初二数学竞赛下学期浙教版

合集下载

浙江省八年级下学期数学“星辰杯”竞赛试卷

浙江省八年级下学期数学“星辰杯”竞赛试卷

浙江省八年级下学期数学“星辰杯”竞赛试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·东台月考) a、b为有理数,且a>0,b<0,|b|>a,则a、b、-a、-b的大小顺序是()A . b<-a<a<-bB . –a<b<a<-bC . –b<a<-a<bD . –a<a<-b<b2. (2分)若(x﹣y)2+M=x2+xy+y2 ,则M的值为()A . xyB . 0C . 2xyD . 3xy3. (2分)函数y=m +(m-1)是一次函数,则m值()A . m≠0B . m=2C . m=2或4D . m>24. (2分)(2020·沙湾模拟) 如图,在平面直角坐标系中,矩形的边、分别在x 轴和y轴上,,,点是边上一动点,过点D的反比例函数与边交于点E.若将沿折叠,点B的对应点F恰好落在对角线上.则反比例函数的解析式是()A .B .C .D .5. (2分)已知,那么的值为()A . -1B . 1C .D .6. (2分)(2017·天津) 方程组的解是()A .B .C .D .7. (2分) (2019八上·南岸期末) 已知点A(-1,3),点B(-1,-4),若常数a使得一次函数y=ax+1与线段AB有交点,且使得关于x的不等式组无解,则所有满足条件的整数a的个数为()A . 3B . 4C . 5D . 68. (2分)如果a=(-0.2)0、b=(-0.2)-1、c=(-)-2 ,那么a、b、c的大小关系为()A . a>b>cB . c>a>bC . c>b>aD . a>c>b9. (2分) (2018八上·西华期末) 如图,△ABC是等边三角形,AD是角平分线,△ADE也是等边三角形,下列结论:①AD BC.②EF FD.③BE BD.④AC AE.其中正确的个数是()A . 1B . 2C . 3D . 410. (2分)观察下表,若用有序实数对(,)表示第行第列的数,如:(4,3)表示实数6,则(20,18)表示的数是()A . 18B . 20C . 37D . 38二、填空题 (共8题;共8分)11. (1分) (2019七上·杨浦月考) 计算: =________12. (1分)关于x的分式方程﹣ = 有增根x=﹣2,那么k=________.13. (1分)(2016·徐州) 如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于________.14. (1分) (2019八上·成都月考) 已知x= +1,则x2﹣2x﹣3=________.15. (1分) (2016八上·徐州期中) 一元二次方程2x2+4x﹣1=0的两根为x1、x2 ,则x1+x2的值是________.16. (1分) (2018九上·洛阳期末) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为________.17. (1分) (2018八上·东湖期中) 如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过________秒时,△DEB与△BCA全等.18. (1分) (2018七上·哈尔滨月考) 设,且,则的值是________.三、解答题 (共2题;共25分)19. (15分)(2019·临海模拟) 求下列各式中的x:(1) |x|=0;(2) |x|=;(3)﹣|x|=﹣3.7.20. (10分)如图所示,直线l是一次函数y=kx+b的图象,点A,B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>2的解集.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共2题;共25分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:。

初二数学竞赛试卷[下学期]浙教版

初二数学竞赛试卷[下学期]浙教版

初二数学竞赛试卷姓名 得分一、填空题(每小题3分,共30分)1.当x 时,x 23-有意义,x 时12+-x 有意义 2.当x= 时,分式1036522-++-x x x x 的值为零。

3.已知方程02)6(92=-++-k x k x 有两个相等的实数根,则k= 这两个相等的根是 4.如图,在△ABC 中,AB=AC ,EF 是AB 的垂直平分线,若BC=10,△BFC 的周长为22,则△ABC 的周长是5.若实数a,b 满足039)2(22=+-+-a ab a 则a= b=6.若 —2<x<2 化简=--+-x x x 34427.若322-+-a ax x 是一个完全平方式,则a 的值8.已知 521=+x x ,则=-xx 19.m 为 时,关于x 的方程234222+=-+-x x mx x 会产生增根10.如图,若直角三角形两直角边上的中线AE,BD的长分别为5和102 则斜边AB=A BCEF C D E二、选择题(每小题3分,共30分)1.已知方程032=+-x kx 有两个实数根,则k 的取值范围---------------------( )A 0121≠≤k k 且 B 121≥k C 121≤k D 0121≠<k k 且 2.如果等腰三角形的两条边长是方程01222=+-x x 的两个根,则它的周长是( )A 123123-+或B 123+C 123-D 122+3.三角形内有一点,这点到三个顶点的距离相等,则这个点一定三角形的--( )A 三边垂直平分线的交点B 三条中线的交点C 三条高线的交点D 三条内角平分线的交点 4.计算56145614--+的值------------------------------------------------------( )A 1 B5 C 52 D 55.一项工程,甲队独做需用m 天,乙队独做需用n 天,若甲,乙两队合作完成这项工程,所需天数------------------------------------------------------------------------------( )A n m 11+B mn n m +C n m mn +D n m +6.已知,b a b a +=+111那么baa b +等于------------------------------------------------( )A —1B 1C —2D 2 7.若0<a<1,则a a aa +⨯+÷-+11)11(2122可化简为--------------------------------( ) Aa a+-11 B 11+-a a C 21a - D 12-a 8.已知542c b a ==则cb a cb a +--+2的值------------------------------------------------------( )A 1B 3C 921D 1139.如图,S △ABC=6,BD :DC=3:5,AK :KD=4:5,则 S △CDK=------------------( )A 15B 12.5C 7.5D 14.510.若yx y yx y y x +--==则51,31等于-----------------------------------------( )A 31B 3C 31- D —3三.解答题1. 解方程:(每小题5分,共10分)(1)0242142222=+-+---xx x x x x(2)1211)10)(9(1)1(1)1(1=+++⋅⋅⋅+++-x x x x x x2.方程0)2443()1(2222=++++++b ab a x a x 有实根,求a,b 的值(10分)3.甲乙两车分别从A ,B 两地相向而行,已知甲车比乙车早出发15分钟,甲,乙两车的速度比2:3,相遇时甲车比乙车少走6千米,并且乙车从B 地到A 地需要211小时,求A ,B 两地相距的距离为多少千米?(10分)4.如图,Rt △ABC 中 ∠C=90o,D 为AB 上点,作DE ⊥BC 于E ,若BE=AC ,BD=21,DE+BC=1求证:∠ABC=30o (10分)ACEB D。

浙教版八年级数学竞赛

浙教版八年级数学竞赛

A浙教版八年级数学竞赛班级 姓名 成绩一、选择题(每题5分,共30分) 1、若032≥≥a a ,则( )A 、3a a ≥B 、3a a ≤C 、1≥aD 、10<<a 2、在中,AB=3,BC=4,ABC ∠的平分线把长边AD 分成的 两条线段的比是 ( )A 3:1 B3:2 C4:1 D 4:23、在平面直角坐标系中,称横、纵坐标均为整数的点为整点,如图 (1)所示的正方形内(包括边界)整点的个数是( ) A .13 B .21 C .17 D .254、如图(2)将六边形ABCDEF 沿着直线GH 折叠,使点A 、B 落在 六边形CDEFGH 的内部,则下列结论一定正确的是( ) A .∠1+∠2=900°-2(∠C+∠D+∠E+∠F ) B .∠1+∠2=1080°-2(∠C+∠D+∠E+∠F ) C .∠1+∠2=720°-(∠C+∠D+∠E+∠F )D .∠1+∠2=360°-12(∠C+∠D+∠E+∠F )5、如图,菱形ABCD 中,∠ABC=120°,F 是DC 的中点, AF 的延长线交BC 的延长线于E,则直线BF 与 直线DE 所夹的锐角的度数为( ) A .30° B .40° C .50° D .60°6、某公司的员工分别住在A 、B 、C 三个小区,A 区住员工 30人,B 区住员工15人,C 区住员工10人,三个小区在 一条直线上,位置如图1所示,若公司的班车只设一个停 靠点,为使所有员工步行到停靠点的路程总和最短,那么 停靠点的位置应该在( )A 、A 区B 、B 区C 、C 区D 、A 、B 、C 三区以外的一个位置 二、填空题(每题5分,共30分) 7、=++++++++201020091431321211 。

8、如图,是由10把相同的折扇组成的“蝶恋花”(图a )和梅花图 案(图b)(图中的折扇无重叠)。

2020-2021学年浙江省八年级下学期数学竞赛卷1(解析版)

2020-2021学年浙江省八年级下学期数学竞赛卷1(解析版)

2020-2021学年浙江省八年级下学期数学竞赛卷1 一.选择题(共8小题)1.设a=﹣2,则代数式a3+4a2﹣a+6的值为()A.6B.4C.2+2D.2﹣2【解答】解:∵a=﹣2,∴(a+2)2=()2,即a2+4a=1,∴a3+4a2﹣a+6=a(a2+4a)﹣a+6=a×1﹣a+6=6.故选:A.2.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.0【解答】解:∵关于x的方程x2+bx+4=0有两个相等的正实数根,∴△=b2﹣4×1×4=b2﹣16=0,解得:b=4.故选:A.3.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°【解答】解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.4.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.【解答】解:如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=5,则BC=5.故选:B.5.如图正方形ABCD的顶点A在第二象限y=图象上,点B、点C分别在x轴、y轴负半轴上,点D在第一象限直线y=x的图象上,若S阴影=,则k的值为()A.﹣1B.C.D.﹣2【解答】解:如图,过点A作AG⊥x轴,过点D作DE⊥x轴,作DF⊥AG交y轴于H,∴四边形DHOE是矩形∵∠ADC=∠HDE=90°∴∠ADC﹣∠FDC=∠HDE﹣∠FDC∴∠ADF=∠CDE,∵点D在第一象限直线y=x的图象上,∴DH=DE,且∠ADF=∠CDE,∠DHM=∠DEN∴△DHM≌△DEN(ASA)∴S△DHM=S△DNE,∴=S四边形DHOE=DH×DE∴DH=DE=同理可证:△AFD≌△BGA≌△COB≌△DHC∴AF=HD=BG=OC,AG=DF=BO=HC∴OC=HD==AF=BG∴CH=∴AG==BO∴GO=∴点A坐标(﹣,)∴k=﹣×=﹣故选:B.6.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.7.若m是关于x的方程x2﹣2020x+1=0的根,则(m2﹣2020m+4)•(m2﹣2020m﹣5)的值为()A.18B.﹣18C.20D.﹣20【解答】解:∵m是关于x的方程x2﹣2020x+1=0的根,∴m2﹣2020m+1=0,∴m2﹣2020m=﹣1,∴(m2﹣2020m+4)•(m2﹣2020m﹣5)=(﹣1+4)×(1﹣5)=﹣18.故选:B.8.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.二.填空题(共6小题)9.已知关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围﹣3≤k<4且k≠.【解答】解:∵关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,∴,解得:﹣3≤k<4且k≠.故答案为:﹣3≤k<4且k≠.10.若<0,化简﹣﹣3的结果为﹣2x.【解答】解:由题意得,或,解得,﹣2<x<,则原式=|5﹣3x|﹣|x﹣2|﹣3=5﹣3x﹣2+x﹣3=﹣2x,故答案为:﹣2x.11.如图,双曲线y=(x>0)的图象上.△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,过B1作B1C⊥x轴于C,过B2作B2D⊥x轴于D,则点A n的坐标为(,0).【解答】解:∵点B1,B2在双曲线y=(x>0)的图象上,∴OC•B1C=3,∵△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,∴B1C=OC,∴OC=,∴OA1=2,∴;连接OB2,则OD•B2D=3,∵OD=OA1+A1D=2+,,∴∴,∴,同理可得,,…由上可知,.故答案为:(,0).12.P是正方形ABCD内一点,AB=5,P A=,PC=5,则PB=或2.【解答】解:如图所示,∴PB==或PB==2,故答案为:或2.13.已知x1,x2,x3,x4,x5为正整数,任取四个数求和,只能得到44,45,46,47这样四个结果,则这5个数的众数是11.【解答】解:根据题意,设这个重复的和为z,可得:(x1+x2+x3+x4+x5)×4=44+45+46+47+z,可得:z=46,可得五个数据之和为57,所以五个数据为:10,11,12,13,11,故答案为:1114.如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是或.【解答】解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,2),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,若△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±(舍去负值);②当AC=BC时,同理可得:k=;故答案为:或.三.解答题(共4小题)15.已知x﹣y=6,,求的值.【解答】解:∵x﹣y=6,∴,∴,∵+=•+•=(+)=9,∴,即,∴=(﹣)=×=4.16.已知实数a,b,c满足:a+b+c=2,abc=4.(1)求a,b,c中的最大者的最小值;(2)求|a|+|b|+|c|的最小值.【解答】解:(1)不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2﹣a,.于是b,c是一元二次方程的两实根,≥0,a3﹣4a2+4a﹣16≥0,(a2+4)(a﹣4)≥0.所以a≥4.又当a=4,b=c=﹣1时,满足题意.故a,b,c中最大者的最小值为4.(2)因为abc>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,则由(1)知,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,由(1)知a≥4,故2a﹣2≥6,当a=4,b=c=﹣1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.17.如图,四边形ABCD是矩形,E是对角线BD上不同于B、D的任意一点,AF=BE,∠DAF=∠CBD.(1)求证:△ADF≌△BCE;(2)求证:四边形ABEF是平行四边形;(3)试确定当点E在什么位置时,四边形AEDF为菱形?并说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS);(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∠BAD=90°,∴∠DBC=∠ADB,∵∠DAF=∠CBD,∴∠DAF=∠ADB,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形;(3)解:当E为BD的中点时,四边形AEDF变为菱形,理由如下:如图所示:∵E为BD的中点,∠BAD=90°,∴AE=BE=DE,∵AF=BE,AF∥BD,∴AF∥DE,AF=DE,AF=AE,∴四边形AEDF是平行四边形,∴四边形AEDF是菱形.18.请你利用直角坐标平面上任意两点(x1,y1),(x2,y2)间的距离公式d=解答下列问题:已知:反比例函数y=与正比例函数y=x的图象交于A,B两点(A在第一象限),点F1(﹣2,﹣2),F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=图象上的任意一点,记点P与F1,F2两点之间的距离之差d=|PF1﹣PF2|.(1)试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).(2)现请你在反比例函数y=第一象限内的分支上找一点P,使点P到F2(2,2)和点C(6,4)的距离之和最小,求点P的坐标.【解答】:解由y=和y=x组成的方程组可得A、B两点的坐标分别为,(,)、(﹣,﹣),线段AB的长度=4.∵点P(x0,y0)是反比例函数y=图象上一点,∴y0=.∴PF1==||,PF2==||,∴d=|PF1﹣PF2|=|||﹣|||,当x0>0时,d=4;当x0<0时,d=4.因此,无论点P的位置如何,线段AB的长度与d一定相等.由此可知:到两个定点的距离之差(取正值)是定值的点的集合(轨迹)是双曲线.(2)由条件PF2=PF1﹣4,知PF2+PC=PF1+PC﹣4,由F1,﹣P,C三点共线时最小,此时可解得P(2,1).。

浙教版初中数学竞赛试卷

浙教版初中数学竞赛试卷

一、选择题(每题4分,共20分)1. 下列数中,是质数的是()A. 14B. 17C. 28D. 362. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 2 < b + 2D. a - 2 > b - 23. 一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的面积是()A. 40cm²B. 48cm²C. 50cm²D. 64cm²4. 下列代数式中,是单项式的是()A. 3x²yB. 2xy + 3y²C. 5x³ - 2x² + xD. 4x + 2y - 3z5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = 3x² - 2x + 1二、填空题(每题5分,共25分)6. 若x² - 5x + 6 = 0,则x的值为______。

7. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为______。

8. 下列数中,是立方数的是______。

9. 若一个等边三角形的边长为a,则它的面积是______。

10. 下列代数式中,系数为-3的是______。

三、解答题(每题15分,共45分)11. 解方程:3x - 2 = 5x + 4。

12. 已知:a + b = 7,ab = 12,求a² + b²的值。

13. 在直角坐标系中,点P的坐标为(-2,3),点Q的坐标为(2,-3),求线段PQ的长度。

四、应用题(每题20分,共40分)14. 某商店举行促销活动,满100元减20元,满200元减40元,满300元减60元。

小明想买一件标价为x元的衣服,他应该选择哪种优惠方式才能最省钱?请给出你的计算过程。

2023-2024学年浙江省温州市瑞安市新纪元学校八年级(下)竞赛数学试卷

2023-2024学年浙江省温州市瑞安市新纪元学校八年级(下)竞赛数学试卷
=
在△AME与△AMN中, ∠ = ∠ ,
=
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
当BE是点B到直线AC的距离时,BE⊥AC,
又AB=4 ,∠BAC=45°,此时,△ABE为等腰直角三角形,
∴BE=4,
解得:a≤-




故答案为a≤-



14.如图,在锐角△ABC中,AB=4 2 ,∠BAC=45°,∠BAC
的平分线交BC于点D,M、N分别是AD和AB上的动点,则
BM+MN的最小值是 ____
4 .
【解析】解:如图,在AC上截取AE=AN,连接BE.
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
2
2
2
∵PE +AE =PA =36,
2
2
=36-PE
∴AE

2
2
2
∵PE +EB =PB =64,
2
2
∴PE =64-EB ,
2
2
2
∵PF +FC =PC =100,
2
2
∴FC =100-PF ,
∵PM=AE,MD=FC,PF=EB,
2
2
2
2
2
2
2
2
2
∴PD =PM +MD =AE +FC =36-PE +100-PF =36-(64-EB )+100-EB =362
原计划所用时间的2.5倍,那么骑摩托车者的速度与步行者速度的比是(

浙教版 八年级 数学竞赛 试卷

浙教版 八年级 数学竞赛 试卷

A B C D M N HE盐官片八年级数学竞赛试题(考试时间:90分钟,总分:120分)一、选择题(每小题3分,共42分)1、在下列八个数:3.1415926,0.151151115… ,10049,0.2, π1,7,722,327中,无理数的个数是 ( )A 2B 3C 4D 5 2、下列图形中,不是轴对称图形的是① ② ③ ④ ⑤A 、①⑤B 、②⑤C 、④⑤D 、①②3、如图,数轴上A B ,两点表示的数分别是1和2,点A 关于点B的对称点是点C ,则点C 所表示的数是( ) A .21-B .12+C .222-D .221-4、已知|a|=5,2b =3,且ab>0,则a+b=( ) A 、8 B 、—2 C 、8或—8 D 、2或—25、如图;已知,∠EAC=∠BAD,AC=AD,增加下列条件中的其中一个:①AB=AE,②BC=ED, ③∠C=∠D,④∠B=∠E; C其中能使△ABC ≌△AED 的个数有 E ( ) A. 4个 B. 3个. B A C. 2个 D. 1个 D 6、△ABC 中,A (—2,—3)、B (—1,—1)、C (0,1),将△ABC 绕B 点顺时针旋转90度,则点A 对应的点A`的坐标为( ) A 、(3,0)B 、(3,1)C 、(4,1)D 、(4,0)7、直角坐标系中,A (1,1)在坐标轴上找点B 使 △AOB 为等腰三角形的点共有( )个A、6 B、7 C、8 D、98、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在 折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿 AH 和DH 剪下,这样剪得的三角形中 ( )A ,AD DH AH ≠=B ,AD DH AH ==C ,DH AD AH ≠= D ,AD DH AH ≠≠9、如果一个三角形两边的平分线的交点在第三边上,则这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定10、已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为A 、(0,0)B 、 11(,)22- C 、22(,)22- D 、 11(,)22-11、如图,等腰直角△ABC 中AB=AC ,将其按下图所示的方式折叠两次.第2次折叠第1次折叠C 'DDCBA 'A 'ABCCBA若DA ’=1,给出下列说法: ①DC ’ 平分∠BDA ’; ②BA ’ 长为21+; ③△BC ’D 是等腰三角形; ④△CA ’D 的周长等于BC 的长. 其中正确的有( )(A )1个 (B )2个 (C )3个 (D )4个12、如图所示,∠AOB 是一个钢架,且∠AOB=10º, 为了使钢架更加牢固,需在内部添加一些钢管EF 、FG 、 GH …添加钢管的长度都与OE 相等,则最多能添加这 样的钢管的根数为( )A 、15B 、9C 、8D 、7 13、甲、乙两人骑车从学校出发,先上坡到距学校6千米的A 地,再下坡到距学校16千米的B 地,甲、乙两人行程y(千米)与时间x (小时)之间的函数关系如图所示.若甲、乙两人同时从B 地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变.则下列结论:①乙往返行程中的平均速度相同;②乙从学校出发45分钟后追上甲;③乙从B 地返回到学校用时1小时18分钟;④甲、乙返回时在下坡路段相遇.其中正确的结论有( ) A .②③ B .①④ C .①②④ D .②③④ 14、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P , BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个.A 、1B 、2C 、3D 、4二、填空题(每小题3分,共18分)15、正数A 的平方根为2m -4与3m -1,则A 的值为__________。

浙教版八年级数学竞赛真题

浙教版八年级数学竞赛真题

八年级数学竞赛试卷真题一.填空题(3′×8=24′):1、如图,已知a ∥b ,∠1=40︒,则∠2=________度.2、在函数21-=x y 中,自变量x 的取值范围是3、有两名学员小林和小明练习射击,第一轮10枪打完后,两 人打靶的环数如图所示,通常新手的成绩不太稳定,那么 根据图中的信息,估计小林和小明两人中新手是 .4、如图,在△ABC 中,AB=AC=32cm ,DE 是AB 的垂直平分线,分别交AB 、AC 于 D 、E 两点.若BC=21cm ,则△BCE 的周长是 cm .5、如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是 .6、如图,已知函数b ax y +=和kx y =的图像交点P ,则可根据图像可得关于x 、y 的二元一次方程组的⎩⎨⎧=+=kx y bax y 的解是___________________.7、在数轴上截取从0至3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A ,B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 与x 轴交于点N (n ,0),如图3,当m =3时,则n = .(第1题图)bac21(第3题图)(第5题图)(第4题图)xyPy=ax+b y=kx-4-2(第6题图)8、如图,在ABC ∆中,AC AB =,40ABC ∠=︒,BD 是ABC ∠的平分线,延长BD 至E ,使DE AD =, 连结CE ,则ECA ∠的度数为 度.二、选择题(3′×10=30′):11、若b a <,则下列各式中一定成立的是……………………………………………………( ) A .0>-b a B .0<-b a C .0>ab D .0<ab12、已知等腰三角形的一边长为4,另一边长为8,则它的周长是……………………………( )A .12B .16C .20D .16或2013、八年级(1)班50名学生的年龄统计结果如右表所示:则此班学生年龄的众数、中位数 分别为………………………………………………………………………………………… ()A .14,14B .15,14C .14,15D .15,1614、若点A (n ,2) 在y 轴上,则 点B (n -2 ,n +1) 在 ………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限15、下列各图中,是立方体的表面展开图的是………………………………………………… ()A .B .C .D .16、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3) 是……………………………………………………………………………………………… ( )A .20cmB .10cmC .14cmD .无法确定17、一次函数b kx y +=的图象如图所示,当0<x 时,y 的取值范围是……………………( )A .0<yB .0>yC .02<<-yD .2-<y18、如果直线y =2x +m 与两坐标轴围成的三角形面积等于4,则m 的值是………((第8题图) AB(第16题图)1-2xy(第17题图)年龄 13 14 15 16 人数422231DMCABP)A .±3B .3C .±4D .419、如图,是一个由几块相同的小正方体搭成的立体图形的三视图,则这堆立体图形中的小正方体共有…………………………………………………………………………………………… ( )块.主视图左视图俯视图A .7或8B .8或9C . 9或10D .10或1120、如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点,设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是………… ( )xy 0 1 22.5xy 0 1 2 2.5y 0 1 2 2.5y0 1 2 2.5三.解答题(共6小题,46分)19、(本题6分)解不等式组 ⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x 并求它的整数解。

浙江省湖州市八年级数学下学期竞赛试题(无答案)浙教版

浙江省湖州市八年级数学下学期竞赛试题(无答案)浙教版

湖州四中八(下)竞赛题姓名 班级一、化简计算(每小题4分) 1. 14425081010⨯⨯.. 2.521312321⨯÷;3. 2484554+-+ 4 、2332326--5. 3)154276485(÷+- 6、(231⎛+ ⎝7、⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛+121580325.12712 8、(()2771+--二、选择适当的方法解方程(每小题4分) 9、; 10、.11、12、13、; 14、15、; 16、17、18、解关于x 的一元二次方程:()0012422≠=--a ax x a19、02222=-+-n m mx x 20.()()2222222,06b a b ab a+=-+-+求21、用配方法求262+-x x 的最小值; 22、用配方法求1232++-x x 的最大值23、对于任意实数x ,试比较两代数x x x 42323--+1与10433++x x 的值的大小。

24、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.25、关于x 的一元二次方程()0422=+++kx k kx 有两个不相等的实数根,求k 的取值范围;26、已知()0053222≠=-+y xy y x ,求yx的值。

27.若142=++y xy x ,282=++x xy y ,则x+y 的值为28.如果012=-+x x ,那么代数式7223-+x x 的值。

29. 已知实数a 、b 满足条件: 求ab -的平方根。

30.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件;要使每天获得利润700元,请你帮忙确定售价。

浙教版八年级数学竞赛模拟卷(含答案

浙教版八年级数学竞赛模拟卷(含答案
2、类比1的计算过程,完成下面的计算:
⑴ =
4、计算
(1)
(2)
(3)
五、能力拓展
1、
2、先化简,再求值:
-10(-a3b2c)2· a·(bc)3-(2abc)3·(-a2b2c)2,其中a=-5,b=0.2,c=2。
(2)
=____________
a.观察⑴、⑵两题,并思考:
Ⅰ、⑴⑵两题属于_______与_______相乘。
⑦(-3xy)2=-6x2y2()
⑧(a3+b2)3=a9+b6( )
2.(口答)幂的运算的三个法则是什么?
3、光的速度约为 千米/秒,太阳光照射到地球上需要的时间大约是 秒,你知道地球与太阳的距离约是多少千米吗?(列出式子)
二、自主学习合作探究
探究:
1、
=________________
思考:计算过程中用到哪些运算律及运算性质?请写出来。
3、下面计算对不对?如果不对,应当怎样改正?
(1)3a3·2a2=6a6()(2)2x2·3x2=6x4()
(3)3x2·4x2=12x2()(4)5y3·3y5=15y15()




4、若2a=3,2b=5,2c=30,试用含a、b的式子表示c.
⑤(2x)4·(-3x2y)⑥(-xy2z3)4·(-x2y)3
2、计算
①(-2y)·(3xy5)②3x·5x2·(-x3y)
③(-2.5x)·(-4x)④x2yz·xyz3
⑤(2×105)(2×105)⑥(-2x)3(-4x2)
⑦xm+1y·6xym-1
③(-5a2b)·(-3a)·(-2ab2c)
反思:单项式与单项式相乘的结果仍是________________________________。

2013-2014学年第二学期学科竞赛八年级数学试题(含答案) 浙教版

2013-2014学年第二学期学科竞赛八年级数学试题(含答案) 浙教版

2013学年第二学期学科竞赛 八 年 级 数 学 试 卷一、选择题(每小题5分,共30分)1.若平行四边形的一边长为10,则它的两条对角线长可以是…………… ( )A .8和16B .6和8C .6和12D .24和42.一组数据x 1,x 2,…,x n 的平均数为5,方差为16,其中n 是正整数,则另一组数据3x 1+2,3x 2+2,…,3x n +2的平均数和标准差分别是…………………………………… ( )A .15,144B .17,144C .17,12D .7,163.已知一元二次方程01282=+-x x 的两个解恰好是等腰△ABC 的底边长和腰长,则△ABC 的周长为…………………………………………………… ( )A .14B .10C .11D .14或104.三角形的三条边长分别为2、k 、4, 若k 满足方程361212622+--+-k k k k =0, 则k 的值为………………………………………………………………………… ( )A .2B .3C .3或4D .2或3 5.如图四边形ABCD 中,∠BAD =125°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度是…………………………………( )A .130B .120°C .110°D .100°6.如图,以Rt △BCA 的斜边BC 为一边在△BCA 的同侧作正方形BCEF ,设正方形的中心为O , 连结AO ,如果AB =8,AO =122,那么AC 的长为……………………………( )A .24B .32C .8D .16(第5题图) (第6题图)二、填空题(每小题5分,共30分).7.一个n 边形的内角和等于外角和的3倍,则n = .8.函数121x y x x =---中,自变量x 的取值范围是_________________.9.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,则应邀请 支球队参加比赛. 10.已知实数a ,b 满足,24)3(2422a b a b a =+-+++-则a +b 的值是 .11.如图,正方形ABCD 边长为2,AB ∥x 轴,AD ∥y 轴,顶点A 恰好落在双曲线y =x21上,边CD 、BC 分别交双曲线于点E 、F ,若线段AE 过原点,则S △AEF = .12.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =2,运动过程中,点D 到点O 的最大距离为 .(第11题图) (第12题图)三、解答题(共60分)13.(本题10分)已知在如图4×4的方格中,有一个格点三角形ABC (三个顶点均在格点上),其中AB =5,BC =22,AC =17.(1)请你在方格中画出该三角形;(2)求△ABC 中AC 边上的高的长(结果保留根号).14.(本题12分)如图,矩形ABCD中,对角线AC与BD相交于点O,已知AB=6,BC=8,P是AD边上任意一点,作PE⊥AC于点E,PF⊥BD于点F.(1)求PE+PF长.(2)过O作OG⊥AC交AD于点G,求AG长.15.(本题12分)如图,在线段AB上任取一点E,在AB的同侧作等边△ADE和△BCE,连结CD,P、Q、M、N分别是AB、BC、CD、DA的中点.(1)判断四边形PQMN的形状,并证明你的结论;(2)若AE=6,EB=3,求此时四边形PQMN的周长(结果保留根号)16.(本题13分)如图,正比例函数y =x 21的图像与反比例函数y =)0( k x k 在第一象限的图像交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△AOM 的面积为1,点B (-1,t )为反比例函数在第三象限图像上的点.(1)试求出k 值及点B 的坐标.(2)在x轴上是否存在点P ,使AB =AP ,请直接写出满足条件的点P 的坐标.(3)在y 轴上找一点P ,使|PA -PB |的值 最大,并求出P 点坐标.17.(本题13分)阅读材料:一元二次方程根与系数有如下关系:若x1,x2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则x1+x2=-a b ,x1x2=ac ,这个定理人们称之为韦达定理. 例:若x1,x2是一元二次方程3x 2-7x +1=0的两根,则x1+x2=37,x1x2=31,反之,以x1,x2为两根的一元二次方程(二次项系数为1)为x 2-(x1+x2)x +x1x2=0. 例:以2和3为两根的一元二次方程(二次项系数为1)为x 2-5x +6=0. 仔细阅读上面材料,并解答下面问题:已知:实数a 、b 、c 满足a +b +c =2,abc =4.(1)求a 、b 、c 中最大者的最小值.(2)求|a |+|b |+|c |的最小值.思路点拨:不妨设a ≥b ,a ≥c ,由条件得b +c =2-a ,bc =a4,构造以b 、c 为实根的一元二次方程.八年级数学参考答案 一、选择题(本题有6个小题,每小题5分,共30分) 1. 2. 3. 4. 5. 6.A C A BC B二、填空题(本题有6小题,每小题5分,共30分)7. 8 ; 8. 21<x ≤1; 9. 810. 1; 11. 34; 12. 22+2;三、解答题(共 60分)13、 (本题10分)解:(1)△ABC 就是所求的三角形.(2)设AC 边上的高为h.∵S △ABC =8-2-2-1=3∴21AC ·h=3∴17h=6∴h=1717614、 (本题12分)解:(1)连结PO在矩形ABCD 中,AO =DO =21AC ,∠ABC =90°∴AC =2286 =10∴AO =DO =5∵S △AOD =S △AOP + S △DOP∴41S 矩=21AO ·PE +21DO ·PF∴41 ×6×8=21×5(PE +PF ) ∴PE +PF =524 (2)连结CG∵四边形ABCD 是矩形∴AO =CO ,∠ADC =90°, AD =BC =8, DC =AB =6∵OG ⊥AC∴GO 是AC 的中垂线∴CG =AG设AG =CG =x,则DG =8-x由勾股定理得:CG 2=DG 2+CD 2∴x2=(8-x)2+62 ∴x=425 15.(本题12分)证明:(1)四边形PQMN 是菱形,理由如下连结AC 、BD .∵ PQ 为△ABC 的中位线,∴ PQ 21AC 同理 MN 21AC .MQ 21BD ∴MN PQ ,∴ 四边形PQMN 为平行四边形.又∵△AEC 和△DEB 中,AE =DE ,EC =EB ,∠AED =60°=∠CEB∴∠AEC =∠DEB ∴ △AEC ≌△DEB∴ AC =BD ,∴MN =MQ∴ 四边形PQMN 是菱形(2)过点D 作DF ⊥AB 于F ,则DF =又DF 2+FB 2=DB 2∴DB =∴由①知四边形PQMN 是菱形,可计算得周长是16.(本题13分)解:(1)∵△AOM 的面积为1, ∴21k=1,解得k=2,∴反比例函数的解析式为y=x2 把B (-1,t)代入y=x2,解得t=-2 ∴B 点坐标为(-1,-2).(2)存在.满足条件的点P 的坐标为(2+17,0),(2-17,0)(3)作B 点关于y轴的对称点C ,如图,则C 点坐标为(1,-2)∴PB =PC , ∴|PA -PB |=|PA -PC |≤AC∴当点P ,C ,A 共线时,|PA -PB |的值最大.设直线AC 的解析式为y =mx +n ,把A (2,1),C (1,-2)代入,得直线AC 的解析式为y =3x -5.把x=0代入y =3x -5得y=-5, ∴P 点坐标为(0,-5).17.(本题13分)解:(1)不妨设a ≥b ,a ≥c∵b +c =2-a , bc =a 4 ∴b ,c 为一元二次方程x 2-(2-a )x +a4=0的两个实根. ∴△=(2-a)2-4×a 4≥0,即(a2+4)(a-4)≥0,得 a≥4,当a=4,b=c=-1时,a、b、c满足条件,故a、b、c中最大者的最小值为4.(2)a、b、c只可能一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a-b-c=2a-2,由(1)知a≥4,故2a-2≥6,当a=4,b=c=-1时,a、b、c满足条件,且使|a|+|b|+|c|=2a-2≥6中等号成立,故|a|+|b|+|c|的最小值为6.。

八年级(下)数学竞赛练习题(浙教版)

八年级(下)数学竞赛练习题(浙教版)

八年级数学竞赛练习题一、选择题:1、方程431=-++x x 的整数解有()A 、2个B 、3个C 、5个D 、无穷多个2、若等式98332-=--+x xx n x m 对任意的)3(±≠x x 恒成立,则=mn ()A 、8B 、-8C 、16D 、-16 3、若x >z ,y >z ,则下列各式中一定成立的是()A 、x+y >4zB 、x+y >3zC 、x+y >2zD 、x+y >z4、规定[]a 表示不超过a 的最大整数。

当1-=x 时,代数式6323+-nx mx 的值为16,则=⎥⎦⎤⎢⎣⎡-n m 32( )。

A 、-4B 、-3C 、3D 、45、如图所示,在直角扇形ABC 内,分别以AB 和AC 为直径作半圆,两条半圆弧相交于点D ,整个图形被分成4321,,,S S S S 四部分,则42S S 和的大小关系是()。

A 、42<S SB 、42=S SC 、42>S SD 、无法确定6、初二(1)班共有35名学生,其中21的男生和31的女生骑自行车上学,那么该班骑自行车上学的学生的人数最少是()。

A 、9B 、10C 、11D 、127、有A 、B 、C 三把刻度尺,它们的刻度都是从0到30个单位(单位长度各不相同),设三把尺子的0刻度和30刻度处到尺子边缘的长度可以忽略不计,现用其中的一把尺子量度另两把尺子的长度。

已知用C 尺量度,得A 尺比B 尺长6个单位;用A 尺量度,得B 尺比C 尺长10个单位;则用B 尺量度,A 尺比C 尺()。

A 、长15个单位B 、短15个单位C 、长5个单位D 、短5个单位二、填空题:8、654321,,,,,x x x x x x 都是正数,且1165432=x x x x x x ,2265431=x x x x x x ,3365421=x xx x x x ,4465321=x x x x x x ,6564321=x x x x x x ,9654321=x xx x x x ,则=654321x x x x x x 。

初二数学竞赛[下学期] 浙教版

初二数学竞赛[下学期]  浙教版

初二数学竞赛试题一选择题:1、与18是同类二次根式的是( ) A 243272112D C B2、数的大小关系是与5665大小都是无理数,不能比较D C B A 566556655665<=>3、在①线段②等边三角形③平行四边形④矩形⑤菱形⑥正方形这六种图形中,既是轴对称图形又是中心对称图形的有( )种A 3B 4C 5D 64、16的算术平方根是 ( )A 4B 4±C 2D 2±5、在线段的比是 ( )A 3:1 B3:2 C4:1 D 4:2二 填空题6 121的平方根是7 当a 时,式子a -3在实数范围内有意义。

8 在平行四边形ABCD 中,已知 140=∠+∠B A ,则B ∠的度数是9 若菱形两条对角线长分别是10cm 和24cm ,则此菱形的边长是 cm 10 8的倒数是11 已知一个矩形的长为1234,宽为32,则它面积相等的正方形的边长是 12 在实数范围内分解因式:=-32x中,AB=3,BC=4,ABC ∠的平分线把长边AD 分成的两条13 直角边长分别为6cm 和8cm 的直角三角形斜边上的中线长是 cm14 已知正方形的对角线长为2cm ,则其面积是 2cm15 若菱形的周长是,相邻的两个内角的度数比是1:2,那么这个菱形的较短的一条对角线的长是 cm 。

三 计算题 16 1476⨯⨯ 17 753131248+- 18x x x x 1246932-+ 19⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381427四 简答题:知一个多边形的内角和是外角和的3倍,求这个多边形的边数。

21 已知x 、y 都是实数,且()0212=-++y x ,求xy 21的值。

五 画图题22画一个矩形ABCD ,使AB=2cm ,BC=3cm六 解答题23 已知1213+-a a 是最简二次根式,试求(34+2a )的算术平方根。

七 证明题24 如图,已知在直三角形ABC 中,ACB C ∠=∠,90 的平分线CD 交AB 于D,DF//BC,DE//AC.求证:四边形DECF 是正方形B C E F DA。

浙教版数学八年级下册学科竞赛答案

浙教版数学八年级下册学科竞赛答案

梨洲中学八年级数学学科竞赛答案题次 1 2 3 4 5 6 7 8 9 10 答案DCDBDCABAA二.填空题(每小题分,共24分)11. X ≥4; 12.xy 6-=; 13.9; 14.K <1 ; 15.-1; 16.3或6; 17.52; 18. 28三、解答题(解答应写出文字说明,证明过程或演算步骤,共66分) 19.(15分)计算: (1)32(2)23 (3)120. (本题10分)用适当方法解下列方程:(1)X1=3 X2=-1/2 (2) X1=1,X2=-321.(本题9分) (1)B, C (2)2 (3)66422、(1)进价为155元、标价为200元。

(2)5元或15元。

23.(1)y 1=x +5 (2)21解:(1)∵当x >1时,y 1>y 2;当0<x <1时,y 1<y 2, ∴点A 的横坐标为1, 代入反比例函数解析式,=y , 解得y =6,∴点A 的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3,∴y==2,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.24初中数学试卷。

浙教版数学八年级下册梨洲中学竞赛初二试题(六)平行四边形

浙教版数学八年级下册梨洲中学竞赛初二试题(六)平行四边形

梨洲中学数学竞赛初二试题(六)平行四边形班级姓名学号例1.(4分)在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.例2.(4分)如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是;(2)当△ABC满足条件时,四边形ADEF为菱形;(3)当△ABC满足条件时,四边形ADEF不存在.例3.(4分)(2014秋•昆明校级期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC 折叠,点D落在点D′处,则重叠部分△AFC的面积为.例4.(5分)(2013•青羊区校级模拟)如图,在平行四边形ABCD中,BC=2AB,CE⊥AB 于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C. 66°D.72°例5.(5分)(2009春•丽水期末)周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.284例6.(2011春•北京校级期中)如图,在等腰三角形ABC中,延长AB到点D,延长CA 到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.例7、如图,已知E 是正方形ABCD 的边AB 上一点,点A 关于DE 的对称点为F,∠BFC=900,求AB:AE 的值例8.如图,在△ABC 中,∠C=90°,点M 在BC 上,且BM=AC ,N 在AC 上,且AN=MC ,AM 与BN 相交于P ,求证:∠BPM=45°.作业一、填空题1.(4分)(2003•宁波)如图,BD 是平行四边形ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需要增加的一个条件是 .(填一个即可)2.(4分)如图,已知矩形ABCD 中,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若AB=6,AD=8,则AE= .3.(4分)(2013•章丘市校级模拟)已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为 .4.(4分)如图所示,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,图中有 对四边形面积相等;它们是 .5.(4分)(2014春•思明区校级期末)如图,菱形ABCD 的对角线AC 、BD 相交于O ,△AOB 的周长为3+,∠ABC=60°,则菱形ABCD 的面积为 .6.(4分)(2010•广州校级模拟)如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度. FED CA B二、选择题(共9小题,每小题5分,满分45分)7.(5分)如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B. 65°C.70°D.75°8.(5分)(2012春•碑林区校级期中)如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B. 75°C.80°D.95°9.(5分)如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.10.(5分)(2009秋•常熟市期中)四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形11.(5分)(2003•吉林)如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m12.(5分)在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定13.(5分)(2014•武侯区校级自主招生)已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共11小题,满分0分)13.如图,在△ABC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:GF∥AC.14.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC 于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.15、(2013春•武冈市校级期末)如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.16.(2002•河南)如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.17.(2008•咸宁)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.初中数学试卷金戈铁骑制作。

浙江八年级数学下第六章《反比例函数》竞赛题

浙江八年级数学下第六章《反比例函数》竞赛题

2020-2021学年浙江八年级数学下第六章《反比例函数》竞赛题学校:___________姓名:___________班级:___________考号:___________ 一、单项选择题(本大题共8小题)1.如图,11OA B ,122A A B ,233A A B △,⋯⋯是分别以1B ,2B ,3B ,⋯为直角顶点,斜边在x 轴正半轴上的等腰直角三角形,其直角顶点()111,B x y ,()222,B x y ,()333,B x y ,⋯均在反比例函数4(0)y x x=>的图象上,则1210y y y ++⋯+的值为( )A .B .6C .D .2.如图,已知动点P 在函数1(0)2y x x=>的图象上运动,PM x ⊥轴于点M ,PN y ⊥轴于点N ,线段PM 、PN 分别与直线AB :1y x =-+交于点E ,F ,则AF BE ⋅的值为( )A .4B .2C .1D .123.如图,△OAC 和△BAD 都是等腰直角三角形,△ACO =△ADB =90°,反比例函数y =6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差即S △OAC - S △BAD 等于( )A .3B .6C .4D .94.如图,//AB x 轴,//BC y 轴,且点A ,C 在反比例函数ky x=图象上,点B 在反比例函数4k y x =图象上.延长AC 交x 轴于点F ,延长OC 交4k y x=于点E ,且2CFES =,则k 的值为( )A .23B .165C .285D .1035.如图,反比例函数()30y x x=>的图象经过等腰直角三角形的顶点A 和顶点C ,反比例函数()0ky x x=<的图象经过等腰直角三角形的顶点B ,90BAC ∠=︒,AB 边交y 轴于点D ,若13AD BD ,C 点的纵坐标为1,则k 的值是( )A .6316-B .498-C .4912-D .-66.如图,在AOC △中,AO AC =,//AC y 轴,且与x 轴交于点F ,4cos 5AOF ∠=,顶点A 在反比例36y x -=的图象上,AC ,OA 分别交反比例函数ky x=的图象于点D ,E ,连接CE ,若OCE △的面积为18,则k 的值为( ).A .-18B .-C .14425-D .32425-7.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )△AOP BOP ∆≅∆;△AOP BOP S S ∆∆=;△若OA OB =,则OP 平分AOB ∠;△若4BOP S ∆=,则16ABP S ∆=A .△△B .△△C .△△D .△△8.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,反比例函数y =kx(k ≠0,x >0)的图象与正方形的两边AB 、BC 分别交于点E 、F ,FD △x 轴,垂足为D ,连接OE 、OF 、EF ,FD 与OE 相交于点G .下列结论:△OF =OE ;△△EOF =60°;△四边形AEGD 与△FOG 面积相等;△EF =CF +AE ;△若△EOF =45°,EF =4,则直线FE 的函数解析式为4y x =-++其中正确结论的个数是( )A .2B .3C .4D .5二、填空题(本大题共6小题)9.如图,在Rt ABC ∆中,90ABC ∠=︒,()0,3,3C CD AD -=,点A 在ky x=上,且y 轴平分角ACB ,求k =______.10.如图,已知等边△OA 1B 1,顶点A 1在双曲线y=x(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2△OA 1交双曲线于点A 2,过A 2作A 2B 2△A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3△B 1A 2交双曲线于点A 3,过A 3作A 3B 3△A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为_____.11.如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x=和9y x=在第一象限的图象于点A ,B ,过点B 作 BD △x 轴于点D ,交1y x =的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是______.12.如图,过点C(3,4)的直线2y x b =+交x 轴于点A ,△ABC=90°,AB=CB ,曲线0ky x x=>()过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a的值为________.13.如图,已知直线y=x+4与双曲线y=kx(x <0)相交于A 、B 两点,与x 轴、y 轴分别相交于D 、C 两点,若,则k=_____.14.如图,直线2y x b =+与双曲线()0ky k x=>交于点A 、D ,直线AD 交y 轴、x 轴于点B 、C ,直线23y x n =-+过点A ,与双曲线()0ky k x=>的另一个交点为点E ,连接BE 、DE ,若4ABE S ∆=,且:3:4ABE DBE S S ∆∆=,则k 的值为_____.三、解答题(本大题共4小题)15.如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.16.如图1,在平面直角坐标系中,等腰Rt AOB的斜边OB在x轴上,直线y3x4=-经过等腰Rt AOB的直角顶点A,交y轴于C点,双曲线kyx=也经过A点.连接BC.()1求k的值;()2判断ABC的形状,并求出它的面积.()3若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得PAM 是以点A 为直角顶点的等腰直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.17.已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . △求m ,k 的值;△直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C . △若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;△过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d .18.如图1 ,一次函数1y kx b =+(k,b 为常数,k≠0)的图象与反比例函数2my x=(m 为常数,m≠0)的图象相交于点M(1,4)和点N (4,n ).(1)填空:△反比例函数的解析式是 ; △根据图象写出12y y <时自变量x 的取值范围是 ;(2) 若将直线MN 向下平移a(a>0)个单位长度后与反比例函数的图象有且只有一个公共点,求a 的值; (3) 如图2,函数2my x=的图象(x >0)上有一个动点C ,若先将直线MN 平移使它过点C ,再绕点C 旋转得到直线PQ ,PQ 交轴于点A ,交轴点B ,若BC =2CA ,求OA·OB 的值.。

2021浙教版八年级数学竞赛练习卷(14)

2021浙教版八年级数学竞赛练习卷(14)

2021浙教版八年级数学竞赛练习卷(14)八年级下数学竞赛练习(14) 徐秀前编辑于2021/03/10 姓名___________一、选择题(本题有10小题,每小题3分,共30分) 1、多项式a?b?2a?4b?5的值总为() A、非负数B、零322C、负数 D、正数2、比较2,5,7的大小,正确的是()A、2?5?7B、2?7?5C、7?2?5D、5?7?2 3、当2x?3?0时,|x?1|?9?12x?4x2=()A、x?2B、3x?4C、2?xD、4?3x 4、设a?b?c> 0,a?b?c?1,M?3333b?ca?ca?b,则M,N,P之间的大小关系是() ,N?,P?abcA、M >P >N B、N > P> M C、P > M >N D、P >N >M5、下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②(a)2?a;③若点P(a,b)在第三象限,则点Q(?a,?b?1)在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等. 其中正确的命题的个数是()A、2个B、3个C、4个D、5个 6、在�SABC中,AC=5,中线AD=4,则AB的取值范围是()A、3分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、 OP,设△AOC的面积为S1、△BOD的面积为S2、△POE 的面积为S3,则有()A、S1?S2?S3B、S1?S2?S3C、S1?S2?S3D、S1?S2?S3第7题8、有铅笔,练习本,圆珠笔三种学习用品. 若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元. 现购铅笔、练习本、圆珠笔各1件,共需() A、1.2元 B、1.05元 C、0.95元D、0.9元2x?a?1的解是正数,则a的取值范围是() x?1 A、a??1 B、a??1且a?0 C、a??1 D、a??1且a??29、关于x的方程10、如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数() A、1个 B、2个 C、3个 D、4个A 二、填空题(本题有8小题,每小题3分,共24分)O D ba2?2ab?b2F G )?? . 11、若a?3b?0,则(1?22a?2ba?4b2212、已知0?x?1,若x?y?3,xy?1,则x?y= .22B C第10题E13、分解因式:3x?5xy?2y?x?9y?4? . 14、如图,DC∥AB,∠BAE =∠BCD,AE⊥DE,∠D = 130°,则∠B = .感谢您的阅读,祝您生活愉快。

浙教版数学八年级下册第二学期综合知识竞赛数学

浙教版数学八年级下册第二学期综合知识竞赛数学

2013学年第二学期八年级综合知识竞赛数 学 试 卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .BC . D2.如图,已知平行四边形ABCD 中,∠B =4∠A ,则∠C =( )A .18ºB .36ºC .144ºD .72º3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A.平均数是9B.中位数是9C.众数是5D.方差是54.若点P (a ,2)与Q (-1,b )关于坐标原点对称,则a ,b 分别为( )A .-1,2B .1,-2C .1,2D .-1,-25.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中( )A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°6、菱形具有而矩形不一定具有的性质是 ( )A .内角和等于3600B .对角相等C .对角线互相垂直D .对边平行且相等7.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是( )8.定义:如果一元二次方程)0(02≠=++a c bx ax 满足0=+-c b a ,我们称这个方程为“阿凡达”方程,已知02=++c bx ax 是阿凡达方程,且有两个相等的实数根,则下列正确的是( )A.b a =B.c a =C.c b a ==2D.c b =9、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BF CF =,四边形DCFE 是平行四边形,则图中阴影部分的面积为( ).A .8B .6C .4D .310.如图,①②③④⑤五个平行四边形拼成一个含30º内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为26cm 2,四边形ABCD 面积是19cm 2,则①②③④四个平行四边形周长的总和为( )A .64cmB .48cmC . 36cmD .24cm二、填空题(每小题3分,共24分)11.使式子4x -有意义的条件是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学竞赛试题
一选择题:
1、与18是同类二次根式的是( ) A 243272112D C B
2、数的大小关系是与5665
大小
都是无理数,不能比较D C B A 566556655665<=>3、在①线段②等边三角形③平行四边形④矩形⑤菱形⑥正方形这六种图形中,既是轴对称图形又是中心对称图形的有( )种
A 3
B 4
C 5
D 6
4、16的算术平方根是 ( )
A 4
B 4±
C 2
D 2±
5、在
线段的比是 ( )
A 3:1 B3:2 C4:1 D 4:2
二 填空题
6 121的平方根是
7 当a 时,式子a -3在实数范围内有意义。

8 在平行四边形ABCD 中,已知 140=∠+∠B A ,则B ∠的度数是
9 若菱形两条对角线长分别是10cm 和24cm ,则此菱形的边长是 cm 10 8的倒数是
11 已知一个矩形的长为123
4,宽为32,则它面积相等的正方形的边长是 12 在实数范围内分解因式:=-32x
中,AB=3,BC=4,ABC ∠的平分线把长边AD 分成的两条
13 直角边长分别为6cm 和8cm 的直角三角形斜边上的中线长是 cm 14 已知正方形的对角线长为2cm ,则其面积是 2cm
15 若菱形的周长是20cm ,相邻的两个内角的度数比是1:2,那么这个菱形的较短的一条对角线的长是 cm 。

三 计算题 16 1476⨯⨯ 17 7
53131248+- 18x x x x 1246932-+ 19⎪⎪⎭
⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381427
四 简答题:
20 已知一个多边形的内角和是外角和的3倍,求这个多边形的边数。

21 已知x 、y 都是实数,且()0212=-++y x ,求xy 2
1的值。

五 画图题
22画一个矩形ABCD ,使AB=2cm ,BC=3cm
六 解答题
23 已知1213+-a a 是最简二次根式,试求(34+2a )的算术平方根。

七 证明题
24 如图,已知在直三角形ABC 中,ACB C ∠=∠,90 的平分线CD 交AB 于D,DF//BC,DE//AC.
求证:四边形DECF 是正方形
B C E F D
A。

相关文档
最新文档