0)=0,即ax2-[3+f(x 0)]x +(3-a)=0 (*).关于x 的方程(*)的Δ=[3+f(x 0)]2-4a(3-a)≥[3+f(x 0)]2-4⎝ ⎛⎭⎪⎫a +3-a 22=[3+f(x 0)]2-9,因为x 0>1,所以f(x 0)=ln x 0>0,所以Δ>0,所以方程(*)有两个不相等的实数解x 1,x 2,又x 1+x 2=f (x 0)+3a >0,x 1x 2=3-aa >0,所以x 1,x 2为两个相异正实数解,符合题意.所以c 的最小值为3. 解法3(图像法) 当x 0>1时,可知f(x 0)>0,又b =3-a ,设t =f(x 0),则t >0. 令h(x)=ax +3-a x -c -t(x >0,t >0),同解法2可知h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增.当c <2a (3-a )时,若0<t <2a (3-a )-c ,则x >0时,h(x)=ax +3-ax-c -t ≥2a (3-a )-c-t >0,所以h(x)在(0,+∞)上没有零点,不符合题意. 当c ≥2a (3-a )时,h ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c -t ≤-t <0. 因为a (3-a )<2a (3-a )≤c ,a (3-a )<c +t ,所以0<3-ac +t <3-a a ,所以当0<m <3-ac +t时,3-a m >c +t ,所以h(m)=am +3-a m -c -t >3-am -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减,并且连续,则h(x)在(m ,3-aa)上恰有一个零点,所以存在x 1∈(0,3-aa),使得h(x 1)=0,即g(x 1)=t. 因为c +t >c >a (3-a ),所以c +ta >3-a a ,所以当n >c +t a 时,h(n)=an +3-an-c -t >an -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫3-a a ,+∞上单调递增,并且连续,则h(x)在⎝ ⎛⎭⎪⎫3-a a ,n 上恰有一个零点,所以存在x 2∈⎝⎛⎭⎪⎫3-a a ,+∞,使得h(x 2)=0,即g(x 2)=t. 所以当c ≥2a (3-a )时,对任意x 0∈(1,+∞)和任意a ∈(0,3),总存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0).即c ≥2a (3-a )对任意 a ∈(0,3)恒成立.又2a (3-a )≤a +(3-a)=3,当且仅当a =32时取等号,所以c ≥3.故c 的最小值为3.(3)当a =1时,因为函数f(x)与g(x)的图像交于A ,B 两点,所以⎩⎪⎨⎪⎧ln x 1=x 1+bx 1-c ,ln x 2=x 2+bx2-c ,两式相减,得b =x 1x 2(1-ln x 2-ln x 1x 2-x 1).要证明x 1x 2-x 2<b<x 1x 2-x 1,即证x 1x 2-x 2<x 1x 2⎝⎛⎭⎪⎫1-ln x 2-ln x 1x 2-x 1<x 1x 2-x 1,即证1x 2<ln x 2-ln x 1x 2-x 1<1x 1,即证1-x 1x 2<ln x 2x 1<x 2x 1-1.令x 2x 1=t ,则t>1,此时即证1-1t<ln t<t -1. 令φ(t)=ln t +1t -1,所以φ′(t)=1t -1t 2=t -1t 2>0,所以当t>1时,函数φ(t)单调递增.又φ(1)=0,所以φ(t)=ln t +1t -1>0,即1-1t<ln t 成立;再令m(t)=ln t -t +1,所以m ′(t)=1t -1=1-tt <0,所以当t>1时,函数m(t)单调递减.又m(1)=0,所以m(t)=ln t -t +1<0,即ln t<t -1也成立. 综上所述, 实数x 1,x 2满足x 1x 2-x 2<b<x 1x 2-x 1.【变式2】、.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m -n |≥1,使得f (m )=f (n ),求证:1≤ae -1≤e.思路分析(1) 先分段讨论,再整体说明单调区间是否可合并(关键是图像在x =0处怎样跳跃). (2) 转化为a =x 2+x +3x 在(0,+∞)上有实数解,即求函数g(x)=x 2+x +3x 在(0,+∞)上的值域.(3) 首先缩小a 的范围为1<a<e 2,在此基础上考察f(x)在0,1,2,m ,n 处的函数值的大小关系.【解析】:(1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x-2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分) (2) 当x>0时,f(x)=e x-ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2. 所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分)记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分) 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(10分) (3) 当x ∈[0,2]时,f(x)=e x-ax ,有f ′(x)=e x-a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.(11分) 所以1<a<e 2,此时可得f(x)在[0,ln a]上递减,在[ln a ,2]上递增.不妨设0≤m<ln a<n ≤2,则f(0)≥f(m)>f(ln a),且f(ln a)<f(n)≤f(2).由m ,n ∈[0,2],n -m ≥1,可得0≤m ≤1≤n ≤2.(12分) 因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,(14分)即e -1≤a ≤e 2-e ,所以1≤ae -1≤e .(16分) 解后反思 第(1)题中,若函数f(x)改为f(x)=⎩⎪⎨⎪⎧-x 3+x 2+2,x<0,e x -2x ,x ≥0.则函数f(x)的“两个”递减区间(-∞,0)和[0,ln 2]应合并为一个递减区间(-∞,ln 2],因为函数图像在x =0处(从左往右)向下跳跃.而原题中函数图像在x =0处(从左往右)向上跳跃,所以不能合并.【关联1】、.已知函数f(x)=e x(3x -2),g(x)=a(x -2),其中a ,x ∈R . (1) 求过点(2,0)和函数y =f (x )图像相切的直线方程; (2) 若对任意x ∈R ,有f (x )≥g (x )恒成立,求a 的取值范围; (3) 若存在唯一的整数x 0,使得f (x 0)<g (x 0),求a 的取值范围.思路分析 (1)利用导数的几何意义求切线的方程,根据斜率建立方程即可.(2)不等式恒成立问题处理的方法有两种:一种是分离参变,转化为相应函数的值域(最值)问题解决;另一种是转化为含参函数的值域问题,通过分类讨论解决.这里可以采取第一种方法,只是分离参变时要注意对x -2的符号进行分类讨论.(3)在第(2)小问的基础上,分离参变,转化为存在有限整数自变量满足条件的问题.利用导数研究函数F(x)=e x (3x -2)x -2的性质,找到相关的整数自变量,求得对应的函数值是解决本问题的关键.【解析】(1) 设切点为(x 0,y 0),f ′(x)=e x(3x +1),则切线斜率为e x 0(3x 0+1),所以切线方程为y -y 0=e x 0(3x 0+1)(x -x 0),因为切线过点(2,0), 所以-e x 0(3x 0-2)=e x 0(3x 0+1)(2-x 0), 化简得3x 20-8x 0=0,解得x 0=0或x 0=83,当x 0=0时,切线方程为y =x -2, 当x 0=83时,切线方程为y =9e 83x -18e 83.(2) 由题意,对任意x ∈R ,有e x(3x -2)≥a (x -2)恒成立, ①当x ∈(-∞,2)时,a ≥e x(3x -2)x -2,即a ≥⎣⎢⎡⎦⎥⎤e x(3x -2)x -2max.令F (x )=e x (3x -2)x -2,则F ′(x )=e x (3x 2-8x )(x -2)2, 令F ′(x )=0,得x =0,列表如下:F (x )max =F (0)=1,故此时a ≥1. ②当x =2时,恒成立,故此时a ∈R .③当x ∈(2,+∞)时,a ≤e x(3x -2)x -2,即a ≤⎣⎢⎡⎦⎥⎤e x(3x -2)x -2min,令F ′(x )=0,得x =83,列表如下:F (x )min =F ⎝ ⎛⎭⎪⎫83=9e 83, 故此时a ≤9e 83,综上,1≤a ≤9e 83.(3) 由f (x )<g (x ),得e x(3x -2)<a (x -2), 由(2)知a ∈(-∞,1)∪(9e 83,+∞),令F (x )=e x(3x -2)x -2,列表如下:(12分)当x ∈(-∞,2)时,存在唯一的整数x 0使得f (x 0)<g (x 0), 等价于a <e x(3x -2)x -2存在的唯一整数x 0成立,因为F (0)=1最大,F (-1)=53e ,F (1)=-e ,所以当a <53e 时,至少有两个整数成立,所以a ∈⎣⎢⎡⎭⎪⎫53e ,1. 当x ∈(2,+∞)时,存在唯一的整数x 0使得f (x 0)<g (x 0),等价于a >e x(3x -2)x -2存在唯一的整数x 0成立,因为F ⎝ ⎛⎭⎪⎫83=9e 83最小,且F (3)=7e 3,F (4)=5e 4,所以当a >5e 4时,至少有两个整数成立,当a ≤7e 3时,没有整数成立,所以a ∈(7e 3,5e 4].综上,a ∈⎣⎢⎡⎭⎪⎫53e ,1∪(7e 3,5e 4].【关联2】、已知函数f(x)=ln x(x +a )2,其中a 为常数.(1) 若a =0,求函数f(x)的极值;(2) 若函数f(x)在(0,-a)上单调递增,求实数a 的取值范围; (3) 若a =-1,设函数f(x)在(0,1)上的极值点为x 0,求证:f(x 0)<-2.思路分析 第一小问,利用导函数求单调性、极值、值域的一般步骤,必须掌握!也是解决后面问题的基础;第二小问,由函数在(0,-a)上的单调性得出导函数在特定区间的符号,转化为含参数的恒成立问题;第三小问,关键是找到零点的大致范围,还是利用导数求最大值、最小值的方法. 【解析】:(1) 当a =0时,f(x)=ln xx 2,定义域为(0,+∞).f ′(x)=1-2ln xx3,令f ′(x)=0,得x =e . 当x 变化时,f ′(x),f(x)的变化情况如下表:x (0,e ) e(e ,+∞)f ′(x) + 0 - f(x)极大值12e所以当x =e 时,f(x)的极大值为12e,无极小值.①若0<-a ≤e -12,即0>a ≥-e -12,则g ′(x)=2ln x +1<0对x ∈(0,-a)恒成立,所以g(x)=2x ln x -x 在(0,-a)上单调递减,则a ≤2(-a)ln (-a)-(-a),所以ln (-a)≥0,所以a ≤-1与a ≥-e -12矛盾,舍去;②若-a>e -12,即a<-e -12,令g ′(x)=2ln x +1=0,得x =e -12,当0<x<e -12时,g ′(x)=2ln x +1<0,所以g(x)=2x ln x -x 单调递减,当e -12<x<-a 时,g ′(x)=2ln x +1>0,所以g(x)=2x ln x -x 单调递增,所以当x =e -12时,g(x)min =g(e -12)=2e -12·lne -12-e -12=-2e -12,所以a ≤-2e -12.综上,实数a 的取值范围是(-∞,-2e -12].(3) 当a =-1时,f(x)=ln x (x -1)2,f ′(x)=x -1-2x ln xx (x -1)3.令h(x)=x -1-2x ln x ,x ∈(0,1),则h ′(x)=1-2(ln x +1)=-2ln x -1,令h ′(x)=0,得x =e -12.①当e -12≤x<1时,h ′(x)≤0,所以h(x)=x -1-2x ln x 单调递减,h(x)∈(0,2e -12-1],x ∈(0,1),所以f ′(x)=x -1-2x ln x x (x -1)3<0恒成立,所以f(x)=ln x (x -1)2单调递减,且f(x)≤f(e -12).②当0<x ≤e -12时,h ′(x)≥0,所以h(x)=x -1-2x ln x 单调递增,其中h ⎝ ⎛⎭⎪⎫12=12-1-2·12·ln 12=ln4e>0,h(e -2)=e -2-1-2e -2·lne -2=5e2-1<0,所以存在唯一x 0∈⎝⎛⎭⎪⎫e -2,12,使得h(x 0)=0,所以f ′(x 0)=0,当0<x<x 0时,f ′(x)>0,所以f(x)=ln x(x -1)2单调递增;当x 0<x ≤e -12时,f ′(x)<0,所以f(x)=ln x (x -1)2单调递减,且f(x)≥f(e -12),由①和②可知,f(x)=ln x(x -1)2在(0,x 0)上单调递增,在(x 0,1)上单调递减,所以当x =x 0时,f(x)=ln x(x -1)2取极大值.因为h(x 0)=x 0-1-2x 0ln x 0=0,所以ln x 0=x 0-12x 0,所以f(x 0)=ln x 0(x 0-1)2=12x 0(x 0-1)=12⎝⎛⎭⎪⎫x 0-122-12.又x 0∈⎝ ⎛⎭⎪⎫e -2,12⊆⎝ ⎛⎭⎪⎫0,12,所以2⎝ ⎛⎭⎪⎫x 0-122-12∈⎝ ⎛⎭⎪⎫-12,0,所以f(x 0)=12⎝⎛⎭⎪⎫x 0-122-12<-2.解后反思 本题三个小题梯度明显,有较好的区分度.其中第(1)小题简单;第(2)小题难度中等,但要完成讨论也需要不错的基础;第三小题“隐零点”问题.不是一般的考生能讨论出范围的,建议一般的考生果断放弃.各个小问题中都利用了导数研究函数的单调性、极值、值域. 【关联3】、已知函数f (x )=x-1-a lnx (其中a 为参数). (1) 求函数f (x )的单调区间;(2) 若对任意x ∈(0,+∞)都有f (x )≥0成立,求实数a 的取值集合;(3) 证明:⎝⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).【解析】:(1) f ′(x )=1-a x =x -ax(x >0),当a ≤0时,f ′(x )=1-a x =x -ax>0,所以f (x )在(0,+∞)上是增函数;当a >0时,x (0,a ) a(a ,+∞)f ′(x ) -0 + f (x )极小值所以f (x )的增区间是(a 综上所述, 当a ≤0时,f (x )的单调递增区间是(0,+∞);当a >0时,f (x )的单调递增区间是(a ,+∞),单调递减区间是(0,a ). (2) 由题意得f (x )min ≥0.当a ≤0时,由(1)知f (x )在(0,+∞)上是增函数, 当x →0时,f (x )→-∞,故不合题意;(6分)当a >0时,由(1)知f (x )min =f (a )=a -1-a ln a ≥0.令g (a )=a -1-a ln a ,则由g ′(a )=-ln a =0,得a =1,a (0,1) 1 (1,+∞)g ′(a ) +0 - g (a )极大值所以g (a )=a -1-a ln a min =0, 所以a =1,即实数a 的取值集合是{1}.(10分) (3) 要证不等式1+1n n <e<1+1nn +1,两边取对数后,只要证n ln1+1n <1<(n +1)ln1+1n,即只要证1n +1<ln1+1n <1n, 令x =1+1n ,则只要证1-1x<ln x <x -1(1<x ≤2).由(1)知当a =1时,f (x )=x -1-ln x 在(1,2]上递增, 因此f (x )>f (1),即x -1-ln x >0,所以ln x <x -1(1<x ≤2) 令φ(x )=ln x +1x -1(1<x ≤2),则φ′(x )=x -1x2>0,所以φ(x )在(1,2]上递增,故φ(x )>φ(1),即ln x +1x -1>0,所以1-1x<ln x (1<x ≤2).综上,原命题得证.【关联4】、已知函数f (x )=e x,g (x )=x -b ,b ∈R . (1) 若函数f (x )的图像与函数g (x )的图像相切,求b 的值; (2) 设函数T (x )=f (x )+ag (x ),a ∈R ,求T (x )的单调递增区间;(3) 设函数h (x )=|g (x )|·f (x ),b <1.若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,求b 的取值范围.【思路分析】 (1) 对于直线与曲线相切问题,只要切点不知道的,都要先设切点坐标,然后运用好切点的双重身份,即切点既是切线上的点,又是曲线上的点,它的坐标既适合切线方程,又适合曲线方程,再由方程(组)思想,求出未知量;(2) 要求函数T (x )的单调递增区间,只要求T ′(x )>0的解区间就行,不过需对a 进行分类讨论;(3) 首先要把“若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立”运用等价转化的思想转化为“h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1”,接下来的问题就是求h (x )在[0,1]上的最大值和最小值.对于含绝对值的函数一般首先要去掉绝对值,这里要运用好分类讨论思想.(3) 若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,则等价转化为h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1.解法1 h (x )=|g (x )|·f (x )=⎩⎪⎨⎪⎧x -b e x, x ≥b ,-x -b e x, x <b .当x ≥b 时,有h ′(x )=(x -b +1)e x>0; 当x <b -1时,有h ′(x )=-(x -b +1)e x>0; 当b -1<x <b 时,有h ′(x )=-(x -b +1)e x <0,所以h (x )在(-∞,b -1)上是增函数,在(b -1,b )上是减函数,在(b ,+∞)上是增函数.(10分) 因为b <1,则①当b ≤0时,h (x )在[0,1]上为增函数.所以h (x )max =h (1)=(1-b )e ,h (x )min =h (0)=-b .则由h (x )max -h (x )min >1,得(1-b )e +b >1,解得b <1,所以b ≤0.(12分)②当0<b <1时,h (x )在(0,b )上是减函数,在(b,1)上是增函数,所以h (x )min =h (b )=0,h (x )max =max{h (0),h (1)}.若h (0)-h (1)=b -(1-b )e =b (e +1)-e>0,即b >ee +1,此时h (0)>h (1);若b <e e +1,此时h (0)<h (1).(ⅰ) 当0<b <ee +1时,有h (x )max =h (1)=(1-b )e ,h (x )min =h (b )=0. 则由h (x )max -h (x )min >1,得(1-b )e>1,解得b <e -1e .(ⅱ) 当ee +1≤b <1时,有h (x )max =h (0)=b ,h (x )min =h (b )=0. 因为b <1,所以h (x )max -h (x )min =b >1不成立. 综上,b 的取值范围为-∞,e -1e.解法2 h (x )=|g (x )|·f (x )=|x -b |·e x=|(x -b )e x|,令φ(x )=(x -b )e x,则h (x )=|φ(x )|. 先研究函数φ(x )=(x -b )e x,φ′(x )=(x -b +1)e x.因为b <1,所以在[0,1]上有φ′(x )=(x -b +1)e x>0,因此φ(x )在[0,1]上是增函数.所以φ(x )min =φ(0)=-b ,φ(x )max =φ(1)=(1-b )e>0.①若φ(0)=-b ≥0,即b ≤0时,h (x )min =φ(0)=-b ,h (x )max =φ(1)=(1-b )e , 则由h (x )max -h (x )min >1,即(1-b )e +b >1,解得b <1,所以b ≤0.②若φ(0)=-b <0,即0<b <1时,h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}, 令-φ(0)-φ(1)=b -(1-b )e =b (e +1)-e =0,则b =ee +1.(ⅰ) 当0<b <ee +1时,-φ(0)-φ(1)<0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=φ(1)=(1-b )e , 由h (x )max -h (x )min >1,即(1-b )e>1,解得b <e -1e ,所以0<b <e -1e .(14分)(ⅱ) 当ee +1≤b <1时,-φ(0)-φ(1)≥0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=-φ(0)=b , 由h (x )max -h (x )min >1,得b >1,与b <1矛盾,故h (x )max -h (x )min >1不成立. 综上,b 的取值范围为-∞,e -1e .。
高中数学恒成立问题的解题方法和思路
高中数学恒成立问题的解题方法和思路【摘要】高中数学中的恒成立问题是学生在学习数学时经常会遇到的挑战,掌握恒成立问题的解题方法对于提高数学水平至关重要。
本文首先探讨了理解恒成立问题的重要性和挑战高中数学恒成立问题的意义,引发读者对该问题的关注。
接着介绍了学习恒成立问题的基础知识和常用解题方法,包括代数方法和几何方法。
特别对恒成立问题的特殊情况进行了思考和分析。
在总结了解题方法,并展望了高中数学学习的未来发展。
通过本文的阐述,读者可以更好地理解和掌握高中数学中的恒成立问题,提升自己的数学解题能力。
【关键词】高中数学,恒成立问题,解题方法,思路,理解,挑战,基础知识,常用方法,代数,几何,特殊情况,总结,展望1. 引言1.1 理解恒成立问题的重要性理解恒成立问题的重要性在高中数学学习中起着至关重要的作用。
恒成立问题是数学中的基础概念之一,对建立数学思维和逻辑推理能力具有重要意义。
通过理解和解决恒成立问题,可以深化对数学知识的理解,提升数学推导能力,培养学生的逻辑思维和分析问题的能力。
理解恒成立问题还能帮助学生更好地应对高考和数学竞赛中的问题,提高解题速度和准确度。
掌握了恒成立问题的解题方法和思路,学生在考试中就能更加游刃有余,更加得心应手。
理解恒成立问题的重要性不仅在于提高数学学习的效果,还在于培养学生的数学素养和解决问题的能力。
应该重视恒成立问题的学习,努力提升解决问题的能力,为未来的学习和发展打下坚实的基础。
1.2 挑战高中数学恒成立问题的意义挑战高中数学恒成立问题的意义在于培养学生的逻辑思维能力和推理能力。
这些恒成立问题往往需要学生灵活运用所学的知识和方法,通过逻辑推理和数学证明找出问题的解决方案。
在挑战这些问题的过程中,学生需要不断思考、分析和总结,从而培养自己的解决问题的能力。
挑战高中数学恒成立问题也可以帮助学生扩展数学思维,拓宽数学应用的范围。
通过解决这些问题,学生可以更深入地理解数学知识的内涵和应用,培养出对数学的兴趣和热爱。
函数导数中的恒成立问题解题技巧
临沂市高三二轮会材料函数导数中的恒成立问题解题技巧函数导数中的恒成立问题解题技巧新课标下的高考越来越重视考查知识的综合应用,恒成立问题涉及方程、不等式、函数性质与图象及它们之间的综合应用,同时渗透换元、转化与化归、数形结合、函数与方程等思想方法,考查综合解题能力,尤其是在函数、导数中体现的更为明显,也是历年高考的热点问题,根据本人的体会,恒成立问题主要有以下几种.一、利用函数的性质解决恒成立问题例1 已知函数32=+--++(,)()(1)(2)f x x a x a a x ba b∈R.(1)若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;(2)若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解:(1)由题意得)2()1(23)(2+--+='a a x a x x f又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a (2)函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a所以a 的取值范围是{}15-<<-a a .【方法点评】利用函数的性质解决恒成立问题,主要是函数单调性的应用,函数在给定的区间上不单调意味着导函数在给定的区间上有零点,利用函数零点的存在性定理即可解决问题.二、利用数形结合思想解决恒成立问题例2 已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点.(1)求a ;(2)求函数()f x 的单调区间;(3)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.【方法指导】(1)在极值点处导数为零,可以求a 的值;(2)求函数的单调区间借助()0f x '>可以求出单调递增区间,()0f x '<可以求出单调递减区间;(3)根据函数()f x 的单调性可以求出其极大值和极小值,画出图象,数形结合可以求出b 的取值范围.解:(1)因为()'2101a f x x x =+-+,所以()'361004a f =+-=,因此16a =. (2)由(1)知,()()()216ln 110,1,f x x x x x =++-∈-+∞,()()2'2431x x f x x -+=+ 当()()1,13,x ∈-+∞时,()'0f x >;当()1,3x ∈时,()'0f x <.所以()f x 的单调增区间是()()1,1,3,-+∞,()f x 的单调减区间是()1,3.(3)由(2)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29=-f ,极小值为()332ln 221f =-因此()()21616101616ln291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<因此,b 的取值范围为()32ln221,16ln29--.【方法点评】数形结合是高中数学中常考的思想方法之一,在有关取值范围问题、单调性问题、最值问题中体现较明显,同时方程的根及函数零点也可转化为交点问题解决.三、分离参数解决恒成立问题例3 已知函数()ln a f x x x=-, (1)当0a >时,判断()f x 在定义域上的单调性;(2)若2()f x x <在(1,)+∞上恒成立,求a 的取值范围.【方法指导】(1)通过判断导数的符号解决;(2)由于参数a 是“孤立”的,可以分离参数后转化为一个函数的单调性或最值等解决.解:(1)由题意:()f x 的定义域为(0,)+∞,且221()a x a f x x x x+'=+=. 0,()0a f x '>∴>,故()f x 在(0,)+∞上是单调递增函数. (2)322ln ,0.ln ,)(x x x a x x x a x x x f ->∴><-∴<又 令232116()ln ,()()1ln 3,()6x g x x x x h x g x x x h x x x x-''=-==+-=-=, ()h x 在[1,)+∞上是减函数,()(1)2h x h ∴<=-,即()0g x '<,()g x ∴在[1,)+∞上也是减函数,()(1)1g x g ∴<=-.令1a ≥-得()a g x >,∴当2()f x x <在(1,)+∞恒成立时,a 的取值范围是{}1-≥a a .【方法点评】分离参数是恒成立问题中的一种重要解题方法,分离参数后,构造新函数,求新函数的最值即可解决恒成立问题中的参数取值范围.四、利用两个函数的最值解决恒成立问题例4 [2014·新课标全国卷Ⅰ] 设函数f (x )=a e x ln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b x e x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈)1,0(e 时,g ′(x )<0;当x ∈),1(+∞e时,g ′(x )>0. 故g (x )在)1,0(e 上单调递减,在),1(+∞e上单调递增,从而g (x )在(0,+∞)上的最小值为)1(eg =-1e . 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=)1(eg =h (1)=h max (x ), 所以当x >0时,g (x )>h (x ),即f (x )>1.五、不等式中的恒成立问题例5 (2016•山东)已知221()(ln ),x f x a x x a R x-=-+∈. (1)讨论()f x 的单调性;(2)当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈恒成立. 解:(1)()f x 的定义域为(0,)+∞,223322(2)(1)()a ax x f x a x x x x --'=--+= 当0a ≤时,若(0,1)x ∈,则()0,()f x f x '>单调递增,若(1,)x ∈+∞,则()0,()f x f x '<单调递减.当0a >时,3(1)()(a x f x x x x -'=-+.(i)当02a <<1>.当(0,1)x ∈或)x ∈+∞时,()0,()f x f x '>单调递增.当x ∈时,()0,()f x f x '<单调递减.(ii)当2a =1=,在区间(0,)+∞内,()0,()f x f x '≥单调递增.(iii)当2a >时,01<<.当x ∈或(1,)x ∈+∞时,()0,()f x f x '>单调递增,当x ∈时,()0,()f x f x '<单调递减. 综上所述,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当02a <<时,()f x 在(0,1)上单调递增,在上单调递减,在)+∞上单调递增;当2a =时,()f x 在(0,)+∞上单调递增;当2a >时,()f x 在(0,2a )上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当1a =时,22321122()()ln (1)x f x f x x x x x x x -'-=-+---+23312ln 1x x x x x=-++--,[1,2]x ∈ 设()ln ,()g x x x h x =-=233121,[1,2]x x x x=+--∈,则()()()()f x f x g x h x '-=+.由1()0x g x x-'=≥,可得()(1)1g x g ≥=,当且仅当1x =时取得等号. 又24326()x x h x x--+'=.设2()326x x x ϕ=--+,则()x ϕ在[1,2]上单调递减. 因为(1)1,(2)10ϕϕ==-,所以0(1,2)x ∃∈,使得当0(1,)x x ∈时,()0x ϕ>,0(,2)x x ∈时,()0x ϕ<.所以()h x h (x )在0(1,)x 上单调递增,在0(,2)x 上单调递减. 由1(1)1,(2)2h h ==,可得1()(2)2h x h ≥=, 当且仅当2x =时取得等号. 所以3()()(1)(2)2f x f xgh '-=+=, 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. 六、利用恒成立问题求参数的取值范围 例6 (2015·北京)已知函数 。
2022年高考数学基础题型重难题型突破类型二 恒成立问题与有解问题(解析版)
2022年高考数学基础题型重难题型突破类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【典例8】已知函数f(x)=ln x-ax,g(x)=x2,a∈R.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a的取值范围.【典例9】已知x=1e为函数f(x)=x a ln x的极值点.(1)求a的值;(2)设函数g(x)=kxe x∀x1∈(0,+∞),∃x2∈R,使得f(x1)-g(x2)≥0,求k的取值范围.【典例10】设函数f(x)=ax2-a-ln x,g(x)=1x-ee x,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【解析】解(1)f ′(x )=-x e x,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2x ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x=m t,等价于方程ln x =mx有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x h ′(x )<0,h (x )单调递减,当x h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解析】解f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0),易知当x ∈(0,+∞)时,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1).当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意;当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0,显然不符合题意,a ≤0舍去;当0<a <12时,由ln x ≤x -1,得ln1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x ax -1),∵0<a <12,∴12a>1.当x ∈1,12a 时,f ′(x )≤0恒成立,∴f (x )在1,12a 上单调递减,∴当x ∈1,12a 时,f (x )≤f (1)=0,显然不符合题意,0<a <12舍去.综上可得,a ∈12,+∞【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】(1)因为f (x )=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f ′(x )=2x -4-6x ,且f ′(1)=-8,f (1)=-3,所以切线方程为y =-8x +5.又f ′(x )=2x (x +1)(x -3),令f ′(x )>0解得x >3,令f ′(x )<0解得0<x <3,所以f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf ′(x )-f (x )>x 2+6等价于k <x +x ln x x -1,记h (x )=x +x ln x x -1,则k <h (x )min ,且h ′(x )=x -2-ln x (x -1)2,记m (x )=x -2-ln x ,则m ′(x )=1-1x>0,所以m (x )为(1,+∞)上的单调递增函数,且m (3)=1-ln 3<0,m (4)=2-ln 4>0,所以存在x 0∈(3,4),使得m (x 0)=0,即x 0-2-ln x 0=0,所以h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h (x )min =h (x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g (x )=x 2-a ln x ,则g ′(x )=2x -a x =(2x +a )(2x -a )x,令g ′(x )=0,得x 0=a2,当x g ′(x )<0,当x g ′(x )>0,所以g (x上单调递增,而要使g (x )有两个零点,要满足g (x 0)<0,即-a lna 2<0⇒a >2e.因为0<x 1<a2,x 2>a 2,令x 2x 1=t (t >1),由g (x 1)=g (x 2),可得x 21-a ln x 1=x 22-a ln x 2,即x 21-a ln x 1=t 2x 21-a ln tx 1,所以x 21=a ln tt 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2a ln t t 2-1>8a ,又a >0,t >1,所以只需证(3t+1)2ln t -8t 2+8>0,令h (t )=(3t +1)2ln t -8t 2+8,则h ′(t )=(18t +6)ln t -7t +6+1t ,令n (t )=(18t +6)ln t -7t +6+1t,则n ′(t )=18ln t +11+6t -1t 2>0(t >1),故n (t )在(1,+∞)上单调递增,n (t )>n (1)=0,故h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,所以x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【解析】(1)易知函数f (x )为偶函数,故只需求x ∈[0,+∞)时f (x )的最小值.f ′(x )=2x -πsin x ,当x h (x )=2x -πsin x ,h ′(x )=2-πcos x ,显然h ′(x )单调递增,而h ′(0)<0,h x 0得h ′(x 0)=0.当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减,当x 0h ′(x )>0,h (x )单调递增,而h (0)=0,x h (x )<0,即x f ′(x )<0,f (x )单调递减,又当x x >π>πsin x ,f ′(x )>0,f (x )单调递增,所以f (x )min ==π24.(2)证明:依题意得x 1x 2F (x )=f (x )-f (π-x ),x F ′(x )=f ′(x )+f ′(π-x )=2π-2πsin x >0,即函数F (x )单调递增,所以F (x )<x f (x )<f (π-x ),而x 1,所以f (x 1)<f (π-x 1),又f (x 1)=f (x 2),即f (x 2)<f (π-x 1),此时x 2,π-x 1由(1)可知,f (x x 2<π-x 1,即x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【解析】解f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=ex -1-ln x ,f ′(x )=ex -1-1x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a ex -1-ln x +ln a ≥ex -1-ln x ≥1.综上,a 的取值范围是[1,+∞).【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【解析】解(1)f ′(x )=ax+(1-a )x -b .由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x x -1).①若a ≤12,则a1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x f ′(x )<0,当x f ′(x )>0,f (x 增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f<aa -1.而fa lna 1-a +a 221-a +a a -1>a a -1,所以不符合题意.③若a >1,则f (1)=1-a 2-1=-a -12<aa -1.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【解析】解设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h ′(x )=2x -2.当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c .故当-1-c ≤0,即c ≥-1时,f (x )≤2x +c .所以c 的取值范围为[-1,+∞).【典例8】已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R .(1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围.【解析】解(1)f (x )=ln x -ax 的定义域为(0,+∞),f ′(x )=1x-a .当a ≤0时,f ′(x )=1x-a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,由f ′(x )=1x -a >0,得0<x <1a ,由f ′(x )=1x -a <0,得x >1a ,所以f (x f (x )有极大值点1a,无极小值点.(2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立,则当x >0时,a ≥ln xx-x 恒成立,令h (x )=ln x x -x ,x >0,则h ′(x )=1-x 2-ln xx 2,令k (x )=1-x 2-ln x ,x >0,则当x >0时,k ′(x )=-2x -1x <0,所以k (x )在(0,+∞)上单调递减,又k (1)=0,所以在(0,1)上,h ′(x )>0,在(1,+∞)上,h ′(x )<0,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以h (x )max =h (1)=-1,所以a ≥-1.即a 的取值范围为a ≥-1.【典例9】已知x =1e为函数f (x )=x aln x 的极值点.(1)求a 的值;(2)设函数g (x )=kxe x∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,求k 的取值范围.【解析】解(1)f ′(x )=axa -1ln x +x a ·1x=x a -1(a ln x +1),f ln1e+1a =2,当a =2时,f ′(x )=x (2ln x +1),函数f (x 递增,所以x =1e为函数f (x )=x aln x 的极小值点,因此a =2.(2)由(1)知f (x )min =f =-12e,函数g (x )的导函数g ′(x )=k (1-x )e -x.①当k >0时,当x <1时,g ′(x )>0,g (x )在(-∞,1)上单调递增;当x >1时,g ′(x )<0,g (x )在(1,+∞)上单调递减,对∀x 1∈(0,+∞),∃x 2=-1k ,使得g (x 2)=1e k <-1<-12e ≤f (x 1),符合题意.②当k =0时,g (x )=0,取x 1=1e,对∀x 2∈R 有f (x 1)-g (x 2)<0,不符合题意.③当k <0时,当x <1时,g ′(x )<0,g (x )在(-∞,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增,g (x )min =g (1)=ke,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,只需g (x )min ≤f (x )min ,即k e ≤-12e,解得k ≤-12.综上所述,k -∞,-12∪(0,+∞).规律方法(1)由不等式恒成立求参数的取值范围问题的策略①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.【典例10】设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.【解析】.(1)解f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a.当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.(2)证明令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)解由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1,由(1)有f (1)=0,而所以f (x )>g (x )在区间(1,+∞)内不恒成立;当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈12,+【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).【解析】.解(1)f ′(x )=1x -x +1=-x 2+x +1x ,x ∈(0,+∞).由f ′(x )>0>0,x 2+x +1>0.解得0<x <1+52.故f (x )(2)令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).。
高一上学期专题5--函数的恒成立问题
高一上学期专题5 函数的恒成立问题函数的内容作为高中数学知识体系的核心,.函数类问题的解决最终归结为对函数性质、函数思想的应用.恒成立问题,在高中数学中较为常见.这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.恒成立问题在解题过程中有以下几种策略:①赋值型;②一次函数型;③二次函数型;④变量别离型;⑤数形结合型. 现在我们一起来探讨其中一些典型的问题. 策略一、赋值型——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= (x+1)4+b 1(x+1)3+ b 2(x+1)2+b 3(x+1)+b 4 定义映射f :(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,那么f :(4,3,2,1) → ( )A.10B.7C.-1D.0 例2.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π- 对称,那么a=〔 〕.A .1B .-1C .2D . -2.策略二、一次函数型——利用单调性求解给定一次函数y=f(x)=ax+b(a ≠0),假设y=f(x)在[m,n]内恒有f(x)>0,那么根据函数的图象〔线段〕〔如下列图〕 可得上述结论等价于ⅰ〕⎩⎨⎧>>0)(0m f a ,或 ⅱ〕⎩⎨⎧><0)(0n f a 可合并定成⎩⎨⎧>>0)(0)(n f m f同理,假设在[m,n]内恒有f(x)<0,那么有⎨⎧<0)(m f例3a,x 的取值范围.策略三、二次函数型——利用判别式,韦达定理及根的分布求解对于二次函数f(x)=ax 2+bx+c=0(a ≠0)在实数集R 上恒成立问题可利用判别式直接求解,即 f(x)>0恒成立⇔⎩⎨⎧<∆>00a ;f(x)<0恒成立⇔⎩⎨⎧<∆<0a . 假设是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解.例4. 假设函数12)1()1()(22++-+-=a x a x a x f 的定义域为R ,求实数 a 的取值范围.例5.函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围. 变式1:假设[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围. 变式2:假设[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.策略四、变量别离型——别离变量,巧妙求解运用不等式的相关知识不难推出如下结论:假设对于x 取值范围内的任何一个数都有f(x)>g(a)恒成立,那么g(a)<f(x)min ;假设对于x 取值范围内的任何一个数,都有f(x)<g(a)恒成立,那么g(a)>f(x)max .(其中f(x)max 和f(x)min 分别为f(x)的最大值和最小值例6.三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时满足①②的所有x 的值满足③,求m 的取值范围.例7. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,假设12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围 .策略五、数形结合——直观求解例8. a a x x x 恒成立,求实数,不等式对任意实数>--+21的取值范围. 解不等式恒成立的四种方法 1 转换主元法确定题目中的主元,化归成初等函数求解。
专题二 不等式恒成立、能成立问题(解析版)
强化专题2 不等式恒成立、能成立问题在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理,数学运算等素养.【技巧目录】一、“Δ”法解决恒成立问题二、数形结合法解决恒成立问题三、分离参数法解决恒成立问题四、主参换位法解决恒成立问题五、利用图象解决能成立问题六、转化为函数的最值解决能成立问题【例题详解】一、“Δ”法解决恒成立问题例1 若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( )A .[]2,0-B .(]2,0-C .()2,0-D .()(),20,-∞-⋃+∞ 【答案】B【分析】讨论0a =和0a <两种情况,即可求解.【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立,等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-.故选:B .【小结】(1)如图①一元二次不等式ax 2+bx +c >0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c >0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴上方⇔y min >0⇔⎩⎪⎨⎪⎧a >0,Δ<0.(2)如图②一元二次不等式ax 2+bx +c <0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c <0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴下方⇔y max <0⇔⎩⎪⎨⎪⎧a <0,Δ<0.二、数形结合法解决恒成立问题例2 当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求m 的取值范围.【详解】令y =x 2+mx +4.∵y <0在[1,2]上恒成立.∴x 2+mx +4=0的根一个小于1上,另一个大于2.如图,得⎩⎪⎨⎪⎧ 1+m +4<0,4+2m +4<0, ∴⎩⎪⎨⎪⎧m +5<0,2m +8<0. ∴m 的取值范围是{m |m <-5}.【小结】结合函数的图象将问题转化为函数图象的对称轴,区间端点的函数值或函数图象的位置(相对于x 轴)关系求解.可结合相应一元二次方程根的分布解决问题.三、分离参数法解决恒成立问题例3 若不等式x 2+ax +1≥0在x ∈[-2,0)时恒成立,则实数a 的最大值为( )A .0B .2C .52D .3 【答案】B【分析】用分离参数法分离参数,然后用基本不等式求最值后可得结论.【详解】不等式x 2+ax +1≥0在[2,0)x ∈-时恒成立,即不等式x x x x a 112--=+-≤在[2,0)x ∈-时恒成立.()()()2121-=-⋅-≥-+x x x x ,当且仅当1x x -=-,即x =-1时,等号成立,所以a ≤2,所以实数a 的最大值为2. 故选:B .【小结】通过分离参数将不等式恒成立问题转化为求函数最值问题.四、主参换位法解决恒成立问题例4 已知[]1,1a ∈-,不等式()24420x a x a +-+->恒成立,则x 的取值范围为___________. 【答案】(,1)(3,)-∞+∞【分析】设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >,则满足()()1010f f ⎧->⎪⎨>⎪⎩解不等式组可得x 的取值范围.【详解】[]1,1a ∈-,不等式()24420x a x a +-+->恒成立即[]1,1a ∈-,不等式()22440x a x x -+-+>恒成立设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >所以()()1010f f ⎧->⎪⎨>⎪⎩,即22320560x x x x ⎧-+>⎨-+>⎩,解得3x >或1x < 故答案为:(,1)(3,)-∞+∞【小结】转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.五、利用图象解决能成立问题例5 当1<x <2时,关于x 的不等式x 2+mx +4>0有解,则实数m 的取值范围为________.【答案】{m |m >-5}【详解】记y =x 2+mx +4,则由二次函数的图象知,不等式x 2+mx +4>0(1<x <2)一定有解,即m +5>0或2m +8>0,解得m >-5.【小结】结合二次函数的图象,将问题转化为端点值的问题解决.六、转化为函数的最值解决能成立问题例6 若存在x ∈R ,使得4x +m x 2-2x +3≥2成立,求实数m 的取值范围. 【详解】∵x 2-2x +3=(x -1)2+2>0,∴4x +m ≥2(x 2-2x +3)能成立,∴m ≥2x 2-8x +6能成立,令y =2x 2-8x +6=2(x -2)2-2≥-2,∴m ≥-2,∴m 的取值范围为{m |m ≥-2}.【小结】能成立问题可以转化为m >y min 或m <y max 的形式,从而求y 的最大值与最小值,从而求得参数的取值范围.【过关训练】1.若关于x 的不等式220mx x m ++>的解集是R ,则m 的取值范围是( )A .(1,+∞)B .(0,1)C .(-1,1)D .[1,+∞) 【答案】A【分析】分0m =和0m ≠两种情况求解【详解】当0m =时,20x >,得0x >,不合题意,当0m ≠时,因为关于x 的不等式220mx x m ++>的解集是R , 所以20Δ440m m >⎧⎨=-<⎩,解得1m , 综上,m 的取值范围是(1,+∞),故选:A2.若集合2{|10}A x ax ax =-+≤=∅,则实数a 的取值集合为( )A .{|04}a a <<B .{|04}a a ≤<C .{|04}a a <≤D .{|04}a a ≤≤【答案】B【分析】分00a a =≠,,两种情况求解即可【详解】当0a =时,不等式等价于10<,此时不等式无解; 当0a ≠时,要使原不等式无解,应满足20Δ40a a a >⎧⎨=-<⎩,解得04a <<; 综上,a 的取值范围是[)0,4.故选:B .3.若R x ∈,210ax ax ,则实数a 的取值范围是( )A .()4,0-B .(]4,0-C .[)4,0-D .[]4,0-【答案】B【分析】分两种情况讨论:0a =和0Δ0a <⎧⎨<⎩,解出实数a 的取值范围,即得. 【详解】对R x ∈,210ax ax ,当0a =时,则有10-<恒成立;当0a <时,则20Δ40a a a <⎧⎨=+<⎩,解得40a . 综上所述,实数a 的取值范围是(]4,0-.故选:B.4.“x ∀∈R ,2230x ax a -+>”的充要条件是( )A .12a -<<B .0<<3aC .13a <<D .35a << 【答案】B【分析】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-<,解不等式求得答案.【详解】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-< ,即0<<3a ,故“x ∀∈R ,2230x ax a -+>”的充要条件是0<<3a ,故选:B5.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( )A .[]0,1B .(]0,1C .()(),01,-∞⋃+∞D .(][),01,-∞+∞ 【答案】A【分析】当0k =时,该不等式成立,当0k ≠时,根据二次函数开口方向及判别式列不等式解决二次不等式恒成立问题.【详解】当0k =时,该不等式为80≥,成立;当0k ≠时,要满足关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,只需()2036480k k k k >⎧⎨-+≤⎩,解得01k <≤,综上所述,k 的取值范围是[]0,1,故选:A.6.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( )A .4m ≤-B .3m ≥-C .30m -≤<D .40m -≤< 【答案】A【分析】由题意可得2min (4)m x x ≤-,由二次函数的性质求出24y x x =-在(]0,3上的最小值即可 【详解】因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立, 所以2min (4)m x x ≤-,令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-,所以4m ≤-故选:A7.若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞ 【答案】A【分析】由题知对任意的2[1,0],242x m x x ≥-∈--恒成立,进而求[1,0]x ∈-,()2214y x =--最值即可得答案.【详解】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-, 即m 的取值范围是[4,)+∞故选:A8.若两个正实数,x y 满足12+1=x y ,且不等式2+32+<y x m m 有解,则实数m 的取值范围是( ) A .(4,1)- B .(1,4)-C .()(),41,-∞-+∞ D .()(),14,-∞-⋃+∞ )()1,+∞.9.已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A【分析】依据题意可将题目转换为非p 命题为真的补集,即“15x ∀≤≤,250x ax --≤恒成立”对应a 取值集合的补集,进一步只需限制端点小于等于0即可求解【详解】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足, 25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .10.若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( )A .(,2)-∞B .(,2)-∞-C .(6,)-+∞D .(,6)-∞-【答案】B【分析】构造函数2()42f x x x a =---,若不等式2420x x a --->在区间(1,4)内有解,可得函数2()42f x x x a =---在区间(1,4)内的最大值大于0即可,根据二次函数的图象和性质可得答案.【详解】令2()42f x x x a =---,则函数的图象为开口朝上且以直线2x =为对称轴的抛物线,故在区间(1,4)上,()f x f <(4)2a =--,若不等式2420x x a --->在区间(1,4)内有解,则20a -->,解得2a <-,即实数a 的取值范围是(,2)-∞-.故选:B .11.已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞12.设函数2()2f x ax ax =--,若对任意的[1,3]x ∈,()22f x x a >--恒成立,则实数a 的取值范围为_____________.13.已知关于x 的不等式244x mx x m +>+-.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围;(2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【详解】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<,即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4).(2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤, 所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.14.设2(1)2y ax a x a =+-+-, 若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;19.设函数()21f x mx mx =--.(1)若对于2,2x ,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围. 2,2x,f 2,2x 恒成立,对于2,2x 恒成立.261324x ⎫-+⎪⎭2,2x ,则1,2.20.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围.【详解】y <0⇔mx 2-mx -6+m <0⇔(x 2-x +1)m -6<0.∵1≤m ≤3,∴x 2-x +1<6m恒成立, ∴x 2-x +1<63⇔x 2-x -1<0⇔1-52<x <1+52. ∴x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.。
专题05 不等式之恒成立问题(填空题)(解析版))2021年新高考数学考前压轴冲刺(新高考地区专用)
专题05 不等式之恒成立问题2021年新高考填空题考点预测新高考近几年不等式常以压轴题的题型出现,常见的考试题型有恒成立,有解问题,此类题型丰富多变,综合性强,有一定的难度,但只要我们理解问题的本质,就能解决这类问题,常用的知识点如下:1.若)(x f 在区间D 上存在最小值,A x f >)(在区间D 上恒成立,则A x f >min )(.2.若)(x f 在区间D 上存在最大值,B x f <)(在区间D 上恒成立,则B x f <max )(.3.若)(x f 在区间D 上存在最大值,A x f >)(在区间D 上有解,则A x f >max )(.4.若)(x f 在区间D 上存在最小值,B x f <)(在区间D 上有解,则B x f <min )(.5.],,[,21b a x x ∈∀)()(21x g x f ≤,则min max )()(x g x f ≤.6.],,[1b a x ∈∀],[2n m x ∈∃,)()(21x g x f ≤,则max max )()(x g x f ≤.7.],,[1b a x ∈∃],[2n m x ∈∃,)()(21x g x f ≤,则max min )()(x g x f ≤.8.],,[b a x ∈∀)()(x g x f ≤,则0)()(≤-x g x f .典型例题1.若不等式|x ﹣2|﹣|x +2|≤21﹣3a 对任意实数x 都成立,则实数a 的最大值为 .【分析】依据题设借助绝对值的几何意义得|x ﹣2|﹣|x +2|≤4,然后由不等式恒成立可得a 的范围.【解答】解:由绝对值的几何意义知|x ﹣2|﹣|x +2|≤|(x ﹣2)﹣(x +2)|=4,当且仅当(x ﹣2)(x +2)≤0,即﹣2≤x ≤2时取等号,∵|x ﹣2|﹣|x +2|≤21﹣3a 对任意实数x 都成立,∴21﹣3a≥(|x﹣2|﹣|x+2|)max=4=22,∴1﹣3a≥2,∴a≤﹣,∴实数a的最大值为:﹣.故答案为:﹣.【知识点】不等式恒成立的问题2.已知a是实数,若对于任意的x>0,不等式恒成立,则a的值为.【分析】设y=(4a﹣2)x+,y=x2+ax﹣,分别作出y=(4a﹣2)x+,y=x2+ax﹣的图象,讨论4a ﹣2≥0,不符题意;4a﹣2<0,且y=(4a﹣2)x+经过二次函数y=x2+ax﹣图象的B(x2,0),将B的坐标分别代入一次函数和二次函数解析式,解方程可得a,检验可得所求值.【解答】解:设y=(4a﹣2)x+,y=x2+ax﹣,由△=a2+>0,可得y=x2+ax﹣的图象与x轴有两个交点,分别作出y=(4a﹣2)x+,y=x2+ax﹣的图象,可得4a﹣2≥0,不满足题意;则4a﹣2<0,即a<,且y=(4a﹣2)x+经过二次函数y=x2+ax﹣图象的B(x2,0),即有(4a﹣2)x2+=0,即x2=,代入x2+ax﹣=0,化为48a2﹣40a+7=0,解得a=或a=>(舍去),故答案为:.【知识点】不等式恒成立的问题3.若对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为.【答案】[25,57]【分析】由题意不等式恒成立化为﹣b≤a(x+)≤4﹣b恒成立,设f(x)=x+,x∈[1,4],求出f(x)的值域,根据一次函数的性质转化为,即;设,求出a、b的表达式,把目标函数z=|a|+|a+b+25|化为关于y、x的解析式,利用线性规划的知识求出z的取值范围,即可得出结论.【解答】解:对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,可得当x∈[1,4]时,不等式﹣b≤a(x+)≤4﹣b恒成立,设f(x)=x+,x∈[1,4];可得x∈[1,2]时f(x)递减,x∈[2,4]时f(x)递增,可得f(2)时取得最小值4,f(1)=f(4)时取得最大值5,所以f(x)的值域为[4,5];所以原不等式恒成立,等价于,(y=af(x)为f(x)的一次函数,最大值与最小值都在端点处)即,设,则,所以,所以目标函数z=|a|+|a+b+25|=|y﹣x|+|4x+3y+25|=|y﹣x|+4x+3y+25,画出不等式组表示的平面区域,如图所示;当y≥x时,目标函数z=3x+4y+25,所以x=0,y=0时z min=25,x=4,y=5时z max=57;当y<x时,目标函数z=5x+2y+25,所以x=0,y=0时为临界值z min=25,x=4,y=4时z max=53;综上可得,|a|+|a+b+25|的范围是[25,57].故答案为:[25,57].【知识点】不等式恒成立的问题专项突破一、填空题(共14小题)1.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.【分析】分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.【解答】解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.【知识点】不等式恒成立的问题2.若存在实数b使得关于x的不等式|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4恒成立,则实数a的取值范围是﹣.【答案】[-1,1]【分析】运用正弦函数的值域可得2+sin x∈[1,3],可得|a(2+sin x)++b|≤2恒成立,讨论a=0,a >0,a<0,结合绝对值不等式的解法和不等式恒成立思想,可得所求范围.【解答】解:|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4,即为|a(sin2x+4sin x+4)+b(2+sin x)+9a|≤2(2+sin x),即有|a(2+sin x)2+b(2+sin x)+9a|≤2(2+sin x),由2+sin x∈[1,3],可得|a(2+sin x)++b|≤2恒成立,当a=0时,显然成立;当a>0,可得a(2+sin x)+∈[6a,10a],﹣2﹣b≤a(2+sin x)+≤2﹣b,可得﹣2﹣b≤6a且2﹣b≥10a,可得﹣2﹣6a≤b≤2﹣10a,即﹣2﹣6a≤2﹣10a,可得0<a≤1;当a<0,可得a(2+sin x)+∈[10a,6a],可得﹣2﹣b≤10a且2﹣b≥6a,可得﹣2﹣10a≤b≤2﹣6a,即﹣2﹣10a≤2﹣6a,可得﹣1≤a<0;综上可得a的范围是[﹣1,1].故答案为:[﹣1,1].【知识点】不等式恒成立的问题3.若不等式≥a对x<2恒成立,则a的最大值是﹣【分析】设t=2﹣x,得出x=2﹣t,其中t>0,把化为f(t),利用基本不等式求出f(t)的最小值,由此求出a的最大值.【解答】解:不等式≥a对x<2恒成立,设t=2﹣x,则x=2﹣t,其中t>0,所以化为f(t)==+t﹣3≥2﹣3=2﹣3,当且仅当=t,即t=时取“=”,∴f(t)的最小值为2﹣3;∴不等式≥a对x<2恒成立时,a的最大值是2﹣3.故答案为:2﹣3.【知识点】不等式恒成立的问题4.若不等式|x﹣2|﹣|x+2|≤21﹣3a对任意实数x都成立,则实数a的最大值为.【分析】依据题设借助绝对值的几何意义得|x﹣2|﹣|x+2|≤4,然后由不等式恒成立可得a的范围.【解答】解:由绝对值的几何意义知|x﹣2|﹣|x+2|≤|(x﹣2)﹣(x+2)|=4,当且仅当(x﹣2)(x+2)≤0,即﹣2≤x≤2时取等号,∵|x﹣2|﹣|x+2|≤21﹣3a对任意实数x都成立,∴21﹣3a≥(|x﹣2|﹣|x+2|)max=4=22,∴1﹣3a≥2,∴a≤﹣,∴实数a的最大值为:﹣.故答案为:﹣.【知识点】不等式恒成立的问题5.已知a,b∈R,若关于x的不等式lnx≤a(x﹣2)+b对一切正实数x恒成立,则当a+b取最小值时,b的值为﹣.【分析】由题意可得只要考虑直线y=a(x﹣2)+b与y=lnx相切,设出切点(m,lnm),运用导数的几何意义,可得a,b,m的方程,再由x=3时,a+b取得最小值,结合构造函数法,运用导数求得最小值,即可得到所求b的值.【解答】解:设y=lnx的图象与直线y=a(x﹣2)+b相切的切点为(m,lnm),由y=lnx的导数为y′=,可得a=,lnm=a(m﹣2)+b,可得b=2a﹣lna﹣1,由x=3时,可得a+b≥ln3,可得a+b的最小值为ln3,即有2a﹣lna﹣1=ln3﹣a,即3a﹣lna=1+ln3,由y=3x﹣lnx的导数为y′=3﹣,可得0<x<时,函数y=3x﹣lnx递减,在x>时,函数y=3x﹣lnx递增,可得x=处函数y取得最小值1+ln3,则3a﹣lna=1+ln3的解为a=,即有b=ln3﹣.故答案为:ln3﹣.【知识点】不等式恒成立的问题6.已知等比数列{a n}的前n项和为S n,且S n=,若对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则实数λ的取值范围是.【分析】根据等比数列前n项和公式,求得a n,即可求得t的值,代入根据函数的单调性即可求得实数λ的取值范围.【解答】解:由题意可知:2S n=3n+1+t,当n≥2时,2a n=2S n﹣2S n﹣1=3n+1+t﹣3n﹣t=2×3n,∴a n=3n,由数列{a n}为等比数列,则a1=3,当n=1,则a1=S1==3,则t=﹣3,∴S n=(3n﹣1),对任意的n∈N*,(2S n+3)λ≥27(n﹣5),即3n+1λ≥27(n﹣5),∴λ≥=,n∈N*,由对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则λ≥()max,由函数f(x)=在[1,+∞),f′(x)==,令f′(x)=0,则x=+5,则f(x)在[1,+5)单调递增,在(+5,+∞)单调递减,由n∈N*,f(5)=0,f(6)=,∴当n=6时,取最大值,最大值为,∴实数λ的取值范围[,+∞),故答案为:[,+∞).【知识点】不等式恒成立的问题、利用导数研究函数的单调性7.已知函数f(x)=,设a∈R,若关于x的不等式在R上恒成立,则a的取值范围是﹣【分析】根据题意,分段讨论x≤1和x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,去掉绝对值,利用函数的最大、最小值求得a的取值范围,再求它们的公共部分.【解答】解:函数f(x)=,当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3,由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值为﹣;由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值为,则﹣≤a≤;…①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣(x+)≤+a≤x+,即有﹣(x+)≤a≤+,由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2;由y=x+≥2=2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2;…②由①②可得,﹣≤a≤2;综上,a的取值范围是﹣≤a≤2.故答案为:﹣≤a≤2.【知识点】不等式恒成立的问题8.若不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,则a的取值范围是.【分析】当x>0时a>在x>0恒成立,设g(x)=,g(x)﹣=,求得y=2(x+1)ln(x+1)﹣x(x+2),x>0的导数和符号,即可得到所求a的范围.【解答】解:不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,即有a>在x>0恒成立,设g(x)=,由y=lnx﹣x+1的导数为y′=﹣1=,x>1时,函数y递减;0<x<1时,函数y递增,可得y=lnx﹣x+1的最大值为0,即lnx≤x﹣1,则g(x)﹣=,由y=2(x+1)ln(x+1)﹣x(x+2),x>0的导数为y′=2(1+ln(x+1))﹣2(x+1)=2[ln(x+1)﹣x],由ln(x+1)<x,即ln(x+1)﹣x<0,(x>0),可得g(x)﹣<0,即g(x)<,可得a≥,则a的范围是[,+∞).故答案为:[,+∞).【知识点】不等式恒成立的问题9.对于任意的正数a,b,不等式(2ab+a2)k≤4b2+4ab+3a2恒成立,则k的最大值为.【分析】通过变形,换元可得,接下来只需求出在(1,+∞)上的最小值即可.【解答】解:依题意,,令,则,令μ=2t+1>1,则,而函数在(1,+∞)上的最小值为,故,即k的最大值为.故答案为:.【知识点】不等式恒成立的问题10.设a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,则a的取值范围为.【答案】3【分析】利用基本不等式,确定x的最小值,即可求得a的最小值.【解答】解:∵a>0,x>1,∴x=(x﹣3)+3≥2+1∵a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,∴2+3≥9.∴a≥3∴a的最小值为3.故答案为:3.【知识点】不等式恒成立的问题11.不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,则实数a的取值范围是.【答案】[2,6)【分析】由于二次项系数含有参数,故需分a﹣2=0与a﹣2≠0两类讨论,特别是后者:对于(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,有求出a的范围,再把结果并在一起.【解答】解:当a=2时,原不等式即为1>0,原不等式恒成立,即a=2满足条件;当a≠2时,要使不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,必须解得,2<a<6.综上所述,a的取值范围是2≤a<6,故答案为:[2,6).【知识点】不等式恒成立的问题12.若对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,则实数x的取值范围是﹣∞﹣【答案】(-∞,-1)∪(1,+∞)【分析】通过变换主元,利用函数恒成立转化为不等式组求解即可.【解答】解:由题意对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,即为a(x2+x)﹣x﹣1>0对任意a∈[1,2]恒成立,所以,解得x<﹣1或x>1.故答案为:(﹣∞,﹣1)∪(1,+∞).【知识点】不等式恒成立的问题13.若不等式2kx2+kx+<0对于一切实数x都成立,则k的取值范围是﹣∞﹣.【答案】(-∞,-2)【分析】根据不等式2kx2+kx+<0对一切实数x都成立,讨论k=0和k≠0时,即可求出k的取值范围.【解答】解:不等式2kx2+kx+<0对一切实数x都成立,k=0时,不等式化为<0不成立,k≠0时,应满足,解得k<﹣2.综上,不等式2kx2+kx+<0对一切实数x都成立的k的取值范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【知识点】二次函数的性质与图象、不等式恒成立的问题14.若关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,则2a+b的最小值为.【答案】0【分析】设f(x)=(x2﹣a)(2x+b),x∈(a,b),讨论a>0和a≤0时,利用f(x)≥0在x∈(a,b)恒成立,即可求出2a+b的最小值.【解答】解:关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,当a>0时,b>a>0,f(x)=(x2﹣a)(2x+b)的三个零点分别为±,﹣;显然有>﹣,>﹣;则f(x)在(a,b)上是单调增函数,f(x)≥0在(a,b)上恒成立,则f(a)=(a2﹣a)(2a+b)=a(a﹣1)(2a+b)≥0,即或;则2a+b≥0或无最小值;当a≤0时,x2﹣a≥0恒成立,f(x)≥0时只需2x+b≥0恒成立,又x∈(a,b),∴2a+b≥0;综上所述,2a+b的最小值为0.故答案为:0.【知识点】不等式恒成立的问题。
数学高考复习中恒成立问题及解题策略
数学高考复习中恒成立问题及解题策略在数学高考复习中,恒成立是一个重要的概念,它是摆脱繁琐算法而直接利用关系得出结论的一种方法。
它可以帮助学生们找出问题的答案,并加深对这类问题的理解,以便在考试中正确应对。
恒成立的关键是做出一个猜想,并从已知条件出发,通过归纳的方法去证明这个猜想是不是恒成立的。
首先,我们认为这个猜想是恒成立的,然后我们尝试用已知条件去证明它是恒成立的。
具体来说,就是在可能的情况下,我们需要把这个猜想表达成一个方程,并且需要给出证明这个方程是怎么来的,有什么特殊方式来解决它,以及可以从中看出的关系。
比如,如果我们猜测“两个正整数的乘积等于24”是恒成立的,那么我们可以通过枚举这两个正整数的所有可能的组合,即:1乘以24,2乘以12,3乘以8,4乘以6,来证明它是恒成立的;或者我们也可以通过方程两边同时除以24,并用字母代替未知数,并以此类推,逐渐得出两个正整数a和b的关系:ab/24=1,从而证明它们之间的关系是恒成立的。
在解决恒成立问题时,学生应该养成思考的习惯,仔细推导推理,尽可能的多去思考,不要急于追求快速的正确答案。
有时候我们可以从更简单的猜想出发,这样可以帮助我们更容易地完成解题。
最后,学生还要多积累常见的恒成立公式,把它们记住,这样在遇到类似的问题时,就可以更快地得出结论。
总之,恒成立是解决数学问题的有效方法,学生在复习时要养成用恒成立的习惯,多积累常见的恒成立公式,让自己在考试中找到解决问题的答案。
学习恒成立的重要性在于,它可以帮助学生们正确的分析问题,有效的解决其中的难题。
它也可以帮助学生们培养用逻辑思维去分析问题,从而增强自己解决数学问题的能力。
此外,学习恒成立还有助于强化学生对数学理论的理解,因为恒成立就是一种以关系为核心的解题方法。
仔细分析问题之后,要用定理、公式和推导来构建一个明确的推理,从而得出正确的结论。
最后,学习恒成立也可以帮助学生学会如何解决考试中的一些抽象问题。
数学高考复习中恒成立问题及解题策略
数学高考复习中恒成立问题及解题策略-中学数学论文数学高考复习中恒成立问题及解题策略文/陈小军【摘要】新课标下的高考对知识的考查有了根本性的变化,从知识立意到能力立意,出现了众多注重能力考查的新颖试题,恒成立问题便是一个考察学生综合素质的很好途径,此类型问题由于题型多样,有利于从多个角度考查考生的素质和能力,在培养学生思维的灵活性和创造性等方面也起到了积极的作用,备受命题专家青睐,所以加强对这类题型的探索,解题策略和教学就显得十分必要,恒成立数学问题是有一定的难度、综合性强的题型。
关键词高中数学;高考复习;恒成立问题;解题策略新课程改革后的高考命题越来越注重对学生的综合素质的考查,命题思路也有了根本性的变化,从知识立意到能力立意,出现了众多注重能力考查的试题,恒成立问题便是一个考察学生综合素质的很好途径,解决恒成立题型能启发人们高瞻远瞩地看待问题,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用。
因为恒成立问题所涉及的知识面广,综合性强,数学语言抽象,如何从题目提取可用的知识模块往往捉摸不定,难以寻觅,下面通过实例,从不同角度用常规方法归纳,供大家参考。
类型一:变更主元,反客为主对于给出了参数范围的恒成立问题,常常把参数视为主元,把主元视为参数,把原题视为参数的函数,再从函数的角度来解决问题,利用一次函数的单调性进行转化,达到反客为主的目的。
对于一次函数f(x)=kx+b,x∈[m,n]有:②若二次函数f(x)=ax2+bx+c(a≠0)0(或0)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。
例2若不等式(m-1)x2+(m-1)x+20的解集是R,求m的范围。
解题分析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否为零。
类型三:数形结合法解决恒成立若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。
高中数学中恒成立问题的解题方法和技巧
数学探究SHUXUE TANJIU教师•TEACHER2020年11月Nov.2020高中数学中恒成立问题的解题方法和技巧黄友祥(福建省福安市高级中学,福建宁德355000)摘要:在高考试卷题目中,恒成立问题占据重要地位,既用来考查学生对高中数学知识的掌握和理解情况,又是决定高考数学成绩的关键。
对高中数学学习而言,学生掌握恒成立问题的解题方法和技巧,不仅可以有效 提高学习能力,还能为今后的数学学习奠定扎实的基础。
文章主要概述高中数学中相关恒成立问题,分析掌握 其解题方法和技巧的意义,最后提出几点具体有效的解题方法和技巧。
关键词:高中数学;恒成立问题;解题方法;技巧中图分类号:G633.6文献标识码:A收稿日期:2020-05-28文章编号:1674-120X (2020) 31-0044-02一、高中数学中恒成立问题的概述在高中数学知识体系中,恒成立问题是高中数学知识学 习的重难点。
在不等式中,恒成立问题不仅范围广,而且参数多,同时包含变量,通常情况下还与数列、函数等知识融 合在一起,使得恒成立问题的难度增加。
由此可见,恒成立 问题并不是一般的数学问题,具有复杂的思维逻辑、灵活多牵牛花开了;五点左右,蔷薇开了;七点,睡莲也开了……引导学生抓住文中描写花的不同句式,在整个教学过程中,始终坚持以学生为主体,让学生自己去学习。
在日常语文教学中,将语文课堂让位于学生,让学生有 发现,教师引导学生质疑、探疑、解疑。
让学生有展示。
给 学生展示的机会,让学生把不好的地方暴露出来,也是给教 师了解学生的机会,帮助他们解决问题。
让学生有活动。
语 文活动的起点是语言文字运用,终点也应是提高学生语言文 字运用的能力,一切都要围绕这个点开展教学活动。
在实际 语文教学中,有些教师在课堂上组织的活动并非真的语文活 动,看似热热闹闹,落脚点却不在语言文字运用上。
真正的 语文活动是通过语言表现或者通过语言描写出来的。
(三)注重读写结介,强化学生的语用实践读写结合,模仿练笔迁移。
高中数学专题 第5讲 母题突破2 恒成立问题与能成立问题
f′(x)=-x12ln(x+1)+1x+ax+1 1, 因为f′(x)≥0在区间(0,+∞)上恒成立. 令-x12ln(x+1)+1x+ax+1 1≥0, 则-(x+1)ln(x+1)+(x+ax2)≥0, 令g(x)=ax2+x-(x+1)ln(x+1), 原问题等价于g(x)≥0在区间(0,+∞)上恒成立, 则g′(x)=2ax-ln(x+1),当a≤0时,由于2ax≤0,ln(x+1)>0, 故g′(x)<0,g(x)在区间(0,+∞)上单调递减, 此时g(x)<g(0)=0,不符合题意;
形式,通过导数的应用求出f(x)的最值,即得参数的范围.
(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问
题的差别.
跟踪演练
1.(2023·六安统考)设函数f(x)=xekx(k≠0). (1)讨论函数f(x)的单调性;
令f′(x)=(1+kx)ekx>0,所以1+kx>0,
当 k>0 时,x>-1k,此时 f(x)在-∞,-1k上单调递减,在-1k,+∞上单 调递增; 当 k<0 时,x<-1k,此时 f(x)在-∞,-1k上单调递增,在-1k,+∞上单 调递减.
(2)设g(x)=x2-2bx+41,2],使 得f(x1)≥g(x2),求实数b的取值范围.
当k=1时,f(x)在(-∞,-1)上单调递减,
在(-1,+∞)上单调递增.所以对任意x1∈R,
有 f(x1)≥f(-1)=-1e,
又存在x2∈[1,2],使f(x1)≥g(x2),
方法一 (求最值法)
f(x)的定义域为(0,+∞),因为f(x)≥0恒成立,
所以f(x)min≥0, f′(x)=x-(2a+1)+2xa=x2-(2a+x 1)x+2a=(x-1)(xx-2a). 当a≤0时,由f′(x)>0,得x>1;
2021年高考数学复习 专题05 不等式 恒成立问题考点剖析
2021年高考数学复习专题05 不等式恒成立问题考点剖析主标题:不等式恒成立问题副标题:为学生详细的分析不等式恒成立的高考考点、命题方向以及规律总结。
关键词:不等式,不等式恒成立,知识总结难度:3重要程度:5考点剖析:会已知一个变量的取值范围,求另一个变量的取值范围.命题方向:“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
规律总结:解决不等式恒成立问题常见的方法:一、分离参数在给出的不等式中,如果能通过恒等变形分离出参数,即:若恒成立,只须求出,则;若恒成立,只须求出,则,转化为函数求最值。
二、分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。
三、确定主元在给出的含有两个变量的不等式中,学生习惯把变量看成是主元(未知数),而把另一个变量看成参数,在有些问题中这样的解题过程繁琐。
如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。
四、利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:,则且,不等式的解即为实数的取值范围。
五、数形结合数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。
知识点总结:1.恒成立恒成立2.一元二次不等式恒成立一元二次不等式恒成立一元二次不等式恒成立一元二次不等式恒成立3.且Y21932 55AC 喬38090 94CA 铊Dj}28629 6FD5 濕20315 4F5B 佛35942 8C66 豦Z32817 8031 耱r25057 61E1 懡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型一 : “)(x f a ≥”型
一、(恒成立)
(1)恒成立;
(2)恒成立;
二、(能成立、有解):
(1)能成立;
(2)能成立;
三、(恰成立)
(1)不等式()A x f >在区间D 上恰成立⇔不等式()A x f >的解集为D ; (2)不等式()B x f <在区间D 上恰成立⇔不等式()B x f <的解集为D . 四、(方程有解)
方程()m f x =在某个区间上有解,只需求出()f x 在区间上的值域A 使m A ∈。
例1:当,不等式恒成立,则实数的取值范围为_______.
【答案】
【解析】
因为,所以不等式恒成立转化为
恒成立.由,得,而函数
为减函数,所以当时,,
所以,即.
例2. 若函数在上恒有零点,则实数的取值范围是________.
【答案】
例3.已知存在实数,使得关于的不等式恒成立,则的最大值为________.
【答案】
【解析】
不等式恒成立等价于.因为在定义域上单调递增,所以,因此,即的最大值为.
【掌握练习】
1、函数在上恒成立,则的取值范围是________.
【答案】
【解析】
由题意得,令,则,因此
,从而.
2、已知正实数,满足,若不等式有解则实数的取值范围是______. 【答案】
3、若存在实数,使不等式成立,则的取值范围为________.
【答案】
【解析】
存在实数,使不等式成立,
则可以转化为存在实数,使不等式成立,
即,令,
在,.故.
则的取值范围为.
4、当时,不等式恒成立,则实数的取值范围是________.
【答案】
【解析】
当时,不等式恒成立;当时,
原不等式等价于,设
,此时,
即;当时,
原不等式等价于,
此时,即,综上.
类型二:“”型
例:已知函数,若对任意都有成立,则实数的取值范围是___________.
【答案】
【解析】
对任意都有成立,∴.转成,∴,当且仅当
时等号成立.
【掌握练习】
1、已知函数,若恒成立,则实数的取值范围是________. 【答案】
2、若不等式对恒成立,则实数的取值范围是_________.
【答案】
【解析】
,则,设,则.
当时,,函数单调递减;当时,,函数单调递增,所以,则,故实数的取值范围是.
类型三:“”型(恒成立和能成立交叉):
1.成立;
2.成立;
3.成立;
4.;
例1. 已知函数(为常数).
(1)若是函数的一个极值点,求的值;
(2)当时,试判断的单调性;
(3)若对任意的,,使不等式恒成立,求实数的取值范围.【答案】
(1);
(2)在上是增函数;
(3)
(3)当时,由(2)知,在上的最小值为,
故问题等价于:对任意的,不等式恒成立,
即恒成立,记,(),
则,令,
则,所以在上单调递减,所以,
故,所以在上单调递减,
所以,即实数的取值范围为.
例2. 记.若对任意的,恒有,求
的取值范围. 【答案】
【掌握练习】
1、(2010山东)已知函数()a R ∈.
(1)当1
2
a ≤时,讨论()f x 的单调性; (2)设
当1
4
a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使
,求实
数b 取值范围. 【答案】 (1)详见解析 (2)17
[
,)8
+∞ 【解析】
(Ⅰ)当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;
当1
2a =
时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)单调递减,1(1,1)a -单调递增, 1
(1,)a -+∞单调递减.
(Ⅱ)当1
4
a =时,()f x 在(0,1)上是减函数,在(1,2)上是增函数,所以对任意1(0,2)x ∈,有
,又已知存在[]21,2x ∈,使
,所以21
()2
g x -
≥,[]21,2x ∈,
(※) 又
当1b <时,与(※)矛盾;
当[]1,2b ∈时,
也与(※)矛盾;
当2b >时,
.
综上,实数b 的取值范围是17
[
,)8
+∞.
2、已知函数,若对任意x 1,x 2∈[-2,2],都有f(x 1)<g(x 2),求c 的
范围. 【答案】 c <-24
3、设,函数,若对任意的,存在
成立,则实数的取值范围是________. 【答案】
【解析】
对任意存在使,只需,
,为对勾函数,,
,.
比较,
∴,
,在上减函数,,
①当时,只需,
②当时,只需.
综上,.
4、已知函数,实数满足,若
, ,使得成立,则的最大值为________.
【答案】4
【解析】
∵,∴,分母恒大于,且,由题意讨论即可,则当时,,调递减;
当时,,单调递增,所以,,作
数的图象如图所示,当时,方程两边两根分别为和,则的最大值为
.
类型四:“”型:
例:已知函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为____. 【答案】2
【掌握练习】
1、对于不等式,试求对区间上的任意都成立的实数的取值
范围.
【答案】
2、已知函数,其中.
(1)求函数的单调区间;
(2)若不等式在上恒成立,求的取值范围.
【答案】
(1)详见解析;
(2).
【解析】
(1)∵,∴,
∴当时,在和上均递增,又∵,∴在上递增,当时,
在和上递增,在上递减;
(2)由题意只需,即可,由(1)可知,在上恒递增,
则或,
,
综上,实数的取值范围是.
类型五:(1)“|f(x1)<f(x2)|<t(t为常数)”型;
(2)“|f(x1)-f(x2)|≤|x1-x2|”型:
例1:已知函数f(x)=-x4+2x3,则对任意t1,t2∈[-,2](t1<t2)都有|f(x1)-f(x2)|≤____恒成立,当且仅当t1=____,t2=____时取等号.
【答案】2
例2:已知函数f(x)=x3+ax+b,对于x1,x2∈(0,)(x1≠x2)时总有|f(x1)-f(x2)|<|x1-x2|成立,求实数a 的范围.
【答案】-1≤a≤0
【解析】
由f(x)=x3+ax+b,得f′(x)=3x2+a,当x∈(0,)时,a<f′(x)<1+a.
∵|f(x1)-f(x2)|<|x1-x2|,∴,∴∴-1≤a≤0.。