红霉素发酵生产工艺设计
红霉素的制备工艺
红霉素生产工艺
2013-06-06
抗生素是微生物在其生命活动过程中产生的,对 某些其他病原微生物具有抑制或杀灭作用的一类生理 活性物质。常将其习惯分类为1、β-内酰胺类如青霉素 类、头孢类等。
2、氨基糖苷素等。
4、四环素类如四环素、土霉素类等。
在环境方面可以加强管理,严格按照卫生标准执 行,在设备方面应注重设备升级换代。在生产技术方 面可以采取多种工艺,如采用大孔吸附树脂提取工艺、 离子交换树脂的提取工艺开发新产品。
(一)、红霉素的发酵工艺过程:
沙土孢子
孢子培养 37℃,7~10天
母斜面孢子
孢子培养 37℃,7~10天
子斜面孢子
种子培养 35 ℃.1:1vvm60~70
一级培养液
种子培养 33~35 ℃,1:1.5vvm35~40h
二级培养液
发酵 31 ℃,1:1vvm 150~160h
发酵液
提取与精制
工艺流程:
红霉素是由红色糖多孢菌发酵产生的。该 菌以前称为红霉素链霉菌。生产上一般是将 其孢子悬液接入种子罐,种子扩大培养2次后 移入发酵罐进行发酵,发酵液经过预处理后, 再经溶剂萃取进行分离纯化,最后经浓缩结 晶干燥后的成品。
生产步骤一般为:红霉素产生菌的培养、红 霉素的生物合成、发酵、发酵液的预处理和 过滤、红霉素的提取、红霉素的精制。
废渣:主要是培养基中的营养废渣和发酵后产生的菌 渣。
废气:主要指在发酵过程中产生的有异味、有害的气 体。
在早期主要采用“混合稀释,再生化处理”的处理方法,现多采用 “预处理—厌氧—好氧”的处理方法。
用微波干燥法干燥湿料废渣,至干废渣 的含水量为8%~12%,用复合蛋白酶 (木瓜蛋白酶和中性蛋白酶)酶解得到的干 废渣在70℃~75℃温度下进行灭酶1 0~15分钟。酶解液加工成多肽和氨基酸 产品或酶解残渣晾晒干制成花卉营养土 。
红霉素的发酵及提取工艺
红霉素的发酵工艺
2>培养基 发酵培养基最适合的碳源为蔗糖、其次为葡萄糖、 淀粉、糊精。生产上常用葡萄糖和淀粉为混合碳源,效 果与使用葡萄糖相似。 氮源的代谢对红霉素合成影响很大,当适于菌体生 长的氮源耗尽时,菌体才停止生长并迅速合成红霉素。 红霉素生产中一般都用有机氮源,其中以黄豆饼粉、玉 米浆为最佳。由于黄豆饼粉菌时泡沫较多,故一、二级 种子罐及后期补料用部分花生饼粉代替,但全用花生饼 粉则最终产品会出现带会现象。在发酵培养基中加少量 硫酸铵,可促进菌丝生长。
接种 发酵菌种接种菌龄必须掌握恰当时机,接种过早或过晚都将不 利于发酵的进行。发酵接入菌种太年轻,前期生长缓慢,产物开 始形成时间推迟,整个发酵周期延长;如果太老,菌量虽多,却 导致生产能力下降,菌体过早自溶。 菌体浓度对发酵的影响及控制 发酵接种量较大且保持在合适的浓度,则缩短细菌生长期,使 产物合成时间提前;但是如果接种量过大,超出适宜值,则生长 过快,物料黏度增加,导致溶氧不足,最终影响产物合成 碳源对发酵的影响及其控制 按菌体利用快慢而言,分为迅速利用 的碳源和缓慢利用的碳源。前者(如葡萄糖)能较迅速地参与代谢、 合成菌体和产生能量,并产生分解代谢产物,因此有利于菌体生 长,但有的分解代谢产物对产物的合成可能产生阻遏作用;后者 (如乳糖)为菌体缓慢利用,有利于延长代谢产物的合成,特别有 利于延长抗生素的生产期,也为许多微生物药物的发酵所采用。
红霉素发酵工艺控制及操作
改进培养基配方
引入新型发酵技 术
加强生产过程控 制与管理
降低成本的方法及途径
优化发酵工艺: 通过改进发酵过 程,降低原材料、 能源和水资源的 消耗,从而降低
生产成本。
开发新型分离提 取技术:采用高 效、低成本的分 离提取技术,提 高产品的纯度和 收率,降低分离
提取成本。
实现智能化和自动 化生产:通过引进 先进的生产设备和 技术,实现智能化 和自动化生产,提 高生产效率,降低
政府和企业将更加重视红霉素发酵工艺的环保和可持续发展,并采取有效措施推进相 关技术的研发和应用。
感谢您的观看
汇报人:XX
红霉素发酵的工艺流程
菌种制备:选择适合的菌种,进行 种子制备和扩大培养
产物提取:通过离心、过滤等方法 收集菌体,再通过萃取、沉淀等方 法提取红霉素
添加标题
添加标题
添加标题
添加标题
发酵培养:将菌种接种至发酵罐中, 在适宜的温度、pH值和溶氧等条 件下进行发酵培养
精制与干燥:对提取的红霉素进行 精制和干燥,得到最终产品
红霉素发酵工艺控制及 操作
汇报人:XX
目录
添加目录标题
01
红霉素发酵工艺简介
02
红霉素发酵的原料及 设备
03
红霉素发酵的过程控 制
04
红霉素发酵的操作步 骤
05
红霉素发酵的异常处 理及安全防护
06
添加章节标题
红霉素发酵工艺 简介
红霉素发酵的基本原理
红霉素发酵的微生物:利用红霉属微生物进行发酵 发酵过程:微生物在适宜的营养条件下进行生长繁殖,产生红霉素 代谢途径:微生物通过代谢途径产生红霉素,涉及多个酶促反应 影响因素:温度、pH、溶氧、培养基成分等对红霉素发酵的影响
生物工程工厂设计-物料衡算
红霉素生产物料衡算1、红霉素发酵工艺流程示意图工艺流程如下:沙土管包子母瓶斜面培养子瓶斜面培养种子培养液小罐种子液中罐种子液大罐发酵放罐放罐发酵液预处理碱化〔使PH为8.0-8.4〕板框过滤滤液〔加萃取溶媒〕轻液结晶洗水枯燥成品检验合格产品包装〔不合格产品回收)。
一般红霉素工艺如下列图所示:空气原料孢子加压配料斜面培养冷却发酵摇瓶培养除水碱化一级种子过滤萃取二级种子豆油离心丙醇成盐淋洗烘干包装销售图1:红霉素生产工艺流程示意图2、工艺技术指标与根底数据〔1〕主要技术指标见表表1:红霉素发酵工艺主要技术指标表2:培养基配比〔质量分数〕:〔2〕发酵罐补料情况丙醇:发酵后24小时开场补,开场补之前要取样观察菌丝状态,菌丝需呈网状、展开,发酵液粘度达6S左右,补料前半小时去无菌样品,与正点取样相差1~2小时,24~32h时间每4h补12L丙酮,33~144h每小时补6L。
糖:糖可以通过菌体代谢后而调节发酵液的PH值,也可以做为红霉素放线菌的代谢碳源,大罐发酵30h时取样测PH值,大罐补淀粉液化糖1.7t,淀粉0.3kg,在80°C左右保温液化30min,一次消一到两个罐的淀粉液化糖。
油:本发酵工艺补油主要为豆油。
发酵后24开场补,其实速率为4L/h,以后看液面调整补油速度。
假设液面高那么应提前2h左右,每4h补6L,放罐前一个班每4h补10L。
油用于消泡和提高碳源。
水:放罐前两个班补水,每吨水加泡敌1L,玉米浆10L,30h左右根据液面补500-800t纯水,如果发酵过程中发酵液体积偏少,每班需补100-200L纯水。
全料:6-8小时根据液面下降情况可补全料,补前半小时取样。
3、培养基总物料衡算〔1〕放罐成熟发酵液量:根据产品质量µ1、放罐发酵单位µ2、提取总收率n 、年生产天数t 、倒罐率r ,可计算生产1000kg 成品所需的发酵液量。
V 0〔2〕放罐成熟发酵液量V 0分为三个局部组成: 底料 V 01=160×〔1-i 0-j 0)=160×76%=121.6〔m 3〕 种\液量 V 02=160×j 0=160×14%=22.4〔m 3〕 补料量 V 03=160×i 0=160×10%=16〔m 3〕〔3〕二级种子罐种液量 V 1由两局部组成:底料 V 11= V 02÷〔1- s 1〕×〔1-j 1〕=22.4÷0.90×70%=17.42〔m 3〕 种液量 V 12= V 02÷〔1- s 1〕×j 1=22.4÷0.90×30%=7.47〔m 3〕〔4〕一级种子干种液量V 2由两局部组成:底料 V 21= V 12÷(1-s 2)×〔1-j 1〕=7.47÷0.9×65%=5.39〔m 3〕 接种量 V 22= V 12÷(1-s 2)×j 2=7.47÷0.9×35%=2.99〔m 3〕)(160)03.01(84.0106000107501000)1(100036621m r n =-⨯⨯⨯⨯⨯=-⨯⨯⨯=μμ〔5〕发酵罐底料的物料用量:发酵罐培养基配方×V01÷(1-s0)×ρ0淀粉:m01=5%×V01÷(1-s0)×ρ0=5%×121.6÷0.9×1050=7093.3〔kg〕豆粉:m02=2.2%×V01÷(1-s0)×ρ0=2.2%×121.6÷0.9×1050=3121.1〔kg〕玉米粉:m03=1.8%×V01÷(1-s0)×ρ0=1.8%×121.6÷0.9×1050=2553.6〔kg〕氯化钠:m04=0.65%×V01÷(1-s0)×ρ0=0.65%×121.6÷0.9×1050=922.1〔kg〕豆油:m05=0.50%×V01÷(1-s0)×ρ0=0.50%×121.6÷0.9×1050=709.3〔kg〕碳酸钙:m06=0.65%×V01÷(1-s0)×ρ0=0.65%×121.6÷0.9×1050=922.1〔kg〕碳酸铵:m07=0.18%×V01÷(1-s0)×ρ0=0.18%×121.6÷0.9×1050=255.4〔kg〕生物氮:m08=0.80%×V01÷(1-s0)×ρ0=0.80%×121.6÷0.9×1050=1134.9〔kg〕糊精:m09=0.00%×V01÷(1-s0)×ρ0=0〔kg〕〔6〕发酵罐补料物料用量:发酵罐补料培养基配方×V03÷(1-s0)×ρ0m31=4.38%×V03÷(1-s0)×ρ0=4.38%×16÷0.9×1050=817.6〔kg〕豆粉:m32=3%×V03÷(1-s0)×ρ0=3%×16÷0.9×1050=560〔kg〕玉米粉:m33=1.25%×V03÷(1-s0)×ρ0=1.25%×16÷0.9×1050=233.3〔kg〕氯化钠:m34=1.63%×V03÷(1-s0)×ρ0=1.63%×16÷0.9×1050=304.3〔kg〕豆油:m35=0.88%×V03÷(1-s0)×ρ0=0.88%×16÷0.9×1050=164.3〔kg〕碳酸钙:m36=0.063%×V03÷(1-s0)×ρ0=0.063%×16÷0.9×1050=11.76〔kg〕碳酸铵:m37=0.175%×V03÷(1-s0)×ρ0=0.175%×16÷0.9×1050=32.7〔kg〕生物氮:m38=0.00%×V03÷(1-s0)×ρ0=0〔kg〕糊精:m39=4.5%×V03÷(1-s0)×ρ0=1.5%×16÷0.9×1050=280〔kg〕〔7〕二级种子罐底料的物料用量:二级种子罐培养基配方×V11÷(1-s1)×ρ1淀粉:m11=1.8%×V11÷(1-s1)×ρ1=1.8%×17.42÷0.9×1150=400.7〔kg〕m12=1.5%×V11÷(1-s1)×ρ1=1.5%×17.42÷0.9×1150=333.9〔kg〕玉米粉:m13=0.60%×V11÷(1-s1)×ρ1=0.60%×17.42÷0.9×1150=133.5〔kg〕氯化钠:m14=0.30%×V11÷(1-s1)×ρ1=0.30%×17.42÷0.9×1150=66.8〔kg〕豆油:m15=0.60%×V11÷(1-s1)×ρ1=0.60%×17.42÷0.9×1150=133.5〔kg〕碳酸钙:m16=0.50%×V11÷(1-s1)×ρ1=0.50%×17.42÷0.9×1150=111.3〔kg〕碳酸铵:m17=0.12%×V11÷(1-s1)×ρ1=0.12%×17.42÷0.9×1150=26.7〔kg〕生物氮:m18=0.00%×V11÷(1-s1)×ρ1=0〔kg〕糊精:m19=1.2%×V11÷(1-s1)×ρ1=1.2%×17.42÷0.9×1150=267.1〔kg〕〔8〕一级种子罐底料的物料用量:一级种子罐培养基配方×V21÷(1-s2)×ρ2 淀粉:m21=1.8%×V21÷(1-s2)×ρ2=1.8%×5.39÷0.9×1200=129.36〔kg〕豆粉:m22=1.5%×V21÷(1-s2)×ρ2=1.5%×5.39÷0.9×1200=107.8〔kg〕m23=0.60%×V21÷(1-s2)×ρ2=0.60%×5.39÷0.9×1200=43.12〔kg〕氯化钠:m24=0.30%×V21÷(1-s2)×ρ2=0.30%×5.39÷0.9×1200=21.56〔kg〕豆油:m25=0.60%×V21÷(1-s2)×ρ2=0.60%×5.39÷0.9×1200=43.12〔kg〕碳酸钙:m26=0.50%×V21÷(1-s2)×ρ2=0.50%×5.39÷0.9×1200=35.93〔kg〕碳酸铵:m27=0.12%×V21÷(1-s2)×ρ2=0.12%×5.39÷0.9×1200=8.6〔kg〕生物氮:m28=0.00%×V21÷(1-s2)×ρ2=0〔kg〕糊精:m29=1.2%×V21÷(1-s2)×ρ2=1.2%×5.39÷0.9×1200=86.2〔kg〕〔9〕总物料用量:发酵罐补料物料用量+发酵罐补料物料用量+二级种子罐底料的物料用量+一级种子罐底料的物料用量淀粉:m1=m01+m31+m11+m21=8440.9〔kg〕豆粉:m2=m02+m32+m12+m22=4122.7〔kg〕玉米粉:m3=m02+m32+m12+m22=2963.6〔kg〕氯化钠:m4=m02+m32+m12+m22=1314.7〔kg〕豆油:m5=m02+m32+m12+m22=1050.3〔kg〕碳酸钙:m6=m02+m32+m12+m22=1081.1〔kg〕碳酸铵:m7=m02+m32+m12+m22=323.4〔kg〕生物氮:m8=m02+m32+m12+m22=1134.9〔kg〕糊精:m9=m02+m32+m12+m22=633.3〔kg〕根据年生产1000kg成品发酵所需的原材料与其他物料的衡算结果,可求得年生产16000t成品所需的总物料、每日用量,以与大罐培养基,大罐补全料,中罐培养基和小罐培养基各自所需的物料总量、每日用量。
红霉素发酵工艺
红霉素的发酵工艺产生菌:Streptomyces erythreus 2-9#一.摇瓶部分培养基:1.琼脂(斜面或平板)培养基(%):淀粉 1.0 , 玉米浆0.5 , 蛋白胨0.3 , (NH4)2SO4 0.3 , NaCL 0.2 ,CaCO3 0.3 , pH 7.0 , 琼脂 2.2 .培养条件:37ºC 8±1天。
2.种子培养基(%):淀粉 1.0 , 糊精 2.0 , 葡萄糖 1.0 , (NH4)2SO4 0.25 , 蛋白胨0.3 ,酵母粉0.3 , 黄豆饼粉 2.5 , NaCL 0.3 , MgSO40.025 , KH2PO40.025 ,CaCO30.6 , pH自然(6.7) .装量:25ml/250ml三角瓶培养条件:28ºC 46±2小时,转速220-240 rpm.3.发酵培养基(%):淀粉 4.0 , 糊精 2.0 , 葡萄糖 3.0 , 黄豆饼粉 3.0 ,(NH4)2SO4 0.15 , NaCL 0.2 , MgSO40.02 , KH2PO40.02 , CaCO30.6 ,pH自然(7.0).接种量:10%装量:25ml/250ml三角瓶培养条件:28ºC 7天, 转速220-240 rpm.前体物的添加:基础料中加入正丙醇0.4%, 第二天长浓后,每天24小时补加0.2%,补至144小时.效价在4500-5000 u/ml 以上。
4.生物效价的测定:培养基(%):蛋白胨 1.0 , 牛肉膏0.3 , 酵母膏0.4 , 葡萄糖0.3 , NaCL 0.5 , 琼脂2.2 (蛋白胨、牛肉膏、酵母膏用热水溶解),pH7.3±0.1。
检定菌:短小芽孢杆菌。
二.标准曲线的制作:剂比:1:0.849精密称取红霉素标准品0.0563g,加1ml乙醇溶解,定容于500ml容量瓶中(用灭菌水)。
(1000u/ml)1.精密吸取0.283,0.333,0.392,0.461,0.5425,0.638,0.7505,0.883,0.50ml于50ml 容量瓶中,用缓冲液定容,各瓶单位为P k,按序编号。
红霉素的生产工艺
红霉素的生产工艺红霉素(Erythromycin,简称EM)是一种广谱抗生素,可广泛用于临床治疗感染性疾病。
红霉素的生产工艺主要包括菌种培养、发酵、提取纯化等步骤。
下面将详细介绍红霉素的生产工艺。
首先是菌种培养。
红霉素的生产常用菌株为Streptomyces erythreus(简称SE),通过悬浮培养进行菌株的扩大。
菌种保存通常采用冻干保存或低温保存。
其次是发酵过程。
将所选的菌株接种到培养基中,利用合适的发酵罐进行发酵。
发酵过程通常需要控制温度、酸碱度、通气等条件。
培养基的配方一般包括碳源、氮源、矿物质等成分。
碳源可以选择葡萄糖、麦芽糖等;氮源可以选择酵母浸出物、大豆蛋白等;矿物质可以选择磷酸、硫酸、钠氯化物等。
在发酵过程中,还可以添加一些辅料,如发酵活性调节剂、表面活性剂、抗泡剂等,以提高发酵效果。
发酵过程一般分为两个阶段:生长阶段和产物积累阶段。
在生长阶段,菌株快速繁殖并合成一些前体物质;在产物积累阶段,菌株进入稳定生长期,产生红霉素。
然后是红霉素的提取和纯化。
经发酵后的培养液中含有大量的菌体、杂质和一部分红霉素。
首先,通过离心等方法将菌体和培养液分离,得到菌体酱,其中含有红霉素。
接下来,采用有机溶剂提取法,如乙醇、丙酮等,将红霉素从菌体酱中提取出来。
然后,再通过一系列的分离、洗涤、结晶等工艺步骤,对红霉素进行纯化。
其中的分离步骤通常包括覆盖层法、溶剂萃取、蒸发结晶等。
最后,经过提取和纯化后得到纯度较高的红霉素。
为了达到不同的药物形式要求,还可以对红霉素进行进一步的加工。
如通过微胶囊化、包衣等工艺对红霉素进行包装,以便于制剂制备和使用。
制得的红霉素最终可以应用于药物制剂的生产,如口服片剂、胶囊、注射剂等。
总结起来,红霉素的生产工艺主要包括菌种培养、发酵、提取纯化等步骤。
通过对菌株的培养和发酵,得到发酵液,再通过提取和纯化步骤得到纯度较高的红霉素。
红霉素的生产工艺对于药物的质量和产量都具有重要影响,需要严格控制各个环节的条件和操作。
红霉素的发酵生产工艺
厌氧塔:甲烷细菌利用乙酸或氢气和二氧化碳形成CH4。
曝气沉淀池:将空气中的氧强制溶解到混合液中的过程。
废水中有机物的回收处理工段:主要是丙 酮的回收,初馏和精馏两道工序。
废液贮罐→粗馏再沸器→粗馏塔→冷却 器→精馏塔→精馏再沸器→精贮藏罐→冷 凝器→冷却塔→冷凝器→贮罐→装桶
发 酵 液
碱 化
加4% 硫酸锌
板
框
调节
过
PH
滤
溶媒 萃取
溶媒 再生 套用
废水 排放
离心 机分
离
晶体 烘干
过
加入
溶媒
滤
NaSCN
相
主要缺点为:
a.需要大量絮凝剂 红霉素过滤时消耗的絮凝剂主要是硫酸锌,并且硫
酸锌作为重金属,过滤菌渣不容易处理。 b.萃取工艺成本较高 红霉素萃取工艺需要消耗大量的复合溶媒,溶媒需
此外,对支原体、放线菌、螺旋体、立 克次体、衣原体、奴卡菌、少数分枝杆菌 和阿米巴原虫有抑制作用。金黄色葡萄球 菌对本品易耐药。
作用机制主要是与 糖核蛋白体的移位过程,妨碍肽链增长, 抑制细菌蛋白质的合成,系抑菌剂
适应症
适用于支原体肺炎、沙眼衣原体引起的新生儿 结膜炎、婴儿肺炎、生殖泌尿道感染(包括非淋 病性尿道炎)、军团菌病、白喉(辅助治疗)及 白喉带菌者、皮肤软组织感染、百日咳、敏感菌 (流感杆菌、肺炎球菌、溶血性链球菌、葡萄球 菌等)引起的呼吸道感染(包括肺炎)、链球菌 咽峡炎、李斯德菌感染、风湿热的长期预防及心 内膜炎的预防、空肠弯曲菌肠炎,以及淋病、梅 毒、痤疮等。
红霉素的发酵 生产工艺
主要内容
1、红霉素的简介 2、红霉素的发酵工艺流程 3、红霉素发酵工艺中的废水及废渣的处理
红霉素发酵工艺设计
2020/2/29
汇报内容有以下几个方面
一、本设计的任务要求及基本资料 二、流程设计及操作工艺分析 三、设计计算及结果分析 四、工艺流程图与设备布置设计
五、设计问题总结与评价、建议
任务及要求
• 设计项目建设规模和产品方案: 建设规模:年产20吨红霉素碱。 产品方案:发酵液浓度为5000u/mL,产品纯度为98.5%以上红霉素
(3)尽量减少三废排放量,有合理的三废处理措施。本设计完全满足要求。
(4)安全生产,以保证人身和设备的安全。
(5)生产过程几乎全部采用的机械化,部分系统自动化。能稳产、高产。
砂土孢子
孢子培养 34℃10天
母斜面孢子
孢子培养 34℃9天
种子培养
子斜面孢子
一级培养液
35℃60-70h
提取与精制
发酵液
发酵 31℃150h
根据氨盐利用后,残留物质的性质,把无机氮源可分为生理酸性物质和生理碱性物 质。生理酸性物质是代谢后能产生酸性物质,如(NH4)2SO4利用后,产生硫酸。生 理碱性物质是代谢后能产生碱性物质,如硝酸钠利用后,产生氢氧化钠。生产中常 常加入无机氮源来调节pH值,一举两得。
培养基的确定
• 无机盐和微量元素: 无机盐和微量元素是生理活性物质的组成成分或具有生理调节 作用,磷(核酸)、硫、铁(细胞色素)、镁、钙(调节细胞膜透性)、锰、铜、 锌(辅酶或激活剂)、钴、钾、钠(调节渗透压)、氯。一般低浓度起促进作用, 高浓度起抑制作用。
• (1)间歇灭菌:将配制好的培养基同时放在发酵罐或其他装置中, 通入蒸汽将培养基和所用设备一起进行加热灭菌的过程,也称实罐 灭菌。
• (2)连续灭菌(又称连消):将培养基在发酵罐外通过连续灭菌装 置进行加热、保温和冷却而进行灭菌。
红霉素的发酵工艺流程
红霉素的发酵工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!红霉素是一种广泛应用于医药和兽药领域的抗生素,其发酵工艺是通过微生物发酵生产得到的。
红霉素的发酵工艺及控制
06 未来展望与研究方向
提高红霉素产量的研究
优化培养基组成
通过调整碳源、氮源、无机盐等成分的比例,提高红霉素产量。
优化发酵条件
研究温度、pH、溶氧浓度等发酵条件对红霉素产量的影响,并优 化这些条件以提高产量。
基因工程技术的应用
通过基因工程技术对菌种进行改造,提高其红霉素合成酶的活性, 进而提高产量。
详细描述
在红霉素发酵过程中,随着菌体的生长和代 谢产物的合成,营养物质不断消耗。因此, 需要适时地补加营养物质,以保证菌体的正 常生长和代谢。补料的种类和量需要根据实 际情况进行合理控制,以实现高产、高效、 低耗的发酵目标。同时,补料控制也需要考
虑对温度、pH值、溶氧等其他因素的影响 。
04 红霉素发酵过程的优化
pH值控制
通过添加酸或碱调节pH值,保持适宜 的发酵环境。
发酵产物提取
分离纯化
通过离心、过滤等技术将红霉素从发酵液中分离出来。
结晶干燥
将分离得到的红霉素进行结晶和干燥处理,得到高纯度的红霉素产品。
03 红霉素发酵过程的控制策 略
温度控制
总结词
温度是影响红霉素发酵过程的重要因素,通过控制温度可以调节微生物的生长和 代谢。
05 红霉素发酵过程的污染控 制
杂菌污染的控制
要点一
杂菌污染的来源
在红霉素发酵过程中,杂菌污染主要来源于空气、设备、 原料、操作人员和环境等。
要点二
控制措施
为防止杂菌污染,应定期对发酵设备进行清洗和消毒,保 持操作环境的清洁,对原料进行严格的检查和控制,加强 操作人员的卫生管理。
噬菌体污染的控制
在适宜的温度和pH值条件下,有利于红 霉素产生菌的生长和代谢,从而提高产量 。
红霉素的发酵生产工艺[行业特制]
一类荟萃
16
基于红霉素原有提取工艺的缺点,三达
公司立足自身资源,整合了膜技术、连续 离交技术以及EA(有机溶媒萃取吸收)技 术,开发出了一套全新的红霉素提取新技 术,新工艺采用超滤膜、树脂以及纳滤膜 技术来浓缩和纯化红霉素料液,替代了原 有的板框+萃取来浓缩料液的工艺,可以 明显的降低红霉素生产成本,再结合新工 艺的后续纯化措施,可有效的提高红霉素 产品的质量,提高产品的竞争力。
14
目前市场上比较常用的是用硫氰酸红霉素其原有工艺如下
发 酵 液
碱 化
加4% 硫酸锌
板
框
调节
过
PH
滤
溶媒 萃取
溶媒 再生 套用
废水 排放
离心 机分
离
晶体 烘干
过 滤
一类荟萃
加入 NaSCN
溶媒
相
15
主要缺点为:
a.需要大量絮凝剂 红霉素过滤时消耗的絮凝剂主要是硫酸锌,并且硫
酸锌作为重金属,过滤菌渣不容易处理。 b.萃取工艺成本较高 红霉素萃取工艺需要消耗大量的复合溶媒,溶媒需
一类荟萃
17
滤渣 脱水干燥
肥料
发酵液 超滤
连续立交除杂 纳滤浓缩
加碱或NaSCN
透析液
废液排放
三达公司红霉素提取 新工艺
晶体 丙酮溶解 加水再结晶
一类荟萃
结晶过滤烘干
水溶液
EA
工
回收丙酮
序
18
废水处理
滞留 5小时
栅格
红霉素的发酵生产工艺培训教材ppt
红霉素的发酵生产工艺培训教材ppt优 秀课件 精品课 件培训 课件培 训教材
滤渣 脱水干燥
肥料
发酵液 超滤
连续立交除杂 纳滤浓缩
加碱或NaSCN
透析液
废液排放
三达公司红霉素提取 新工艺
红霉素的发酵生产工艺培训教材ppt优 秀课件 精品课 件培训 课件培 训教材
药理作用
本品为大环内酯类抗生素,抗菌谱与青霉素近 似,对革兰阳性菌,如葡萄球菌、化脓性链球菌、 绿色链球菌、肺炎链球菌、粪链球菌、溶血性链球 菌、梭状芽孢杆菌 、白喉杆菌、炭疽杆菌等有强 的抑制作用。
对革兰阴性菌,如淋球菌、螺旋杆菌、百日咳 杆菌、布氏杆菌、军团菌、脑膜炎双球菌以及流感 嗜血杆菌、拟杆菌、部分痢疾杆菌及大肠杆菌等也 有一定的抑制作用。
主要缺点为:
a.需要大量絮凝剂 红霉素过滤时消耗的絮凝剂主要是硫酸锌,并且硫
酸锌作为重金属,过滤菌渣不容易处理。 b.萃取工艺成本较高 红霉素萃取工艺需要消耗大量的复合溶媒,溶媒需
要大量的酸碱清洗再生,造成溶媒中残留红霉素 的损耗 c.离心机投资运行成本较高 萃取时需要大量的离心机进行离心分离,投资大能 耗高,并且由于是在溶媒环境中运行,非常危险。
红霉素的几个代表药品
红霉素肠 溶胶囊
琥乙红霉素
红霉素
罗红霉素
红霉素眼药 膏
红霉素软膏
红霉素生产工艺
1 空气净化 2 原料配比→种子罐 → 发酵罐 →发酵
原料:
碳源:玉米淀粉、食用葡萄糖 氮源:硫酸铵、 氨水C/N=1:2
• 豆饼粉 碳酸钙、磷酸二氢钾、硫酸镁 丙酮、 水(工业用水2.85元/吨) 干酵母、淀粉酶、 糖化酶
红霉素的发酵工艺及控制[1]1
学院:生科院 班级:生物技术093班 班级:生物技术093班
目录
1、相关概念 2、生产工艺 3、原料 4、所需设备及其工作原理
相关概念
• 红霉素,由链霉菌Stretomyces erythreus所产 生,是一种碱性抗生素。其游离碱供口服用,乳 糖酸盐供注射用。此外,尚有其琥珀酸乙酯(琥 乙红霉素)、丙酸酯的十二烷基硫酸盐(依托红 霉素)供药用。
溶媒萃取
• 萃取溶剂:醋酸丁酯、辛醇、煤油。 • 萃取设备及方式:碟片式离心机 多级逆流萃取 • 溶剂和料液的添加量控制:按照一定的比例 由转 子流量计控制流量。 • 多级逆液提取(收率98.8%) 每组第一台的离心 机(PH在10左右) 第 二台离心机(PH在10.4左 右) 二级缓冲罐 (回第一台离心机) • 乳化后→富溶→成盐(磷酸盐)→结晶罐(结 晶出 硫氰酸红霉素)→真空抽滤掉母液→烘干 (50℃纯 水洗3遍,离心机加98%丁酯干燥)
• 空气的净化:采风塔(含滤网) →除 过滤器(五纺布)→空气压缩机(无 油润滑空压机),温度升高到 135℃→ 冷凝器 →旋风分离器 • 发酵车间前:先经旋风分离器除去冷 凝水滴 →加热器(除湿)→ 经空气粗 过滤器→精过滤器(聚胼风乙烯膜) 过滤→发酵罐
原料: 碳源:玉米淀粉、食用葡萄糖 氮源: 硫酸铵、氨水C/N=1:2 • 豆饼粉 碳酸钙、磷酸二氢钾、硫酸 镁 丙酮、水(工业用水2.85元/吨) 干酵母、淀粉酶、糖化酶 • 菌种及活化菌种: 红色链霉菌 红色 链霉菌的菌丝体 红色链霉菌的孢子 菌种活化
4 设备及其工作原理
• • • • • 发酵罐:机械搅拌通风发酵罐 发酵罐灭菌:实消 装料系数:75% 补料系统:采用的是电脑在线监控控制补料系统 发酵接种方法:火圈接种法、压力差法。 发酵周 期:一级1-2天,二级种子2天,三级 发酵2-3 天,周期6-7天。 • 发酵温度:32-33℃ • 发酵终点:PH升高、粘度增加、效价不再提 高
红霉素生产工艺
三:结晶
• 向溶媒相加入NaSCN,使红霉素以硫氰酸红霉素形式结晶出来, 之后经过烘干,再溶解在丙酮中,然后结晶即可得到产品红霉素 •硫 •氰 •酸 •红 •霉 •素
• 溶媒结晶指的是原料药最后纯化的方法。比如说对于头孢类原料药, 如果注明溶媒结晶就是指原料药最后的纯化步骤是通过溶解度的差 异(比如药物在同一种溶剂中由于温差带来的溶解度变化;或者由 于混合溶剂中的溶剂比例改变带来的极性差异引起的溶解度变化), 先将原料药制成溶液,再调节以上性质使之析出(比如说先将原料 药溶于水,再向其中加入有机溶剂,使得药物溶解度变小而析出), 这样的纯化手段称之为溶媒结晶。
红霉素发酵 工艺
生物093班 第四组
• 一:发酵工艺 • 二:提炼工艺 • 三:结晶工艺 • 四:废水处理 • 五:改进提取工艺
• 一:发酵
• 菌种保藏方法有砂土保藏和冷冻干燥保藏。 • 保藏菌种→斜面培养基→一级种培养是指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过摇瓶 及种子罐逐级扩大培养而获得一定数量和质量的纯种过程。
超滤法工艺流程
• 首先发酵液放罐后,用碱调节pH到8,加入0.03%甲醛溶液,进行 超滤过滤;膜超滤出来的滤液已经剔除了大分子颗粒及蛋白,再经 过连续离子交换树脂脱色和进一步纯化后,用纳滤膜进行浓缩,当 浓缩液效价达到20000u/ml,进后工艺处理,而纳滤透析液可以 返回超滤工段作为超滤加水套用,可大大降低废水排放量,节约资 源和污水处理成本;浓缩液加入一定量的碱或NaSCN,可以得到 红霉素碱或者硫氰酸红霉素结晶,晶体过滤后,再用丙酮溶解,去 除不溶物,在丙酮液中加入水使红霉素结晶出来,晶体烘干得到成 品。
种子扩大培养是指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程。 超滤法采用超滤膜、树脂以及纳滤膜技术来浓缩和纯化红霉素料液,替代了原有的板框+萃取来浓缩料液的工艺,可以明显的降低红霉素生产成本,再结合新工艺的后续纯化措施 ,可有效的提高红霉素产品的质量,提高产品的竞争力。 溶媒结晶指的是原料药最后纯化的方法。 三级发酵罐160h,温度32±2 ℃,罐压0. 发酵液放罐后,经碱化和絮凝处理后,用板框过滤,滤液再用复合溶媒萃取,溶媒相加入硫氰酸钠和冰醋酸,使硫氰酸红霉素结晶出来,晶体经过洗涤、烘干,既得硫氰酸红霉素 。 压滤机除了优良的分离效果和泥饼高含固率外,还可提供进一步的分离过程:在过滤的过程中可同时结合对过滤泥饼进行有效的洗涤。 红霉素提取工艺中常用到的工艺是板框过滤加溶媒萃取萃取的老工艺,此工艺一般实际收率可以在75-80%之间,但由于生产中需要么消耗大量的硫酸锌和溶媒,菌渣处理困难, 造成提取成本昂贵,污染较大,企业生产成本居高不下,竞争力日益下降。 当悬浮液(或乳浊液)流过碟片之间的间隙时,固体颗粒(或液滴)在离心机作用下沉降到碟片上形成沉渣(或液层)。 首先发酵液放罐后,用碱调节pH到8,加入0. 而滤液部分则渗透过滤布,成为不含固体的清液。 三级发酵罐160h,温度32±2 ℃,罐压0. 三级发酵罐160h,温度32±2 ℃,罐压0. 发酵过程中如需补料,可通过如下装置进行 悬浮液(或乳浊液)由位于转鼓中心的进料管加进转鼓。 膜超滤出来的滤液已经剔除了大分子颗粒及蛋白,再经过连续离子交换树脂脱色和进一步纯化后,用纳滤膜进行浓缩,当浓缩液效价达到20000u/ml,进后工艺处理,而纳滤透析液 可以返回超滤工段作为超滤加水套用,可大大降低废水排放量,节约资源和污水处理成本; 从而有价值的物质可得到回收并且可以获得高纯度的过滤泥饼。 红霉素生产中一般都用有机氮源,其中以黄豆饼粉、玉米浆为最佳。 种子扩大培养是指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程。 种子扩大培养是指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程。 板框过滤,收集滤液,滤液通过管道输入收集罐中,之后通过下图设备进行两级逆流萃取,使红霉素从水相转移到溶媒相。 悬浮液(或乳浊液)由位于转鼓中心的进料管加进转鼓。 由于黄豆饼粉菌时泡沫较多,故一、二级种子罐及后期补料用部分花生饼粉代替,但全用花生饼粉则最终产品会出现带会现象。
红霉素的制备工艺
发酵液预处理之前通过料管道先进行预处理(沉淀加碱调节PH值,加絮凝剂沉淀处理)之后通入板框过滤机过滤。
板框过滤后,收集滤液,滤液通过管道输入收集罐中,之后通过下图设备进行两级逆流萃取,使红霉素从水相转移到溶媒相。使用蝶式离心机离心处理。
向溶媒相加入NaSCN,使红霉素以硫氰酸红霉素形式结晶出来,之后经过烘干,再溶解在丙酮中,然后结晶即可得到产品红霉素。
成品
废渣:主要是培养基中的营养废渣和发酵后产生的菌渣。
废气:主要指在发酵过程中产生的有异味、有害的气体。
废水:主要是菌渣的分离、纯化、精制及原材料和设备的清洗生产车间地面的冲洗所产生的废水。
在早期主要采用“混合稀释,再生化处理”的处理方法,现多采用 “预处理—厌氧—好氧”的处理方法。
用微波干燥法干燥湿料废渣,至干废渣的含水量为8%~12%,用复合蛋白酶(木瓜蛋白酶和中性蛋白酶)酶解得到的干废渣在70℃~75℃温度下进行灭酶10~15分钟。酶解液加工成多肽和氨基酸产品或酶解残渣晾晒干制成花卉营养土 。
(4) 、温度 发酵全过程温度控制在31℃ (5) 、pH 整个发酵过程必须保持pH6.6~7.2 (6) 、中间补料 发酵过程中还原 糖应控制在1.0% ~1.4%范围内
、发酵液粘度的控制 、泡沫与消沫 、污染杂菌的控制 、染菌处理 、发酵时间 整个发酵时间150~160h
汇报人姓名
缓慢加入用BA稀释至20%~30%的乳酸pH6.0加完后继续搅拌0.5h
红霉素乳酸盐湿晶体
[提取、离心分离]
适量BA洗涤,55℃干燥
二级BA萃取液
[溶解]
在搅拌下将红霉素乳酸盐加入10%丙酮水溶液中溶解,pH6.0
红霉素溶液
[碱化转化]
加氨水碱化,pH10水解温度55℃
年产330吨红霉素工厂的初步设计
红霉素是一种广谱抗生素,可以用来治疗多种感染性疾病。
根据要求,我将就年产330吨红霉素的工厂初步设计进行以下阐述。
1.工厂布局设计为了保证生产的高效性和顺畅性,我们建议采用流水线生产的方式。
将工厂划分为不同的区域,如原料处理区、发酵区、提取区、分离区、精制区和成品包装区等。
同时,需要合理安排设备和管道的布局,以便于物料的高效输送和操作人员的安全性。
2.原料处理区在红霉素的生产过程中,需要使用一些原料,如淀粉、葡萄糖等。
在原料处理区,应该设置相关的设备,如原料仓库、混合设备、加热设备等,以确保原料的质量和加工的高效性。
3.发酵区红霉素的生产需要通过微生物的发酵过程完成。
在发酵区,应该配置大型发酵罐、搅拌设备等,以提供适宜的生长环境和养分,加速微生物的繁殖和产生红霉素的过程。
4.提取区在发酵完成后,需要对发酵液进行提取。
在提取区,应该设置相应的设备,如过滤设备、离心机等,以分离红霉素和废液。
同时,提取区还应该配置适当的储存设备,以便于存储红霉素和解决废液处理的问题。
5.分离区在提取过程完成后,需要对提取液进行分离红霉素纯化处理。
在分离区,建议配置膜分离设备、冷冻设备等,以确保红霉素的纯度和质量。
6.精制区在分离和纯化后,红霉素还需要进行精制处理。
在精制区,应该配置再结晶设备、溶剂回收设备等,以提高红霉素的纯度和提高产出。
7.成品包装区最后,红霉素需要进行包装和包装,以便于运输和销售。
在成品包装区,应该配置自动包装设备、包装线等,以提高包装的效率和质量。
除了以上区域,还应该规划好工厂的实用设施,如质检实验室、储存设施、办公区域等,以满足生产和管理的需求。
总结起来,年产330吨红霉素的工厂初步设计包括原料处理区、发酵区、提取区、分离区、精制区和成品包装区等。
在设计中需要充分考虑生产的高效性、原料的质量和红霉素的纯度等因素。
同时,还需要合理布局设备和管道,以提高生产效率和操作安全性。
最后,还需要规划好工厂的实用设施,以满足生产和管理需求。
红霉素的发酵工艺及提取工艺
最新编辑ppt
7
红霉素的提取工艺
在碱性条件下,红霉素一游离碱的形式存在,可容于有 机溶剂中。在碱性的条件下,可与一些酸形成盐。目前, 国内外主要采用有机溶剂萃取或大孔树脂吸附进行提取。
最新编辑ppt
8
红霉素的提取工艺
预处理过滤
提取离心分离
发酵液
滤洗液
BA萃取液
甩滤、洗涤、干燥
红霉素乳酸盐湿晶体
干晶体
溶解
碱化转化
红霉素溶液
红霉素碱湿晶体
分离、洗涤、干燥
红霉素碱成品
最新编辑ppt
9
结构式及药剂
红霉素药物粉剂
红霉素结构式
罗红霉素粉剂
最新编辑ppt
10
有关药物
罗红霉素分散片
红霉素软膏制品
最新编辑ppt
5
红霉素的发酵工艺
(3) 培养条件: (1) 温度:红霉素发酵采用31℃恒温培养。温度过 高时,会产生红霉素C,红霉素C与红霉素A结构相似, 但毒性却是红霉素A的两倍, (2)pH:整个发酵过程中pH维持在6.6~7.2,菌丝生 长良好,发酵水平稳定。红色糖多孢菌最适生长pH为 6.7~7.0,而红霉素合成的最适 pH为6.7 ~6.9。
最新编辑ppt
4
红霉素的发酵工艺
(2)培养基 发酵培养基最适合的碳源为蔗糖、其次为葡萄糖、淀粉、糊
精。生产上常用葡萄糖和淀粉为混合碳源,效果与使用葡萄糖相 似。
氮源的代谢对红霉素合成影响很大,当适于菌体生长的氮源 耗尽时,菌体才停止生长并迅速合成红霉素。红霉素生产中一般 都用有机氮源,其中以黄豆饼粉、玉米浆为最佳。由于黄豆饼粉 菌时泡沫较多,故一、二级种子罐及后期补料用部分花生饼粉代 替,但全用花生饼粉则最终产品会出现带会现象。在发酵培养基 中加少量硫酸铵,可促进菌丝生长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学反应与构效关系分析
如何通过“修饰结构”达到“改良药效”的目标?基糖和红霉糖缩合而成的碱性苷。
⑵红霉内酯环为14个原子的大环,环内无双键,偶数碳原子上共有六个甲基,在9位上有一个羰基,C3、C5、C6、C11、C12共有五个羟基。
⑶内酯环的C3通过氧原子与红霉糖相连,C5通过氧原子与去氧氨基糖连结(苷键)。
3.红霉素的理化特性
⑴物理特性
⑵化学特性:
成盐反应:能与酸结合成盐,盐易溶于水。
水解反应:在酸性条件及碱性条件
下均可水解。
酯化反应:可与有机酸生成酯类衍生物。
基团化反应:斐林、杜伦反应。
2.4二硝基苯肼反应。
4. 红霉素的生物合成
红霉素是由红色糖多孢菌在特定的培养条件下所产生的一种弱碱性次级代谢产物。
⑴微生物次级代谢的特征
⑵次级代谢产物的生物合成
次级代谢产物生物合成的调节机制
微生物的代谢调节主要依靠两个因素来实现,酶活性的激活与抑制;酶合成量的诱导的阻遏。
5.红霉素发酵工艺流程
3 制订
计划听取学生的汇报交流
小组代表介绍交流资讯问题
分析红霉素的合成途径
红霉素的生物合成
第一步:丙酰COA合成、甲基丙二
多媒体
参考资料
课件
20
酰COA合成
第二步:丙酰COA+6甲基丙二酰COA聚合并环化6-脱氧红霉内酯B 第三步:6-脱氧红霉内酯B羟基化、糖基化、红霉素D
红霉素D羟化红霉素C羟化
红霉素A
4 讨论
决策
方案对学生的交流及点评进行评价
对重点、难点加以讲解说明(利用多
媒体课件)
红霉素的结构
3.理化性状
4.合成原理
红霉素的生源主要来自葡萄糖和氨基
酸
1.利用葡萄糖氧化代谢形成丙酮酸再
转变成丙酸;形成乙酰 CoA、丙二酰
CoA ,生成聚酮。
2.葡萄糖代谢形成红霉糖和去氧氨基
已糖。
3.利用缬氨酸代谢形成2-甲基丙二
酸,
4. 氨基已糖上的甲基来源于蛋氨酸。
N来源于谷氨酸
各组交流、讨论
根据红霉素的结构确定其发酵
红霉素发酵工艺流程
砂土孢子——母斜面孢子——子斜面
孢子——摇瓶种子——种子罐种子—
—发酵液——提取精制
多媒体
参考资料
网络
20
5 实施
计划巡回指导分组讨论
解读红霉素发酵工艺流程
多媒体
参考资料
网络
20
6 结果
展示听学生的汇报各组代表交流汇报多媒体
参考资料
20
7 反馈
评价点评总结自我评价
小组评价
多媒体
参考资料
20
8 布置
作业
预习:放线菌生产菌种的扩大培养听参考资料10 课后体会。