自动控制原理频率响应法

合集下载

自动控制原理

自动控制原理

ω = +∞ (1, j 0) ω = ∞
奈氏曲线顺时针包围 (-1,j0)点2圈,即 N=-2 所以有: Z=P-N=2
仿真
即闭环系统在s右半平面有2个极点,所以系统不稳定。
5.4.3 虚轴上有开环极点时的奈氏判据
如下列图所示的奈氏曲线中,判别哪些是稳定的,哪些 是不稳定的。
Im
Im
Im
1
ω = +∞ 0
1.6 ∞
奈氏曲线顺时针包围 (-1,j0)点2圈,即 N=-2 所以有:
(1, j 0)
ω = 0+
仿真
Z=P-N=2
即闭环系统在s右半平面有2个极点,所以系统不稳定。
5.4.3 虚轴上有开环极点时的奈氏判据
对于如下形式的开环传递函数 K G(s)H(s) = s(Ts +1)(T2s +1) 1 其奈氏图与实轴交点为 此时的 ω =
5.4.3 虚轴上有开环极点时的奈氏判据
虚轴上有开环极点时的奈氏判据

由于不能通过F(s)的任何零、极点,所 以当F(s)有若干个极点处于s平面虚轴 (包括原点)上时,则以这些点为圆 心,作半径ε为无穷小的半圆,按逆时 针方向从右侧绕过这些点。 F ( s ) 的极点 因此,F(s)的位于s平面右半部的零点 和极点均被新奈氏回线包围在内。而将 位于坐标原点处的开环极点划到了复平 面的左半部。 这样处理满足了奈氏判据的要求(应用 奈氏判据时必须首先明确位于s平面右 半部和左半部的开环极点的数目)。
2ω + ω + 0.5ω 2ω ω 0.5ω = 0
ω = 1.87
此时
A(ω) = 0.44
可以判断出交点在点(-1,j0) 的右侧

自动控制原理(第三版)第五章频率响应法

自动控制原理(第三版)第五章频率响应法
频段的两条直线组成的折线近似表示, 如图5-18的渐近线所
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为

自动控制原理第5章频率特性

自动控制原理第5章频率特性

自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。

在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。

本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。

1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。

在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。

频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。

2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。

频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。

对数坐标图上,增益通常以分贝(dB)为单位表示。

3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。

相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。

在相频特性图上,频率通常是以对数坐标表示的。

4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。

它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。

5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。

在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。

对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。

6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。

工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。

常见的设计方法包括校正器设计、分频补偿、频率域设计等。

总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。

频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。

自动控制原理第五章_频率响应法4

自动控制原理第五章_频率响应法4

( x ) G j x H j x 1800
h 20lgG( j x ) dB
dB 0
0 h 0dB
0
dB
00 h 0dB
h
c
负幅值裕度 正幅值裕度

90
h
0
c
90 180 270

x
2
1 1 a 4 0.84 c 2
10 0.1 例题 G(s) s s 2 s 100 s 0.1s2 0.01s 1 确定幅值裕量与相角裕量 0.1 G (j ) 2 j 0.1j 0.01 j 1






1 0.01
20lg G j x H j x (dB )
系统临界稳定,见右图:
G(j )曲线过(-1,j0)点时
j
G(j) =1 ∠ G(j) = -180o
同时成立!

G(j)
-1
1 =0
0
此时,截止频率等于穿越频率
=0+
K G( j ) j( jT1 1)( jT2 1)
( x ) 900 arctan x arctan 0.1 x
h 20lg 20
180
0
x 3.16 rad s
20
2
x 1 x
2
1 0.01 x
2
20lg
x 0 x
20 20lg 6.02dB 2 3.16
3 2
2(dB)
as 1 例题 G s 2 试确定相角裕量为450时参数a的值 s 2 a 1 ja 1 1 0 G ( j ) exp j ( t g a 180 ) 2 2 j Im

自动控制原理 第五章 频率法

自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10

(a )
( )
0o
90o

(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.

自动控制原理第五章频率响应法

自动控制原理第五章频率响应法
智能化和自适应频率响应分析方法
随着人工智能和机器学习技术的发展,将人工智能和机器学习技术应用于频率响应分析中 ,可以大大提高分析的准确性和效率,是未来研究的一个重要方向。
06
参考文献
参考文献
01
《现代控制系统分析与设计(第八版)》作者: Richard C. Dorf and Robert H. Bishop
01
频率响应法的起源可以追溯到20世纪30年代,当时研究者开始 使用频率响应法来分析电气系统的稳定性。
02
随着计算机技术和信号处理技术的发展,频率响应法的应用范
围不断扩大,分析精度和计算效率也不断提高。
目前,频率响应法已经成为自动控制原理中最重要的分析方法
03
之一,广泛应用于控制系统的分析和设计。
02
非线性系统的频率响应分析
非线性系统的频率响应分析是研究非线性系统对不同频率输入信号的响应特性。由于非线性系统的输出与输入之间不存在明 确的函数关系,因此需要采用特殊的方法进行分析。
在实际应用中,非线性系统的频率响应分析广泛应用于音频处理、图像处理、通信等领域。通过分析非线性系统的频率响应 特性,可以揭示系统的内在规律,为系统设计和优化提供依据。
02
《自动控制原理(第五版)》作者:孙亮
03
《控制系统设计指南(第二版)》作者:王树青
感谢您的观看
THANKS
对数坐标图分析法
对数坐标图分析法也称为伯德图,通过将系统 的频率响应以对数坐标的形式表示出来,可以 方便地观察系统在不同频率下的性能变化。
在对数坐标图中,幅值响应和相位响应分别以 对数形式表示,这样可以更好地展示系统在不 同频率下的变化趋势。
对数坐标图分析法适用于分析各种类型的系统 和多输入多输出系统,对于非线性系统也可以 进行一定的分析。

自动控制原理1第一节频率特性的基本概念

自动控制原理1第一节频率特性的基本概念

j ) j)
s j
RmG( j )
2j
Wednesday, January 31, 2024
5
而 G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ()
G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
A() P2 () Q2 ()
() tg 1 Q() P( )
频率特性与传递函数的关系为:
G( j ) G(s) |s j
由于这种简单关系的存在,频率响应法和利用传递函数的时域 法在数学上是等价的。
Wednesday, January 31, 2024
8
[结论]:当传递函数中的复变量s用 j代替时,传递函数就转n为极点。
若: r(t)
Rm sint,则R(s)
Rm s2 2
(s
Rm j)(s
j )
则:C(s)
N (s)R(s)
N (s)
Rm
(s p1)(s p2 )...(s pn ) (s p1)(s p2 )...(s pn ) (s j )(s j )
G( j) P() jQ() 这里 P() Re[G( j)] 和 Q() Im[G( j)] 分别称为系统的实
频特性和虚频特性。
Wednesday, January 31, 2024
7
幅频特性、相频特性和实频特性、虚频特性之间具有下列
关系:
P() A() cos()
Q() A() sin()
11
频率响应法的优点之一在于它可以通过实验量测来获得, 而不必推导系统的传递函数。
事实上,当传递函数的解析式难以用推导方法求得时,常 用的方法是利用对该系统频率特性测试曲线的拟合来得出传递 函数模型。

自动控制原理实验指导书

自动控制原理实验指导书

实验三线性系统的频率响应分析在经典控制理论中,采用时域分析法研究系统的性能,是一种比较准确和直观的分析法。

但是,在应用中也常会遇到一些困难。

其一,对于高阶系统,其性能指标不易确定;其二,难于研究参数和结构变化对系统性能的影响。

而频率响应法是应用频率特性研究自动控制系统的一种经典方法,它弥补了时域分析分析法的某些不足。

一、实验目的1、掌握波特图的绘制方法及由波特图来确定系统开环传递函数。

2、掌握实验方法测量系统的波特图。

二、实验设备PC机一台、TD-ACC教学实验系统一套三、实验原理及内容(一)实验原理1、频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(w由0变至∞)而变化的特性。

根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2、频率特性的表达方式(1)对数频率特性:又称波特图,它包含对数幅频和对数相频两条曲线。

(2)极坐标图(又称为乃奎斯特图)(3)对数幅相图(又称为尼克尔斯图)本次实验采用对数频率特性图来进行频率响应分析的研究。

实验中提供了两种实验测试方法:直接测量和间接测量。

(二)实验内容1、间接频率特性测量方法用来测量闭环系统的开环特性,因为有些线性系统的开环时域响应曲线发散,幅值不易测量,可将其构成闭环反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

①对象为积分环节:1/0.1S由于积分环节的开环时域响应曲线不收敛,稳态幅值无法测出,我们采用间接测量方法,将其构成闭环,根据闭环时的反馈及误差的相互关系,得出积分环节的频率特性。

②将积分环节构成单位负反馈,模拟电路构成如图3.1-1图3.1-1③理论依据图3.1-1所示的开环频率特性为:采用对数幅频特性和相频特性表示,则上式表示为:其中G(jw)为积分环节,所以只要将反馈信号、误差信号的幅值及相位按上式计算出来即可得积分环节的波特图。

④测量方式:实验采用间接测量方式,只须用两路表笔CHI和CH2来测量图3.1-1中的反馈测量点和误差测量点,通过移动游标,确定两路信号和输入信号之间的相位和幅值关系,即可间接得出积分环节的波特图。

自动控制原理第五章-1

自动控制原理第五章-1

积分环节:G(s)=1/s
微分环节:G(s)=s 惯性环节:G(s)=1/(Ts+1) 一阶微分环节:G(s)=Ts+1 振荡环节 1/(s 2 / n2 2s / n 1)
二阶微分环节 s 2 / 2 2s / 1 n n
比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(1-Ts)
系统开环传函由多个典型环节相串联 :
G(s) H (s) G1 (s)G2 (s)Gr (s)
那么,系统幅相特性为:
G ( jw) H ( jw) G1 ( jw)G2 ( jw) Gr ( jw) A1 ( w)e
j1 ( w )
A2 ( w)e k ( w )
k 1 r
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) ( s j )(s j ) 2j s2 2
a G( s)
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) s2 2 ( s j )(s j ) 2j
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号, 其输出与输入的幅值比为 输出与输入的相位差
A() G( j)
( )
G ( j )
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的 频率响应, 记为css(t)
(2)、频率特性
幅频特性A(): 稳态输出信号的幅值与输入信号的幅值之比: Ac A( ) G ( j ) A 相频特性(): 稳态输出信号的相角与输入信号相角之差: ( ) G ( j ) 幅相频率特性G(j) : G(j) 的幅值和相位均随输入正弦信 号角频率的变化而变化。 G( j ) A(w)e j ( ) 在系统闭环传递函数G(s)中,令s= j,即可得到系统的频率 特性。

自动控制原理总结之判断系统稳定性方法

自动控制原理总结之判断系统稳定性方法

自动控制原理总结之判断系统稳定性方法判断系统稳定性是控制理论研究中的重要内容,正确判断系统的稳定性对于设计和实施控制策略非常关键。

在自动控制原理中,常见的判断系统稳定性的方法主要包括根轨迹法、频率响应法和状态空间法等。

根轨迹法是一种基于系统传递函数的方式来判断系统稳定性的方法。

通过分析系统传递函数的极点和零点的分布,在复平面上绘制出根轨迹图来描述系统特性。

根轨迹图上的点表示系统传递函数的闭环极点位置随控制参数变化的轨迹,通过观察根轨迹图,可以判断系统的稳定性。

一般来说,当根轨迹图上所有的闭环极点都位于左半平面时,系统是稳定的;而如果存在闭环极点位于右半平面,系统就是不稳定的。

此外,根轨迹法还可以通过分析根轨迹图的形状、离散角和角度条件等来进一步评估系统的稳定性。

频率响应法是一种基于系统的频率特性来判断稳定性的方法。

通过分析系统的频率响应曲线,可以得到系统的增益和相位信息,进而判断系统的稳定性。

在频率响应法中,常见的评估指标有增益裕度和相位裕度。

增益裕度表示系统增益与临界增益之间的差距,而相位裕度则表示系统相位与临界相位之间的差距。

一般来说,增益裕度和相位裕度越大,系统的稳定性就越好。

根据增益裕度和相位裕度的要求,可以设计合适的控制器来保证系统的稳定性。

状态空间法是一种基于系统状态方程来判断稳定性的方法。

在状态空间表示中,系统的动态特性由一组一阶微分方程组表示。

通过求解状态方程的特征值,可以得到系统的特征根。

一般来说,当系统的特征根都位于左半平面时,系统是稳定的;而如果存在特征根位于右半平面,系统就是不稳定的。

此外,状态空间法可以通过观察系统的可控和可观测性来进一步判断系统稳定性。

当系统可控和可观测时,系统往往是稳定的。

除了以上几种常见的判断系统稳定性的方法外,还有一些其他的方法,如Nyquist稳定性判据、Bode稳定性判据、李雅普诺夫稳定性判据等。

这些方法各有特点,常常根据具体的系统和问题选择合适的方法来判断稳定性。

自动控制原理_第5章

自动控制原理_第5章
通信技术研究所
:0 ( ): 0
dB
24
对数幅频曲线近似作法:
通信技术研究所
25
九.一阶不稳定环节 1 1 G( s) 特征根s= Ts 1 T
1 G ( j ) 1 T j
A( )
1 T 2 2 1
:0
一阶不稳: 惯性环节: 0
Im

0 n
1
1
0

Re
n
2

n
3 1 2 3

通信技术研究所
21
七.二阶微分环节
G( s) s2

2 n

2
n
s 1
G( j ) 1
( j )2

2 n

2
n
( j)
2 n arctan , n 1 ( )2 n ( ) G ( j ) 2 n arctan , n 1 ( )2 n
——幅频特性 ——相频特性
( ) ( j )
r (t ) Ar sin(t r ) 4. 稳态输出 cs (t ) ( j) Ar sin[t r ( j)]
通信技术研究所
3
三.频域性能指标 1.峰值Am : A(ω)的最大值 2.频带宽 b: A()下降到0.707 A(0)对应的频率 3.相频宽 b : ( ) 时对应的频率 2 4.零频振幅比A(0):ω=0时输出输入振幅比
dB
0
( ) 90
0.1 0. 2 0.3 0. 7
1
180 0.707 A( )无峰值 0.1 0.2 0.4 0.6 0.8 1 6 8 2 4 / 0.707 Am 1 m =0 0.707 Am 1 m 0 m , =0 Am m (共振) 0 m n (最大值) n

自动控制原理简明教程 第五章 频率响应法 习题答案

自动控制原理简明教程 第五章  频率响应法 习题答案

ess2 200
4 310 34
8 310 34
ess2
8 sin(3t 310 ) 34
ess ess1 ess2 1
8 sin(3t 310 ) 34
三. 某单位反馈系统,开环传递函数为
G(s)
s(s2
20k s 10)
(k>0)
1).由奈氏判据判断使系统稳定的k值范围。
s
s(Ts
k 1)
k
1 s
1
当n(t) 2sin 3t时,N ( jw) 200
令en ( s)
k s(Ts 1)
kHale Waihona Puke E(s) N (s)en( jw)
k jw( jwT 1) k
,
当w 3时,en( j3)
k
(arctg 3 )
(k 9T )2 32
9T k
4 310 (代入k 4,T 1) 34
相频特性 (w) 180 0 arctg(0.8w) arctg0.05w
含有两个积分环节,起点在 1800无穷远处,
终点 w ,A(w)=0,在坐标原点。
两个积分环节,相角 1800 一个一阶微分环节,相角 0 ~ 900 一个惯性环节,相角 0 ~ 900 则总的相角变化 1800 ~ 1800 Nyquist曲线呈现凹凸特性。
(k Tw2 )2 w2
带入w=2
k
2
(k 4T )2 4
(
jw)
arctg
k
w Tw2
arctg
k
2 4T
900
解得:
k T
4,则G(s) 1
4 s(s 1)
开环频率特性: G( jw) 4

频率响应法自动控制原理

频率响应法自动控制原理
CHAPTER
控制系统概述
控制系统定义
控制系统是由控制器、受控对象和反馈回路组成的闭环系统,用 于实现特定的控制目标。
控制系统分类
根据控制方式、控制参数和控制目标的不同,控制系统可分为多 种类型。
控制系统组成
一个典型的控制系统包括输入信号、控制器、受控对象、反馈回 路和输出信号等部分。
控制系统中的频率响应分析
案例一:电机控制系统中的频率响应分析
电机控制系统在工业自动化中具有广泛应用,如数控机床、自动化生产线等。频 率响应法可以对电机控制系统的动态性能进行分析,包括系统的稳定性、响应速 度和超调量等。
通过频率响应分析,可以优化电机控制系统的参数,提高系统的动态性能,从而 提升生产效率和产品质量。
案例二:机器人控制系统中的频率响应分析
频率响应是指系统对不同频 率输入信号的输出响应,通 常用复数形式的传递函数表
示。
频率响应法通过分析系统的频 率响应特性,可以得到系统的 稳定性、动态性能和噪声抑制
能力等方面的信息。
频率响应法的应用场景
航空航天领域
在航空航天领域,频率响应法常用于分析飞行控制系统、 推进系统等关键子系统的动态性能,以确保系统在各种工 作条件下都能稳定、可靠地运行。
控制系统中的稳定性分析
1 2
稳定性定义
稳定性是指系统在受到扰动后能否恢复到原始状 态的能力,是控制系统的重要性能指标。
稳定性分析方法
稳定性分析主要通过分析系统的极点和零点分布、 计算系统的传递函数等手段进行。
3
稳定性分析应用
稳定性分析在控制系统设计、分析和优化中具有 重要作用,是保证系统性能稳定的关键步骤。
在机器人控制系统中,频率响应法可以用于分析机器人的运 动性能和稳定性。通过对机器人的关节运动系统进行频率响 应分析,可以了解机器人的动态特性,优化机器人的运动轨 迹和速度。

自动控制原理频率响应方法知识点总结

自动控制原理频率响应方法知识点总结

自动控制原理频率响应方法知识点总结自动控制原理是现代控制工程中的重要学科,频率响应方法是其中的一种重要方法。

本文将对自动控制原理频率响应方法的相关知识点进行总结。

一、频率响应方法简介频率响应方法是一种通过研究系统的输入和输出响应在频域上的特性,来进行系统分析和设计的方法。

它以系统对输入信号的幅频特性和相频特性为研究对象,通过频率曲线和相频曲线来描述系统的频率特性。

二、频率响应的基本概念1. 幅频特性:幅频特性是指系统输出信号幅度随输入信号频率变化的规律。

常用的幅频特性曲线有Bode图和Nyquist图。

2. 相频特性:相频特性是指系统输出信号相位随输入信号频率变化的规律。

相频特性曲线常用的表示方法是Bode图。

三、频率响应的测量方法1. 振荡法:通过改变系统的增益,在系统中引入正反馈,使得系统产生自激振荡的方法。

根据系统的振荡频率和衰减因子可以得到系统的频率响应特性。

2. 步变法:通过给系统输入单位阶跃信号或单位脉冲信号,观察系统的响应曲线,根据响应曲线确定系统的频率响应特性。

四、频率响应的稳定性分析1. 稳定性判据:频率响应的稳定性分析可以通过判断系统增益曲线和相频曲线的特性来实现。

常用的稳定性判据有:相角曲线通过180度时,增益曲线不等于0dB,且通过0dB时,相角曲线大于-180度。

2. 稳定性分析方法:可以通过频率响应曲线上的特征点来判断系统的稳定性:幅频特性曲线通过0dB时的频率为系统的临界频率,临界频率越大,系统的稳定性越好;相频特性曲线上的相角曲线通过-180度的频率为系统的相交频率,相交频率越小,系统的稳定性越好。

五、频率响应的设计方法1. 改善系统的稳定性:可以通过增加系统的增益来提高系统的稳定性,常用的方法有增加增益裕度和相移裕度。

2. 改善系统的性能:可以通过调整系统的频率响应特性来改善系统的性能,如改变系统的临界频率、带宽等。

六、频率响应方法在实际工程中的应用频率响应方法广泛应用于自动控制系统的分析和设计中。

自动控制原理实验报告实验二-频率响应测试

自动控制原理实验报告实验二-频率响应测试

自动控制原理实验报告实验二-频
率响应测试
自动控制原理实验报告实验二-频率响应测试是一个实验,用于测试一个系统的频率响应。

它包括了数学模型的描述,实验处理装置的设计,以及实验结果的分析。

实验前,我们需要对系统的频率响应特性进行数学模型分析,来确定具体实验中参数的取值,如时间常数、截止频率和放大器带宽等。

在实验中,根据实验要求,我们设计了一套实验处理装置,由PC机,通道放大器,放大器反馈回路,传感器,相应示波器以及控制软件组成。

在实验中,我们采用正弦信号作为输入,通过PC机的控制软件调节信号的频率和幅值,然后将信号输入到放大器中,放大器放大信号,输出到反馈回路中,反馈回路中的传感器检测反馈信号,将反馈信号输出到PC机,再通过相应示波器显示出来,以便观察系统的响应。

在实验中,我们对频率响应进行了测试,首先,我们使用定时器设置不同频率的正弦信号作为输入,观察系统的频率响应特性,并记录响应曲线;其次,我们使用扫频器模拟正弦信号,以每个正弦信号的频率进行不同振幅的扫描,观察系统的响应特性,并记录响应曲线;最后,我
们使用控制软件对系统进行调整,以提高系统的响应能力,并记录响应曲线。

实验结束后,我们对实验结果进行了分析,并将系统的频率响应与理论值进行比较,以验证实验结果的准确性。

根据分析结果,我们得出结论:系统的频率响应符合理论值,控制软件的调整有效提高了系统的响应能力。

总之,自动控制原理实验报告实验二-频率响应测试是一个有益的实验,它不仅帮助我们更好地了解系统的频率响应特性,而且也可以帮助我们更好地控制系统,以提高系统的响应能力。

自动控制原理零极点配置知识点总结

自动控制原理零极点配置知识点总结

自动控制原理零极点配置知识点总结自动控制原理中的零极点配置是一个重要的概念,它涉及到控制系统的稳定性、性能以及鲁棒性等方面。

本文将对零极点配置的基本概念、方法和应用进行总结和介绍。

1. 零极点配置的基本概念在自动控制系统中,零极点是指系统传递函数的零点和极点。

传递函数是描述系统输入与输出之间关系的数学表达式。

零极点配置是通过改变系统的零点和极点位置,来调整系统的动态响应特性,以实现所需的控制目标。

2. 零极点配置的方法2.1 频率响应法频率响应法是一种基于系统传递函数的频率特性进行零极点配置的方法。

通过分析系统的频率响应曲线,可以确定系统的零极点位置,并据此进行配置。

常见的频率响应法包括根轨迹法、奈奎斯特稳定判据和波特图等。

2.2 代数法代数法是一种基于数学方程的方法,通过求解系统传递函数的代数方程,确定系统的零极点位置。

代数法适用于线性系统和一些特殊的非线性系统。

常见的代数法包括方程配平法、极点分布法和最小二乘法等。

3. 零极点配置的应用3.1 系统稳定性通过合理配置系统的零极点,可以提高系统的稳定性。

例如,在反馈控制系统中,可以通过将闭环系统的极点位置移动到左半平面来实现系统的稳定。

3.2 系统性能零极点配置还可以用于调节系统的动态响应特性,以实现所需的控制性能。

例如,通过将闭环系统的极点位置移动到指定的位置,可以实现系统的快速响应、抑制振荡等。

3.3 鲁棒性在实际控制系统中,存在参数不确定性、外部扰动等因素。

零极点配置可以通过合理的设计,提高系统对这些不确定性和扰动的鲁棒性。

例如,将极点位置尽可能分散布置于扰动频率范围之外,可以减小扰动对系统的影响。

总结:零极点配置是自动控制系统中的重要概念,它涉及到控制系统的稳定性、性能和鲁棒性等方面。

通过合理配置系统的零极点位置,可以实现对系统动态响应特性的调节,以满足工程实际需求。

掌握零极点配置的基本概念和方法,对于自动控制原理的学习和工程应用具有重要意义。

自动控制原理(第二版)第五章频率响应法

自动控制原理(第二版)第五章频率响应法

发展多变量频率响应法
针对多输入多输出系统,需要发展多变量频率响 应法,以便更好地处理复杂系统的分析问题。
深入研究非最小相位系统
针对非最小相位系统的稳定性判断问题,需要深 入研究其频率响应特性,并寻求有效的解决方法 。
06
CATALOGUE
结论
总结频率响应法的要点与重点
01 02 03 04
频率响应法是一种通过分析线性定常系统对正弦输入信号的稳态响应 来评价系统性能的方法。
频率响应法的优势与局限性
优势
频率响应法能够提供系统在整个频率范围内的动态性能信息,有助于全面了解 系统的性能特点;通过分析频率特性,可以更容易地识别系统的稳定性和潜在 的谐振问题。
局限性
频率响应法主要适用于线性定常系统,对于非线性或时变系统,其应用可能受 到限制;此外,频率响应法无法提供系统的时域信息,如瞬态响应和稳定性。
05
CATALOGUE
频率响应法的局限性与改进方法
频率响应法的局限性
01
频率响应法主要适用于线性时不 变系统,对于非线性或时变系统 ,频率响应法可能不适用。
02
频率响应法只能给出系统在正弦 输入下的稳态输出,无法反映系
统的动态行为。
频率响应法无法处理多输入多输 出系统,对于复杂的多变量系统 ,需要采用其他方法进行分析。
02
CATALOGUE
频率响应的基本概念
频率特性的定义
频率特性
系统对正弦输入信号的稳态输出与输入之比,用复数表示的频率 函数。
频率特性与传递函数
传递函数是系统在零初始条件下,频率特性的解析表达式。
频率特性与系统性能
频率特性直接反映系统在不同频率的正弦输入信号下的响应特性 ,与系统的动态和稳态性能密切相关。

自动控制原理频率响应知识点总结

自动控制原理频率响应知识点总结

自动控制原理频率响应知识点总结在自动控制领域中,频率响应是一个非常重要的概念。

它描述了控制系统对于不同频率输入信号的响应能力,可以帮助我们了解系统的稳定性、抗干扰能力以及动态性能等方面的特征。

本文将对自动控制原理频率响应的一些基本概念和知识点进行总结。

1. 开环和闭环系统在讨论频率响应之前,我们需要了解开环和闭环系统的概念。

开环系统指的是没有反馈环路的控制系统,其输出仅依赖于输入信号,无法对输出进行修正。

闭环系统则是具有反馈环路的控制系统,可以根据输出与期望值之间的差异进行调整,以实现系统的稳定性和准确性。

2. 传递函数传递函数是频率响应分析中一个重要的工具,它用于描述系统的输入与输出之间的关系。

传递函数通常表示为H(s),其中s是复变量。

传递函数可以通过系统的微分方程和拉普拉斯变换求得,它可以帮助我们分析系统的稳定性、频率响应以及动态特性。

3. 频率响应曲线频率响应曲线是描述系统对不同频率输入信号响应的一种图形表示。

常见的频率响应曲线有幅频特性曲线和相频特性曲线。

幅频特性曲线描述了系统对不同频率输入信号的幅值响应,可以帮助我们了解系统的增益特性。

相频特性曲线描述了系统对不同频率输入信号的相位响应,可以帮助我们了解系统的时延特性。

4. 频率响应的稳定性频率响应的稳定性是指系统对不同频率输入信号的输出是否会产生趋于无穷大的震荡或者衰减。

对于一个稳定的控制系统,其频率响应曲线应当在一定的范围内衰减或者保持在一个有限的值。

5. 主要特征频率在频率响应分析中,我们经常关注系统中的主要特征频率。

主要特征频率包括截止频率、共振频率和带宽等。

截止频率是指系统对输入信号的幅值衰减到原始值的一半所对应的频率。

共振频率是指系统对输入信号产生最大响应的频率。

带宽则是指频率响应曲线保持在一定范围内的频率区间。

6. Bode图Bode图是频率响应分析中常用的图形工具,可以帮助我们直观地了解系统的幅频特性和相频特性。

Bode图是由两个曲线组成的,一个是描述系统增益特性的幅频特性曲线,另一个是描述系统相位特性的相频特性曲线。

频率响应自动控制原理

频率响应自动控制原理

频率响应自动控制原理
1. 引言
频率响应是在控制系统中相当重要的一个指标,它涉及到系统的
稳定性、动态性能等方面。

因此,对于频率响应的自动控制也成为了
控制系统的一个必要部分。

2. 什么是频率响应
频率响应是指系统对输入信号在不同频率下的输出响应。

通俗地说,它是一种表示系统如何处理输入信号的方法,我们可以通过测量
输入和输出的信号,找出频率响应曲线,以此刻画系统的特性。

频率
响应可通过振幅和相位等值表示,并通常以频率作为自变量。

3.频率响应自动控制原理
实际上,频率响应自动控制的核心就是对系统的频率响应进行调整。

具体地说,它通过对控制器的参数进行改变,来调整系统的频率
响应曲线,从而达到想要的目标。

同时,这种调整也可以看做是一种
对反馈控制的优化。

4.频率响应自动控制的实现方式
实现频率响应自动控制的方法有许多,但是大多数都需要依靠计
算机软件来实现,可以通过 Matlab 等工具进行仿真调试。

具体来说,实现频率响应自动控制的步骤如下:
(1)确定控制系统的频率响应曲线;
(2)设计反馈控制律,以实现相应的频率响应;
(3)通过计算机进行仿真调试,观察系统的频率响应情况;
(4)根据调试结果,对控制器进行优化和调整。

5. 结论
频率响应自动控制是控制系统中一个十分重要的部分,它通过对系统的频率响应进行调整,来实现对输入信号的处理。

实现频率响应自动控制的方法有多种,但是关键在于对控制器的设计与优化。

我们需要充分了解频率响应自动控制原理,用科学的方法,来提高控制系统的稳定性和动态性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
如果取s=j代入,则
1 11
1
e jarctanT
jT 1 jT 1 jT 1 2T 2 1
该式能完全描述RC网络在正弦函数作用下稳 态输出的幅值和相位随输入频率变化的情况。因此, 将1 / (jwT+1)称做该RC网络的频率特性。
表列出了RC网络幅频特性和相频特性的计 算数据。
6
根据表中数据绘制的幅频特性曲线和相频特性曲 线如下:
U
c
(s)
1 Ts
U 1
r
(s)
1 Ts
1
s
2
A
2
取拉普拉斯反变换,得输出信号
uc
AT
2T 2 1
t
eT
A sin(t arctanT ) 2T 2 1
式中第一项为输出的瞬态分量,第二项为稳态分量。随着t趋于 无穷大,瞬态分量趋于零,于是
lim
t
u
c
A sin(t arctanT ) 2T 2 1
css (t) ae jt ae jt
式中的系数 a 和 a 求得如下。即
a
G(s) (s
A j )(s
j )
(s
j )
s j
G( j) A 2j
a
G(s) (s
A j )(s
(s j )
j )
s j
G( j) A 2j
10
css (t)
A 2j
[G(
j )e
j t
G(
j )e j t
(U K ) 2 V 2 ( K ) 2
2
2
所以,在复平面上G(jw)为一圆心在(K/2,0)点, 半径为K/2的半圆,如图下半部分所示。当-∞w 0时,因为G(-jw)与G(jw)互为共轭关系,关于实 轴对称,即如上半圆所示。
1/T
10/T
K
K/1.12
K/10.0 0
0° -26.6° -45° -84° -90°
ቤተ መጻሕፍቲ ባይዱ
13
可以证明,图5.6中的频率特性曲线是一半圆,圆心在实轴 上的0.5K处,半径R=0.5K。
设 G( j) U() jV ()
U ( ) K (T )2 1
V ( ) KT (T )2 1
配方后可得
G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
11
5.3 频率特性的图示方法
频域分析法是一种图解方法,采用频域法分析闭环系统的特 性时,通常需画出系统开环频率特性曲线。频率特性的图示 方法主要有三种,即极坐标图、对数坐标图和对数幅相图, 现分述如下。 5.3.1 极坐标图 频率特性G(jw)是频率w 的复变函数,其模|G(jw)|与相角 ∠G(jw)可以在复平面上用一个矢量来表示。当频率w从
3
5.2 频率特性
5.2.1 频率特性的基本概念
首先以图RC网络为例,说明频率特性的概念。
RC网络的输入和输出的关系可由下面微分方程
描述
T
duc dt
uc
ur
式中,T=RC为时间常数。网络的传递函数为
Uc (s) 1 U r (s) Ts 1
4
设输入是一个正弦信号,即
可得
ur Asint
nm
式中-z1, -z2 ,…,-zm是传递函数G(s)的零点, -s1 , -s2 ,…, -sn 是传递函数G(s)的极点。这些极点可能是 实数,也可能是共轭复数,但对于稳定系统来说,它们都 具有负实部。
系统输出c(t)的拉普拉斯变换为
C(s)=G(s)R(s)= K (s z1)(s z2 ) (s zm )
0 变化时,矢量端点的轨迹就表示频率特性的极坐标 图。极坐标图又称幅相图或奈魁斯特(Nyquist)图。在极坐标 图上,规定矢量与实轴正方向的夹角为频率特性的相位角, 且按逆时针方向为正进行计算。
12
1. 典型环节频率特性的极坐标图
(1)比例环节。比例环节的幅频特性和相频特性都是常量, 分别等于K及0°,不随频率w 而变化。
A
(s s1)(s s2 ) (s sn ) (s j)(s j)
9
展成部分分式为
C(s) a a b1 b2 bn
s j s j s s1 s s2
s sn
对式进行拉普拉斯反变换,可得系统对正弦输入信号r(t)的响
应为 即
n
c(t) ae jt ae jt bi esit i 1
(2)积分环节。当w 由零趋向无穷大时,幅频特性则由∞逐 渐减少到0,而相位总是-90°。因此积分环节的极坐标曲 线是沿复平面中虚轴下半部变化的直线,如图5.5所示。 积分环节是相位滞后环节,它的低通性能好。
(3)惯性环节
表5.2 惯性环节在几个特定频率下的幅值与相角
|G(jw)| ∠G(jw)
0
1/2T
]
A G( j ) e j( t ) e j( t )
2j
AG( j) sin(t )
B sin(t )
通过上述分析,得到频率特性的定义,即:系统对正弦输入信号的稳态响应特 性,就称为频率特性。一般记为
G( j ) G( j ) e jG( j)
G( j) e j
它包含了两部分内容:幅值比是依赖于角频率w 的函数,|G(jw)|称为系统的幅 频特性;稳态输出信号对正弦输入信号的相移φ称为系统的相频特性。系统的频率 特性G(jw)可以通过系统的传递函数G(s)来求取,即
本章将讨论频率特性的基本概念、典型环节和 系统的频率特性、奈魁斯特稳定判据、频域性能指标 与时域性能指标间的联系等。
2
5.1 概述
频域分析法是应用频率特性研究 线性系统的一种图解方法。频率特性 和传递函数一样,可以用来表示线性 系统或环节的动态特性。
建立在频率特性基础上的分析控 制系统的频域法弥补了时域分析法中 存在的不足,因而获得了广泛的应用。 所谓频率特性,是指在正弦输入信号 的作用下,线性系统输出的稳态响应。
普通高等教育“十一五”国家级规划教 材
自动控制原理
第5章 频域分析法
机械工业出版社
第5章 频域分析法
5.1 概述 5.2 频率特性的基本概念 5.3 频率特性的图示方法 5.4 频域稳定性判据 5.5 控制系统的稳定裕度 5.6 控制系统的闭环频率特性 5.7 频域性能指标与瞬态性能指标之间的关系
7
5.2.2 频率特性的求取
一般线性定常系统输入、输出关系如图所 示。
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
8
G(s) K (s z1 )(s z2 ) (s zm ) (s s1 )(s s2 ) (s sn )
相关文档
最新文档