2016年人教版数学九年级上册第二十五章《 概率初步》word单元综合测试五
人教版九年级数学上册_第25章_概率初步_单元检测试题【有答案】
人教版九年级数学上册_第25章_概率初步_单元检测试题【有答案】一、选择题(共10 小题,每小题 3 分,共30 分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.随着试验次数的增加,频率一般会越来越接近概率B.频率与试验次数无关C.概率是随机的,与频率无关D.频率就是概率2.某校有,两个电脑教室,甲,乙,丙三名学生各自随机选择其中的一个电脑教室上课.求甲,乙,丙三名学生在同一个电脑教室上课的概率()A. B. C. D.3.随机投掷一枚均匀的硬币,前次都是正面朝上,第次投掷时,()A.正面朝上的概率大B.反面朝上的概率大C.正面朝上和反面朝上的概率一样大D.一定是反面朝上4.一个不透明的布袋中有个大小形状质地完全相同的小球,从中随机摸出球恰是黄球的概率为,则袋中黄球的个数是()A. B. C. D.5.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A. B. C. D.6.下列事件中,属于确定事件的是()①太阳升于东方,落于西方;②检查流水线上的一件产品,是合格品;③边长为,的长方形,其面积为;④在地球上,抛出的篮球会下落.A.①②③B.②③④C.①②④D.①③④7.将一枚硬币向空中抛两次,落地后,两次都是正面朝上概率是()A. B. C. D.8.历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在左右摆动,那么投掷一枚硬币次,下列说法正确的是()A.“正面向上”必会出现次B.“反面向上”必会出现次C.“正面向上”可能不出现D.“正面向上”与“反面向上”出现的次数必定一样,但不一定是次9.一个不透明的布袋中,装有红、黄、白小球共个,这些小球材质、大小完全相同.小丽做摸球实验,摸到白球的频率稳定在左右,则口袋中红、黄小球大约共有()A.个B.个C.个D.个10.一个不透明的盒子里装有个白球,若干个黄球,它们除颜色外部相同,若从中随机摸出一个球,它是黄球的概率为,则估计袋中黄球的个数为()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.一个口袋中有个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了次,其中有次摸到红球.则白球有________个.12.在抛掷两枚均匀骰子的试验中,如果没有骰子,请你提出两种替代方式:________.13.有五张形状大小相同的卡片,上面各写有,,,,五个数,从中任意摸一张,摸到奇数的概率是________.14.抛掷一枚各面分别标有,,,,,的普通骰子,写出这个实验中的一个可能事件:________.15.在随机现象中,做了大量实验后,可以用一个事件发生的________ 作为这个事件的概率的估计值.16.在一个不透明的布袋中装有标着数字,,,的个小球,这个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于的概率为________17.在一个不透明的袋子里,有个白球和个红球,它们只有颜色上的区别,从袋子里随机摸出一个球,则摸到白球的概率为________.18.不透明袋子中装有个球,其中有个红球、个绿球和个蓝球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是红球的概率是________.19.在一个不透明的袋子中,装有个红球和个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是________.20.欢欢有红色、白色、黄色三件上衣,又有米色、白色两条裤子.如果她最喜欢的搭配是白色上衣配米色裤子,则随机拿出一件上衣和一条裤子正是她最喜欢搭配的颜色的概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近多少个?22.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上,,,四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为时,返现金元;当两次所得数字之和为时,返现金元;当两次所得数字之和为时返现金元.试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;某顾客参加一次抽奖,能获得返还现金的概率是多少?23.口袋装有编号是、、、、的只形状大小一样的球,其中、、号球是红色,、号是白色.规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.另规定甲再次摸到红球获胜,规定乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由.24.如图,有甲、乙两个构造完全相同的转盘均被分成、两个区域,甲转盘中区域的圆心角是,乙转盘区域的圆心角是,自由转动转盘,如果指针指向区域分界线则重新转动.转动甲转盘一次,则指针指向区域的概率________;自由转动两个转盘各一次,请用树状图或列表的方法,求出两个转盘同时指向区域的概率?25.、口袋各有个小球,它们都分别标有数字、、、,每个小球除数字外都相同,甲、乙两人玩游戏,从、两个口袋中随机地各取一个小球.使用列表法或树形图列出所有可能的结果,结果有多少种?将口袋中摸出的球记为横坐标,口袋中摸出的球记为纵坐标,若两坐标之和不大于,则甲赢,反之,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.26.在“六•一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购物满元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.答案1.A2.C3.C4.A5.A6.D7.C8.C9.C10.B11.12.①相同的张扑克牌代替试验.②标有相同的个小球代替试验13.14.抛掷一枚正方体骰子或掷得的点数是奇数15.频率16.17.18.19.20.21.解:(1),∴参加一次这种活动得到的福娃玩具的频率为;∵试验次数很大,大数次试验时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率为.设袋中白球有个,根据题意得解得,经检是方程的解∴估计袋中白球接近个.22.解:画树状图得:则共有种等可能的结果;∵某顾客参加一次抽奖,能获得返还现金的有种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:.23.解:∵(甲再次摸到红球),(乙摸到一红一白或二白),∵(甲再次摸到红球)(乙摸到一红一白或二白),∴游戏对双方不公平.24.解:∵区域扇形的圆心角为, ∴转动甲转盘一次,则指针指向区域的概率为;表格或树状图:(同为). 25.解:树形图:一共有种结果,每一种结果的出现是等可能性的:;不公平,理由如下:记:“两坐标之和不大于”为事件,一共有种,则,即甲赢的概率为,…两坐标之和大于为事件,一共有种,则,即乙赢的概率为,所以该游戏不公平.26.解:因为转转盘所获得的购物券为:(元),∵元元∴选择转转盘对顾客更合算.人教版九年级数学上第二十五章概率初步单元检测试题(含答案)一、单选题(共10题;共30分)1.下列事件是必然事件的是()A. 经过不断的努力,每个人都能获得“星光大道”年度总冠军B. 小冉打开电视,正在播放“奔跑吧,兄弟”C. 火车开到月球上D. 在十三名中国学生中,必有属相相同的2.下列说法正确的是( )A. “明天的降水概率为80%”,意味着明天有80%的时间降雨B. 掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等C. “某彩票中奖概率是1%”,表示买100张这种彩票一定会中奖D. 小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”3.口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A. 随机摸出1个球,是白球B. 随机摸出1个球,是红球C. 随机摸出1个球,是红球或黄球D. 随机摸出2个球,都是黄球4.在下列事件中,随机事件是()A. 通常温度降到0℃以下,纯净的水会结冰B. 随意翻到一本书的某页,这页的页码是奇数C. 明天的太阳从东方升起D. 在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球5.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.6.以下说法合理的是()A. 小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%B. 抛掷一枚普通的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6C. 某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D. 在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为7.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A. 0B.C.D. 18.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为().A. B. C. D.9.设a,b是两个任意独立的一位正整数, 则点(a,b)在抛物线y=ax2+bx上方的概率是( )A. B. C. D.10.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。
人教版九年级数学上册《第二十五章概率初步》单元测试卷(带答案)
人教版九年级数学上册《第二十五章概率初步》单元测试卷(带答案)一、选择题1.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180∘B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.射击运动员射击一次,命中靶心2.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是( )A.14B.12C.34D.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是()A.12B.13C.49D.594.如图,电路连接完好,且各元件工作正常,随机闭合开关S1、S2、S3中的两个,能让两个小灯泡同时发光的概率是()A.12B.13C.14D.155.4件外观相同的产品中只有1件不合格,现从中一次抽取2件进行检测,抽到的两件产品中有一件产品合格而另一件产品不合格的概率是()A.38B.13C.23D.126.在一个不透明的箱子里装有m个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m的值为()A.8 B.12 C.16 D.207.有三张卡片,正面分别写有A、B、C三个字母,其它完全相同,反扣在桌面上混合均匀,从中在取两张,同时取到A、B的概率是()A.12B.13C.23D.298.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是()A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5二、填空题9.有4根细木棒,长度分别为1cm,2cm,3cm,4cm,从中任选3根,恰好能搭成一个三角形的概率是.10.一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是.11.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是.12.在一次科学课上,小明同学设计了如下电路图,随机闭合两个开关,能使其中1个灯泡发亮的概率为.13.篮球运动是一项既能健身娱乐,又能促进社会化文明进程的良好竞技运动项目.某校篮球队进行篮球训练,某队员投篮的统计结果如下表.根据表中数据可知该队员一次投篮命中的概率的估计值是.(精确到0.01)三、解答题14.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.(用列表法或画树状图分别求出两同学获胜的概率)15.如图,甲、乙两个完全相同的转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,记下甲、乙两个转盘中指针所指的数字.请用画树状图或列表的方法,求这两个数字之和为偶数的概率.16.学校开展学生会主席竞选活动,最后一轮是演讲环节,抽签方式如下:每位选手分别从标有“A”、“B”内容的签中随机抽取一个,就抽取的内容进行演讲.现有小明、小亮和小丽三名选手,求出下列事件发生的概率.(请用“画树状图”或“列举”等方法写出分析过程)(1)三个选手抽中同一演讲内容;(2)三个选手有两人抽中内容“A”,一人抽中内容“B”.17.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2-5x+6=0的解时,则小明获胜;若m,n都不是方程x2-5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?18.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<2 4 xB2≤t<4 20C4≤t<6 36%D t≥6 16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为,表中x的值为;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.参考答案1.A2.C3.D4.B5.D6.D7.B8.C9.1410.2511.1212.2313.0.7214.解:画树状图如下:由树状图可知,共有16种等可能的结果数,此时甲获胜的可能性有6种,乙获胜的可能性有10种故甲获胜的概率为616=38,乙获胜的概率为1016=58,而38<58所以游戏不公平.15.解:画树状图如下:由树状图知,共有9种等可能结果,其中两个数字之和是偶数的有4种结果∴P(两个数字之和是偶数)=49.16.解:解:(1)根据题意画出树状图如图:由树状图知,共有8种等可能结果,其中三个选手抽中同一演讲内容的有2种结果∴三个选手抽中同一演讲内容的概率为=;(2)三个选手有两人抽中内容“A”,一人抽中内容“B”的有3种结果∴三个选手有两人抽中内容“A”,一人抽中内容“B”的概率为.17.解:(1)树状图如图所示:(2)∵m,n都是方程x2﹣5x+6=0的解∴m=2,n=3,或m=3,n=2由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有(2,3)(3,2)(2,2)(3,3)共四种m,n都不是方程x2﹣5x+6=0的解的结果有2个小明获胜的概率为41123=,小利获胜的概率为21126=∴小明获胜的概率大.18.解:解:(1)本次调查的学生总人数为8÷16%=50(人)所以x==8%;故答案为:50;8%;(2)500×=200(人)所以估计等级为B的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8 所以恰好抽到一名男生和一名女生的概率==.。
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。
【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试
(2)若小军事先选择的数是5,用列表法或画树状图的方法求他获胜的概率.
23.有,,三种款式的帽子,甲,乙两种款式的围巾,穿戴时小华任意选一顶帽子
和一条围巾.
(1)用列表法或树状图表示搭配的所有可能性结果.
(2)求小华恰好选中她所喜欢的款帽子和乙款围巾的概率.
24.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做
19.在一个不透明的袋子中有6个红球和若干个白球,这些球除颜色外均相同,每次从
袋子中摸出一个球记录颜色后再放回,经过大量重复试验,摸到白球的频率稳定在
0.25,则袋子中白球的个数是 ______.
20.在一个不透明的盒子中装有个球,它们除了颜色之外其它都没有区别,其中含有
3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放
3.下列说法正确的是( )
A. 为了解人造卫星的设备零件的质量情况,应选择抽样调查
B. 了解九年级(1)班同学的视力情况,应选择全面调查
C. 购买一张体育彩票中奖是不可能事件
D. 抛掷一枚质地均匀的硬币刚好正面朝上是必然事件
4.翻开鲁教版八年级下册数学课本,恰好是45页,这个事件是( )
A. 不可能事件
回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出的值
大约是______.
三 、解答题(本大题共 4 小题,共 32 分)
21.某校为了加强同学们的安全意识,随机抽取部分同学进行了一次安全知识测试,按
照测试成绩分为优秀、良好、合格和不合格四个等级,绘制了如下不完整的统计图.
等,则小球从出口落出的概率是( )
1
1
1
1
A. 2
【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试 (4)
(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共10吨生
活垃圾,数据统计如下(单位:吨):
3
0.8
1.2
0.24 0.3 2.46
0.32 0.28 1.4
试估计“可回收垃圾”投放正确的概率.
(3)该小区所在城市每天大约产生500吨生活垃圾,根据以上信息,试估算其中“可
3,5的三个完全相同的小球.先转动一次转盘,停止后记下指针指向的数字(若指针指
在分界线上则重转),再从瓶子中随机取出一个小球,记下小球上的数字.若得到的两
数字之和大于6,则小雪参赛;若得到的两数字之和小于6,则小英参赛.
(1)请用列表或画树状图的方法表示出所有可能出现的结果;
(2)此游戏公平吗?请说明理由.
40 70 108 144
命中次数/次 9
0.9 0.8 0.7 0.72 0.72
命中率
根据上表,你估计该队员一次投篮命中的概率大约是( )
A. 0.9
B. 0.8
C. 0.7
D. 0.72
12.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的
频率.表格如下,则符合这一结果的试验最有可能的是( )
3
+
6
7,
【解析】解:搅匀后任意摸出一个球,是白球的概率为
故选:.
直接利用概率公式计算可得.
此题主要考查概率公式,解答该题的关键是掌握随机事件的概率() = 事件可能出
现的结果数 ÷ 所有可能出现的结果数.
3.【答案】D;
【解析】解:.某个数的绝对值大于0,是随机事件,故选项不符合题意;
九年级数学上册第25章《概率初步》综合复习练习题(含答案)
九年级数学上册第25章《概率初步》综合复习练习题(含答案)一、单选题1.不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有()A.6个B.10个C.15个D.30个2.从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是()A.16B.14C.13D.123.某人在做抛掷硬币试验中,抛掷n次,正面朝上有m次,若正面朝上的频率是Pmn =,则下列说法正确的是()A.P一定等于0.5 B.多投一次,P更接近0.5C.P一定不等于0.5 D.投掷次数逐渐增加,P稳定在0.5附近4.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.5.如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是()A.38B.12C.58D.16.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5 D.游戏公平7.如图,在56⨯的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A .12π B .24πC .1060πD .560π 8.如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .239.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .3410.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B .从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率11.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=nm,下列说法中正确的是()A.P一定等于12B.抛掷次数逐渐增加,P稳定在12附近C.多抛掷一次,P更接近12D.硬币正面朝上的概率是n m12.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()A.1号B.2号C.3号D.4号二、填空题1321-,π,0,3这五个数中随机抽取一个数,恰好是无理数的概率是__.14.乐乐把8个红球,9个白球,a个黑球装在一个不透明布袋中,这些球每个球除颜色外都相同,从中任取一球,取得红球的概率是0.4,则a的值是______.15.不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.16.学校食堂晚餐有四荤三素,荤菜有红烧肉、酸菜鱼、姜爆鸭和辣子鸡,素菜有干煸四季豆、青椒土豆丝和香干炒蒜苔,小南让食堂阿姨任打一道荤菜一道素菜,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为__.17.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,摸到红球的频率是_____,则估计盒子中大约有红球_____个.三、解决问题18.如图是小丽设计可自由的均匀转盘,将其等分为12个扇形,每个扇形有1个有理数,转得下列各数的概率是多少?(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,转得负整数小丽获胜;若转得的数绝对值大于等于8妈妈获胜,这个游戏公平吗?请说明理由.19.某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.20.某校开展以“奋斗百年路•启航新征程”为主题的活动来庆祝建党百年.活动分为两个阶段:第一阶段是宣讲红色故事,有以党建党史、文化传承、人物传记为素材的3个宣讲项目(分别用A、B、C表示);第二阶段是主题文艺创作,有文学创作、美术创作、舞蹈创作、音乐创作4个项目(分别用D、E、F、G表示).要求参加人员在每个阶段各随机抽取一个项目完成.若小明参加该活动,请用画树状图或列表的方法列出小明参加项目的所有可能的结果,并求小明恰好抽中项目C和E的概率.21.琳琳有4盒外包装完全相同的糖果,其中有2盒巧克力味的,1盒牛奶味的,1盒水果味的,她准备和好朋友分享糖果.(1)若琳琳随机打开1盒糖果,恰巧是牛奶味的概率是______;(2)若琳琳从这4盒中随机挑选两盒打开,请用列表或画树状图法打开的两盒都是巧克力味的概率.22.建国中学有7位学生的生日是10月1日,其中男生分别记为1A,2A,3A,4A,女生分别记为1B,2B,3B.学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.(1)若任意抽取1位学生,且抽取的学生为女生的概率是;(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是1A或1B的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 500 1000 1500 2000 3000 4000 发芽的粒数m 4719461425 1898 28533812 发芽频率mn0.942 0.946x0.949y0.953(1)求表中x ,y 的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.24.概率与统计在我们日常生活中应用非常广泛,请同学们直接填出下列事件中所要求的结果:(1)我们平时娱乐的一副标准扑克去掉大小王后剩下的四种花色(红桃、方块、梅花、黑桃)共有52张,如果从中任抽一张得到红桃的概率为______;(2)盒子里有红黑两种颜色的5个相同的球,如果随机抽取1个球记下颜色,然后放回,再重复这个试验,通过大量重复试验后发现,抽到红球的频率稳定在0.8左右,则盒中红球有______个;(3)形如222a ab b ±+的式子称为完全平方式.若有一多项式为29a ka ++,其中k 的值可以从4张分别写有-3,-6,6,9的卡片中随机抽取,那么正好让这个多项式为完全平方式的概率为______;(4)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是______.25.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?26.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;③比较两人的得分,谁的得分多谁就获胜.在一次游戏中,同桌连续投掷两次,掷出的点数分别是2、6,同桌决定不再投掷;小董也是连续投掷两次,但是掷出的点数分别了3、4,小董决定再投掷一次.请问:(1)最终小董的得分为0分的概率多大?并说明原因.(2)小董获胜的概率多大?并说明原因.(3)做这个游戏时应该注意什么才能使游戏公平?参考答案1.D2.C3.D4.A5.A6.C7.A8.C9.A10.C11.B12.C13.2,π是无理数,P(恰好是无理数)25 =.故答案为:25.14.解:依题意有:889a++=0.4,解得a=3,经检验,a=3是原方程的解.故答案为:3.15.解:列表如下:12 123 234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.16.红烧肉、酸菜鱼、姜爆鸭、辣子鸡分别用A、B、C、D表示,干煸四季豆、青椒土豆丝、香干炒蒜苔用a、b、c表示,根据题意画树状图如下:共有12种等可能的情况数,其中她选到红烧肉和青椒土豆丝的有1种,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为12.故答案为:112.17.解:摸到黄球的频率是0.3,摸到红球的频率是0.7,设有红球x个,根据题意得:60.36x=+,解得:x=14,经检验,x=14是原方程的解.故答案是:0.7,14.18.(1)解:由题意可知,转盘中有12个数,其中非负数为:0,15,8,11,6,5,23,这7个,所以转得非负数的概率为712.(2)解∶由题意可知,转盘中有12个数,其中整数为:﹣1,0,15,﹣17,8,11,6,﹣10,5,这9个,所以转得整数的概率为93 124=.(3)解:由题意可知,转盘中有12个数,其中负整数为:﹣1,﹣17,﹣10,这3个,转得负整数的概率为31124=,故小丽获胜的概率为:14;这12个数中转得的数绝对值大于等于8为:15,﹣17,8,11,﹣10,这5个,转得绝对值大于等于8的数的概率为512,故妈妈获胜的概率为:512;因为15 412≠,故这个游戏不公平.19.(1)总的可选日期为4个,则甲随机选择其中某一天的概率为1÷4=14,故答案为:14;(2)用A、B、C、D分别表示星期一、星期二、星期三、星期四,根据题意列表如下:总的可能情况数为12种,含星期二(B)的情况有6种,则乙同学选的两天中含星期二的概率为:6÷12=12,即所求概率为12.20.解:列表如下:D E F GA AD AE AF AGB BD BE BF BGC CD CE CF CG由表可以看出,共有12种等可能结果,其中小明恰好抽中项目C和E的结果只有1种,∴小明恰好抽中项目C和E的概率为112.21.(1)()1 =1?4=4P牛奶味;故答案为:14;(2)用Q1 、Q2表示巧克力味的,N表示牛奶味的,S表示水果味的,列表如下:共12种等可能结果,其中两盒都是巧克力味的结果有2种,随机挑选两盒都是巧克力味的概率为:()21 == 126P两盒巧克力味.22.(1)解:任意抽取1位学生,且抽取的学生为女生的概率是37,故答案为:37.(2)解:列出表格如下:一共有12种情况,其中至少有1位是1A或1B的有6种,∴抽得的2位学生中至少有1位是1A 或1B 的概率为61122=. 23.(1)解:14250.9501500x ==;28530.9513000y ==; (2)解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率;∴这种种子在此条件下发芽的概率约为0.95.(3)解:若该学校劳动基地需要这种植物幼苗7600棵, 需要准备760080000.95=(粒)种子进行发芽培育. 24.(1)解:∵一幅扑克牌中有13张红桃,去掉大小王后剩下52张, ∴P (抽中红桃)=131524=. 故答案为:14.(2)解:∵抽到红球的频率稳定在0.8左右, ∴抽到红球的概率为0.8, ∴红球个数为:5×0.8=4(个). 故答案为:4. (3)解:∵当k =±6时,29a ka ++是完全平方式, ∴P (完全平方式)=24=12.故答案为:12. (4)解:∵图中有9个小正方形,阴影部分有5个,∴随意在图中取点,这个点取在阴影部分的概率P (阴影)=59.故答案为:59.25.(1)解:当n 的值越来越大时,摸到白球的频率将会接近0.6, 故答案为:0.6;(2)根据频率估计概率可得,摸到白球的概率P (摸到白球)=0.6, 摸到黑球的概率P (摸到黑球)=1-0.6=0.4,故答案为:0.6,0.4;(3)60×0.4=24,60-24=36.∴黑球有24只,白球有36只.26.(1)解:1()由题意可知:小董投掷骰子的点数为4、5、6时,得分为0,∴小董得零分的概率为:P(小董得分为零31 62 ==).(2)解:根据题意得:小董再次投掷骰子,点数为2或3时得分为9或10,小董获胜,∴小董获胜的概率为:P(小董获胜21 63 ==).(3)根据游戏规则,前一个人投掷的骰子点数总和大小会影响后一个人是否再次投掷第二次骰子,∴在游戏过程中应注意轮流投掷骰子,先小董或同桌投掷第一次,如需投掷第二次,再同桌或小董投掷第二次,这样即可保证游戏公平.。
人教版九年级数学上册《第二十五章概率初步》单元测试卷-带答案
人教版九年级数学上册《第二十五章概率初步》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,属于必然事件的是()A.任意画一个三角形,其内角和为360°B.打开电视机,正在播放里约奥运会的比赛项目C.400人中至少有两个人的生日在同一天D.经过交通信号灯的路口,遇到绿灯2.将5张分别画有等边三角形、平行四边形、矩形、五角星、圆的卡片任意摆放,将有图形一面朝下,从中任意翻开一张,翻到中心对称图形的概率是()A.B.C.D.3.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入山进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.B.C.D.4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.5.一套书共有上,中,下三册,将它们任意摆放到书架的同一层上,这三册书从左到右恰好成上,中,下顺序的概率为()A.B.C.D.6.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为()A.B.C.D.7.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.8.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是()A.10个B.15个C.20个D.25个二、填空题9.将两枚骰子同时抛出,得到的两个点中,一个能被另一个整除的概率为.10.两个人做游戏,每个人都从-2,0,2三个数中随机选一个写出来,两个人写的数字相等的概率是.11.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.12.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:.13.如图是由四个直角边长分别为2和4的全等的直角三角形拼成的“赵爽弦图”飞镖板,小明站在投镖线上向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则针扎在阴影部分的概率是.三、解答题14.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,5,这些卡片除数字不同外其余均相同.现从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片。
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,必然事件是()A.随机抛掷一颗骰子,朝上的点数是6B.今天考试小明能得满分C.明天气温会升高D.早晨的太阳从东方升起2.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是().A.13B.19C.29D.4273.在抛硬币的游戏中,若抛了10000 次,则出现正面的频率恰好是50%,这是() A.很可能的B.必然的C.不可能的D.不太可能的4.甲、乙、丙、丁四位同学去看电影,还剩下如图所示座位,乙正好坐在甲旁边的概率是()A.25B.35C.12D.345.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.156.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.147.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.18.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6B.5C.4D.39.如图,湖边建有A,B,C,D共4座凉亭,从入口处进,先经过凉亭A(已经参观过的凉亭,再次经过时不作停留),则最后一次参观的凉亭为凉亭D的概率为()A.14B.13C.12D.2310.某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是()A.16B.13C.19D.12二、填空题11.下列成语描述的事件:①水中捞月①水涨船高①守株待兔①瓮中捉鳖①拔苗助长,属于必然事件的是(填序号).12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的概率是.13.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率 .14.我市某校举行“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,校团委为了让同学们进一步了解中国科技的发展,请同学们从选出的以下五个内容中任选两个内容进行手抄报的制作:“北斗卫星”“5G时代”“智轨快运系统”“东风快递”“神舟十三号”.其中恰好选择“北斗卫星”“5G时代”的概率是.15.现有如图所示“2022·北京冬梦之约”的四枚邮票,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小萱从中随机抽取一枚不放回,再从中随机抽取一枚,则小萱抽到的两枚邮票恰好是冰墩墩和雪容融的概率是.16.下列事件:①打开电视机,它正在播放广告;①从一只装有红球的口袋中,任意摸出一个球,恰是白球;①两次抛掷正方体骰子,掷得的数字之和小于13;①抛掷硬币1000次,第1000次正面向上,其中为随机事件的是.17.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球,那么袋中的红球有个.是黑球的概率为14三、解答题18.为进一步挖掘全国春茶优质产品,2023年第七届中国昆明(国际)春茶周于4月28日如约开启.云南省111个著名山头和125个村寨春茶都在本次活动中展示,其中就包括著名的班章、冰岛、昔归、易武等著名山头品牌,小芸和小楠参加了本次活动,并打算分别从A:班章,B:冰岛,C:昔归,D:易武四个著名山头品牌茶叶中选择一个了解相关山头品牌茶文化知识.(1)小芸选择“冰岛”著名山头品牌茶叶的概率是______;(2)用列表法或画树状图法中的一种方法,求小芸和小楠恰好选择到同一著名山头品牌茶叶了解相关茶文化知识的概率.19.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是1,那么x的值可以取4吗?请用列表法或画树状图法说3明理由;如果x的值不可以取4,请写出一个符合要求的x的值.20.有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?21.有五张形状、大小和质地相同的卡片A、B、C、D、E,正面分别写有一个正多边形(所有正多边形的边长相等),把五张卡片洗匀后正面朝下放在桌面上(1)若从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;(2)从这5张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?22.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;①乙抢到金额为4元的红包①甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;①若甲没抢到红包A,则乙能抢到红包A的概率又是多少?参考答案1.D2.B3.D 4.A 5.A 6.D 7.A 8.D 9.C 10.A 11.②④ 12.57 13.1214.110 15.16 16.①④ 17.918.(1)14 (2)1419.(1)0.33 (2)不可以取4,x =6 20.(1)P (甲)=716,(2)不公平 21.31022.(1)事件①,①是不确定事件,事件①是确定事件;(2)①13;①12.。
人教版九年级上册数学《第25章概率初步》单元测试题(解析版)
人教版九年级上册数学《第25章概率初步》单元测试题(解析版)1.下列事件中,是随机事件的是()a.通常温度降到0℃以下,纯净水结冰b.随意翻到一本书的某页,这页的页码是偶数c.我们班里有46个人,必有两个人是同月生的d、在一个不透明的袋子里有两个红色的球和一个白色的球。
除了颜色外,它们都一样。
如果你随意触摸一个球,你更可能触摸到白色的球而不是红色的球2.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()a.b。
c.d、一,3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()a.甲获胜的可能更大b、 A和b同样有可能赢C。
b更有可能赢d.由于是随机事件,因此无法估计以下习语中描述的事件是随机事件b.水中捞月c、等兔子d.缘木求鱼5.在下列事件中,这是不可避免的:(a)买电影票,座位号必须是偶数。
B.随时打开电视,播放新闻c.将△acb绕点c旋转50°得到△a′c′b′,这两个三角形全等d.阴天就一定会下雨6.下列事件是不可能发生的:(a)地球的体积大于太阳的体积;(c)在降雨期间,湖的水位上升b.第一个来学校的是女生d.体育运动中肌肉拉伤7.如图所示,在游戏转盘中,红色、黄色和蓝色扇区的中心角分别为60°、90°和210°。
转盘自由旋转后指针落在黄色区域的概率为()a.b.c.d.8.小王连续四次投掷质地均匀的硬币,硬币都朝上落下。
如果他第五次扔硬币,硬币朝上的概率是()a.1b.c。
d.9.如图所示,在3×3的正方形网格中,a点和B点位于网格点(网格线的交点)上,并且△ ABC轴对称图形是()a.b.c、 d。
10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()a.b。
c.d。
人教版九年级数学(上)第二十五章《概率初步》检测卷含答案
人教版九年级数学(上)第二十五章《概率初步》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列事件是随机事件的是A.火车开到月球上B.抛出的石子会下落C.明天上海会下雨D.早晨的太阳从东方升起2.下列事件中,随机事件是A.任意画一个圆的内接四边形,其对角互补B.现阶段人们乘高铁出行在购买车票时,采用网络购票方式C.从分别写有数字-1,3,4的三个纸团中随机抽取一个,抽到的数字是0D.通常情况下,海南在大寒这一天的最低气温会在0 ℃以下3.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了密码的最后一位数字,那么一次就能打开该密码锁的概率是A.110B.19C.13D.124.有五张背面完全相同的卡片,正面分别写有√9,(√2)0,√8,227,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是A.15B.25C.35D.455.年假期间小明约同学玩“三国杀”游戏,有9位同学参与游戏,开始每人先摸四张牌,通过抽牌决定谁先出牌,事先做好9张卡牌(除所写文字不同,其余均相同),其中有过河拆桥牌2张,杀手牌3张,闪牌4张.小明参与游戏,如果只随机抽取一张,那么小明抽到闪牌的概率是A.19B.49C.13D.236.狗年春节到了,小英制作了5张大小相同的卡片,在每张卡片上分别写上“金”“狗”“迎”“春”“到”五个字,并随机放入一个不透明的信封中,然后让小芳从信封中摸出一张卡片,小芳摸出的卡片是“狗”字的概率是A.12B.13C.14D.157.如图,正方形ABCD内接于☉O,☉O的直径为√2cm,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是A.2πB.π2C.12πD.√2π8.如图,两个标有数字的轮子可以分别绕中心旋转,旋转停止时,每个轮子上的箭头各指向轮子上的一个数字,若左图上方箭头指着的数字为a,右图中指着的数字为b.数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对个数为m,则mn等于A.12B.16C.512D.349.小明、小颖和小凡都想去看安徽第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为A.60个B.50个C.40个D.30个二、填空题(本大题共4小题,每小题5分,满分20分)11.下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是2.12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.13.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分.别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为1414.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是1平方米.三、(本大题共2小题,每小题8分,满分16分)15.班里有18名男生,15名女生,从中任意抽取a人打扫卫生.(1)若女生被抽到是必然事件,求a的取值范围;(2)若女生小丽被抽到是随机事件,求a的取值范围.解:(1)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生被抽到的是必然事件,∴18<a≤33.(2)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生小丽被抽到是随机事件,∴a≥1,∴1≤a<33.16.如图,一个转盘被平均分成12份,每份上写上不同的数字,游戏方法:先猜数后转动转盘,若指针指向的数字与所猜的数一致,则猜数者获胜.现提供三种猜数方法:①猜是“奇数”,或是“偶数”;②猜是“大于10的数”,或是“不大于10的数”;③猜是“3的倍数”,或是“不是3的倍数”.如果你是猜数者,你愿意选择哪一种猜数方法?怎样猜?并说明理由.解:选择第③种方法,猜是“3的倍数”.理由如下:∵转盘中,奇数与偶数的个数相同,大于10与不大于10的数的个数也相同,∴①与②游戏是公平的.∵转盘中的数是3的倍数的有7个,不是3的倍数的有5个,∴猜3的倍数,获胜的机会大.四、(本大题共2小题,每小题8分,满分16分)17.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当试验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,摸到白球的概率P=;(3)试验估算这个不透明的盒子里黑球有多少只?解:(1)0.6.(2)0.6.(3)盒子里黑球有40×(1-0.6)=16(只).18.小明和小新分别转动标有“0~9”十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁大谁获胜.已知他们四次转出的数字如下表:(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.解:(1)小明转出的四位数最大是9730;小新转出的四位数最大是9520.(2)小明可能得到的“千位数字是9”的四位数有6个,分别为9730,9703,9370,9307,9073,9037;小新可能得到的“千位数字是9”的四位数有6个,分别为9520,9502,9250,9205,9052,9025.(3)不一定,因为如果小明得到的是9370,小新得到的是9520,则小新获胜.五、(本大题共2小题,每小题10分,满分20分)19.小敏的爸爸买了一张嘉峪关的门票,她和哥哥都想去,可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽取一张,然后将抽出的两张牌数字相加,如果和为偶数,则小敏去,如果和为奇数,则哥哥去.(1)请你用列表或树状图的方法求小敏去的概率.(2)哥哥设计的游戏规则公平吗?请说明理由.解:(1)根据题意,画出如图所示的树状图,从树状图中可以看出,所有可能出现的结果共有16个,这些结果出现的可能性相等.而和为偶数的结果共有6个,所以小敏去的概率P(和为偶数)=616=38.(2)不公平.理由:哥哥去的概率P(和为奇数)=1-38=58,因为38<58,所以哥哥设计的游戏规则不公平.20.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.解:(1)“3点朝上”出现的频率是660=110,“5点朝上”出现的频率是2060=13.(2)小颖的说法是错误的.这是因为:“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:P(点数之和为3的倍数)=1236=13.六、(本题满分12分)21.有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3).(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的有:(-3,-4),(-4,-3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率为212=16.七、(本题满分12分)22.为了了解全校3000名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题:(1)在这次问卷调查中,一共抽查了名同学;(2)补全条形统计图;(3)估计该校3000名同学中喜爱足球活动的人数;(4)学校准备从随机调查喜欢跑步和喜欢舞蹈的同学中分别任选一位参加课外活动总结会.若被随机调查的同学中,喜欢跑步的男生有3名,喜欢舞蹈的女生有2名,请用列表或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.解:(1)50.(2)喜欢足球人数:50-5-20-5-3=17.补全统计图:(3)该校3000名同学中喜爱足球活动的有3000×17=1020(名).50(4)画树状图得:∵共有15种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有8种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为8.15八、(本题满分14分)),E(0,-6),从这五个点中23.在平面直角坐标系中给定以下五个点A(-2,0),B(1,0),C(4,0),D(-2,29选取三点,使经过三点的抛物线满足以y轴的平行线为对称轴.我们约定经过A,B,E三点的抛物线表示为抛物线ABE.(1)符合条件的抛物线共有多少条?不求解析式,请用约定的方法一一表示出来.11 (2)在五个形状、颜色、质量完全相同的乒乓球上标上A ,B ,C ,D ,E 代表以上五个点,玩摸球游戏,每次摸三个球.请问:摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率是多少?(3)小强、小亮用上面的五球玩游戏,若符合要求的抛物线开口向上,小强可以得1分;若抛物线开口向下,小亮得5分,你认为这个游戏谁获胜的可能性大一些?说说你的理由.解:(1)从A ,B ,C ,D ,E 五个点中任意选取三点,共有以下10种组合,分别如下:ABC ABD ABE ACD ACE.ADE BCD BCE BDE CDE.∵A ,D 所在直线平行于y 轴,A ,B ,C 都在x 轴上,∴A ,D 不能在符合要求的同一条抛物线上,A ,B ,C 也不能在符合要求的同一条抛物线上, 于是符合条件的抛物线有如下六条:ABE ACE BCD BCE BDE CDE(2)摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率为610=35.(3)这个游戏两人获胜的可能性一样.理由是:在可以确定的六条抛物线中,通过观察五点位置可知:抛物线BCE 开口向下,其余五条开口向上,每摸一次,小强获得分数的平均值为510×1=12;小亮获得分数的平均值为110×5=12,∴这个游戏两人获胜的可能性一样.。
人教版九年级上册数学 第二十五章 概率初步 单元测试卷(含答案解析)
人教版九年级上册数学第二十五章概率初步单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.彩民李大叔购买1张彩票,中奖.这个事件是( )A.必然事件B.确定性事件C.不可能事件D.随机事件2.老师从甲、乙、丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是( )A.15B.14C.13D.343.如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )A.14B.13C.38D.494.下列说法正确的是( )A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖5.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A. 至少有1个白球B. 至少有2个白球C. 至少有1个黑球D. 至少有2个黑球6.某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A.12B.14C.16D.1167.从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为( )A.15B.25C.35D.458.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( )A.14B.12C.π8D.π49.下表显示的是某种大豆在相同条件下的发芽试验结果.每批粒数n100 300 400 600 1000 2000 3000 发芽的粒数m96 282 382 570 948 1904 2850 发芽的频率mn0.960 0.940 0.955 0.950 0.948 0.952 0.950①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800.其中推断合理的是( )A.①②③B.①②C.①③D.②③10.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是绿球C.第一次摸出的球是红球的概率是1 3D.两次摸出的球都是红球的概率是1 9二、填空题(每小题4分,共20分)11.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_______.12.班里有18名男生,15名女生,从中任意抽取a名打扫卫生,若女生被抽到是必然事件,则a的取值范围是_________.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是___________.14.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图.用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为_____________2cm.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回、搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:布袋编号 1 2 3袋中玻璃球色彩、数量2个绿球、2个黄球、5个红球1个绿球、4个黄球、4个红球6个绿球、3个黄球(1)从1号布袋中随机摸出1个玻璃球,该球是黄色、绿色或红色;(2)从2号布袋中随机摸出2个玻璃球,2个球中至少有1个不是绿色;(3)从3号布袋中随机摸出1个玻璃球,该球是红色;(4)从1号布袋中和2号布袋中各随机摸出1个玻璃球,2个球的颜色一致.17.(8分)回答下列问题:。
人教版九年级数学上第25章概率初步单元测试题(有答案)
人教版九年级数学上第25章概率初步单元测试题(有答案)一、选择题(共16 小题,每小题 3 分,共48 分)1.下列事件中,为必然事件的是()A.购买一张彩票B.打开电视,正在播放广告C.抛掷一枚普通的硬币,一定正面朝上D.一个袋中只装有个黑球,从中摸出一球是黑球2.某班级中男生和女生各若干,若随机抽取人,抽到男生的概率是,则抽到女生的概率是()A.不确定B.C.D.3.在毕业晚会上,有一项同桌默契游戏,规则是:甲、乙两个不透明的纸箱中都放有红、黄、白三个球(除颜色外完全相同),同桌两人分别从不同的箱中各摸出一球,若颜色相同,则能得到一份默契奖礼物.同桌的小亮和小洁参加这项活动,他们能获得默契奖礼物的概率是()A. B. C. D.4.一个不透明的口袋里装有分别标有汉字“陕”、“西”、“美”、“丽”的个小球,除汉字不同之外,小球没有任何区别,小航从中任取两球,则取出的两个球上的汉字恰能组成“陕西”或“美丽”的概率是()A. B. C. D.5.下列事件中,属于必然事件的是()A.明天枫亭镇会下雨B.打开电视机,正在播广告C.球员在罚球区上投篮一次就投中D.盒中装有个红球和个白球,从中摸出两球,其中至少有一个是红球6.下列事件中发生概率大于且小于的是()A.太阳从西方慢慢升起B.小树会慢慢长高C.水往低处流D.某大桥在分钟内通过了辆汽车7.如图,在的正方形网格中有个格点,已经取定点和,在余下的个点中任取一点,使为直角三角形的概率是()A. B. C. D.8.从个白球、个红球中任意摸一个,摸到红球的概率是()A. B. C. D.9.学校评选出名优秀学生,要选名代表参加全市优秀学生表彰会,已经确定了名代表,则剩余学生参加全市优秀学生表彰会的概率是()A. B. C. D.10.同时抛掷两枚元的硬币,菊花图案都朝上的概率是()A. B. C. D.11.河南新郑黄帝故里“同根同祖同源,和平和睦和谐”拜祖大典,志愿翻译小组有五名同学,其中一名只会翻译法语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.12.桌子上放着颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿颗,至多可以拿颗,谁先拿到第颗谁就获胜,获胜者可以把剩下的颗糖果全部拿走,其结果是()A.后拿者获胜B.先拿者获胜C.两者都可能胜D.很难预料13.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.14.下列说法正确的是()A.打开电视机,正在播放新闻B.调查炮弹的发射距离远近情况适合普查C.给定一组数据,那么这组数据的中位数一定只有一个D.盒子里装有三个红球和三个黑球,搅匀后从中摸出两球,一定一红一黑15.小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗()A.公平B.小倩胜的可能大C.小宏胜的可能大D.以上答案都错16.如果身边没有质地均匀的硬币,下列方法可以模拟掷硬币实验的是()A.掷一个瓶盖,盖面朝上代表正面,盖面朝下代表反面B.掷一枚图钉,钉尖着地代表正面,钉帽着地代表反面C.掷一枚质地均匀的骰子,奇数点朝上代表正面,偶数点朝上代表反面D.转动如图所示的转盘,指针指向“红”代表正面,指针指向“蓝”代表反面二、填空题(共6 小题,每小题 3 分,共18 分)17.对某名牌衬衫抽检的结果如下表:如果销售件该名牌衬衫,那么至少要多准备________件合格品,以便供顾客更换.18.在抽签中,抽中的概率为,则抽不中的概率为________.19.现在某实验室有,二项互相独立的实验,已知成功的概率是,成功的概率是,二项实验同时成功的概率是________.20.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是,摸出白球的概率是,那么摸出黑球的概率是________.21.如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果枚卵全部成功孵化,则只雏鸟都为雄鸟的概率是________.22.在不透明的袋子中装有个白球和个黄球,这些球除了颜色外其它都相同,现从袋子中随机摸出一个球,则它是黄球的概率是________.三、解答题(共5 小题,共54 分)23.(10分) 一只不透明的袋子里共有个球,其中个白球,个红球,它们除颜色外均相同.从袋子中随机摸出一个球是白球的概率是多少?从袋子中随机摸出一个球,不放回袋子,摇匀袋子后再摸一个球,请用列表或画树状图的方法,求出两次摸出的球都是白球的概率.24.(11分) 有两个可以自由转动的转盘、,转盘被分成四个相同的扇形,分别标有数字、、、,转盘被分成三个相同的扇形,分别标有数字、、.小明自由转动转盘,小颖自由转动转盘,当两个转盘都停止后,记下各个转盘指针所指区域内对应的数字(指针指向分界线时重转)完成下列问题:计算所得两数之积为的倍数的概率,并用画树状图或列表法说明理��.小明和小颖用上述两个转盘做游戏,规则如下:若转出的两数之积为奇数,小明赢;若转出的两数之积为偶数,小颖赢,你认为这个游戏公平吗?若不公平,请你重新设计一个对游戏双方公平的游戏规则.25.(11分) 如图可以自由转动的转盘被等分,指针落在每个扇形内的机会均等.现随机转动转盘一次,停止后,指针指向数字的概率为________;小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.26.(11分) 某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为,,,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为,,.若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,请画树状图或列表求垃圾投放正确的概率;为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共吨生活垃圾,数据统计如下表(单位:吨):27.(11分)在一个口袋中有个完全相同的小球,把它们分别标号为,,,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件为“两次取的小球的标号的和是的整数倍”,记事件为“两次取的小球的标号的和是或的整数倍”,请你判断等式是否成立,并说明理由.答案1.D2.C3.B4.A5.D6.D7.D8.A9.D10.C11.B12.B13.B14.C15.B16.C17.18.19.20.21.22.23.解:(1)(摸出一个球是白球),画树形图:共有中等可能的结果,(两次摸出的求都是白球).24.解:画树状图如下:共有种等可能的结果,其中两数之积为的倍数有种可能,所以所得两数之积为的倍数的概率;这个游戏不公平,理由如下:小明赢的概率,小颖赢的概率,则,所以这个游戏不公平.对游戏双方公平的游戏规则可为:若转出的两数之积为的倍数,小明赢;若转出的两数之积为的倍数,小颖赢.25.列表得:所有等可能的情况有种,其中两数之积为偶数的情况有种,之积为奇数的情况有种,∴(小明获胜),(小华获胜),∵,∴该游戏不公平.26.解:画树状图得:∵共有种情况,其中投放正确的有种情况,∴;∵,∴估计该小区“厨余垃圾”投放正确的概率约为.27.解:等式不成立,理由:列表得:共种等可能的结果,其中为的倍数的有种,为或的倍数的有种,故,,故不成立.人教版数学九年级上册《第二十五章概率初步》单元测试卷一、填空题1.一个布袋里装有2个红球和2个白球,它们除颜色外都相同,从中任意摸出2个球,摸到的两个球都是红球的概率为________.2.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是________.3.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率为________。
初三数学人教版九年级上册第25章概率初步单元训练题含答案
初三数学人教版九年级上册第25章概率初步单元训练题含答案1. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相反.从中恣意摸出一个球,那么是红球的概率为( C )A.16B.13C.12D.232. 以下说法中,正确的为( C )A .不太能够发作的事就一定不发作B .一件事情要么发作,要么不发作,所以它发作的概率为0.5C .买1张彩票的中奖概率为110000,那么买1张彩票中奖的能够性很小D .抛掷一枚硬币的前9次均出现了正面,那么第10次一定会出现反面3. 以下说法中,正确的选项是( A )A .不能够事情发作的概率为0B .随机事情发作的概率为12C .概率很小的事情不能够发作D .投掷一枚质地平均的硬币100次,正面朝上的次数一定为50次4.从区分标有-3,-2,-1,0,1,2,3的七张没有清楚差异的卡片中,随机抽取一张,所抽卡片上的数的相对值不小于2的概率是( D ) A.17 B.27 C.37 D.475.如图,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是( B )A.12B.13C.14D .0 6.在一个不透明的口袋里,装有仅颜色不同的黑球、白球假定干个.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不时重复.下表是活动中的一组数据,那么摸到白球的概率约是( C )A.0.4 B .0.5 C .0.6 D .0.77.在一个口袋中有4个完全相反的小球,把它们区分标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,那么两次摸出的小球的标号之和等于5的概率是( C )A.12B.13C.14D.158.如图,甲为四等分数字转盘,乙为三等分数字转盘,同时自在转动两个转盘,当转盘中止转动后(假定指针指在边界处那么重转),两个转盘指针指向数字之和不超越4的概率是( D )A.56B.13C.23D.129.小红、小明在玩〝石头、剪刀、布〞游戏,小红给自己一个规则:不时不出〝石头〞.小红、小明获胜的概率区分是P 1,P 2,那么以下结论正确的选项是( A )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .P 1≤P 210.同时抛掷A ,B 两个平均的小立方体(每个面上区分标有数字1,2,3,4,5,6),朝上一面的数字区分为x ,y 并以此确定点P(x ,y),点P 落在抛物线y =-x 2+3x 上的概率为( A )A.118B.112C.19D.1611.有5张看上去无差异的卡片,下面区分写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( A ) A.310 B.320 C.720 D.71012.某同窗期中考试数学考了120分,那么他期末考试数学考120分是__随机__事情.(填〝肯定〞〝不能够〞或〝随机〞)13.在一个不透明的袋子中装有除颜色外其他均相反的7个小球,其中红球2个,黑球5个,假定再放入m 个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45,那么m 的值为__3__. 14.从〝线段、等边三角形、圆、矩形、正六边形〞这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是__45__. 15.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相反.小明从这个袋子中随机摸出一球,放回.经过屡次摸球实验后发现,摸到黄色球的频率动摇在15%左近,那么袋中黄色球能够有__6__个.16.不透明的布袋里有2个白色小汽车和2个白色小汽车(小汽车除颜色不同外,其他都相反),从布袋中随机摸出2个小汽车,那么摸出的2个小汽车颜色相反的概率是__13__. 17.学校图书馆有甲、乙两名同窗担任志愿者,他俩各自在周六、周日两天中恣意选择一天参与图书馆的公益活动,那么该图书馆恰恰周六、周日都有志愿者参与公益活动的概率是__12__. 18.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,可以使灯泡L 1,L 2同时发光的概率是__15__.19.有反面完全相反的9张卡片,正面区分写有1~9这九个数字,将它们洗匀后反面朝上放置,恣意抽出一张,记卡片上的数字为a ,那么数字a 使不等式组⎩⎪⎨⎪⎧x +12≥3,x<a有解的概率为__49__. 20.掷一个正方体骰子,观察向上一面的点数,求以下事情的概率:(1)点数为6;(2)点数小于3.解:(1)P(点数为6)=16(2)P(点数小于3)=26=1321.如图,某展览馆展厅东面有两个入口A ,B ,南面、西面、北面各有一个出口,小华任选一个入口进入展览大厅,观赏完毕前任选一个出口分开.(1)她从进入到分开共有多少种能够的结果?(要求画出树状图)(2)她从入口A 进入展厅并从北出口或西出口分开的概率是多少? 解:(1)画树状图(略),一切能够的结果有6种(2)她从入口A 进入展厅并从北出口或西出口分开的概率为P =26=1322.甲、乙两个不透明的口袋,甲口袋中装有3个区分标有数字1,2,3的小球,乙口袋中装有2个区分标有数字4,5的小球,它们的外形、大小完全相反,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字能够出现的一切结果;(2)求出两个数字之和能被3整除的概率.解:(1)略(2)∵共6种等能够状况,两个数字之和能被3整除的状况有2种,∴P(两个数字之和能被3整除)=26=1323.甲、乙两人停止摸牌游戏.现有三张外形大小完全相反的牌,正面区分标有数字2,3,5.将三张牌反面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记载数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相反数字的概率;(2)假定两人抽取的数字和为2的倍数,那么甲获胜;假定抽取的数字和为5的倍数,那么乙获胜.这个游戏公允吗?请用概率的知识加以解释. 解:(1)列表(略),共有9种结果,每种结果出现的能够性相反,其中两人抽取相反数字的结果有3种,所以两人抽取相反数字的概率为13(2)不公允,从(1)中可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公允。
人教版九年级上册(新)第25章《概率初步》全章试题含答案
人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。
人教版九年级上册第二十五章《概率初步》单元检测(有答案)(5)
人教版九年级上册第二十五章《概率初步》单元检测(有答案)(5)一、选择题(每题5分,满分40分) 1.下列事件中,属于随机事件的是( ) A .通常水加热到100C o时沸腾B .测量孝感某市的最低气温,结果为—150C oC .一个袋中装有5个黑球,从中摸出一个是黑球D .篮球队员在罚球线上投篮一次,未投中 2.已知抛一枚均匀的硬币正面朝上的概率为21,下列说法错误的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D .通过抛一枚均匀硬币确定谁先罚球的比赛规则是公平的3.一个不透明的布袋装有4个只有颜色不同的球,其中2个红色,1个白色,1个黑色,搅匀后从布袋里摸出1个球,摸到红球的概率是( )A .12 B .13 C .14 D .164.某校准备组织师生观看济南全运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球比赛,1场是羽毛球比赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是( )A .41 B .31 C .21 D .32 5.在一个不透明的袋子里装有2个红球和2个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )A .21 B .31 C .41 D .61 6.甲、乙两名同学在一次用频率去估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A .掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取1球,取到红球的概率C .抛一枚硬币,出现正面的概率D .任意写1个整数,它能被2整除的概率7.已知一次函数b kx y +=,k 从—2,3中随机取一个值,b 从1,—1,—2中随机第6题图取一个值,则该一次函数经过二、三、四象限的概率为( )A .31 B .32 C .61 D .65 8.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中的一把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意一把锁,一次打开锁的概率为( )A .61 B .31C .32D .41备选题:1.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16 B .13C .12D .23 2.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色不同外其它完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A .24B .18C .16D .8 二、填空题(每题5分,满分40分)9.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是 .10.从一副扑克牌(去掉大、小王)中任意抽取一张,牌面上数字是“8”的概率是 . 11.在12 的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .12.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是41,则y 与x 之间的函数关系式为 .13.口袋内装有大小、质量和材质都相同的红色1号、红色2号、黄色1号、黄色2号、黄色3号的5个小球,从中摸出两球,这两球都是红色的概率是 .14.数学试卷的选择题都是四选一的单项选择题,某同学有两道题不会做,他随便选择了两个答案,请你算一算,他两道选择题都选对的概率是 .15. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是 .第题图16. 甲、乙、丙三位好朋友站在一排照合影,甲没有站在中间的概率为 . 备选题:1.在一个不透明的摇奖箱内装有20个形状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,参与游戏的观众有三次摸球的机会(一次只能摸出一球,且摸出的球不放回),某人前两次摸球均中奖,那么他第三次摸球中奖的概率是______.2.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是 .三、解答题(满分70分)17. (8分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色不同外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是103. (1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率. 18. (10分)有两双大小、质地相同、仅有颜色不同的拖鞋(分左右脚,可用A 1、A 2表示一双,用B 1、B 2表示另一双)放置在卧室地板上.若从这四只拖鞋中随即取出两只,利用列表法(树形图或列表格)表示所有可能出现的结果,并写出恰好配成形同颜色的一双拖鞋的概率.19. (10分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率?(2)小颖说:“一次试验中,出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树形图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.20. (12分)在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同.甲、乙、两同学玩摸球游戏,游戏规则如下:A BCDO第15题图先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再甲乙同学从中随机摸出一球,记下球号。
人教版九年级数学上册第二十五章 概率初步 单元测试卷(教师版,含答案)
人教版九年级数学上册第二十五章 概率初步 单元测试卷(满分:150分 时间:120分钟)一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请将正确选项的代号填写在答题框中,填写正确记4分,不填、填错或多填记0分.1.下列事件中是必然事件的是(B)A .投掷一枚硬币正面朝上B .明天太阳从东方升起C .五边形的内角和是560°D .购买一张彩票中奖 2.“水中捞月”事件发生的概率是(D)A .1 B.12 C.14D .03.2018年5月5日,中国邮政发行《马克思200周年诞辰》纪念邮票1套2枚,这套邮票图案名称分别为:马克思像、马克思与恩格斯像,其背面完全相同,发行当日,某集邮爱好者购买了此款纪念邮票3套,他将所购买的6枚纪念邮票背面朝上放在桌面上,并随机从中取出一张,则取出的邮票恰好是“马克思像”的概率为(A)A.12B.13C.14D.16 4.下列说法正确的是(A) A .必然事件发生的概率为1 B .随机事件发生的概率为12C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次5.口袋内装有一些除颜色外其他完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率为0.2,摸出白球的概率为0.5,那么摸出黑球的概率为(D)A.0.2 B.0.7 C.0.5 D.0.36.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是(C)A.点数都是偶数 B.点数的和为奇数 C.点数的和小于13 D.点数的和小于27.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的概率是(A)A.14B.13C.12D.348.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是(B)A.18B.16C.14D.129.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是(A)A.12B.13C.23D.5610.如图,△ABC是一块绿化带,将阴影部分修建为花圃.已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为(B)A.16B.π6C.π8D.π5 二、填空题(本大题共6个小题,每小题4分,共24分) 请将答案填在对应题号的横线上.11.“清明时节雨纷纷”是随机事件.(填“必然”“不可能”或“随机”)12.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是13.13.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有12个白球.14.如图,两个转盘分别等分成3个和4个扇形,每个扇形上都标有数字.同时转动两个转盘,停止后,指针都落在奇数扇形的概率是13.15.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK 之后,则选中的车牌号为8ZK86的概率是13.16.有六张正面分别标有数字-2,-1,0,2,3,4的不透明卡片,它们除数字不同外其余均相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m ,则使关于x 的分式方程1-mx 1-x -1=m 2-1x -1有正整数解的概率为12.三、解答题(本大题共9个小题,共86分) 解答题应写出必要的文字说明或推演步骤.17.(8分)(1)一个袋中装有2个红球,3个白球和5个黄球,每个球除了颜色外都相同,从中任意摸出一个球,分别求出摸到红球、白球、黄球的概率;解:∵袋中装有2个红球,3个白球和5个黄球,共10个球,∴摸到红球的概率为210,即15;摸到白球的概率为310;摸到黄球的概率为510,即12.(2)随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),求这粒豆子落在黑色方格中的概率.解:∵共有12个方格,其中黑色方格占4个, ∴这粒豆子落在黑色方格中的概率是412=13.18.(8分)在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n 为何值时,这个事件必然发生? (2)当n 为何值时,这个事件不可能发生? (3)当n 为何值时,这个事件可能发生?解:(1)当n >6时,即n =7或8或9时,这个事件必然发生.(2)当n <3时,即n =1或2时,这个事件不可能发生.(3)当3≤n≤6时,即n =3或4或5或6时,这个事件可能发生.19.(8分)如图是一个正六边形转盘被分成6个全等的正三角形,指针位置固定.转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个三角形的公共边时,当作指向右边的三角形),这时称转动了转盘1次.(1)下列说法不正确的是(B)A .出现1的概率等于出现3的概率B .转动转盘30次,6一定会出现5次C .转动转盘3次,出现的3个数之和等于19,这是一个不可能发生的事件 (2)当转动转盘36次时,出现2这个数大约有多少次? 解:∵转动转盘1次时,出现2的概率为16,∴转动转盘36次,出现2这个数大约有36×16=6(次).20.(10分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为14;(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率. 解:画树状图如下:两人选择的方案共有16种等可能的结果,其中都选择兴文石海的方案有1种,所以小明和小华都选择去兴文石海旅游的概率为116.21.(10分)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”“花开富贵”“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10 000张奖券的抽奖结果如下:(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由.解:(1)50010 000=120.(2)平均每张奖券获得的购物券金额为100×50010 000+50×1 00010 000+20×2 00010 000+0×6 50010 000=14(元),∵14>10,∴选择抽奖更合算.22.(10分)“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是8,中位数是9;(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.解:画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果, 所以恰好抽到八年级两名领操员的概率为212=16.23.(10分)有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字1,-2和2.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y).(1)用列表或画树状图的方法写出点Q 的所有可能坐标;(2)求点Q 落在直线y =x -3上的概率. 解:(1)画树状图如图:点Q 的所有可能坐标有(1,1),(1,-2),(1,2),(2,1),(2,-2),(2,2). (2)∵共有6种等情况数,其中点Q 落在直线y =x -3上的有1种, ∴点Q 落在直线y =x -3上的概率为16.24.(10分)在一个不透明的袋子中装有(除颜色外)完全相同的红色小球1个,白色小球1个和黄色小球2个.(1)从中先摸出一个小球,记录下它的颜色后,将它放回袋中搅匀,再摸出一个小球,记录下颜色.求摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(2)如果摸出第一个小球之后不放回袋中,再摸出第二个小球,这时摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(3)小明想给袋中加入一些红色的小球,使从袋中任意摸出一个小球恰为红色的概率为45,请你帮小明算一算,应该加入多少个红色的小球?解:(1)画树状图如下:由树状图可得:共有16种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=416=14. (2)画树状图如下:由树状图可得:共有12种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=412=13. (3)设应加入x 个红色的小球,则 1+x 4+x =45,解得x =11. 故应加入11个红色的小球.25.(12分)学校准备开办“书画、器乐、观曲、棋类”四个兴趣班,为了解学生对兴趣班的选择情况,随机抽取部分学生调查,每人单选一项,结果如下(尚未完善):(1)求本次调查的学生人数和扇形图中“器乐”对应圆心角的大小; (2)若全校共有1 200名学生,请估计选择“戏曲”的人数;(3)学校将从四个兴趣班中任选取两个参加全区青少年才艺展示活动,求恰好抽到“器乐”和“戏曲”的概率.解:(1)本次调查的学生人数为30÷15%=200(人), 扇形图中“器乐”对应圆心角为360°×80200=144°.(2)样本中选择“器乐”的百分数为80200×100%=40%.∴选择“戏曲”的百分数为1-(25%+15%+40%)=20%. 则估计选择“戏曲”的人数1 200×20%=240(人). (3)画树状图如下:由树状图可知,所有等可能的结果共12种,其中恰好抽到“器乐”和“戏曲”的有2种, 所以恰好抽到“器乐”和“戏曲”的概率为212=16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率初步
(时间:45
一、选择题(每小题3分,共30分) 1.下列事件中是随机事件的有( )
①早晨的太阳一定从东方升起;②打开数学课本时刚好翻到第60页;③从一定高度落下的图钉,落地后钉尖朝上;④今年14岁的小云一定是初中学生. A .1个 B .2个 C .3个 D .4个
2.同时抛掷两枚质地均匀的正方体骰子1次,下列事件中是不可能事件的是( ) A .朝上的点数之和为13 B .朝上的点数之和为12 C .朝上的点数之和为2 D .朝上的点数之和小于3
3.(钦州中考)在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同.摇匀后随机摸出一个,摸到红球的概率是1
5
,则n 的值为( )
A .3
B .5
C .8
D .10
4.某超市在“五一”期间开展有奖促销活动,每买100元商品,可参加抽奖一次,中奖的概率为1
3
,小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
A .能中奖一次
B .能中奖二次
C .至少能中奖一次
D .中奖次数不能确定
5.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是( )
A.1
2
B.1
4
C.3
4
D .1
6.(牡丹江中考)学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( ) A.1
9 B.1
6 C.1
3 D.12 7.(自贡中考)如图,随机闭合开关S 1,S 2,S 3中的两个,则灯泡发光的概率是( )
A.3
4
B.2
3
C.1
3
D.12
8.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不
放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2
+px +q =0有实数根的概率是( )
A.1
2 B. 1
3 C.2
3 D.56
9.如图,正方形ABCD 内接于⊙O,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( ) A.2
π
B.π
2
C.1
2π
D.2π
10.(杭州中考)如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( ) A.1
4
B.2
5
C.2
3
D.59
二、填空题(每小题4分,共24分)
11.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________个.
12.(兰州中考)在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
根据列表,可以估计出n 的值是________.
13.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK 之后,则选中的车牌号为8ZK86的概率是________.
14.小明把如图所示的矩形纸板ABCD 挂在墙上,E 为AD 中点,且∠ABD=60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是________.
15.小宝与小贝玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标
有数字的一面朝下,小宝从中任意抽取一张,记下数字后放回洗匀,然后小贝从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则小贝胜;如果和为偶数,则小宝胜.该游戏对双方________(填“公平”或“不公平”).
16.有三张正面分别标有数字3,4,5的不透明卡片,它们除数字不同外其余完全相同.现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后再抽取一张,则两次抽的卡片上的数字的差的绝对值大于1的概率是________.
三、解答题(共46分)
17.(10分)在一个不透明的袋子中,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?
18.(10分)(三明中考)某校开展校园“美德少年”评选活动,共有“助人为乐”、“自强自立”、“孝老爱亲”、“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.
根据以上信息,解答下列问题:
(1)统计表中的a=________,b=________;
(2)统计表后两行错误的数据是______________,该数据的正确值是________;
(3)校园小记者决定从A,B,C三位“自强自立美德少年”中,随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.
19.(12分)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同),其中
白球、黄球各1个,若从中任意摸出一个球是白球的概率是1
3
.
(1)求暗箱中红球的个数;
(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树状图或列表法求解).
20.(14分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数. (1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
参考答案
1.C 2.A 3.C 4.D 5.A 6.C 7.B 8.A 9.A 10.B 11.2 100 12.10 13.13 14.1
8
15.不公平 16.2
9
17.(1)当n =7或8或9时,这个事件必然发生.(2)当n =1或2时,这个事件不可能发生.(3)当n =3或4或5或6时,这个事件可能发生.
18.(1)4 0.15 (2)最后一行数据 0.30 (3)列表得:
∵共有6种等可能的结果,A ,B 都被选中的情况有2种,∴P(A ,B 都被采访到)=26=1
3.
19.(1)设暗箱中红球有x 个,由题意,得11+1+x =1
3.解得x =1.经检验,x =1是原方程的
解.
答:暗箱中红球有1个.(2)用树状图列出所有可能的结果:
共有9种结果,且它们是等可能的,其中两次摸到不同颜色的结果有6种,即P(两次摸不同颜色)=69=2
3.
20.(1)树状图如下:
所有可能得到的三位数有24个,分别为123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432.(2)这个游戏不公平.理由如下:组成的三位数中是“伞数”的有132,142,143,231,241,243,341,342,共8个,所以,甲胜的概率为824=13,而乙胜的概率为1624=2
3,故这个游戏不公平.。