人教版初中数学《第25章染色问题》竞赛专题复习含答案

合集下载

初中数学竞赛 知识点和真题 第25讲 染色问题与染色方法

初中数学竞赛 知识点和真题 第25讲 染色问题与染色方法

第25讲染色问题与染色方法数学家像画家和诗人一样,是模式制造家。

——G.H.哈代知识方法扫描染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想.同时,染色作为一种解题手段也在数学竞赛中广泛使用.1. 染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力.纵观各种染色试题,它与我们经常使用的数学方法紧密联系.大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等.2. 染色方法将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法.常见的染色方式有:点染色、线段染色、小方格染色和对区域染色.经典例题解析例 1 用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色.分析在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.证明在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.评注由例1可得更一般的结论:平面上的点二染色后,一定存在长为a(a >0)的线段,它的两个端点同色.例2 对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.证明对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.评注 进一步由图证明可得:二染色平面上存在斜边要么为a ,要么为2a 且三顶点同色的等腰直角三角形.那么,当平面点二染色以后,是否一定存在边长为1且顶点同色的等边三角形呢?例3将对这个问题作出回答.例3 用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.证明 若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.例4 连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.证明 设9个点依次为v 1,v 2,…,v 9,首先证明必存在一点,设为v 1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295 不是整数,矛盾. 若从v 1出发的红色线段至少有6条,设v 1v 2,v 1v 3,v 1v 4,v 1v 5,v 1v 6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.例5某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.分析本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.例6把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.分析与解为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.例7 有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?分析与解先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.例8证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).分析本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i色的有x块,竖着盖住的有y块.2×2砖盖i住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.同步训练1.有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.2.将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.3.在二染色的平面上一定存在一个矩形,它的四个顶点同色.4.将正方体的每一个面分成四个相等的正方形,从三种不同颜色中任选一种给一个正方形染色,且使任何两个有公共边的正方形染不同的颜色.证明:每种颜色恰好染8个正方形.并举出一种染色方案.5.某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.6.在2n ×2n 的棋盘上,把相对角的两格剪去,则不能用若干块1×2的小棋盘(又称为多米诺骨牌)无重迭地覆盖这个缺角的大棋盘.7.有一种计算机软件只能复制一个边长为1的正方形的四个边,然后贴上。

第25章 染色问题(习题导学案教案)(奥数实战演练习题)

第25章 染色问题(习题导学案教案)(奥数实战演练习题)

第25章染色问题25.1.1★★圆周上等间距地分布着27个点,它们被分别染为黑色或白色.今知其中任何2个黑点之间至少间隔2个点.证明:从中可以找到3个白点,它们形成等边三角形的3个顶点.解析我们将27个点依次编号,易知它们一共可以形成9个正三角形(1,10,19),(2,11,20),…,(9,18,27).由染色规则知,其中至多有9个黑点.如果黑点不多于8个,则其中必有一个正三角形的所有顶点全为白色.如果黑点恰有9个,那么由染色规则知,它们只能是一黑两白相间排列,其中也一定有一个正三角形的所有顶点全为白色.25.1.2★★某班有50位学生,男女各占一半,他们围成一圈席地而坐开营火晚会.求证:必能找到一位两旁都是女生的学生.解析将50个座位相间地涂成黑白两色,假设不论如何围坐都找不到一位两旁都是女生的学生,那么25个涂有黑色记号的座位至多坐12个女生.否则一定存在两相邻的涂有黑色标记的座位,其上面都坐着女生,其间坐着的那一个学生与假设导致矛盾.同理,25个涂有白色标记的座位至多只能坐12个女生,因此全部入座的女生不超过24人,与题设相矛盾.故命题得证.25.1.3★在线段的两个端点,一个标以红色,一个标以蓝色,在线段中间插入个分点,在各个分点上随意地标上红色或蓝色,这样就把原线段分为个不重叠的小线段,这些小线段的两端颜色不同者叫做标准线段.求证:标准线段的个数是奇数.设最后一个标准线段为.若,则仅有一个标准线段,命题显然成立;若,由、不同色,则必与同色,不妨设与均为红色,那么在和之间若有一红蓝的标准线段,必有一蓝红的标准线段与之对应;否则不能为红色,所以在和之间,红蓝和蓝红的标准线段就成对出现,即和之间的标准线段的个数是偶数,加上最后一个标准线段,所以,和之间的标准线段的个数是奇数.25.1.4★★能否用面积为的一些长方块将的棋盘覆盖?解析如图中标上1~4这些数,显然每个1×4的长方块各占1、2、3、4一个,于是如果可以覆盖,则1、2、3、个,矛盾!因此不能覆盖.25.1.5★★12个红球和12个蓝球排成一行,证明:必有相邻的6个球三红三蓝.解析将这些球标上数字,红球标1,而蓝球则标上,于是问题变为:必定有6个相邻的球其标数之和为.记从第个球起的6个数字和为,于是可取1,2, (19)易知的全部取值为、、、0、2、4、6,且或2(可以认为以2或、0的步长“连续”变化).由,知若四数中有0,则结论成立,否则必有正有负.不妨设,,,{1,7,13,19},于是必存在一个,在与之间,.25.1.6★如图,把正方体形的房子分割成27个相等的小房间,每相邻(即有公共面)两个房间都有门相通,在中心的那个小正方体中有一只甲虫,甲虫能从每个小房问走到与它相邻的小房间中的任何一问去.如果要求甲虫只能走到每个小房间一次,那么甲虫能走遍所有的小房间吗?解析甲虫不能走遍所有的小房间.我们如右图将正方体分割成27个小正方体(每个小正方体表示一问房间),涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走26步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在26步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小房间只去一次,那么甲虫不能走遍所有的小房间.25.1.7★★3行9列共27个小方格,将每个小方格涂上红色或蓝色.试证:无论如何涂法,其中至少有两列,它们的涂色方式完全一样.解析第一行的9个方格中必有5格同色(抽屉原理),不妨设这5个方格位于前五个位置,且都为红色.下面考虑前五列构成的3×5小矩形.第二行的五格中必有3格是同色的,不妨设这三格位于前三个位置.接着考虑前三列构成的3×3方阵,该方阵前两行的每列完全一样.对第三行,用两种颜色25.1.8★★如图(),是由14个大小相同的正方形组成的图形,证明:不论如何用剪刀沿着图中直线进行剪裁,总剪不出七个由相邻两个小正方形组成的矩形来.解析如图()涂色.若有一种剪法能剪出七个相邻两个小正方形组成的矩形,则每个矩形一定由一个涂色小正方形和一个不涂色小正方形构成.因此,应该有七个涂色小正方形和七个不涂色的小正方形.但图中有八个涂色小正方形,六个不涂色小正方形,因此适合题意的剪法不存在.25.1.9★★★在8×8的国际象棋棋盘中的每个方格都填上一个整数,现任挑选3×3或4×4的正方形,将其中每个数加1,称为一次操作,问是否能经过有限次操作,一定可以让方格中的所有整数均被10整除?解析按图中选择小方格涂黑,易见每个3×3或4×4都包含偶数个小黑格,这些小黑格中原来数字之和是奇数的话,那么操作一次后,数字和仍是奇数,因此不能得到最后均被10整除.答案是不一定.25.1.10★★4×4的方格表中最多选择几个格子涂黑,使得不存在4个黑格的中心是一个矩形的顶点?解析如图,涂9格,无所求矩形,下证若涂10格,则会出现所求矩形.这是因为若有一行全部涂黑,则余下的行中必有一行至少涂黑2格,此时便有所求矩形出现.于是每行黑格数不到4个,必有两行各包含3个黑格,此时不难看出有所求矩形出现,因此最多选择9格.25.4.11★★★在8×8的国际象棋棋盘中剪去哪个小方格,使得剩下的小方格可以被1×3的矩形覆盖?解析剪去左上角的方格后,棋盘不能用21个3×1的矩形覆盖.为了证明这一点,我们将棋盘涂上三种颜色,涂法如图,其中数字1、2、3分别表示第一、二、三种颜色.如果能用21个3×1矩形将剪去左上角的棋盘覆盖,那么每个3×1的矩形盖住第一、二、三种颜色的方格各1个,从而21个3×1的矩形盖住第一、二、三种颜色的方格各21个,然而棋盘(剪去左上角后)却有第一种颜色的方格20个,第二种颜色的方格22个,第三种颜色的方格21个.因此,剪去左上角的棋盘无法用21个3×1的矩形覆盖.由此可见,如果剪去一个方格后,棋盘能用21个3×1的矩形覆盖,那么剪去的方格一定是图中涂第二种颜色的方格.但是,剪去图中涂第二种颜色的一个方格后,仍然不能保证一定能用21个3×1的矩形覆盖,比如说,剪去图中第一行第2个方格后不能用21个3×1的矩形覆盖,这是由于棋盘的对称性,剪去这个方格与剪去第一行第7个(涂第一种颜色的)方格(或剪去第八行第2个涂第三种颜色的方格)于是,只有剪去第三行第3个、第三行第6个、第六行第3个、第六行第6个这四个方格中的某一个,剩下的棋盘才有可能用21个3×1的矩形覆盖.不难验证这时确实能够覆盖.25.1.12★★求证:只用2×2及3×3的两种瓷砖不能恰好铺盖23×23的正方形地面.解析将23×23的正方形地面中第1、4、7、10、13、16、19、22列中的小方格全染成黑色,剩下的小方格全染成白色,于是白色的小方格的个数为15×23,这是奇数.因为每块2×2瓷砖总是盖住二黑格和二白格或者盖住四白格,每块3×3瓷砖总是盖住三黑格和六白格,故无论多少2×2及3×3的瓷砖盖住的白格数总是一个偶数,不可能盖住23×15个白格,所以,只用2×2及3×325.1.13★★求证:用15块大小是1×4的矩形瓷砖和1块大小是2×2的正方形瓷砖,不能恰好铺盖8×8的正方形地面.解析把8×8的正方形地面上64个小方格依次赋值1、2、3、4如图.无论1×4的矩形瓷砖怎样盖在图中所示的地面上,每块l×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方块各1个,可见15块1×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方格各15个,而一块2×2的正方形瓷砖无论盖在何处,只有如下四种情形之一:这就是说,2×2的正方形瓷砖所盖住的4个小方块中,必有两个小方块有相同数码.由此可见,如果15块1×4,1块2×2的瓷砖恰好能铺盖8×8的正方形地面,那么这64个小方块中,某一种赋值的小方块应有17块,但实际上,赋值1、2、3、4的小方块各16块,矛盾.25.1.14★★7×7的方格表中有19个方格涂成红色,称一行或一列是红色的如果该行或该列中至少有4个红格.问该方格表中最多有多少个红色的行和列?解析首先我们指出红色的行和列不多于8个.若不然,红色的行和列至少9个,则其中必有5个红行或红列,不妨设为前者.由于每个红行中至少有4个红格,故知表中至少有20个红格.此与已知条件矛盾.其次,当我们将表格中的某个4×4的正方形的16个方格全部涂红时,便得到4个红行和4个红列,共8个.这表明有19个红格时,确可使红行与红列的个数达到8.所以最大值为8.25.1.15★★如图是由4个l×1方格组成的形纸片,如果一个方格的棋盘能被若干个形纸片无重复地覆盖,试证:是8的倍数.解析设棋盘由个形纸片所覆盖,而形是由4个1×1小方格所组成,则可令.由此得出、中至少有一个偶数,不失一般性,可令为偶数,即共有偶数列.现在对“列”进行黑、白交替染色,可得黑、白格各共有个.易见每个形纸片无论怎样配置,总是盖住奇数个黑格.今共有个黑格,因此必须有偶数个形,从而证得是8的倍数.25.1.16★★在8×8的方格棋盘上最多能放多少个马,它们互不相吃(假定有足够多的马)?解析我们将棋盘相间染成黑白二色,则黑格与白格各32个.按马的走法(如图)知,黑格上的马只能吃白格上的马,因此,将所有黑格都放马,它们是互不相吃的.这就是说,我们可以放32个马,它们互不相吃.现证任意放33个马必有被吃的情形.事实上,将棋盘划分为8个2×4的小棋盘,则至少有一个小棋盘要放5个马,其放法只有两种可能:要么一排放1个,另一排放4个;要么一排放2个,另一排放3个.显然这两种放法都不可避免地发生互相“残杀”的结局.因此,最多能放32个马,它们互不相吃.25.1.17★★★在12×12的棋盘上,一匹超级马每步跳至3×4矩形的另一角,如图().这匹马能否从某一点出发,跳遍每一格恰好一次,最后回到出发点?解析我们用两种方法对此棋盘染色.首先,将棋盘黑白相间染色,由马的跳步规则知,马每跳一步,或者是从黑格跳到白格,或者是从白格跳到黑格.不妨设马是第奇数步跳到自格,即马在第奇数步跳入的格子全体就是全体白格.其次,将棋盘的第1、2、6、7、11、12行染成白色,其余的行染成黑色,如图().由马的跳步规则知.马从白格一定跳人黑格,因为白格的数目同黑格的数目相同,马要遍历棋盘的每一格恰一次再回到出发点,因此,马从黑格只能跳入白格,不妨设马第奇数步跳入白格.对于一种满足要求的跳法,在两种染色方式下第奇数步跳入的格子的全体却是不同的,矛盾.因此,题目要求的跳法,即“回路”是不存在的.25.1.18★★★在8×8方格表的小方格内放置黑色或白色的棋子,每个小方格内至多只能放一个棋子,使得每行且每列白色棋子的数量都是黑色棋子的数量之2倍.在满足上述条件的所有放置方法中,请问如何放置白色棋子和黑色棋子才能使得棋子的总数量最多?解析因每行都有8格,所以每行棋子最多只能有6个.此方格表共有8行,因此棋子的总数最多为48个.如右图所示,48个棋子是可以完成的.25.1.19★★★★将的方格表中每个小方格涂上黑色或白色,两种颜色的方格数相等.问能否有一种涂法,使每一行、每一列中都有一种颜色的方格数超过75%?解析不可能.设每行、每列中都有一种颜色的方格超过,由于行与行、列与列可对调而不影响结论.不妨设其中前行白色占优势,后行黑色占优势;前列白色占优势,后列黑色占优势.,(如下左图).考虑放的矩形中的个方格.其中的白格可看成列或行中的“少数派”,而黑格可看成行或列中的“少数派”.由于在每行、每列中“少数派”少于或个,所以前一个矩形中的白色与后一个矩形中的黑格的个数之和少于.同样,前一个矩形中的黑格与后一个中白格之和少于.所以这两个矩形中的方格数,即少于方格总数的一半.因此,,从而,或,不妨设为前者,这时,,白色方格总数,与两种颜色的方格相等矛盾.评注每行、每列中都有一种颜色的方格恰好占是可能的(这时、当然都被4整除),前右图(其中,)即满足要求.25.1.20★★★在2是×2是的方格表上,有个格子涂黑,求证:可以选择行及列,包含了全部这个黑格.解析将包含黑格的所有行中找出黑格数最多的前行,则这行中包含的黑格总数必定不少于,否则会有一行的黑格数至多一个,而剩下来的行至少有个黑格,于是有一行包含了至少两个黑格,这与前是行”的定义矛盾.于是结论成立,接下来只要再找是列包含剩下的个黑格即可(有的列可不包含黑格).25.1.21★★★7×7方格表中的方格被分别染为两种不同颜色,证明:至少可以找出21个矩形,它们的顶点是同一种颜色方格的中心,它们的边平行于方格线.解析考察其中任意一列,估计其中同色“方格对”的个数.设在该列中有一种颜色的方格走个,另一种颜色的方格个,那么,在该列中就共有个同色“方格对”.该式的值在和时达到最小值9,所以,7个列中一共有不少于63个同色“方格对”.注意到每一个这样的同色“方格对”位于一个“行对”中,如果相应的“行对”中还有一个与之颜色相同的同色“方格对”,那么,它们即构成一个满足要求的矩形.我们知道,方格表中一共有个不同的“行对”,由于有两种不同颜色,所以,一共有42种不同情况的“行对”.因此,至少可以找到21(=63-42)个满足要求的矩形.25.1.22★★★把全体正整数染成黑白两色之一,已知任意两个不同颜色的数之和为黑色,而它们的积是白色,试找出所有的这种染色方法.解析设正整数、为白色,现研究的颜色.若是黑色,设正整数黑色,则为黑色,为白色,但由前知黑色,白色,于是黑色,矛盾,因此为白色.设正整数是染成白色的最小数,于是由条件及前面的讨论知,的所有正整数倍数均为白色.至于其他正整数,不被整除,设,,由之定义知,必定是黑色,于是知当时,为黑色;当时由为白色,知亦为黑色.于是本题的结论就是,所有的倍数染成白色,其余的数染成黑色,不难验证这种染法确实满足题设要求.25.1.23★★★★有一个矩形顶点坐标分别为、、与,其中、均为正奇数,将这个矩形分拆(既无重叠,也不遗漏)为一些三角形,使得每个三角形的顶点均为格点且至少有一条边与坐标轴平行,并且这条边上的高为1,求证:一定存在至少两个三角形,它们各有两条边平行于坐标轴.解析易知,可将矩形分成个单位正方形,并涂上黑白两色,使相邻的正方形颜色不同.此时4个角上的小正方形颜色相同,设为黑色,于是黑色格总面积比白格多1.可以推出,上述分拆中,每一个有两条边与坐标轴平行的三角形中,两种颜色部分的面积之差为;而每一个仅有一条边与坐标轴平行的三角形中,两种颜色部分的面积相等,如图.由于黑色面积与白色面积相差1,故至少存在两个三角形各有两条边与坐标轴平行.25.1.24★★★把正三角形划分为个同样大小的小正三角形,把这些小正三角形的一部分标上号码1,2,…,,使得号码相邻的三角形有相邻边.求证:.解析将小正三角形如图黑、白染色,黑三角形共有1+2+3+…+个,白三角形共有1+2+3+…+()个,由于要求“号码相邻的三角形有相邻边”,且有相邻号码的两个三角形染有不同的颜色,因此标上号码的黑三角形总比标上号码的白三角形的个数多1,所以编号的三角形数不超过个,即.25.1.25★★★将正方形分割为个相等的小方格,把相对的顶点、染成红色,把、染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.求证:恰有三个顶点同色的小方格的数目必是偶数.解析用数代表颜色:红色记为1.蓝色记为.将小方格编号,记为1,2,…,.记第个小方格四个顶点处数字之乘积为.若该格恰有三个顶点同色,则,否则.今考虑乘积.对正方形内部的交点,各点相应的数重复出现4次;正方形各边上的不是端点的交点相应的数各出现2次;、、、四点相应的数的乘积为.于是,.因此,,,…,中的个数必为偶数,即恰有三个顶点同色的小方格必有偶数个.25.1.26★★已知内有个点(无三点共线),连同点、、共个点,以这些点为顶点把分割为若干个互不重叠的小三角形,现把、、分别染成红色、蓝色、黄色,而其余个点,每点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.解析把这些小三角形的边赋值:边的端点同色的,赋值0,边的端点不同色,赋值1,于是每只小三角形的三边赋值的和,有如下三种情形:(i)三顶点都不同色的小三角形,赋值和为3;(ii)恰有两顶点同色的小三角形,赋值和为2;(iii)三顶点同色的小三角形,赋值和为0.设所有小三角形的边的赋值总和为,又设情形(i)、(ii)、(iii)中三类小三角形的个数分别为、、,于是.①注意到所有小三角形的边的赋值总和中,除了边,,外,其余各边都被计算了两次,故它们的赋值和是这些边的赋值和的两倍,再加上的三边的赋值和为3,故是奇数,因此,由①式得是奇数.25.1.27★★★由8个1×3和1个1×1的砖块按通常方式(即平行地贴着格子线)铺满一个5×5的棋盘,求证:1×1的砖块必定位于整个棋盘的中心位置.解析将棋盘按图中方式染成、、三种颜色.易见、各有8格,而有9格.由于每个1×3砖块必定覆盖、、三色格各一格,因此1×1的砖块必定染成色.再将整个棋盘旋转,再按完全相同的方法染色,于是1×1的砖块仍在染成色的方格上,但两次染色均染成色的小方格只有中间的那个,因此1×l的砖块必定位于整个棋盘的中心位置.25.1.28★★★★6个点每两点之间连一条线,将这15条线进行任意的二染色(即每条边染成两种颜色之一),则必定存在至少两个同色的三角形.解析设两色为红色与蓝色.若从同一点出发有3条线同色,比如、、为红色,如果红色,则为红色三角形,否则为蓝色,同理、亦为蓝色,于是为蓝色三角形.因此,有一点出发3条线同色,一定有同色三角形存在.于是6个点之间的15条线中,一定有同色三角形存在.5个点的10条线若无同色三角形,则每一点连出的4条线必定两红两蓝.比如五点为、、、、,不妨设、红,由于蓝,还有一点与的连线红色,不妨设红,于是蓝,红,、蓝,红,蓝,故要想不出现同色三角形,只能是五点构成的五边形(不一定凸或自身不交)的边同色,而对角线则异色.现在回到原题,设六点为、、、、、,由于一定有同色三角形存在,不妨设为一是红色三角形,若不存在第二个同色三角形,则可设五边形的边为红色(图中实线所示),对角线为蓝色(图中虚线所示).若为红色,则为红色三角形,故蓝,同理为蓝色,于是为蓝色三角形,因此同色三角形至少有两个.25.1.29★★★的方格表中有个格子涂且黑色,如果一个未涂色的小方格有两个以上的黑色小方格与之相邻(“相邻”指有公共边),则将这个小方格也涂黑,求证:不可能将所有的小方格都涂黑.解析假定小方格边长为1.考虑一开始这格小方格组成的“岛”,每个“岛”都由连在一起的小方格组成,不同的“岛”之间没有公共边界(当然也可能本来只有一个“岛”).因此这些“岛”的边界(包括有“洞”时“洞”的“内部边界”)长度之和不大于(因为还有小方格边界在内部抵消的情形).现在按规则操作,每添加一个黑格,总边界不会增加,甚至还会减少(例如未涂色的小方格周边已有3或4个小黑格与之相邻).如果所有小方格都涂黑了,总边界为,矛盾.因此结论成立.25.1.30★★★无限大方格表上的每个结点(方格线的交点)都被染为三种颜色之一,并且每种颜色的点都有.证明:可以找到一个直角三角形(其直角边不一定在方格线上),它的三个顶点被分别染为三种不同颜色.解析用反证法.假设不存在三个顶点被分别染为三种不同颜色的直角三角形.不难看出,可以找出一条水平方向或竖直方向的直线,它上面至少有两种颜色的结点,为确定起见,设其为水平方向.如果上只有两种颜色的点,比方说蓝色与红色,那么在平面上任意取一个绿色结点,并且把所在的竖直直线与的交点记作.于是,或为蓝色或为红色,不妨设其为蓝色.由于上还有红色结点,只要任取其中一个红点,即可得到三个顶点颜色各异的,此与假设矛盾.所以,上面有三种颜色的结点.在直线上任意取一个蓝点、一个红点和一个绿点.那么,此时在经过点的竖直直线上的结点都应当为蓝色,否则就可以找到三一个顶点颜色各异的直角三角形.同理,在经过点的竖直直线上的结点都为红色,在经过点的竖直直线上的结点都为绿色.这就表明,在以上的染色方法中,每条竖直直线上的结点都是单一颜色的,从而,任何直角边在方格线上的直角=三角形中都至少有两个顶点同色.下面考察任何一条经过结点且与竖直方向交成的直线.由于它同每条竖直直线都相交于结点处,所以它上面有着三种不同颜色的结点.这样一来,根据刚才的讨论,在每一条与它垂直的直线上的结点都只能是单一颜色的.但是,事实上这些直线都与竖直方向交成,从而与每条竖直直线都相交于结点处.故都有着三种不同颜色的结点,导致矛盾.25.1.31★★★将全平面以任意方式二染色,并在平面上任找不共线的三点、、,求证:存在一个顶点同色的三角形,与相似.解析首先证明,一定有两点及两点连线之中点同色,不妨设二色为红与蓝.至少有一种颜色被涂在无穷多个点上,不妨设是红色,今找两点、,均为红色.为中点,又使为中点,为中点.若红,则、、为所求;同理,若或为红,则、、或、、为所求;若、、皆为蓝,则、、为所求.如图,现作′′′∽,、、为三边中点,且由前,可设′、、′.若′红,则′′′即为所求;若或红,则′或′为所求;若′、、皆蓝,此时′即为所求.于是结论成立.25.1.32★★★平面上任意点都染成三色之一,则一定有同色顶点的矩形.解析不妨考虑格点,首先证当格点满足3≤≤9,1≤≤3时,对这21个格点二染色,一定有同色矩形.假设此结论不成立,事实上,设两色为红与蓝,由于列与列对调不影响矩形的数量,故由抽屉原理,不妨设(3,1)、(4,1)、(5,1)、(6,1)红,于是(3,2)、(4,2)、(5,2)、(6,2)中至多一个红,不妨设(4,2)、(5,2)、(6,2)蓝,但(4,3)、(5,3)、(6,3)不能有两个蓝,也不能有两个红,此不可能.今设第三色为黄色,z轴上的整点必有一色出现无穷多次,不妨设就是黄色,现作列调整,使(0,0),(1,0),…,(9,0)黄,故(0,1),(1,1),…,(9,1)至多一黄,于是可设(1,1),…,(9,1)为红蓝两色,同理可设(2,2),…,(9,2)为红蓝两色,(3,3),…,(9,3)为红蓝两。

人教版初中九年级数学上册第二十五章《概率初步》知识点复习(含答案解析)(1)

人教版初中九年级数学上册第二十五章《概率初步》知识点复习(含答案解析)(1)

一、选择题1.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.25个C.35个D.45个2.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球3.下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生4.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.15B.310C.13D.125.下列事件中,属于必然事件的是()A.深圳明天会下大暴雨B.打开电视机,正好在播足球比赛C.在13个人中,一定有两个人在同月出生D.小明这次数学期末考试得分是80分6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件7.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.2158.设口袋中有5个完全相同的小球,它们的标号分别为1,2,3,4,5.现从中随机摸出(同时摸出)两个小球并记下标号,则标号之和大于5的概率是()A.310B.35C.45D.7109.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (,x y ),那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A .118B .112C .19D .1610.同时抛掷完全相同的,A B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),两个立方体朝上的数字分别为,x y ,并以此确定(,)P x y ,那么点P 落在函数29y x =-+上的概率为( ) A .118B .112C .19D .1611.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是( )A .12B .14C .34D .112.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为( )A .37B .314C .326D .11213.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A ,从乙袋中摸出红球记为事件B ,则 A .P (A )>P (B ) B .P (A )<P (B )C .P (A )=P (B )D .无法确定14.从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是( ) A .15B .25C .310D .4515.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a ,b 为实数,那么a +b =b +a .其中是必然事件的有( ) A .1个B .2个C .3个D .4个二、填空题16.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球, 若摸到白球的概率为57,则盒子中原有的白球的个数为_________个. 17.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01) 每批粒数n 800 10001200 1400 1600 1800 2000发芽的频数m 76294811421331151817101902发芽的频率mn0.953 0.948 0.952 0.951 0.949 0.950 0.95118.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P 的横坐标x ,放回然后再随机取出一个小球,记下球上的数字,作为点P 的纵坐标y .则点P 在以原点为圆心,5为半径的圆上的概率为_____.19.从2,-18,5中任取两个不同的数分别作为点的横纵坐标,点在第二象限的概率为___. 20.从122,,23-,三个数中,任取一个数记为k ,再从余下的两个数中,任取一个数记为b .则 一次函数y kx b =+的图象不经过第四象限的概率是___________21.在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13? 22.从112-,两个数中随机选取一个数记为,a 再从301-,,三个数中随机选取一个数记为b ,则a b 、的取值使得直线y ax b =+不过第二象限的概率是______.23.已知抛物线的解析式为21y ax bx =++,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a 、b 的值,则抛物线21y ax bx =++与x 轴有两个交点的概率是_____.24.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=5,BE=3,若向正方形ABCD 内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为__________.25.一只小鸟自由自在在空中飞翔,然后随意落在下图中,则落在阴影部分的概率是______。

人教版 九年级数学 第25章 概率初步 综合复习(含答案)

人教版 九年级数学 第25章 概率初步 综合复习(含答案)

人教版九年级数学第25章概率初步综合复习一、选择题(本大题共10道小题)1. 下列事件中,是必然事件的为()A.三点确定一个圆B.抛掷一枚骰子,朝上的一面点数恰好是5C.四边形有一个外接圆D.圆的切线垂直于过切点的半径2. 下列事件中随机事件的个数是()①投掷一枚硬币正面朝上;①明天太阳从东方升起;①五边形的内角和是560°;①购买一张彩票中奖.A.0 B.1 C.2 D.33. 用频率估计概率可以发现,抛掷一枚均匀的硬币,“正面朝上”的概率为0.5,是指()A.连续抛掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越接近0.54. 下列说法正确的是()A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生5. 某路口交通信号灯的时间设置为红灯35秒,绿灯m秒,黄灯3秒,当车经过该路口时,遇到红灯的可能性最大,则m的值不可能是()A.3 B.15 C.30 D.406. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.127. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.128. 如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;①随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;①若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( ) A .① B .① C .①① D .①①9. 如图,①ABC是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是①ABC 的内切圆.一只自由飞翔的小鸟随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.115πB.215πC.415πD.π510. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是()A.613 B.5 13C.413 D.3 13二、填空题(本大题共7道小题)11. 写一个你喜欢的实数m的值:________,使得事件“对于二次函数y=12x2-(m-1)x+3,当x<-3时,y随x的增大而减小”成为随机事件.要使此事件成为随机事件,则抛物线的对称轴应位于直线x=-3的左侧.12. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.13. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.14.①①①①①①①①①①①①①①①3①①(①①①①①①)①①①2①①①①①1①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①15.①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①16. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是________.17. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.三、解答题(本大题共4道小题)18. 某路口红绿灯的时间设置为红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据是什么?19. 方案设计盒中装有红球、黄球共10个,每个球除颜色不同外其余都相同,每次从盒中摸出1个球,摸三次,不放回,请你按要求设计盒中红球的个数.(1)“摸出的3个球都是红球”是不可能事件;(2)“摸出红球”是必然事件;(3)“至少摸出2个黄球”是确定性事件;(4)“至少摸出2个黄球”是随机事件.20. 如图所示,有一个可以自由转动的转盘,其盘面被分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时视为无效转次)21. 在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色不同外其余都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)人教版九年级数学第25章概率初步综合复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】C[解析] 掷一枚硬币正面朝上是随机事件;明天太阳从东方升起是必然事件;五边形的内角和是560°是不可能事件;购买一张彩票中奖是随机事件.所以随机事件有2个.3. 【答案】D4. 【答案】C5. 【答案】D[解析] 因为车遇到红灯的可能性最大,可知亮红灯的时间最长,故m <35.6. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12. 故选D.7. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.8. 【答案】B9. 【答案】B[解析] 因为132=122+52,即AB2=BC2+AC2,所以①ABC 为直角三角形,所以①ABC 的内切圆半径=12×(12+5-13)=2. 所以S①ABC =12AC·BC =12×12×5=30,S 圆=4π. 所以小鸟落在花圃上的概率=S 圆S①ABC =4π30=215π. 故选B.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】答案不唯一,如-4[解析] y =12x 2-(m -1)x +3,图象的对称轴为直线x =-b2a =m -1.∵事件“对于二次函数y =12x 2-(m -1)x +3,当x <-3时,y 随x 的增大而减小”是随机事件,∴m -1<-3,解得m <-2, ∴m 为小于-2的任意实数.12. 【答案】25 [解析] 五种图形中,既是中心对称图形,又是轴对称图形的有线段、圆2种,所以所求概率为25.13. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13.设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解, 故答案为20.14. 【答案】49①①①①①①①①①①①①①①①①①①①9①①①①①①①①①①①①①①①①①①①4①①①①①①①①①①①①①①①P①m n ①49.15.【答案】13①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①26①13.16. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.17. 【答案】35 [解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.三、解答题(本大题共4道小题)18. 【答案】解:当人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.根据:绿灯持续的时间最长,黄灯持续的时间最短.19. 【答案】解:(1)2个或1个.(2)8个或9个.(3)9个或1个.(4)多于1个且小于9个.20. 【答案】解:(1)3+5+2+3+3+4+3+58=3.5.答:前8次的指针所指数字的平均数为3.5.(2)可能.若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次所指数字之和为28,所以最后2次所指数字之和应不小于5,且不大于7.第9次和第10次指针可能所指的数字如下表所示:一共有16种等可能的结果,其中指针所指数字之和不小于5,且不大于7的结果有9种,其概率为9 16.21. 【答案】解:(1)布袋中共有3个球,这些球除颜色外都相同,故能摸到红球的概率为2 3.(2)两个红球分别记为红1,红2,用表格列出所有可能出现的结果如下:由表格可知,一共有6种可能出现的结果,它们是等可能的,其中“两次都摸到红球”的结果有2种,所以P(两次都摸到红球)=26=13.。

初中数学竞赛:染色和赋值(含例题练习及答案)

初中数学竞赛:染色和赋值(含例题练习及答案)

初中数学竞赛:染色和赋值染色方法和赋值方法是解答数学竞赛问题的两种常用的方法。

就其本质而言,染色方法是一种对题目所研究的对象进行分类的一种形象化的方法。

而凡是能用染色方法来解的题,一般地都可以用赋值方法来解,只需将染成某一种颜色的对象换成赋于其某一数值就行了。

赋值方法的适用范围要更广泛一些,我们可将题目所研究的对象赋于适当的数值,然后利用这些数值的大小、正负、奇偶以及相互之间运算结果等来进行推证。

一、染色法将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系。

像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明朗,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

例1用15个“T”字形纸片和1个“田”字形纸片(如下图所示),能否覆盖一个8×8的棋盘?解:如下图,将 8×8的棋盘染成黑白相间的形状。

如果15个“T”字形纸片和1个“田”字形纸片能够覆盖一个8×8的棋盘,那么它们覆盖住的白格数和黑格数都应该是32个,但是每个“T”字形纸片只能覆盖1个或3个白格,而1和3都是奇数,因此15个“T”字形纸片覆盖的白格数是一个奇数;又每个“田”字形纸片一定覆盖2个白格,从而15个“T”字形纸片与1个“田”字形纸片所覆盖的白格数是奇数,这与32是偶数矛盾,因此,用它们不能覆盖整个棋盘。

例2如左下图,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去。

如果要求甲虫只能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗?解:甲虫不能走遍所有的正方体。

我们如右上图将正方体分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色。

显然,在27个小正方体中,14个是黑的,13个是白的。

2020年初中数学竞赛讲义:染色问题

2020年初中数学竞赛讲义:染色问题

2020年初中数学竞赛讲义:染色问题一、染色问题 (1)第1 页共3 页第 1 页 共 3 页一、 染色问题1. (1991年全国初中数学联赛2试)将正方形ABCD 分割为2n 个相等的小方格(n是自然数),把相对的顶点A ,C 染成红色,把B ,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色,证明:恰有三个顶点同色的小方格的数目必是偶数.【难度】 ★★★★【解析】 证法1:用数代表颜色,将红色记为0,蓝色记为1,再将小方格编号,记为1,2,3,…2n 。

又记第i 个小方格四个顶点数字之和为i A ,若恰有三顶点同色,则1i A =或3为奇数,否则i A 为偶数。

在212n A A A +++中,有如下事实:对正方形内部的交点,各加了4次;原正方形边上非端点的交点,各加了2次;对原正方形的四个顶点,各加了1次(含两个0,两个1)。

因此212n A A A +++4=⨯(内部交点相应的数之和)2+⨯(边上非端点的交点相应的数之和)2+,必为偶数,于是,在1A ,2A ,…,2n A 中必有偶数个奇数,这就是说,恰有三个顶点同色的小方格必有偶数个。

证法2:用数代表颜色,红色记为1,蓝色记为1-,将小方格编号,记为1,2,…,2n 。

记第i 个小方格四个顶点数字之和为i A ,若恰有三顶点同色,则1i A =-否则1i A =。

现在考虑乘积212n A A A ⨯⨯⨯。

对正方形内部交点,各点相应的数重复出现4次;边上的不是端点的交点相应的数各出现2次;A ,B ,C ,D 四点相应的数的乘积为11(1)(1)1⨯⨯-⨯-=,于是2121n A A A ⨯⨯⨯=,因此,1A ,2A ,…,2n A 中1-的个数必为偶数,即恰有三顶点同色的小方格必有偶数个。

证法3:考虑染了色之后,改变一个交点的染色方式,这时以此点为顶点的小方格,要么由三顶点同色变为非三顶点同色,要么由非三顶点同色变成三顶点同色。

注意:除A ,B ,C ,D 之外,每一次点必是偶数个小方格的顶点,因此,改变一个交点的染色并不改变三项点同色小方格数目的奇偶性。

初中数学重点梳理:染色问题

初中数学重点梳理:染色问题

染色问题知识定位染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想。

同时,染色作为一种解题手段也在数学竞赛中广泛使用。

将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。

知识梳理知识梳理1.染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力。

纵观各种染色试题,它与我们经常使用的数学方法紧密联系。

大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

例题精讲【试题来源】【题目】用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色。

【答案】在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.【解析】在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B 两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.【答案】见解析【解析】对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.【答案】见解析【解析】若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.【知识点】染色问题 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.【答案】见解析【解析】设9个点依次为v1,v2,…,v9,首先证明必存在一点,设为v1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295不是整数,矛盾.若从v1出发的红色线段至少有6条,设v1v2,v1v3,v1v4,v1v5,v1v6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.【答案】见解析【解析】本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.【知识点】染色问题【适用场合】阶段测验【难度系数】3【试题来源】【题目】把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.【答案】见解析【解析】为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?【答案】不可以【解析】先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.【知识点】染色问题【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).【答案】见解析【解析】本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i 色的有x i 块,竖着盖住的有y 块.2×2砖盖住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.【知识点】染色问题 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.【答案】见解析【解析】(1)首先用12块地板砖与6块地板砖能铺成的长方形地面, 再利用4个的板块,恰用1块地板砖,可以铺满的正方形地面. (2)我们将的大正方形分成23行23列共计529个的小方格,再将第1行,第4行,第7行,第10行,第13行,第16行,第19行,第22行这八行染红色,其余的15行都染白色,任意或的小正方块无论怎样放置(边线与大正方形格线重合),每块或的正方块都将盖住偶数块的白色小方格.假设用及的正方形地板砖可以铺满后正方形地面,则它们盖住的白色的小方格总数为偶数个.然而地面染色后共有(奇数)个的白色小方格,矛盾.所以,只用,两种型号地板砖无论如何铺设,都不能铺满的正方形地面而不留空隙.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有种不同的着色方式.因此,本题正确答案是:2880.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】一块2×2的方格由4个1×1的方格构成,每个小方格被涂上红、绿两种颜色之一.如果要求绿色小方格的上方和右方不能与红色方格邻接.且上述四个小方格可以全部不涂绿色,也可全部涂上绿色.则可能的涂色方法共有种.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有5×4×4×2×3×3×2=2880种不同的着色方式.故答案为:2880.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】在9×9的方格表中,有29个小格被染上了黑色,如果m表示至少包含5个黑色小方格的行的数目,n表示至少包含5个黑色小方格的列的数目,试确定m+n的最大值.【答案】10【解析】∵m表示至少包含5个黑色小方格的行的数目,∴5m小于29,∴m的最大值为5,当m=5时,则n的最大值为5.故m+n的最大值为5+5=10.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.【答案】5【解析】由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色.若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色.下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE 染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将DE,AC染为4号颜色;将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色.综上所述,颜色数目的最小值为5.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.【答案】8000【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.【答案】见解析【解析】【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.【答案】见解析【解析】【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】若由“L”形的4个小方格,无重迭地拼成一个4×n的矩形.试证:n必为偶数.【答案】见解析【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将一个棱长分别为36厘米、54厘米和72厘米的长方体切割成一些大小相同、棱长是整数厘米的正方体,然后给这些正方体的表面涂色。

人教版初中九年级数学上册第二十五章《概率初步》习题(含答案解析)

人教版初中九年级数学上册第二十五章《概率初步》习题(含答案解析)

一、选择题1.在不透明的布袋中,装有三个颜色分别为红色、白色、绿色的小球,所有小球除颜色外其他都相同,若分别从两个布袋中随机各取出一个小球,则所取出的两个小球颜色相同的概率是()A.13B.12C.23D.12.甲、乙、丙三个小朋友玩滑梯,他们通过抽签的方式决定玩滑梯的先后顺序,则顺序恰好是甲→乙→丙的概率是()A.13B.14C.15D.163.做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A.0.50 B.0.21 C.0.42 D.0.584.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球5.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.386.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A,B,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是()A.13B.23C.19D.297.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.13B.415C.15D.2158.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.169.现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是()A.19B.16C.23D.1310.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.37B.314C.326D.11211.盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则函数y=kx+b是增函数的概率为()A.38B.116C.12D.2312.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19B.16C.13D.2313.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案14.下列事件发生的可能性为0的是( )A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.小明步行的速度是每小时50千米15.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b 为实数,那么a+b=b+a.其中是必然事件的有( )A.1个B.2个C.3个D.4个二、填空题16.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为_________个.17.一只袋中装有三只完全相同的小球,三只小球上分别标有1,2-,3,第一次从袋中摸出一只小球,把这只小球的标号数字记作一次函数y kx b=+中的k,然后放回袋中搅匀后,再摸出一只小球,把这只小球的标号数字记作一次函数y kx b=+中的b.则一次函数y kx b=+的图象经过一、二、三象限的概率为______.18.在3*4的正方形网格中,有三块小正方形被涂黑色,其余均为白色(如图),先任选一个白色的小正方形涂黑,使黑色部分所构成的图形是轴对称图形的概率是:_______.19.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________. 20.有两组牌,每组三张,牌面上的数字分别是1,2,3,且除数字外均相同,若从每组摸出一张牌,那么两张牌面数字和是4的概率是________.21.重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是_____.22.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是_____.23.在一个不透明的布袋中装有红色、白色玻璃球共60除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在30%左右,则口袋中白色球可能有______个.24.往一个装了很多黑球的袋子里放入10个白球,每次倒出5个,记下所倒出的白球的数目,再把它们放回去,共倒了120次,倒出白球共180个,袋子里原有黑球约______个.25.如图是计算机中“扫雷"游戏的画面,在99⨯小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能藏1颗地雷.小红在游戏开始时随机踩中一个方格,踩中后出现了如图所示的情况,我们把与标号1的方格相邻的方格记为A区域(画线部分),A 区域外的部分记为B区域,数字1表示在A区域中有1颗地雷,那么第二步踩到地雷的概率A区域______B区域(填“>”“<”“=”).26.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,定义点(),m n在反比例函数kyx=上为事件kQ(44,k k-≤≤为整数),当kQ的概率最大时,则k的所有可能的值为__________.三、解答题27.2017年《星洲日报》报道,西安被国际知名旅游指南《孤独星球》评选为亚洲十大最佳旅游地.截至2020年1月,西安已有4家国家5A级旅游景区,分别是A:西安市秦始皇兵马俑博物馆(2007年);B:西安市华清池景区(2007年);C:西安市大雁塔·大唐芙蓉园景区(2011年);D:西安市城墙·碑林历史文化景区(2018年).欢乐同学于父母计划在周末期间从中选择部分景区游玩.(1)欢乐同学一家选择D:西安市城墙·碑林历史文化景区(2018年)的概率是多少?(2)若欢乐同学一家在选择D:西安市城墙·碑林历史文化景区(2018年)后,他们再从剩下的景区中任选两个景区去游玩,试求选择A、C两个景区的概率.(要求画树状图或列表求概率)28.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.29.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?30.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?。

初中数学染色问题及答案

初中数学染色问题及答案

参考答案1. (1)首先用12块3×3地板砖与6块2×2地板砖能铺成12×11的长方形地面,再利用4个12×11的板块,恰用1块1×1地板砖,可以铺满23×23的正方形地面.(2)我们将23×23的大正方形分成23行23列共计529个1×1的小方格,再将第1行,第4行,第7行,第10行,第13行,第16行,第19行,第22行这八行染红色,其余的15行都染白色,任意2×2或3×3的小正方块无论怎样放置(边线与大正方形格线重合),每块2×2或3×3的正方块都将盖住偶数块1×1的白色小方格.假设用2×2及3×3的正方形地板砖可以铺满23×23后正方形地面,则它们盖住的白色1×1的小方格总数为偶数个.然而23×23地面染色后共有23×15(奇数)个1×1的白色小方格,矛盾.所以,只用2×2,3×3两种型号地板砖无论如何铺设,都不能铺满23×23的正方形地面而不留空隙.2. 对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有5×4×4×2×3×3×2=2880种不同的着色方式.故答案为:2880.3. 因为绿色小方格的上方和右方不能与红色方格邻接,根据要求按照左上、右上、左下、右下的顺序所有可能的结果为:绿、绿、绿、绿,绿、绿、红、红,红、绿、红、绿,红、红、红、绿,红、红、红、红共5种涂色方法.故答案为5.4. 如下图3所示,将8×8方格黑白交替地染色此题允许右上图4所示的6个操作,这6个操作无论实行在哪个位置上,白格中的数字之和减去黑格中的数字之和总是常数,所以图1中白格中的数字之和减去黑格的数字之和,与图2中白格中的数字之和减去黑格中的数字之和相等,都等于32,由(31+A)-32=32,得出A=33.5. (1)第一个三角形染色有4种,第二个三角形有3种颜色可以涂色,第三个三角形就只有两种颜色涂色了,最后一个三角形只有1种选择了,故不同的涂色方法种数N=4×3×2×1=24种,(2)上方三角形染色有4种,右边三角形有3种颜色可以涂色,下边三角形就只有两种颜色涂色了,左边三角形只有1种选择了,故不同的涂色方法种数N=4×3×2×1=24种,(3)正四面体四个三角形的涂色原理和种数和图①和图②都相同,也是24种6. 假设六个面有6个数字,1号上若染红色,则2,3,4,5,6每个都有两种可能的颜色,共10种;1号上若染蓝色,则2,3,4,5,6每个都有两种可能的颜色,共10种.故答案为:20.7. ∵因为M与m分别是红色方格与绿色方格中的数,故M-m≠0.∴M-m可能有8个不同的值:-4,-3,-2,-1,1,2,3,4.故M-m可以有8个不同的值.故答案为:8.8. ∵m表示至少包含5个黑色小方格的行的数目,∴5m小于29,∴m的最大值为5,当m=5时,则n的最大值为5.故m+n的最大值为5+5=10.故答案为10.9. 由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色.若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色.下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将D E,AC染为4号颜色;将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色.综上所述,颜色数目的最小值为5.。

数学竞赛-染色问题与染色方法

数学竞赛-染色问题与染色方法

染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾.故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

人教版初中数学《第25章染色问题》竞赛专题复习含答案

人教版初中数学《第25章染色问题》竞赛专题复习含答案

第25章 染色问题25.1.1★★圆周上等间距地分布着27个点,它们被分别染为黑色或白色.今知其中任何2个黑点之间至少间隔2个点.证明:从中可以找到3个白点,它们形成等边三角形的3个顶点. 解析 我们将27个点依次编号,易知它们一共可以形成9个正三角形(1,10,19),(2,11,20),…,(9,18,27).由染色规则知,其中至多有9个黑点.如果黑点不多于8个,则其中必有一个正三角形的所有顶点全为白色.如果黑点恰有9个,那么由染色规则知,它们只能是一黑两白相间排列,其中也一定有一个正三角形的所有顶点全为白色.25.1.2★★某班有50位学生,男女各占一半,他们围成一圈席地而坐开营火晚会.求证:必能找到一位两旁都是女生的学生.解析 将50个座位相间地涂成黑白两色,假设不论如何围坐都找不到一位两旁都是女生的学生,那么25个涂有黑色记号的座位至多坐12个女生.否则一定存在两相邻的涂有黑色标记的座位,其上面都坐着女生,其间坐着的那一个学生与假设导致矛盾.同理,25个涂有白色标记的座位至多只能坐12个女生,因此全部入座的女生不超过24人,与题设相矛盾.故命题得证.25.1.3★在线段AB 的两个端点,一个标以红色,一个标以蓝色,在线段中间插入n 个分点,在各个分点上随意地标上红色或蓝色,这样就把原线段分为1n +个不重叠的小线段,这些小线段的两端颜色不同者叫做标准线段.求证:标准线段的个数是奇数.设最后一个标准线段为1k k A A +.若0k A A =,则仅有一个标准线段,命题显然成立;若n k A A =,由A 、B 不同色,则0A 必与k A 同色,不妨设0A 与k A 均为红色,那么在0A 和k A 之间若有一红蓝的标准线段,必有一蓝红的标准线段与之对应;否则k A 不能为红色,所以在0A 和k A 之间,红蓝和蓝红的标准线段就成对出现,即0A 和k A 之间的标准线段的个数是偶数,加上最后一个标准线段1k k A A +,所以,A 和B 之间的标准线段的个数是奇数.25.1.4★★能否用面积为14⨯的一些长方块将1010⨯的棋盘覆盖?解析 如图中标上1~4这些数,显然每个1×4的长方块各占1、2、3、4一个,于是如果可以覆盖,则1、2、3、个,矛盾!因此不能覆盖.25.1.5★★12个红球和12个蓝球排成一行,证明:必有相邻的6个球三红三蓝. 解析 将这些球标上数字,红球标1,而蓝球则标上1-,于是问题变为:必定有6个相邻的球其标数之和为0.记从第i 个球起的6个数字和为i S ,于是i 可取1,2, (19)易知1S 的全部取值为6-、4-、2-、0、2、4、6,且10i i S S +-=或2(可以认为以2或2-、0的步长“连续”变化).由1713190S S S S +++=,知若四数中有0,则结论成立,否则必有正有负.不妨设0i S >,0j S <,i ,j ∈{1,7,13,19},于是必存在一个k ,k 在i 与j 之间,0k S =.25.1.6★如图,把正方体形的房子分割成27个相等的小房间,每相邻(即有公共面)两个房间都有门相通,在中心的那个小正方体中有一只甲虫,甲虫能从每个小房问走到与它相邻的小房间中的任何一问去.如果要求甲虫只能走到每个小房间一次,那么甲虫能走遍所有的小房间吗?解析 甲虫不能走遍所有的小房间.我们如右图将正方体分割成27个小正方体(每个小正方体表示一问房间),涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走26步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在26步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小房间只去一次,那么甲虫不能走遍所有的小房间.25.1.7★★3行9列共27个小方格,将每个小方格涂上红色或蓝色.试证:无论如何涂法,其中至少有两列,它们的涂色方式完全一样.解析 第一行的9个方格中必有5格同色(抽屉原理),不妨设这5个方格位于前五个位置,且都为红色.下面考虑前五列构成的3×5小矩形.第二行的五格中必有3格是同色的,不妨设这三格位于前三个位置.接着考虑前三列构成的3×3方阵,该方阵前两行的每列完全一样.对第三行,用两种颜色染色时,三列中必有两列同色,不妨设是前两列.此时前两列的涂色方式完全一样.25.1.8★★如图(a),是由14个大小相同的正方形组成的图形,证明:不论如何用剪刀沿着图中直线进行剪裁,总剪不出七个由相邻两个小正方形组成的矩形来.(b)(a)解析如图(b)涂色.若有一种剪法能剪出七个相邻两个小正方形组成的矩形,则每个矩形一定由一个涂色小正方形和一个不涂色小正方形构成.因此,应该有七个涂色小正方形和七个不涂色的小正方形.但图中有八个涂色小正方形,六个不涂色小正方形,因此适合题意的剪法不存在.25.1.9★★★在8×8的国际象棋棋盘中的每个方格都填上一个整数,现任挑选3×3或4×4的正方形,将其中每个数加1,称为一次操作,问是否能经过有限次操作,一定可以让方格中的所有整数均被10整除?解析按图中选择小方格涂黑,易见每个3×3或4×4都包含偶数个小黑格,这些小黑格中原来数字之和是奇数的话,那么操作一次后,数字和仍是奇数,因此不能得到最后均被10整除.答案是不一定.25.1.10★★4×4的方格表中最多选择几个格子涂黑,使得不存在4个黑格的中心是一个矩形的顶点?解析如图,涂9格,无所求矩形,下证若涂10格,则会出现所求矩形.这是因为若有一行全部涂黑,则余下的行中必有一行至少涂黑2格,此时便有所求矩形出现.于是每行黑格数不到4个,必有两行各包含3个黑格,此时不难看出有所求矩形出现,因此最多选择9格.25.4.11★★★在8×8的国际象棋棋盘中剪去哪个小方格,使得剩下的小方格可以被1×3的矩形覆盖?解析剪去左上角的方格后,棋盘不能用21个3×1的矩形覆盖.为了证明这一点,我们将棋盘涂上三种颜色,涂法如图,其中数字1、2、3分别表示第一、二、三种颜色.如果能用21个3×1矩形将剪去左上角的棋盘覆盖,那么每个3×1的矩形盖住第一、二、三种颜色的方格各1个,从而21个3×1的矩形盖住第一、二、三种颜色的方格各21个,然而棋盘(剪去左上角后)却有第一种颜色的方格20个,第二种颜色的方格22个,第三种颜色的方格21个.因此,剪去左上角的棋盘无法用21个3×1的矩形覆盖.由此可见,如果剪去一个方格后,棋盘能用21个3×1的矩形覆盖,那么剪去的方格一定是图中涂第二种颜色的方格.但是,剪去图中涂第二种颜色的一个方格后,仍然不能保证一定能用21个3×1的矩形覆盖,比如说,剪去图中第一行第2个方格后不能用21个3×1的矩形覆盖,这是由于棋盘的对称性,剪去这个方格与剪去第一行第7个(涂第一种颜色的)方格(或剪去第八行第2个涂第三种颜色的方格)于是,只有剪去第三行第3个、第三行第6个、第六行第3个、第六行第6个这四个方格中的某一个,剩下的棋盘才有可能用21个3×1的矩形覆盖.不难验证这时确实能够覆盖. 25.1.12★★求证:只用2×2及3×3的两种瓷砖不能恰好铺盖23×23的正方形地面. 解析 将23×23的正方形地面中第1、4、7、10、13、16、19、22列中的小方格全染成黑色,剩下的小方格全染成白色,于是白色的小方格的个数为15×23,这是奇数.因为每块2×2瓷砖总是盖住二黑格和二白格或者盖住四白格,每块3×3瓷砖总是盖住三黑格和六白格,故无论多少2×2及3×3的瓷砖盖住的白格数总是一个偶数,不可能盖住23×15个白格,所以,只用2×2及3×325.1.13★★求证:用15块大小是1×4的矩形瓷砖和1块大小是2×2的正方形瓷砖,不能恰好铺盖8×8的正方形地面.解析 把8×8的正方形地面上64个小方格依次赋值1、2、3、4如图.无论1×4的矩形瓷砖怎样盖在图中所示的地面上,每块l ×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方块各1个,可见15块1×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方格各15个,而一块2×2的正方形瓷砖无论盖在何处,只有如下四种情形之一:4121341423432321这就是说,2×2的正方形瓷砖所盖住的4个小方块中,必有两个小方块有相同数码.由此可见,如果15块1×4,1块2×2的瓷砖恰好能铺盖8×8的正方形地面,那么这64个小方块中,某一种赋值的小方块应有17块,但实际上,赋值1、2、3、4的小方块各16块,矛盾.25.1.14★★7×7的方格表中有19个方格涂成红色,称一行或一列是红色的如果该行或该列中至少有4个红格.问该方格表中最多有多少个红色的行和列?解析首先我们指出红色的行和列不多于8个.若不然,红色的行和列至少9个,则其中必有5个红行或红列,不妨设为前者.由于每个红行中至少有4个红格,故知表中至少有20个红格.此与已知条件矛盾.其次,当我们将表格中的某个4×4的正方形的16个方格全部涂红时,便得到4个红行和4个红列,共8个.这表明有19个红格时,确可使红行与红列的个数达到8.所以最大值为8.25.1.15★★如图是由4个l×1方格组成的L形纸片,如果一个m n⨯方格的棋盘能被若干个L形纸片无重复地覆盖,试证:mn是8的倍数.解析设m n⨯棋盘由k个L形纸片所覆盖,而L形是由4个1×1小方格所组成,则可令=.由此得出m、n中至少有一个偶数,不失一般性,可令n为偶数,即共有偶数n列.4mn k现在对“列”进行黑、白交替染色,可得黑、白格各共有2k个.易见每个L形纸片无论怎样配置,总是盖住奇数个黑格.今共有2k个黑格,因此必须有偶数个L形,从而证得mn是8的倍数.25.1.16★★在8×8的方格棋盘上最多能放多少个马,它们互不相吃(假定有足够多的马)?解析我们将棋盘相间染成黑白二色,则黑格与白格各32个.按马的走法(如图)知,黑格上的马只能吃白格上的马,因此,将所有黑格都放马,它们是互不相吃的.这就是说,我们可以放32个马,它们互不相吃.现证任意放33个马必有被吃的情形.事实上,将棋盘划分为8个2×4的小棋盘,则至少有一个小棋盘要放5个马,其放法只有两种可能:要么一排放1个,另一排放4个;要么一排放2个,另一排放3个.显然这两种放法都不可避免地发生互相“残杀”的结局.因此,最多能放32个马,它们互不相吃.25.1.17★★★在12×12的棋盘上,一匹超级马每步跳至3×4矩形的另一角,如图(a).这匹马能否从某一点出发,跳遍每一格恰好一次,最后回到出发点?解析我们用两种方法对此棋盘染色.首先,将棋盘黑白相间染色,由马的跳步规则知,马每跳一步,或者是从黑格跳到白格,或者是从白格跳到黑格.不妨设马是第奇数步跳到自格,即马在第奇数步跳入的格子全体就是全体白格.123456789101112(b)其次,将棋盘的第1、2、6、7、11、12行染成白色,其余的行染成黑色,如图(b).由马的跳步规则知.马从白格一定跳人黑格,因为白格的数目同黑格的数目相同,马要遍历棋盘的每一格恰一次再回到出发点,因此,马从黑格只能跳入白格,不妨设马第奇数步跳入白格.对于一种满足要求的跳法,在两种染色方式下第奇数步跳入的格子的全体却是不同的,矛盾.因此,题目要求的跳法,即“回路”是不存在的.25.1.18★★★在8×8方格表的小方格内放置黑色或白色的棋子,每个小方格内至多只能放一个棋子,使得每行且每列白色棋子的数量都是黑色棋子的数量之2倍.在满足上述条件的所有放置方法中,请问如何放置白色棋子和黑色棋子才能使得棋子的总数量最多?解析因每行都有8格,所以每行棋子最多只能有6个.此方格表共有8行,因此棋子的总数最多为4825.1.19★★★★将m n⨯的方格表中每个小方格涂上黑色或白色,两种颜色的方格数相等.问能否有一种涂法,使每一行、每一列中都有一种颜色的方格数超过75%?解析不可能.设每行、每列中都有一种颜色的方格超过34,由于行与行、列与列可对调而不影响结论.不妨设其中前p行白色占优势,后q行黑色占优势;前r列白色占优势,后s列黑色占优势.p q m+=,r s n+=(如下左图).r spq 全白黑白相间黑白相间全黑考虑p s ⨯放q r ⨯的矩形中的ps qr +个方格.其中的白格可看成s 列或q 行中的“少数派”,而黑格可看成p 行或r 列中的“少数派”.由于在每行、每列中“少数派”少于4n 或4m 个,所以前一个矩形中的白色与后一个矩形中的黑格的个数之和少于()44m mn s r +=.同样,前一个矩形中的黑格与后一个中白格之和少于()44n mn p q +=.所以这两个矩形中的方格数442mn mn mn ps qr +<+=,即少于方格总数的一半.因此 ps qr pr qs +<+,()()0p q s r --<,从而p q ≤,r s ≤或q p ≤,s r ≤不妨设为前者,这时2m p ≤,2n r ≤, 白色方格总数44n m pr q s <+⨯+⨯ ()()44n m pr m p n r =+-⨯+-⨯ 24242mn n r m p p r ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭ 2mn ≤, 与两种颜色的方格相等矛盾. 评注 每行、每列中都有一种颜色的方格恰好占34是可能的(这时m 、n 当然都被4整除),前右图(其中2m p q ==,2n r s ==)即满足要求. 25.1.20★★★在2是×2是的方格表上,有3k 个格子涂黑,求证:可以选择k 行及k 列,包含了全部这3k 个黑格.解析 将包含黑格的所有行中找出黑格数最多的前k 行,则这k 行中包含的黑格总数必定不少于2k ,否则会有一行的黑格数至多一个,而剩下来的k 行至少有1k +个黑格,于是有一行包含了至少两个黑格,这与k 前是行”的定义矛盾.于是结论成立,接下来只要再找是列包含剩下的k 个黑格即可(有的列可不包含黑格).25.1.21★★★7×7方格表中的方格被分别染为两种不同颜色,证明:至少可以找出21个矩形,它们的顶点是同一种颜色方格的中心,它们的边平行于方格线.解析 考察其中任意一列,估计其中同色“方格对”的个数.设在该列中有一种颜色的方格走个,另一种颜色的方格7k -个,那么,在该列中就共有()()()217672122k k k k k k ---+=-+ 个同色“方格对”.该式的值在3k =和4k =时达到最小值9,所以,7个列中一共有不少于63个同色“方格对”.注意到每一个这样的同色“方格对”位于一个“行对”中,如果相应的“行对”中还有一个与之颜色相同的同色“方格对”,那么,它们即构成一个满足要求的矩形.我们知道,方格表中一共有76212⨯=个不同的“行对”,由于有两种不同颜色,所以,一共有42种不同情况的“行对”.因此,至少可以找到21(=63-42)个满足要求的矩形.25.1.22★★★把全体正整数染成黑白两色之一,已知任意两个不同颜色的数之和为黑色,而它们的积是白色,试找出所有的这种染色方法.解析 设正整数m 、n 为白色,现研究mn 的颜色.若mn 是黑色,设正整数k 黑色,则m k +为黑色,()m k n mn kn +==+为白色,但由前知mn 黑色,kn 白色,于是mn kn +黑色,矛盾,因此mn 为白色.设正整数l 是染成白色的最小数,于是由条件及前面的讨论知,l 的所有正整数倍数sl 均为白色.至于其他正整数p ,p 不被l 整除,设p ql r =+,0r l <<,由l 之定义知,r 必定是黑色,于是知当0q =时,p r =为黑色;当0q >时由ql 为白色,知p 亦为黑色.于是本题的结论就是,所有l 的倍数染成白色,其余的数染成黑色,不难验证这种染法确实满足题设要求.25.1.23★★★★有一个矩形顶点坐标分别为()0,0、()0,m 、(),0n 与(),n m ,其中m 、n 均为正奇数,将这个矩形分拆(既无重叠,也不遗漏)为一些三角形,使得每个三角形的顶点均为格点且至少有一条边与坐标轴平行,并且这条边上的高为1,求证:一定存在至少两个三角形,它们各有两条边平行于坐标轴.解析 易知,可将矩形分成mn 个单位正方形,并涂上黑白两色,使相邻的正方形颜色不同.此时4个角上的小正方形颜色相同,设为黑色,于是黑色格总面积比白格多1.可以推出,上述分拆中,每一个有两条边与坐标轴平行的三角形中,两种颜色部分的面积之差为12;而每一个仅有一条边与坐标轴平行的三角形中,两种颜色部分的面积相等,如图.由于黑色面积与白色面积相差1,故至少存在两个三角形各有两条边与坐标轴平行.25.1.24★★★把正三角形划分为2n 个同样大小的小正三角形,把这些小正三角形的一部分标上号码1,2,…,m ,使得号码相邻的三角形有相邻边.求证:21m n n -+≤.解析 将2n 小正三角形如图黑、白染色,黑三角形共有1+2+3+…+()112n n n =+个,白三角形共有1+2+3+…+(1n -)()112n n =-个,由于要求“号码相邻的三角形有相邻边”,且有相邻号码的两个三角形染有不同的颜色,因此标上号码的黑三角形总比标上号码的白三角形的个数多1,所以编号的三角形数m 不超过()2121112n n n n ⨯-+=-+个,即21m n n -+≤. 25.1.25★★★将正方形ABCD 分割为n n ⨯个相等的小方格,把相对的顶点A 、C 染成红色,把B 、D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.求证:恰有三个顶点同色的小方格的数目必是偶数.解析 用数代表颜色:红色记为1.蓝色记为1-.将小方格编号,记为1,2,…,2n .记第i 个小方格四个顶点处数字之乘积为i A .若该格恰有三个顶点同色,则1i A =-,否则1j A =.今考虑乘积212n A A A ⨯⨯⨯.对正方形内部的交点,各点相应的数重复出现4次;正方形各边上的不是端点的交点相应的数各出现2次;A 、B 、C 、D 四点相应的数的乘积为()()11111⨯⨯-⨯-=.于是,2121n A A A ⨯⨯⨯=.因此,1A ,2A ,…,2n A 中1-的个数必为偶数,即恰有三个顶点同色的小方格必有偶数个.25.1.26★★已知ABC △内有n 个点(无三点共线),连同点A 、B 、C 共3n +个点,以这些点为顶点把ABC △分割为若干个互不重叠的小三角形,现把A 、B 、C 分别染成红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.解析 把这些小三角形的边赋值:边的端点同色的,赋值0,边的端点不同色,赋值1,于是每只小三角形的三边赋值的和,有如下三种情形:(i)三顶点都不同色的小三角形,赋值和为3;(ii)恰有两顶点同色的小三角形,赋值和为2;(iii)三顶点同色的小三角形,赋值和为0.设所有小三角形的边的赋值总和为S ,又设情形(i)、(ii)、(iii)中三类小三角形的个数分别为a 、b 、c ,于是32032S a b c a b =++=+. ①注意到所有小三角形的边的赋值总和中,除了边AB ,BC ,CA 外,其余各边都被计算了两次,故它们的赋值和是这些边的赋值和的两倍,再加上ABC △的三边的赋值和为3,故S 是奇数,因此,由①式得a 是奇数.25.1.27★★★由8个1×3和1个1×1的砖块按通常方式(即平行地贴着格子线)铺满一个5×5的棋盘,求证:1×1的砖块必定位于整个棋盘的中心位置.解析 将棋盘按图中方式染成A 、B 、C 三种颜色.易见A 、C 各有8格,而B 有9格.由于每个1×3砖块必定覆盖A 、B 、C 三色格各一格,因此1×1的砖块必定染成B 色.再将整个棋盘旋转90゜,再按完全相同的方法染色,于是1×1的砖块仍在染成B 色的方格上,但两次染色均染成B 色的小方格只有中间的那个,因此1×l 的砖块必定位于整个棋盘的中心位置.25.1.28★★★★6个点每两点之间连一条线,将这15条线进行任意的二染色(即每条边染成两种颜色之一),则必定存在至少两个同色的三角形.解析 设两色为红色与蓝色.若从同一点出发有3条线同色,比如AB 、AC 、AD 为红色,如果BC 红色,则ABC △为红色三角形,否则BC 为蓝色,同理CD 、DB 亦为蓝色,于是BCD △为蓝色三角形.因此,有一点出发3条线同色,一定有同色三角形存在.于是6个点之间的15条线中,一定有同色三角形存在.5个点的10条线若无同色三角形,则每一点连出的4条线必定两红两蓝.比如五点为A 、B 、C 、D 、E ,不妨设BA 、AE 红,由于BE 蓝,还有一点与B 的连线红色,不妨设BC 红,于是BD 蓝,ED 红,AC 、AD 蓝,CD 红,CE 蓝,故要想不出现同色三角形,只能是五点构成的五边形(不一定凸或自身不交)的边同色,而对角线则异色.现在回到原题,设六点为1A 、2A 、3A 、4A 、5A 、6A ,由于一定有同色三角形存在,不妨设为456A A A △一是红色三角形,若不存在第二个同色三角形,则可设五边形12345A A A A A 的边为红色(图中实线所示),对角线为蓝色(图中虚线所示).若16A A 为红色,则156A A A △为红色三角形,故16A A 蓝,同理36A A 为蓝色,于是136A A A △为蓝色三角形,因此同色三角形至少有两个.A 1A 2A 34A 5A 625.1.29★★★n n ⨯的方格表中有1n -个格子涂且黑色,如果一个未涂色的小方格有两个以上的黑色小方格与之相邻(“相邻”指有公共边),则将这个小方格也涂黑,求证:不可能将所有的小方格都涂黑.解析 假定小方格边长为1.考虑一开始这1n -格小方格组成的“岛”,每个“岛”都由连在一起的小方格组成,不同的“岛”之间没有公共边界(当然也可能本来只有一个“岛”).因此这些“岛”的边界(包括有“洞”时“洞”的“内部边界”)长度之和不大于()41n -(因为还有小方格边界在内部抵消的情形).现在按规则操作,每添加一个黑格,总边界不会增加,甚至还会减少(例如未涂色的小方格周边已有3或4个小黑格与之相邻).如果所有小方格都涂黑了,总边界为()441n n >-,矛盾.因此结论成立.25.1.30★★★无限大方格表上的每个结点(方格线的交点)都被染为三种颜色之一,并且每种颜色的点都有.证明:可以找到一个直角三角形(其直角边不一定在方格线上),它的三个顶点被分别染为三种不同颜色.解析用反证法.假设不存在三个顶点被分别染为三种不同颜色的直角三角形.不难看出,可以找出一条水平方向或竖直方向的直线l,它上面至少有两种颜色的结点,为确定起见,设其为水平方向.如果l上只有两种颜色的点,比方说蓝色与红色,那么在平面上任意取一个绿色结点A,并且把A所在的竖直直线与l的交点记作B.于是,B或为蓝色或为红色,不妨设其为蓝色.由于l上还有红色结点,只要任取其中一个红点C,即可得到三个顶点颜色各异的Rt ABC△,此与假设矛盾.所以,l上面有三种颜色的结点.在直线l上任意取一个蓝点B、一个红点C和一个绿点D.那么,此时在经过点B的竖直直线上的结点都应当为蓝色,否则就可以找到三一个顶点颜色各异的直角三角形.同理,在经过点C的竖直直线上的结点都为红色,在经过点D的竖直直线上的结点都为绿色.这就表明,在以上的染色方法中,每条竖直直线上的结点都是单一颜色的,从而,任何直角边在方格线上的直角=三角形中都至少有两个顶点同色.下面考察任何一条经过结点且与竖直方向交成45゜的直线.由于它同每条竖直直线都相交于结点处,所以它上面有着三种不同颜色的结点.这样一来,根据刚才的讨论,在每一条与它垂直的直线上的结点都只能是单一颜色的.但是,事实上这些直线都与竖直方向交成135゜,从而与每条竖直直线都相交于结点处.故都有着三种不同颜色的结点,导致矛盾.25.1.31★★★将全平面以任意方式二染色,并在平面上任找不共线的三点A、B、C,求证:存在一个顶点同色的三角形,与ABC△相似.S M K N T解析首先证明,一定有两点及两点连线之中点同色,不妨设二色为红与蓝.至少有一种颜色被涂在无穷多个点上,不妨设是红色,今找两点M、N,均为红色.K为MN中点,又使M为SN中点,N为MT中点.若K红,则M、K、N为所求;同理,若S或T为红,则S、M、N或M、N、T为所求;若K、S、T皆为蓝,则S、K、T为所求.如图,现作A△′B′C′∽ABC△,P、Q、R为三边中点,且由前,可设B′、P、C′.若A′红,则A△′B′C′即为所求;若R或Q红,则RB△′P或QPC△′为所求;若A′、R、Q皆蓝,此时A△′RQ即为所求.于是结论成立.AB CA'R Q B'P C'25.1.32★★★平面上任意点都染成三色之一,则一定有同色顶点的矩形.解析不妨考虑格点,首先证当格点(),A x y满足3≤x≤9,1≤y≤3时,对这21个格点二染色,一定有同色矩形.假设此结论不成立,事实上,设两色为红与蓝,由于列与列对调不影响矩形的数量,故由抽屉原理,不妨设(3,1)、(4,1)、(5,1)、(6,1)红,于是(3,2)、(4,2)、(5,2)、(6,2)中至多一个红,不妨设(4,2)、(5,2)、(6,2)蓝,但(4,3)、(5,3)、(6,3)不能有两个蓝,也不能有两个红,此不可能.今设第三色为黄色,z轴上的整点必有一色出现无穷多次,不妨设就是黄色,现作列调整,使(0,0),(1,0),…,(9,0)黄,故(0,1),(1,1),…,(9,1)至多一黄,于是可设(1,1),…,(9,1)为红蓝两色,同理可设(2,2),…,(9,2)为红蓝两色,(3,3),…,(9,3)为红蓝两。

九年级数学上册第25章单元测试卷(含解析新人教版)

九年级数学上册第25章单元测试卷(含解析新人教版)

第25章单元检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1. (2018·武汉元调)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖.则( C )A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件2.下列说法正确的是( D )A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次3.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( C )A.12B.23C.25D.354.从1,2,3,4,5,6,7,8,9这九个自然数中任取一个,是2的倍数的概率为P1,是3的倍数的概率为P2,则( B )A.P1<P2 B.P1>P2 C.P1=P2 D.不能确定5.(株洲中考)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( D )A.19B.16C.14D.126.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上分别标有数字1,2,3,4,5,6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( C )A.13B.16C.19D.1127.已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( D )A.34B.23C.916D.128.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( C )A.10粒 B.160粒 C.450粒 D.500粒9.如图,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚( A )A .公平B .对小明有利C .对小刚有利D .不可预测10.已知一次函数y =kx +b ,现分别从装有1,-2两张数字卡片的甲口袋和装有-1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k ,乙口袋的卡片上的数字作b ,则该一次函数的图象经过第一、二、四象限的概率是( D )A.12B.14C.15D.13二、填空题(每小题3分,共18分)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为________.12.某校九年级二班在体育测试中全班所有学生的得分情况如表所示:从九年级二班的学生中随机抽取一人,恰好是获得30分的学生的概率为________. 13.同时掷两个质地均匀的正方体骰子,这两个骰子的点数相同的概率是________. 14.(2018·武汉元调)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是________.15.在一个不透明的布袋里放4个白球和m 个黄球,它们除颜色不同外,其余均相同.从中随机摸一球,摸到黄球的概率是0.8.则m =__16__.16.如图,两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字.同时自由转动两个转盘,转盘停止后,指针都落在偶数上的概率是________.三、解答题(共72分)17.(8分)如图是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形).求下列事件的概率:①指针指向绿色;②指针指向红色或黄色;③指针不指向红色.【解析】转盘分成8个相同的图形,即共有8种等可能的结果.①∵绿色的有3部分,∴P (指针指向绿色)=38;②∵红色或黄色的共有5部分,∴P (指针指向红色或黄色)=58;③∵不指向红色的,即绿色或黄色的共有6部分,∴P (指针不指向红色)=68=34.18.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,7个黑球,8个红球.(1)求从袋中摸出的一个球是黄球的概率;(2)现从袋中取出若干个红球,搅匀后,使从袋中摸出一个球是红球的概率是13,求从袋中取出红球的个数.【解析】(1)从袋中摸出一个球是黄球的概率为520=14.(2)设从袋中取出x 个红球,8-x 20-x=13,解得x =2,经检验,x =2是原分式方程的解,∴从袋中取出红球的个数为2个.19.(8分)甲、乙两人都握有分别标记为A ,B ,C 的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A 胜B ,B 胜C ,C 胜A ;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果; (2)求出现平局的概率.【解析】(1)画图或列表略,共有9种等可能的结果.(2)∵出现平局的有3种情况,∴P =39=13.20.(8分)在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“武”、“汉”的文字.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是写有“美丽”二字的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球.求两次摸出的球上写有“武汉”二字的概率.【解析】(1)所有等可能的情况有16种,∴P (美丽)=216=18. (2)所有等可能的情况有12种,∴P (武汉)=212=16.21.(8分)小明和小亮两位同学做投掷骰子(质地均匀的正方体)试验,他们共做了100(1)计算“2点朝上”的频率和“4点朝上”的频率.(2)小明说:“根据试验,一次试验中出现3点朝上的概率最大”.小亮说:“如果投掷1000次,那么出现5点朝上的次数正好是200次.”小明和小亮的说法正确吗?为什么?(3)小明投掷一枚骰子,计算小明投掷点数不小于3的概率.【解析】(1)“2点朝上”的频率为15100=0.15;“4点朝上”的频率为16100=0.16. (2)小明的说法错误;因为只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小亮的判断是错误的;因为事件发生具有随机性;(3)P (不小于3)=46=23.22.(10分)在一个不透明的盒子里,装有四个分别标有数字-2,-1,1,4的小球,它们的形状、大小、质地等完全相同,小强先从盒子里随机取出一个小球,记下数字为a ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为b.(1)用列表法或画树状图法表示出(a ,b)的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(a ,b)落在二次函数y =x 2的图象上的概率; (3)求小强、小华各取一次小球所确定的数a ,b 满足直线y =ax +b 经过第一、二、三象限的概率.【解析】(1)画树状图如下:共有16种等可能的结果.(2)落在二次函数y =x 2的图象上的点有(-2,4),(-1,1),(1,1),所以落在二次函数y =x 2的图象上的概率=316.(3)满足直线y =ax +b 经过一、二、三象限的点有(1,1),(1,4),(4,1),(4,4),所以满足直线y =ax +b 经过一、二、三象限的概率=416=14.23.(10分)近年来,各地广场舞噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对广场舞噪音干扰的态度有以下五种:A :没影响;B :影响不大;C :有影响,建议做无声运动;D :影响很大,建议取缔;E :不关心这个问题.将调查结果统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m =__32__,态度为C 所对应的圆心角的度数为__115.2°__; (2)补全条形统计图;(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B 的市民人数;(4)若在这次调查的市民中,从态度为A 的市民中抽取一人的年龄恰好在年龄段15~35岁的概率是多少?【解析】(1)m =100-10-5-20-33=32;态度为C 所对应的圆心角的度数为:32%×360=115.2°.(2)500×20%-15-35-20-5=25(人),图略.(3)估计该地区对“广场舞”噪音干扰的态度为B 的市民人数为:20×33%=6.6(万人).(4)从态度为A 的市民中抽取一人的年龄恰好在年龄段15~35岁的概率是:15+2515+25+35+20+5=25.24.(12分)商场举办一次迎亚运抽大奖的活动,将五张亚运吉祥物的图片都平均分成上、下两段,制成十张同样大小的卡片,然后将上、下两段分别混合均匀,放入两只密闭的盒子里,由顾客从两个盒子中各随机抽取一张,若两张卡片刚好拼成一个吉祥物的图案,即可获得奖品.(1)请用树状图或列表法求出顾客抽取一次获得奖品的概率;(2)为增强活动的趣味性,商场在两个盒子中分别放入同样多的空白卡片若干张.小明的概率附近,试估计抽取一次出现“至少一张空白卡片”的概率(精确到0.01);(3)设商场在两个盒子中分别放入的空白卡片x 张,根据(2),求出x 的值.【解析】(1)设第一个盒子,五张卡片分别为A ,B ,C ,D ,E ,第二个盒子,五张卡片分别为:a ,b ,c ,d ,e ,∴得到Aa ,Bb ,Cc ,Dd ,Ee 一共有5种情况,所有的可能为25种,∴P (至少一张空白卡片)=15.(2)根据表格可知:“至少一张空白卡片”的概率为:0.75.(3)根据题意知:第一个盒子共有(5+x )张卡,第二个盒子共有(5+x )张卡,则共有(5+x )2种可能性,“至少一张空白卡片”共有x (10+x )种可能性,则x (10+x )(x +5)2=0.75,解得x 1=5,x 2=-15(不合题意,舍去).经检验,x =5是原方程的根,∴x 的值为5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25章 染色问题25.1.1★★圆周上等间距地分布着27个点,它们被分别染为黑色或白色.今知其中任何2个黑点之间至少间隔2个点.证明:从中可以找到3个白点,它们形成等边三角形的3个顶点. 解析 我们将27个点依次编号,易知它们一共可以形成9个正三角形(1,10,19),(2,11,20),…,(9,18,27).由染色规则知,其中至多有9个黑点.如果黑点不多于8个,则其中必有一个正三角形的所有顶点全为白色.如果黑点恰有9个,那么由染色规则知,它们只能是一黑两白相间排列,其中也一定有一个正三角形的所有顶点全为白色.25.1.2★★某班有50位学生,男女各占一半,他们围成一圈席地而坐开营火晚会.求证:必能找到一位两旁都是女生的学生.解析 将50个座位相间地涂成黑白两色,假设不论如何围坐都找不到一位两旁都是女生的学生,那么25个涂有黑色记号的座位至多坐12个女生.否则一定存在两相邻的涂有黑色标记的座位,其上面都坐着女生,其间坐着的那一个学生与假设导致矛盾.同理,25个涂有白色标记的座位至多只能坐12个女生,因此全部入座的女生不超过24人,与题设相矛盾.故命题得证.25.1.3★在线段AB 的两个端点,一个标以红色,一个标以蓝色,在线段中间插入n 个分点,在各个分点上随意地标上红色或蓝色,这样就把原线段分为1n +个不重叠的小线段,这些小线段的两端颜色不同者叫做标准线段.求证:标准线段的个数是奇数.设最后一个标准线段为1k k A A +.若0k A A =,则仅有一个标准线段,命题显然成立;若n k A A =,由A 、B 不同色,则0A 必与k A 同色,不妨设0A 与k A 均为红色,那么在0A 和k A 之间若有一红蓝的标准线段,必有一蓝红的标准线段与之对应;否则k A 不能为红色,所以在0A 和k A 之间,红蓝和蓝红的标准线段就成对出现,即0A 和k A 之间的标准线段的个数是偶数,加上最后一个标准线段1k k A A +,所以,A 和B 之间的标准线段的个数是奇数.25.1.4★★能否用面积为14⨯的一些长方块将1010⨯的棋盘覆盖?解析 如图中标上1~4这些数,显然每个1×4的长方块各占1、2、3、4一个,于是如果可以覆盖,则1、2、3、个,矛盾!因此不能覆盖.25.1.5★★12个红球和12个蓝球排成一行,证明:必有相邻的6个球三红三蓝. 解析 将这些球标上数字,红球标1,而蓝球则标上1-,于是问题变为:必定有6个相邻的球其标数之和为0.记从第i 个球起的6个数字和为i S ,于是i 可取1,2, (19)易知1S 的全部取值为6-、4-、2-、0、2、4、6,且10i i S S +-=或2(可以认为以2或2-、0的步长“连续”变化).由1713190S S S S +++=,知若四数中有0,则结论成立,否则必有正有负.不妨设0i S >,0j S <,i ,j ∈{1,7,13,19},于是必存在一个k ,k 在i 与j 之间,0k S =.25.1.6★如图,把正方体形的房子分割成27个相等的小房间,每相邻(即有公共面)两个房间都有门相通,在中心的那个小正方体中有一只甲虫,甲虫能从每个小房问走到与它相邻的小房间中的任何一问去.如果要求甲虫只能走到每个小房间一次,那么甲虫能走遍所有的小房间吗?解析 甲虫不能走遍所有的小房间.我们如右图将正方体分割成27个小正方体(每个小正方体表示一问房间),涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走26步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在26步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小房间只去一次,那么甲虫不能走遍所有的小房间.25.1.7★★3行9列共27个小方格,将每个小方格涂上红色或蓝色.试证:无论如何涂法,其中至少有两列,它们的涂色方式完全一样.解析 第一行的9个方格中必有5格同色(抽屉原理),不妨设这5个方格位于前五个位置,且都为红色.下面考虑前五列构成的3×5小矩形.第二行的五格中必有3格是同色的,不妨设这三格位于前三个位置.接着考虑前三列构成的3×3方阵,该方阵前两行的每列完全一样.对第三行,用两种颜色染色时,三列中必有两列同色,不妨设是前两列.此时前两列的涂色方式完全一样.25.1.8★★如图(a),是由14个大小相同的正方形组成的图形,证明:不论如何用剪刀沿着图中直线进行剪裁,总剪不出七个由相邻两个小正方形组成的矩形来.(b)(a)解析如图(b)涂色.若有一种剪法能剪出七个相邻两个小正方形组成的矩形,则每个矩形一定由一个涂色小正方形和一个不涂色小正方形构成.因此,应该有七个涂色小正方形和七个不涂色的小正方形.但图中有八个涂色小正方形,六个不涂色小正方形,因此适合题意的剪法不存在.25.1.9★★★在8×8的国际象棋棋盘中的每个方格都填上一个整数,现任挑选3×3或4×4的正方形,将其中每个数加1,称为一次操作,问是否能经过有限次操作,一定可以让方格中的所有整数均被10整除?解析按图中选择小方格涂黑,易见每个3×3或4×4都包含偶数个小黑格,这些小黑格中原来数字之和是奇数的话,那么操作一次后,数字和仍是奇数,因此不能得到最后均被10整除.答案是不一定.25.1.10★★4×4的方格表中最多选择几个格子涂黑,使得不存在4个黑格的中心是一个矩形的顶点?解析如图,涂9格,无所求矩形,下证若涂10格,则会出现所求矩形.这是因为若有一行全部涂黑,则余下的行中必有一行至少涂黑2格,此时便有所求矩形出现.于是每行黑格数不到4个,必有两行各包含3个黑格,此时不难看出有所求矩形出现,因此最多选择9格.25.4.11★★★在8×8的国际象棋棋盘中剪去哪个小方格,使得剩下的小方格可以被1×3的矩形覆盖?解析剪去左上角的方格后,棋盘不能用21个3×1的矩形覆盖.为了证明这一点,我们将棋盘涂上三种颜色,涂法如图,其中数字1、2、3分别表示第一、二、三种颜色.如果能用21个3×1矩形将剪去左上角的棋盘覆盖,那么每个3×1的矩形盖住第一、二、三种颜色的方格各1个,从而21个3×1的矩形盖住第一、二、三种颜色的方格各21个,然而棋盘(剪去左上角后)却有第一种颜色的方格20个,第二种颜色的方格22个,第三种颜色的方格21个.因此,剪去左上角的棋盘无法用21个3×1的矩形覆盖.由此可见,如果剪去一个方格后,棋盘能用21个3×1的矩形覆盖,那么剪去的方格一定是图中涂第二种颜色的方格.但是,剪去图中涂第二种颜色的一个方格后,仍然不能保证一定能用21个3×1的矩形覆盖,比如说,剪去图中第一行第2个方格后不能用21个3×1的矩形覆盖,这是由于棋盘的对称性,剪去这个方格与剪去第一行第7个(涂第一种颜色的)方格(或剪去第八行第2个涂第三种颜色的方格)于是,只有剪去第三行第3个、第三行第6个、第六行第3个、第六行第6个这四个方格中的某一个,剩下的棋盘才有可能用21个3×1的矩形覆盖.不难验证这时确实能够覆盖. 25.1.12★★求证:只用2×2及3×3的两种瓷砖不能恰好铺盖23×23的正方形地面. 解析 将23×23的正方形地面中第1、4、7、10、13、16、19、22列中的小方格全染成黑色,剩下的小方格全染成白色,于是白色的小方格的个数为15×23,这是奇数.因为每块2×2瓷砖总是盖住二黑格和二白格或者盖住四白格,每块3×3瓷砖总是盖住三黑格和六白格,故无论多少2×2及3×3的瓷砖盖住的白格数总是一个偶数,不可能盖住23×15个白格,所以,只用2×2及3×325.1.13★★求证:用15块大小是1×4的矩形瓷砖和1块大小是2×2的正方形瓷砖,不能恰好铺盖8×8的正方形地面.解析 把8×8的正方形地面上64个小方格依次赋值1、2、3、4如图.无论1×4的矩形瓷砖怎样盖在图中所示的地面上,每块l ×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方块各1个,可见15块1×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方格各15个,而一块2×2的正方形瓷砖无论盖在何处,只有如下四种情形之一:4121341423432321这就是说,2×2的正方形瓷砖所盖住的4个小方块中,必有两个小方块有相同数码.由此可见,如果15块1×4,1块2×2的瓷砖恰好能铺盖8×8的正方形地面,那么这64个小方块中,某一种赋值的小方块应有17块,但实际上,赋值1、2、3、4的小方块各16块,矛盾.25.1.14★★7×7的方格表中有19个方格涂成红色,称一行或一列是红色的如果该行或该列中至少有4个红格.问该方格表中最多有多少个红色的行和列?解析首先我们指出红色的行和列不多于8个.若不然,红色的行和列至少9个,则其中必有5个红行或红列,不妨设为前者.由于每个红行中至少有4个红格,故知表中至少有20个红格.此与已知条件矛盾.其次,当我们将表格中的某个4×4的正方形的16个方格全部涂红时,便得到4个红行和4个红列,共8个.这表明有19个红格时,确可使红行与红列的个数达到8.所以最大值为8.25.1.15★★如图是由4个l×1方格组成的L形纸片,如果一个m n⨯方格的棋盘能被若干个L形纸片无重复地覆盖,试证:mn是8的倍数.解析设m n⨯棋盘由k个L形纸片所覆盖,而L形是由4个1×1小方格所组成,则可令=.由此得出m、n中至少有一个偶数,不失一般性,可令n为偶数,即共有偶数n列.4mn k现在对“列”进行黑、白交替染色,可得黑、白格各共有2k个.易见每个L形纸片无论怎样配置,总是盖住奇数个黑格.今共有2k个黑格,因此必须有偶数个L形,从而证得mn是8的倍数.25.1.16★★在8×8的方格棋盘上最多能放多少个马,它们互不相吃(假定有足够多的马)?解析我们将棋盘相间染成黑白二色,则黑格与白格各32个.按马的走法(如图)知,黑格上的马只能吃白格上的马,因此,将所有黑格都放马,它们是互不相吃的.这就是说,我们可以放32个马,它们互不相吃.现证任意放33个马必有被吃的情形.事实上,将棋盘划分为8个2×4的小棋盘,则至少有一个小棋盘要放5个马,其放法只有两种可能:要么一排放1个,另一排放4个;要么一排放2个,另一排放3个.显然这两种放法都不可避免地发生互相“残杀”的结局.因此,最多能放32个马,它们互不相吃.25.1.17★★★在12×12的棋盘上,一匹超级马每步跳至3×4矩形的另一角,如图(a).这匹马能否从某一点出发,跳遍每一格恰好一次,最后回到出发点?解析我们用两种方法对此棋盘染色.首先,将棋盘黑白相间染色,由马的跳步规则知,马每跳一步,或者是从黑格跳到白格,或者是从白格跳到黑格.不妨设马是第奇数步跳到自格,即马在第奇数步跳入的格子全体就是全体白格.123456789101112(b)其次,将棋盘的第1、2、6、7、11、12行染成白色,其余的行染成黑色,如图(b ).由马的跳步规则知.马从白格一定跳人黑格,因为白格的数目同黑格的数目相同,马要遍历棋盘的每一格恰一次再回到出发点,因此,马从黑格只能跳入白格,不妨设马第奇数步跳入白格. 对于一种满足要求的跳法,在两种染色方式下第奇数步跳入的格子的全体却是不同的,矛盾. 因此,题目要求的跳法,即“回路”是不存在的.25.1.18★★★在8×8方格表的小方格内放置黑色或白色的棋子,每个小方格内至多只能放一个棋子,使得每行且每列白色棋子的数量都是黑色棋子的数量之2倍.在满足上述条件的所有放置方法中,请问如何放置白色棋子和黑色棋子才能使得棋子的总数量最多?解析 因每行都有8格,所以每行棋子最多只能有6个.此方格表共有8行,因此棋子的总数最多为4825.1.19★★★★将m n ⨯的方格表中每个小方格涂上黑色或白色,两种颜色的方格数相等.问能否有一种涂法,使每一行、每一列中都有一种颜色的方格数超过75%? 解析 不可能.设每行、每列中都有一种颜色的方格超过34,由于行与行、列与列可对调而不影响结论.不妨设其中前p 行白色占优势,后q 行黑色占优势;前r 列白色占优势,后s 列黑色占优势.p q m +=,r s n +=(如下左图).r spq 全白黑白相间黑白相间全黑考虑p s ⨯放q r ⨯的矩形中的ps qr +个方格.其中的白格可看成s 列或q 行中的“少数派”,而黑格可看成p 行或r 列中的“少数派”.由于在每行、每列中“少数派”少于4n 或4m 个,所以前一个矩形中的白色与后一个矩形中的黑格的个数之和少于()44m mn s r +=.同样,前一个矩形中的黑格与后一个中白格之和少于()44n mn p q +=.所以这两个矩形中的方格数442mn mn mn ps qr +<+=,即少于方格总数的一半.因此 ps qr pr qs +<+, ()()0p q s r --<,从而p q ≤,r s ≤或q p ≤,s r ≤不妨设为前者,这时2m p ≤,2n r ≤, 白色方格总数44n m pr q s <+⨯+⨯ ()()44n m pr m p n r =+-⨯+-⨯ 24242mn n r m p p r ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭ 2mn ≤, 与两种颜色的方格相等矛盾. 评注 每行、每列中都有一种颜色的方格恰好占34是可能的(这时m 、n 当然都被4整除),前右图(其中2m p q ==,2n r s ==)即满足要求. 25.1.20★★★在2是×2是的方格表上,有3k 个格子涂黑,求证:可以选择k 行及k 列,包含了全部这3k 个黑格.解析 将包含黑格的所有行中找出黑格数最多的前k 行,则这k 行中包含的黑格总数必定不少于2k ,否则会有一行的黑格数至多一个,而剩下来的k 行至少有1k +个黑格,于是有一行包含了至少两个黑格,这与k 前是行”的定义矛盾.于是结论成立,接下来只要再找是列包含剩下的k 个黑格即可(有的列可不包含黑格).25.1.21★★★7×7方格表中的方格被分别染为两种不同颜色,证明:至少可以找出21个矩形,它们的顶点是同一种颜色方格的中心,它们的边平行于方格线.解析 考察其中任意一列,估计其中同色“方格对”的个数.设在该列中有一种颜色的方格走个,另一种颜色的方格7k -个,那么,在该列中就共有()()()217672122k k k k k k ---+=-+个同色“方格对”.该式的值在3k =和4k =时达到最小值9,所以,7个列中一共有不少于63个同色“方格对”.注意到每一个这样的同色“方格对”位于一个“行对”中,如果相应的“行对”中还有一个与之颜色相同的同色“方格对”,那么,它们即构成一个满足要求的矩形.我们知道,方格表中一共有76212⨯=个不同的“行对”,由于有两种不同颜色,所以,一共有42种不同情况的“行对”.因此,至少可以找到21(=63-42)个满足要求的矩形.25.1.22★★★把全体正整数染成黑白两色之一,已知任意两个不同颜色的数之和为黑色,而它们的积是白色,试找出所有的这种染色方法.解析 设正整数m 、n 为白色,现研究mn 的颜色.若mn 是黑色,设正整数k 黑色,则m k +为黑色,()m k n mn kn +==+为白色,但由前知mn 黑色,kn 白色,于是mn kn +黑色,矛盾,因此mn 为白色.设正整数l 是染成白色的最小数,于是由条件及前面的讨论知,l 的所有正整数倍数sl 均为白色.至于其他正整数p ,p 不被l 整除,设p ql r =+,0r l <<,由l 之定义知,r 必定是黑色,于是知当0q =时,p r =为黑色;当0q >时由ql 为白色,知p 亦为黑色.于是本题的结论就是,所有l 的倍数染成白色,其余的数染成黑色,不难验证这种染法确实满足题设要求.25.1.23★★★★有一个矩形顶点坐标分别为()0,0、()0,m 、(),0n 与(),n m ,其中m 、n 均为正奇数,将这个矩形分拆(既无重叠,也不遗漏)为一些三角形,使得每个三角形的顶点均为格点且至少有一条边与坐标轴平行,并且这条边上的高为1,求证:一定存在至少两个三角形,它们各有两条边平行于坐标轴.解析 易知,可将矩形分成mn 个单位正方形,并涂上黑白两色,使相邻的正方形颜色不同.此时4个角上的小正方形颜色相同,设为黑色,于是黑色格总面积比白格多1.可以推出,上述分拆中,每一个有两条边与坐标轴平行的三角形中,两种颜色部分的面积之差为12;而每一个仅有一条边与坐标轴平行的三角形中,两种颜色部分的面积相等,如图.由于黑色面积与白色面积相差1,故至少存在两个三角形各有两条边与坐标轴平行.25.1.24★★★把正三角形划分为2n 个同样大小的小正三角形,把这些小正三角形的一部分标上号码1,2,…,m ,使得号码相邻的三角形有相邻边.求证:21m n n -+≤.解析 将2n 小正三角形如图黑、白染色,黑三角形共有1+2+3+…+()112n n n =+个,白三角形共有1+2+3+…+(1n -)()112n n =-个,由于要求“号码相邻的三角形有相邻边”,且有相邻号码的两个三角形染有不同的颜色,因此标上号码的黑三角形总比标上号码的白三角形的个数多1,所以编号的三角形数m 不超过()2121112n n n n ⨯-+=-+个,即21m n n -+≤. 25.1.25★★★将正方形ABCD 分割为n n ⨯个相等的小方格,把相对的顶点A 、C 染成红色,把B 、D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.求证:恰有三个顶点同色的小方格的数目必是偶数.解析 用数代表颜色:红色记为1.蓝色记为1-.将小方格编号,记为1,2,…,2n .记第i 个小方格四个顶点处数字之乘积为i A .若该格恰有三个顶点同色,则1i A =-,否则1j A =.今考虑乘积212n A A A ⨯⨯⨯L .对正方形内部的交点,各点相应的数重复出现4次;正方形各边上的不是端点的交点相应的数各出现2次;A 、B 、C 、D 四点相应的数的乘积为()()11111⨯⨯-⨯-=.于是,2121n A A A ⨯⨯⨯=L .因此,1A ,2A ,…,2n A 中1-的个数必为偶数,即恰有三个顶点同色的小方格必有偶数个.25.1.26★★已知ABC △内有n 个点(无三点共线),连同点A 、B 、C 共3n +个点,以这些点为顶点把ABC △分割为若干个互不重叠的小三角形,现把A 、B 、C 分别染成红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.解析 把这些小三角形的边赋值:边的端点同色的,赋值0,边的端点不同色,赋值1,于是每只小三角形的三边赋值的和,有如下三种情形:(i)三顶点都不同色的小三角形,赋值和为3;(ii)恰有两顶点同色的小三角形,赋值和为2;(iii)三顶点同色的小三角形,赋值和为0.设所有小三角形的边的赋值总和为S ,又设情形(i)、(ii)、(iii)中三类小三角形的个数分别为a 、b 、c ,于是32032S a b c a b =++=+. ①注意到所有小三角形的边的赋值总和中,除了边AB ,BC ,CA 外,其余各边都被计算了两次,故它们的赋值和是这些边的赋值和的两倍,再加上ABC △的三边的赋值和为3,故S 是奇数,因此,由①式得a 是奇数.25.1.27★★★由8个1×3和1个1×1的砖块按通常方式(即平行地贴着格子线)铺满一个5×5的棋盘,求证:1×1的砖块必定位于整个棋盘的中心位置.解析 将棋盘按图中方式染成A 、B 、C 三种颜色.易见A 、C 各有8格,而B 有9格.由于每个1×3砖块必定覆盖A 、B 、C 三色格各一格,因此1×1的砖块必定染成B 色.再将整个棋盘旋转90゜,再按完全相同的方法染色,于是1×1的砖块仍在染成B 色的方格上,但两次染色均染成B 色的小方格只有中间的那个,因此1×l 的砖块必定位于整个棋盘的中心位置.25.1.28★★★★6个点每两点之间连一条线,将这15条线进行任意的二染色(即每条边染成两种颜色之一),则必定存在至少两个同色的三角形.解析 设两色为红色与蓝色.若从同一点出发有3条线同色,比如AB 、AC 、AD 为红色,如果BC 红色,则ABC △为红色三角形,否则BC 为蓝色,同理CD 、DB 亦为蓝色,于是BCD △为蓝色三角形.因此,有一点出发3条线同色,一定有同色三角形存在.于是6个点之间的15条线中,一定有同色三角形存在.5个点的10条线若无同色三角形,则每一点连出的4条线必定两红两蓝.比如五点为A 、B 、C 、D 、E ,不妨设BA 、AE 红,由于BE 蓝,还有一点与B 的连线红色,不妨设BC 红,于是BD 蓝,ED 红,AC 、AD 蓝,CD 红,CE 蓝,故要想不出现同色三角形,只能是五点构成的五边形(不一定凸或自身不交)的边同色,而对角线则异色.现在回到原题,设六点为1A 、2A 、3A 、4A 、5A 、6A ,由于一定有同色三角形存在,不妨设为456A A A △一是红色三角形,若不存在第二个同色三角形,则可设五边形12345A A A A A 的边为红色(图中实线所示),对角线为蓝色(图中虚线所示).若16A A 为红色,则156A A A △为红色三角形,故16A A 蓝,同理36A A 为蓝色,于是136A A A △为蓝色三角形,因此同色三角形至少有两个.A 1A 2A 34A 5A 625.1.29★★★n n ⨯的方格表中有1n -个格子涂且黑色,如果一个未涂色的小方格有两个以上的黑色小方格与之相邻(“相邻”指有公共边),则将这个小方格也涂黑,求证:不可能将所有的小方格都涂黑.解析 假定小方格边长为1.考虑一开始这1n -格小方格组成的“岛”,每个“岛”都由连在一起的小方格组成,不同的“岛”之间没有公共边界(当然也可能本来只有一个“岛”).因此这些“岛”的边界(包括有“洞”时“洞”的“内部边界”)长度之和不大于()41n -(因为还有小方格边界在内部抵消的情形).现在按规则操作,每添加一个黑格,总边界不会增加,甚至还会减少(例如未涂色的小方格周边已有3或4个小黑格与之相邻).如果所有小方格都涂黑了,总边界为()441n n >-,矛盾.因此结论成立.25.1.30★★★无限大方格表上的每个结点(方格线的交点)都被染为三种颜色之一,并且每种颜色的点都有.证明:可以找到一个直角三角形(其直角边不一定在方格线上),它的三个顶点被分别染为三种不同颜色.解析 用反证法.假设不存在三个顶点被分别染为三种不同颜色的直角三角形. 不难看出,可以找出一条水平方向或竖直方向的直线l ,它上面至少有两种颜色的结点,为确定起见,设其为水平方向.如果l 上只有两种颜色的点,比方说蓝色与红色,那么在平面上任意取一个绿色结点A ,并且把A 所在的竖直直线与l 的交点记作B .于是,B 或为蓝色或为红色,不妨设其为蓝色.由于l 上还有红色结点,只要任取其中一个红点C ,即可得到三个顶点颜色各异的Rt ABC △,此与假设矛盾.所以,l 上面有三种颜色的结点.在直线l 上任意取一个蓝点B 、一个红点C 和一个绿点D .那么,此时在经过点B 的竖直直线上的结点都应当为蓝色,否则就可以找到三一个顶点颜色各异的直角三角形.同理,在经过点C 的竖直直线上的结点都为红色,在经过点D 的竖直直线上的结点都为绿色.这就表明,在以上的染色方法中,每条竖直直线上的结点都是单一颜色的,从而,任何直角边在方格线上的直角=三角形中都至少有两个顶点同色.下面考察任何一条经过结点且与竖直方向交成45゜的直线.由于它同每条竖直直线都相交于结点处,所以它上面有着三种不同颜色的结点.这样一来,根据刚才的讨论,在每一条与它垂直的直线上的结点都只能是单一颜色的.但是,事实上这些直线都与竖直方向交成135゜,从而与每条竖直直线都相交于结点处.故都有着三种不同颜色的结点,导致矛盾. 25.1.31★★★将全平面以任意方式二染色,并在平面上任找不共线的三点A 、B 、C ,求证:存在一个顶点同色的三角形,与ABC △相似.S M K N T解析 首先证明,一定有两点及两点连线之中点同色,不妨设二色为红与蓝.至少有一种颜色被涂在无穷多个点上,不妨设是红色,今找两点M 、N ,均为红色.K 为MN 中点,又使M 为SN 中点,N 为MT 中点.若K 红,则M 、K 、N 为所求;同理,若S 或T 为红,则S 、M 、N 或M 、N 、T 为所求;若K 、S 、T 皆为蓝,则S 、K 、T 为所求. 如图,现作A △′B ′C ′∽ABC △,P 、Q 、R 为三边中点,且由前,可设B ′、P 、C ′.若A ′红,则A △′B ′C ′即为所求;若R 或Q 红,则RB △′P 或QPC △′为所求;若A ′、R 、Q 皆蓝,此时A △′RQ 即为所求.于是结论成立.A B C A'R QB'P25.1.32★★★平面上任意点都染成三色之一,则一定有同色顶点的矩形.解析 不妨考虑格点,首先证当格点(),A x y 满足3≤x ≤9,1≤y ≤3时,对这21个格点二染色,一定有同色矩形.假设此结论不成立,事实上,设两色为红与蓝,由于列与列对调不影响矩形的数量,故由抽屉原理,不妨设(3,1)、(4,1)、(5,1)、(6,1)红,于是(3,2)、(4,2)、(5,2)、(6,2)中至多一个红,不妨设(4,2)、(5,2)、(6,2)蓝,但(4,3)、(5,3)、(6,3)不能有两个蓝,也不能有两个红,此不可能.今设第三色为黄色,z 轴上的整点必有一色出现无穷多次,不妨设就是黄色,现作列调整,使(0,0),(1,0),…,(9,0)黄,故(0,1),(1,1),…,(9,1)至多一黄,于是可设(1,1),…,(9,1)为红蓝两色,同理可设(2,2),…,(9,2)为红蓝两色,(3,3),…,(9,3)为红蓝两。

相关文档
最新文档