2017届高考数学一轮总复习课时跟踪检测(三十六)二元一次不等式(组)及简单的线性规划问题文新人教A版
(全国通用)高考数学大一轮复习 第六篇 不等式 第3节 二元一次不等式(组)与简单的线性规划问题习题
第3节二元一次不等式(组)与简单的线性规划问题选题明细表知识点、方法题号二元一次不等式(组)表示的平面区域1,4,9含参数的线性规划3,5,6,7,10,12目标函数的最值2,8,13,14,15线性规划的实际应用11基础对点练(时间:30分钟)1.不等式组所表示的平面区域是( D )解析:画出直线x=2,在平面上取直线的右侧部分(包含直线本身);再画出直线x-y=0,取直线的右侧部分(包含直线本身),两部分重叠的区域就是不等式组表示的平面区域.故选D.2.(2016·某某卷)若变量x,y满足则x2+y2的最大值是( C )(A)4 (B)9(C)10 (D)12解析: 作出不等式组表示的可行域如图所示,由x2+y2表示可行域内的点(x,y)到原点的距离平方可知,点A(3,-1)满足条件,即x2+y2的最大值为32+(-1)2=10.故选C.3.(2016·某某模拟)已知函数f(x)=log a x(a>1)的图象经过区域则a的取值X 围是( C )(A)(1,] (B)(,+∞)(C)[,+∞) (D)(2,+∞)解析: 作出不等式组表示的可行域,如图中阴影部分所示.联系函数f(x)=log a x(a>1)的图象,能够看出,当图象经过区域的边界点A(3,3)时,a可以取到最小值,而显然只要a大于,函数f(x)=log a x(a>1)的图象必然经过区域内的点.则a的取值X围是[,+∞).故选C.4.(2015·某某校级三模)若A为不等式组表示的平面区域,则a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( D )(A)9(B)3(C)(D)解析: 如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ACD是斜边为3的等腰直角三角形,△OEC是直角边为1的等腰直角三角形,所以区域的面积S=S△ACD-S△OEC=×3×-×1×1=.5.(2014·某某卷)x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为( D )(A)或-1 (B)2或(C)2或1 (D)2或-1解析:线性约束条件对应的可行域如图所示:目标函数z=y-ax化为y=ax+z,当a>0时,要使其取得最大值的最优解不唯一,需动直线y=ax+z与2x-y+2=0平行或重合,此时a=2;同理当a<0时,需动直线y=ax+z与x+y-2=0平行或重合,此时a=-1,故选D.6.(2016·某某章丘期末)若实数x,y满足不等式组且x+y的最大值为9,则实数m等于( C )(A)-2 (B)-1(C)1 (D)2解析: x-my+1=0恒过点(-1,0),旋转直线x-my+1=0可知可行域只可能是△ABC,且x+y的最大值只在点C处取得,联立方程组得C(,)(若m=,则与2x-y-3=0平行,不可能),(x+y)max=+=9,解得m=1.故选C.7.(2016·某某某某名校联考)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于( A )(A)(B)(C)1 (D)2解析: 根据约束条件画出可行域,如图,由图可知当直线z=2x+y经过点B时,z最小,由解得所以z min=2×1-2a=1,解得a=.故选A.8.导学号 18702285已知x,y满足则的取值X围是( C )(A)[0,] (B)[2,] (C)[1,] (D)[0,]解析:不等式组表示的平面区域如图中阴影部分所示.因为==1+,表示区域内的点与(4,2)连线的斜率.斜率最小值为0,点(-3,-4)与M(4,2)连线斜率最大为=.所以的取值X围为[1,].故选C.9.若点P(m,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y<3表示的平面区域内,则m=.解析:由题意可得解得m=-3.答案:-310.(2016·某某模拟)若直线y=2x上存在点(x,y)满足约束条件则实数m的取值X围是.解析: 由题意,由可求得交点坐标为(1,2),要使直线y=2x上存在点(x,y)满足约束条件则点(1,2)在可行域内,如图所示,可得m≤1.答案:(-∞,1]11.导学号 18702284某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电、劳力、获得利润及每天资源限额(最大供应量)如下表所示:产品限额资源甲产品(每吨)乙产品(每吨)资源限额(每天)煤(t) 9 4 360电(kW·h) 4 5 200劳力(个) 3 10 300利润(万元) 6 12问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元.依题意可得约束条件利润目标函数z=6x+12y.如图,作出可行域,作直线l:6x+12y=0,把直线l向右上方平移至l1位置,直线经过可行域上的点M时z=6x+12y取最大值.解方程组得M(20,24).所以生产甲种产品20 t,乙种产品24 t,才能使此工厂获得最大利润.能力提升练(时间:15分钟)12.(2016·某某八校联考)已知变量x,y满足约束条件若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)上有两个不同实数解,则实数k的取值X围是( C )(A)(-6,-2) (B)(-3,2)(C)(-,-2)(D)(-,-3)解析: 作出可行域,如图所示,则目标函数z=x-2y在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,所以a=1,b=-3,从而可知方程x2-kx+1=0在区间(-3,1)上有两个不同实数解.令f(x)=x2-kx+1,则⇒-<k<-2,故选C.13.导学号 18702286如果实数a,b满足条件:则的最大值是.解析: 根据约束条件画出可行域,如图,表示可行域内的点与原点(0,0)连线的斜率,设z的几何意义表示可行域内点P与原点O(0,0)连线的斜率,易知当直线OP过点B(,)时,取最大值,最大值为3,直线OP过点A(1,1)时,取最小值,最小值为1,所以∈[1,3].所以===2-因为∈[1,3].所以的最大值为.答案:14.(2014·某某卷)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值X 围是.解析:可行域如图所示,则A(1,0),B(2,1),C(1,),设z=ax+y,即得1≤a≤.答案:[1,]15.导学号 18702287变量x,y满足(1)假设z1=4x-3y,求z1的最大值;(2)设z2=,求z2的最小值;(3)设z3=x2+y2,求z3的取值X围.解: 作出可行域如图中阴影部分,联立易得A(1,),B(1,1),C(5,2).(1)z1=4x-3y⇔y=x-,易知平移y=x至过点C时,z1最大,且最大值为4×5-3×2=14.(2)z2=表示可行域内的点与原点连线的斜率大小,显然直线OC斜率最小.故z2的最小值为.(3)z3=x2+y2表示可行域内的点到原点距离的平方,而2=OB2<OA2<OC2=29.故z3∈[2,29].好题天天练1.(2015·某某卷)设实数x,y满足则xy的最大值为( A )(A)(B)(C)12 (D)16解题关键:判断xy取得最大值的点,并分类讨论确定最大值.解析: 先画出可行域,再将xy转化为矩形面积S,求S的最大值.表示的可行域如图中阴影部分所示.令S=xy,不妨设在点M(x0,y0)处S取得最大值,且由图象知点M(x0,y0)只可能在线段AD,AB,BC上.①当M(x0,y0)在线段AD上时,x0∈[-2,0],此时S=xy≤0;②当M(x0,y0)在线段AB上时,x0∈[0,2],S=xy=x·=x(7-)=-+7x=-(x-7)2+,当x0=2时,wordS max=-(2-7)2+=-+=12;③当M(x0,y 0)在线段BC上时,x 0∈[2,4],S=xy=x·(10-2x)=-2x2+10x=-2(x-)2+,当x0=时,S max =.综上所述,xy的最大值为.2.导学号 18702288设实数x,y满足则z=-的取值X围是.解析: 由于表示可行域内的点(x,y)与原点(0,0)的连线的斜率,如图,求出可行域的顶点坐标A(3,1),B(1,2),C(4,2),则k OA=,k OB=2,k OC=,可见∈[,2],令=t,则z=t-在[,2]上单调递增,所以z∈[-,].答案:[-,]11 / 11。
高三理科数学第一轮复习§6.3:二元一次不等式(组)与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
提示
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
2017届高考数学大一轮 第六章 不等式与推理证明 第3课时 二元一次不等式(组)与简单的线性规划问题 理
1.(2015·高考陕西卷)某企业生产甲、乙两种产品均需用A,
B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限
额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4
万元,则该企业每天可获得最大利润为( )
A.12万元
A(吨) B(吨)
甲 乙 原料限额
32
12
12
8
B.16万元
C.17万元
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第3课时 二元一次不等式(组)与简单的线性规划问题
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
1.(2015·高考湖南卷)若变量x,y满足约束条件
x2+x-y≥y≤-11,, 则z=3x-y的最小值为(
)
y≤1.
A.-7 C.1
B.-1 D.2
解析:画出可行域,如图中阴影部分所示.目标函数z=3x-
y可化为y=3x-z,其斜率为3,纵截距为-z,平移直线y=3x知
当直线y=3x-z经过点A时,其纵截距最大,z取得最小值.由
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧的所有的点组成的平面区域 (半平面) 不含 边界直线,不等式Ax+By+C≥0所表示的平 面区域(半平面)含有边界直线.
(2)对于直线Ax+By+C=0同一侧的所有的点(x,y),使得Ax
解析 当m≥0时,若平面区域存在,则平面区域内的点在第 二象限,平面区域内不可能存在点P(x0,y0)满足x0-2y0=2,因此 m<0.
高考数学总复习 23 二元一次不等式(组)与简单的线性规
(对应学生用书 P19)
1.二元一次不等式(组)表示的平面区域 (1)在平面直角坐标系中,直线 Ax+By+C=0 将平面内的 所有点分成三类:一类在直线 Ax+By+C=0 上,另两类分居 直线 Ax+By+C=0 的两侧,其中一侧半平面的点的坐标满足 Ax+By+C>0,另一侧的半平面的点的坐标满足 Ax+By+C<0.
二元一次不等式 预测:2013年高考对本节内容的考查仍将以
组.
求区域面积和目标函数最值(或取值范围)为
3.会从实际情境中 主,考查约束条件、目标函数中的参变量的
抽象出一些简单的 取值范围,题型延续选择题、填空题的形
二元线性规划问 式,分值约为5分.另外应关注斜率和距离
题,并能加以解决. 最值的命题趋势.
()
解析:由已知得xx+ +y1>-1-x-x-yy>,y, y+1-x-y>x,
x+y>12,
即y<12, x<12.
答案:A
4.(2012 年课标全国)已知正三角形 ABC 的顶点 A(1,1),
B(1,3),顶点 C 在第一象限,若点(x,y)在△ABC 内部,则 z
(2)明确一个意义——目标函数的几何意义,注意本部分知 识与平面解析几何的联系,利用直线方程中相关参数的几何意 义准确确定目标函数的几何意义,这是解决线性规划问题的关 键.
(3)掌握一种方法——数形结合法,这是解决线性规划问题 的最基本的方法,其实质就是利用数形结合思想解决最值问 题.
(4)注意一个综合——线性规划问题与其他知识模块的综 合,熟练利用相关知识进行运算,将问题转化为简单的线性规 划问题,这也是 2012 年高考命题的趋势.
y∈N*
高考专题练习: 二元一次不等式(组)及简单的线性规划问题
1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。
高考数学一轮复习第七章7.1二元一次不等式(组)与简单的线性规划问题课件文北师大版
1
m∈(0,2].
√2
,
2
考点2
求目标函数的最值问题 (多考向探究)
考向1 求线性目标函数的最值
2 + -2 ≤ 0,
【例 2】(1)(2020 全国 1,文 13)若 x,y 满足约束条件 --1 ≥ 0, 则 z=x+7y
+ 1 ≥ 0,
的最大值为
.
2 + -2 ≥ 0,
(2)(2020 福建福州模拟,理 13)设 x,y 满足约束条件 -2 + 4 ≥ 0,则 z=x-3y
(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不
等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则
就表示直线与特殊点异侧的那部分区域.当不等式中带等号时,边界画为实线,不
带等号时,边界应画为虚线,特殊点常取原点.
(2)也常利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于
(3)任何一个二元一次不等式组都表示平面上的一个区域.( × )
(4)线性目标函数取得最值的点一定在可行域的顶点或边界上.( √ )
(5)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截
距.( × )
-3 + 6 < 0,
2.不等式组
表示的平面区域是(
- + 2 ≥ 0
.
思考如何利用可行域求非线性目标函数最值?
答案 (1)A
11
(2)
2
解析 (1)作不等式组表示的可行域,如图所示.
由于
又
+1
k= 表示动点
一轮复习课时训练§6.3:二元一次不等式(组)与简单的线性规划
第六章§3:二元一次不等式(组)与简单的线性规划(与一轮复习课件对应的课时训练)满分100,训练时间50钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数f(x)=x 2-5x +4,则不等式组⎩⎪⎨⎪⎧f (x )-f (y )≥01≤x ≤4表示的平面区域为2.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4x -y ≥-1x -2y ≤2,则z =x +yA .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值 3.设x 、y 满足⎩⎪⎨⎪⎧x ≤0y ≥0x +y -1≥0,则实数对(x ,y)表示的区域在直线y =4的下侧部分的面积是A .4B .8C .92D .94.已知平面区域D 由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点(x ,y)可使目标函数z =x +my 取得最小值,则m 等于 A .-2 B .-1 C .1 D .4 5.设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0x -y +8≥02x +y -14≤0,所表示的平面区域为M ,使函数y =a x (a>0,且a ≠1)的图象过区域M 的a 的取值范围是 A .[1,3]B .[2,10]C .[2,9]D .[10,9]二、填空题:本大题共3小题,每小题8分,共24分.6.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是______. 7.若实数x ,y 满足⎩⎪⎨⎪⎧ x ≤2y ≤2x +y ≥2,则目标函数z =yx +1的最大值是________.8.不等式组⎩⎪⎨⎪⎧x -y +2≥0x +y +2≥0,2x -y -2≤0所确定的平面区域记为D ,若圆O :x 2+y 2=r 2上的所有点都在区域D 内,则圆O 的面积的最大值是______.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分)已知实数x 、y 满足⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,试求z =y +1x +1的最大值和最小值.10.(本小题满分18分)某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大?最大收益是多少?参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分. 1.解析:不等式组⎩⎪⎨⎪⎧f (x )-f (y )≥01≤x ≤4,即⎩⎪⎨⎪⎧x -y ≥0x +y -5≥01≤x ≤4,或⎩⎪⎨⎪⎧x -y ≤0x +y -5≤01≤x ≤4,故其对应平面区域应为图C. 答案:C2.解析:由图象可知z =x +y 在点A 处取最小值z min =2,无最大值.答案:B 3.解析:如图所示,三角形为等腰直角三角形,且腰长为3,面积为92.答案:C4.解析:由目标函数z =x +my 得y =-1m x +zm.当m>0时,-1m <0,1m >0,可得-1m =k AC =3-11-3=-1,∴m =1时有无穷多个点(x ,y)可使z =x +my 取得最小值.当m<0时,-1m >0,1m <0,则z =x +my 在点A 处取得最小值不合题意.∴m =1时符合题意.故选C 项.答案:C 5.解析:画出可行域如图由⎩⎪⎨⎪⎧x -y +8=0x +2y -19=0, 得交点A(1,9),由⎩⎪⎨⎪⎧2x +y -14=0x +2y -19=0,得交点B(3,8),当y =a x 的图象过点A(1,9)时,a =9, 当y =a x 的图象过点B(3,8)时,a =2. ∴2≤a ≤9.故选C 项. 答案:C二、填空题:本大题共3小题,每小题8分,共24分.6.解析:不等式组⎩⎪⎨⎪⎧x ≥0y ≥0x +y ≤1,表示的可行域如图所示,则y =x -z 表示的直线过点A(1,0)时,z =x -y 取最大值,且z max =1.答案:1 7.解析:根据约束条件作出可行域如图所示.目标函数z =yx +1=y -0x +1可以看做定点(-1,0)与可行域内的点(x ,y)连线斜率的最大值.可知当目标函数线过点A(0,2)时有最大值,即z max =2-00+1=2. 答案:28.解析:画出可行域如图:⊙O 的所有点都在△ABC 内,圆心O 到直线BC 的距离 d =|-2|5=25为⊙O 半径的最大值,∴圆O 面积的最大值为S max =π(25)2=45π.答案:45π 三、解答题:本大题共2小题,共36分.9.(本小题满分18分)解:由于z =y +1x +1=y -(-1)x -(-1),所以z 的几何意义是点(x ,y)与点M(-1,-1)连线的斜率,因此y +1x +1的最值就是点(x ,y)与点M(-1,-1)连线的斜率的最值.结合图可知:直线MB 的斜率最大,直线MC 的斜率最小,即z max =k MB =3,此时x =0,y =2;z min =k MC =12,此时x =1,y =0.10.(本小题满分18分)解:设搭载产品A x 件,产品B y 件,预计总收益z =80x +60y. 则⎩⎪⎨⎪⎧20x +30y ≤30010x +5y ≤110x ∈N ,y ∈N,作出可行域,如图:作出直线l 0:4x +3y =0并平移,由图象得,当直线经过M 点时z 能取得最大值,由⎩⎪⎨⎪⎧ 2x +3y =302x +y =22,解得⎩⎪⎨⎪⎧x =9y =4,即M(9,4).所以z max =80×9+60×4=960(万元). 所以搭载产品A 9件,产品B 4件,可使得总预计收益最大,为960万元.。
高考数学第一轮知识点 第3课时 二元一次不等式组与简单的线性规划问题课时复习课件 理
作出可行域如图,让目标函数表示的直线 2.5x+4y=z 在可行域上平移,由此可知 z =2.5x+4y 在 B(4,3)处取得最小值. 因此,应当为该儿童预订 4 个单位的午餐和
3 个单位的晚餐,就可满足要求.
【变式训练】 3.某家具厂有方木料 90 m3,五合 板 600 m2,准备加工成书桌和书橱出售.已知生 产每张书桌需要方木料 0.1 m3,五合板 2 m2,生 产每个书橱需要方木料 0.2 m3、五合板 1 m2,出 售一张书桌可获利润 80 元,出售一个书橱可获利 润 120 元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少?
.D
恰为
AC
的中点,直线
y=x+2
将△
ABC 的面积平分.故选 A.
答案: A
【变式训练】 1.(2011·吉林延边州一模)若不
x-y+5≥0,
等式组y≥a, 0≤x≤3
表示的平面区域是一
个三角形,则 a 的取值范围是( )
A.a<5
B.a≥8
C.a<5 或 a≥8
D.5≤a<8
解析: 作出如图所示的可行域,要使该平面 区域表示三角形,需满足 5≤a<8.
答案: D
求目标函数的最值 1.求目标函数的最值,必须先准确地作出线 性可行域再作出目标函数对应的直线,据题 意确定取得最优解的点,进而求出目标函数 的最值. 2.线性目标函数 z=ax+by 取最大值时的最 优解与 b 的正负有关,当 b>0 时,最优解是将 直线 ax+by=0 在 2y-1=0
得 D(1,0),
∴kCD=0,kCA=1212-+01=13,∴z 的范围是0,31;
(3)z=
高考数学总复习 第6章 第3节 二元一次不等式(组)与简单的线性规划问题课件 新人教A版
坐标适合
.
3.点可(x0在,A直yx0+线),BA从yx++ACxB0<y++0BCy0=+0C的的某一侧任来取判一断点A,x 一+般By取+特C 殊> 0(或Ax+By+C<0)所表示的区域.
4.个由不几等个式不所等表式示组的平成面的区不域等的式组符所号表示的平面.区域,是各
公共部分
二、线性规划的有关概念
7
3
4
3
A.3
B.7
C.3
D.4
【思路点拨】
【自主解答】由图可知,线性规划区域为△ABC 边界及 内部 y=kx+43恰过 A(0,34),y=kx+43将区域平均分成面积 相等两部分,故过 AB 的中点 D(12,52),25=k×12+43,∴k=73. 故选 A.
【特别提醒】(1)Ax+By+C>0(<0):表示直线 l:Ax +By+C=0 某一侧所有点组成的平面区域,直线应画成虚 线.
答案∴:a+4 b≥2 ab=4.
二元一次不等式(组)表示平面区域的判定方法:
(1)同号上,异号下.当B(Ax+By+C)>0时,区域为直线Ax +By+C=0的上方,当B(Ax+By+C)<0时,区域为直线 Ax+By+C=0的下方.
(2)直线定界、特殊点定域.注意不等式是否可取等号,不可 取等号时直线画成虚线,可取等号时直线画成实线.若直 线不过原点,特殊点常选取原点.
的最大值为 8,则 a+b 的最小值为______.
解析:原不等式组表示的平面区域如图中阴影部分所 示,当直线 z=abx+y(a>0,b>0)过直线 2x-y+2=0 与直 线 8x-y-4=0 的交点(1,4)时,目标函数 z=abx+y(a>0,b >0)取得最大值 8,即 8=ab+4,ab=4,
高考数学一轮复习 课时规范练32 二元一次不等式(组)与简单的线性规划问题 理 北师大版-北师大版高
课时规X练32 二元一次不等式(组)与简单的线性规划问题基础巩固组1.若点(m,1)在不等式2x+3y-5>0所表示的平面区域内,则m的取值X围是()A.m≥1B.m≤1C.m<1D.m>12.(2018某某某某舒城中学仿真(三),3)若x,y满足则z=x+2y的最大值为()A.8B.7C.2D.13.(2018某某阳春一中模拟,4)若实数x,y满足不等式组则z=x2+y2的取值X围是()A.,2B.[0,2]C.D.[0,]4.(2018某某某某高三质监(二),6)已知动点M(x,y)满足线性条件定点N(3,1),则直线MN斜率的最大值为()A.1B.2C.3D.45.(2018某某某某沂水一中三模,11)已知实数x,y满足的取值X围为()A.-3,B.-3,C.-3,D.-6.(2018某某某某四模,6)已知实数x,y满足的取值X围是()A.(0,1)B.(0,1]C.[1,+∞)D.,+∞7.(2018某某某某联考,9)已知实数x,y满足:若目标函数z=ax+y(其中a为常数)仅在处取得最大值,则a的取值X围是()A.(-1,1)B.(-1,0)C.(0,1)D.{-1,1}8.(2018某某某某联考)已知实数x,y满足且(k-1)x-y+k-2≥0恒成立,则实数k的最小值是.9.(2018某某某某质检,15)若直线ax+y=0将平面区域Ω=划分成面积为1∶2的两部分,则实数a的值等于.10.(2018某某红河一模,14)已知则z=2x-y的取值X围是.11.(2018海淀区二模,13)A,B两个居民小区的居委会欲组织本小区的中学生利用双休日去市郊的敬老院参加献爱心活动.两个校区每位同学的往返车费及服务老人的人数如下表:A小区B小区往返车费3元 5元服务老人的人数5人 3人根据安排,去敬老院的往返总车费不能超过37元,且B小区参加献爱心活动的同学比A小区的同学至少多1人,则接受服务的老人最多有人.综合提升组12.(2018某某某某二模,6)已知点P(m,n)在不等式组表示的平面区域内,则实数m 的取值X围是()A.[-5,5]B.[-5,-5]C.[-5,1]D.[-5,1]13.(2018某某某某测试八,5)已知f(x)=x2+ax+b,0≤f(1)≤1,9≤f(-3)≤12,则z=(a+1)2+(b+1)2的最小值为()A. B. C. D.114.(2018某某某某一模,7)已知不等式ax-2by≤2在平面区域{(x,y)||x|≤1且|y|≤1}上恒成立,则动点P(a,b)所形成平面区域的面积为()A.4B.8C.16D.3215.(2018某某某某一联,14)已知平面区域Ω:夹在两条斜率为-2的平行直线之间,则这两条平行直线间的最短距离为.创新应用组16.(2018某某一模,7)设不等式组表示的平面区域为D,若圆C:(x+1)2+y2=r2(r>0)不经过区域D上的点,则r的取值X围为()A.(0,)∪(,+∞)B.(,+∞)C.(0,)D.[]17.(2018某某某某调研,10)若x,y满足|x-1|+2|y+1|≤2,则M=2x2+y2-2x的最小值为()A.-2B.C.4D.-参考答案课时规X练32 二元一次不等式(组)与简单的线性规划问题1.D由2m+3-5>0,得m>1.2.B作出题设约束条件可行域,如图△ABC内部(含边界),作直线l:x+2y=0,把直线l向上平移,z增加,当l过点B(3,2)时,z=3+2×2=7为最大值.故选B.3.B绘制不等式组表示的平面区域如图所示,目标函数表示坐标原点到可行域内点的距离的平方,则目标函数在点(0,0)处取得最小值:z min=02+02=0,目标函数在点A(1,1)处取得最大值:z max=12+12=2,故x2+y2的取值X围是[0,2].故选B.4.C画出线性条件表示的可行域,由可得M(2,-2),由可行域可知当M 取(2,-2)时,直线MN的斜率最大值为=3,故选C.5.A先作出不等式组对应的可行域,如图所示,解方程组得A,2,=表示可行域内的点(x,y)到原点的直线的斜率,所以当点在A点时,斜率最大==,没有最小值,无限接近直线3x+y-6=0的斜率-3,所以的取值X围为-3,.故选A.6.D的几何意义为可行域内的点到原点的距离,画出可行域,根据几何图像中的距离,结合点到直线的距离公式,即可求出X围.根据题意作出可行域:此区域为开放区域,所以距离可以无限大,由图像可知最近距离为原点到直线x+y-1=0的距离,所以由点到直线距离公式可得:最短距离d==.故选D.7.A构造二次函数f(t)=t2-t,由函数的单调性可知,f(x)≤f(y),得到自变量离轴越远函数值越大,故≤-y,且0≤y≤,得到可行域为如图所示,直线斜率为-a,由图像可得到-1<-a<1即-1<a<1.故选A.8.4画出表示的可行域,如图,直线(k-1)x-y+k-2=0过定点(-1,-1),若(k-1)x-y+k-2≥0恒成立,可行域在直线下面,当直线过(0,2)时,k-1有最小值=3,k最小值为4,故答案为4.9.或- 绘制不等式组表示的平面区域如图所示,由题意可知,该平面区域的面积:S=×OB×AC=×1×2=1,直线ax+y=0的斜率为k=-a,当a<0时,如图所示,联立方程组:可得D,,此时S△OCD=×1×=,解得a=,由对称性可知,a=-也满足题意.综上可得:实数a的值等于或-.10.[-6,2]由z=2x-y⇒y=2x-z,则z表示直线y=2x+b在y轴上截距的相反数.如图,易知当直线过点A时直线在y轴上的截距最小为-2,z取最大值为2;当直线过点B时直线在y轴上的截距最大为6,z取最小值为-6.所以,z=2x-y的取值X围是[-6,2].11.35设A,B两小区参加活动同学的人数分别为x,y,受到服务的老人人数为z,则z=5x+3y,且作出可行域,如图平移直线z=5x+3y,由图可知,当直线z=5x+3y过点M(4,5)时,z最大,∴当x=4,y=5时,z取得最大值为35,即接受服务的老人最多有35人,故答案为35.12.C作出约束条件所表示的平面区域,如图所示,由解得A(1,7),且点B(-5,0),又因为点P(m,n)在不等式组所表示的平面区域内,所以实数m的取值X围是[-5,1],故选C.13.B因为0≤f(1)≤1,9≤f(-3)≤12,所以作可行域,则z=(a+1)2+(b+1)2,其几何意义是可行域内点到定点A(-1,-1)距离的平方,其最小值为A到直线x+y+1=0距离的平方,即z min=2=,选B.14.A令z=ax-2by.∵不等式ax-2by≤2在平面区域{(x,y)||x|≤1且|y|≤1}上恒成立,∴函数z=ax-2by在可行域要求的条件下,z max=2恒成立,画出平面区域{(x,y)||x|≤1且|y|≤1},如图所示:当直线ax-2by-z=0过点(1,1)或点(1,-1)或(-1,1)或(-1,-1)时,有:点P(a,b)形成的图形是图中的菱形MNTS.∴所求的面积S=2××4×1=4,故选A.15.画出可行域如下图所示,由图可知,两平行线最短距离为点A(0,2)到直线2x+y-5=0的距离,即d==.16.A作出不等式组表示的平面区域,得到如图的△MNP及其内部,其中M(1,1),N(2,2),P(1,3).∵圆C:(x+1)2+y2=r2(r>0)表示以C(-1,0)为圆心,半径为r的圆,∴由图可得,当半径满足r<CM或r>CP时,圆C不经过区域D上的点,∵CM==,CP==,∴当0<r<或r>时,圆C不经过区域D上的点,故选A.17.D令t=x,+2|y+1|≤2,作出可行域,如图所示.A(,0),B(-,-1),M=t2+y2-t=t-2+y2-表示可行域上的动点到定点,0的距离的平方,然后减去,故其最小值为定点,0到直线AB的距离的平方减去.AB:y=t-,定点,0到直线AB的距离:=,∴M=t2+y2-t=t-2+y2-≥-=-,故选D.。
高考数学一轮复习第七章不等式第三节二元一次不等式(组)与简单的线性规划问题课件理
(2)对于选项 A,当 m=-2 时,可行域如图①,直线 y=2x-z 的截矩可以无限小,z 不存在最大值,不符合题意,故 A 不正确;
对于选项 B,当 m=-1 时图②,直线 y=2x-z 的截矩可以无限小,z 不存在最大值,不 符合题意,故 B 不正确;
第十六页,共44页。
(3)
不等式组所表示的平面区域如图中阴影部分,当 a=0 时, 只有 4 个整点(1,1),(0,0),(1,0),(2,0);当 a=-1 时,正好增加 (-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共 5 个整点.
答案:(1)A (2)B (3)-1
第十八页,共44页。
线性规划问题是高考的重点,而线性规划问题具有代数和几何的
双重形式,多与函数、平面向量、数列、三角函数、概率、解析几何
等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新
颖别致,且主要有以下几个命题角度:
角度一:转化为截距(形如:z=ax+by)
[典题 2]
(1)设 x,y 满足约束条件xx+-y3-y+7≤1≤0,0, 3x-y-5≥0,
解方程组xx=-3y+,5=0, 得 A 点的坐标为(3,8),代入 z=(x+ 1)2+y2,得 zmax=(3+1)2+82=80.
第二十八页,共44页。
(2)法一:作出不等式组表示的平面区域,如图中阴影部分所 示.z=|x+2y-4|=|x+2y5-4|· 5,即其几何含义为阴影区域内的 点到直线 x+2y-4=0 的距离的 5倍.
则 z=2x-y
的最大值为( )
A.10
B.8
C.3
D.2
第十九页,共44页。
x+y-2≤0, (2)(2015·新课标全国卷Ⅰ)若 x,y 满足约束条件x-2y+1≤0,
高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题
返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)
由
条
件
得
x+1≤y, y≤2x,
即
x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题
高2020届高2017级三维设计一轮复理科数学课时跟踪检测(三十八) 二元一次不等式(组)及简单的线性规划问题
课时跟踪检测(三十八) 二元一次不等式(组)及简单的线性规划问题一、题点全面练1.由直线x -y +1=0,x +y -5=0和x -1=0所围成的三角形区域(包括边界)用不等式组可表示为( )A.⎩⎪⎨⎪⎧ x -y +1≤0,x +y -5≤0,x ≥1 B.⎩⎪⎨⎪⎧x -y +1≥0,x +y -5≤0,x ≥1C.⎩⎪⎨⎪⎧x -y +1≥0,x +y -5≥0,x ≤1D.⎩⎪⎨⎪⎧x -y +1≤0,x +y -5≤0,x ≤1解析:选A 如图,作出对应的平面区域,三角形区域在直线x =1的右侧,则x ≥1;在x -y +1=0的上方,则x -y +1≤0;在x +y -5=0的下方,则x +y -5≤0.故用不等式组表示为⎩⎪⎨⎪⎧x -y +1≤0,x +y -5≤0,x ≥1.故选A.2.(2018·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A.-2B.2C.3D.4解析:选C 作出不等式组表示的可行域如图中阴影部分所示,作出直线y =32x ,平移该直线,当直线经过C (1,0)时,在y 轴上的截距最小,z 最大,此时z =3×1-0=3,故选C.3.(2019·黄冈模拟)若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( )A.913B.313C.72D.74解析:选D 如图,不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域是△AOB ,由动直线x +y =a (即y =-x +a )在y 轴上的截距从-2变化到1,知△ACD 是斜边为3的等腰直角三角形,△OEC 是直角边为1的等腰直角三角形,联立⎩⎪⎨⎪⎧x +y =1,y -x =2,解得⎩⎨⎧x =-12,y =32,所以D ⎝⎛⎭⎫-12,32,所以区域的面积S 阴影=S △ACD -S △OEC =12×3×32-12×1×1=74,故选D.4.(2019·淄博模拟)已知点Q (2,0),点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y +1≥0,则|PQ |的最小值是( )A.12 B.22C.1D. 2解析:选B 作出P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y +1≥0的可行域,如图中阴影部分所示.易得点Q 到直线x +y =1的距离最小,所以|PQ |min =|2+0-1|2=22.故选B.5.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.12 B.13 C.1D.2解析:选A 不等式组表示的平面区域如图中阴影部分所示,把目标函数z =2x +y 转化为y =-2x +z ,它表示的是斜率为-2,截距为z 的平行直线系,当截距最小时,z 最小.当直线z =2x +y 经过点B 时,z最小.由⎩⎪⎨⎪⎧x =1,2x +y =1 得⎩⎪⎨⎪⎧x =1,y =-1,因此-1=a (1-3),解得a =12,故选A.6.(2019·开封模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是________.解析:作出不等式组表示的平面区域,如图中阴影部分所示,设u =x -2y ,由图知,当u =x -2y 经过点A (1,3)时取得最小值,即u min =1-2×3=-5,此时z =⎝⎛⎭⎫12x -2y取得最大值,即z max =⎝⎛⎭⎫12-5=32.答案:327.已知x ,y 满足以下约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≤0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为________.解析:∵z =x +ay , ∴y =-1a x +z a ,z a 为直线y =-1a x +z a 在y 轴上的截距.要使目标函数的最优解有无穷多个,则截距最小时的最优解有无数个.∵a >0,把y =-1a x +z a 平移,使之与可行域的边界AC 重合即可,∴-1a =-1,满足要求,∴a =1. 答案:18.(2019·山西五校联考)不等式组⎩⎪⎨⎪⎧y -1≥0,x -y +2≥0,x +4y -8≤0表示的平面区域为Ω,直线x =a (a >1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z =ax +y 的最大值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,平面区域Ω为△ABC 及其内部,作直线x =a (1<a <4)交BC ,AC 分别于点E ,F .由题意可知S △EFC =15S △ABC ,则12(4-a )·⎝⎛⎭⎫-14a +2-1=15×12×5×1=12,可得a =2(a =6舍去),所以目标函数z =ax +y 即为z =2x +y ,易知z =2x +y 在点C (4,1)处取得最大值,则z max =9.答案:99.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出约束条件表示的可行域如图中阴影部分所示,易知B (0,1),C (1,0),联立⎩⎪⎨⎪⎧2x -y -2=0,x -y +1=0,解得A (3,4).平移直线12x -y +12=0,过A (3,4)取最小值-2,过C (1,0)取最大值1.所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围为(-4,2).10.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解:(1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x≤2y ,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,x ∈N ,y ≥0,y ∈N ,该二元一次不等式组所表示的平面区域为图中的阴影部分中的整数点.(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大. 又因为x ,y 满足约束条件,所以由图可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.二、专项培优练(一)易错专练——不丢怨枉分1.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23 D.⎝⎛⎭⎫-∞,-53解析:选C 作出不等式组对应的平面区域如图中阴影部分所示,交点C 的坐标为(-m ,m ),直线x -2y =2的斜率为12,斜截式方程为y =12x -1,要使平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,则点C (-m ,m )必在直线x -2y =2的下方,即m <-12m -1,解得m <-23,∴m 的取值范围是⎝⎛⎭⎫-∞,-23,故选C.2.(2019·金华模拟)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0,若z 的最大值为12,则实数k =________.解析:作出不等式组表示的可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧x -2y +4=0,2x -y -4=0得A (4,4).同理,得B (0,2).①当k >-12时,目标函数z =kx +y 在x =4,y =4时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=4k +4,故k =2.②当k ≤-12时,目标函数z =kx +y 在x =0,y =2时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=0×k +2,故k 不存在.综上,k =2.答案:23.若存在实数x ,y ,m 使不等式组⎩⎪⎨⎪⎧x -y ≥0,x -3y +2≤0,x +y -6≤0与不等式x -2y +m ≤0都成立,则实数m 的取值范围是( )A.[0,+∞)B.(-∞,3]C.[1,+∞)D.[3,+∞)解析:选B 作出不等式组⎩⎪⎨⎪⎧x -y ≥0,x -3y +2≤0,x +y -6≤0表示的平面区域如图中阴影部分所示,其中A (4,2),B (1,1),C (3,3).设z =x -2y ,将直线l :z =x -2y 进行平移,当l 经过点A 时,目标函数z 达到最大值,可得z max =4-2×2=0,当l 经过点C 时,目标函数z 达到最小值,可得z min =3-2×3=-3,因此z =x -2y 的取值范围为[-3,0].∵存在实数m ,使不等式x -2y +m ≤0成立,即存在实数m ,使x -2y ≤-m 成立,∴-m 大于或等于z 的最小值,即-3≤-m ,解得m ≤3,故选B.(二)交汇专练——融会巧迁移4.[与向量交汇]已知P (x ,y )为不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x -y -1≤0,x +y -1≥0所确定的平面区域上的动点,若点M (2,1),O (0,0),则z =OP ―→·OM ―→的最大值为( )A.1B.2C.10D.11解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,联立⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,解得A (4,3).由点M (2,1),O (0,0),得z =OP ―→·OM ―→=2x +y ,则y=-2x +z ,显然直线y =-2x +z 过A (4,3)时,z 最大, 此时z =2×4+3=11.故选D.5.[与概率交汇]关于实数x ,y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0所表示的平面区域记为M ,不等式(x -4)2+(y -3)2≤1所表示的平面区域记为N ,若在M 内随机取一点,则该点取自N 的概率为( )A.π16 B.π8 C.14D.12解析:选A 关于实数x ,y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0所表示的平面区域记为M ,面积为12×4×4=8,不等式(x -4)2+ (y -3)2≤1所表示的平面区域记为N ,且满足不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0,其面积为12π,所以在M 内随机取一点,则该点取自N 的概率为12π8=π16,故选A.6.[与圆交汇]记不等式组⎩⎪⎨⎪⎧4x +3y ≥10,x ≤3,y ≤4表示的平面区域为D ,过区域D 中任意一点P作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则当∠APB 的值最大时,cos ∠APB =( )A.32B.23C.13D.12解析:选D 作出不等式组⎩⎪⎨⎪⎧4x +3y ≥10,x ≤3,y ≤4表示的平面区域D ,如图中阴影部分所示,要使∠APB 最大,则∠OPA 最大.因为sin ∠OPA =|OA ||OP |=1|OP |,所以只要OP 最小即可,即P 到圆心的距离最小即可.由图象可知当OP 垂直直线4x +3y -10=0时,|OP |最小,此时|OP |=|-10|42+32=105=2. 设∠APB =α,则∠APO =α2,即sin α2=|OA ||OP |=12,此时cos α=1-2sin 2α2=1-2×⎝⎛⎭⎫122=1-12=12, 即cos ∠APB =12.故选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(三十六) 二元一次不等式(组)及简单的线性规划问题一抓基础,多练小题做到眼疾手快1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解析:选B 根据题意知(-9+2-a )·(12+12-a )<0. 即(a +7)(a -24)<0,解得-7<a <24.2.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32 B .23 C .43D .34解析:选C 平面区域如图中阴影部分所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1),易得B (0,4),C ⎝ ⎛⎭⎪⎫0,43,|BC |=4-43=83.∴S △ABC =12×83×1=43.3.(2015·广东高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A .4B .235C .6D .315解析:选B 不等式组⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2表示的平面区域为如图所示的阴影部分,作直线l 0:3x +2y =0,平移直线l 0,当经过点A 时,z 取得最小值.此时⎩⎪⎨⎪⎧x =1,4x +5y =8,∴A ⎝ ⎛⎭⎪⎫1,45,∴z min =3×1+2×45=235.4.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞ 5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为________.解析:根据约束条件作出可行域,如图中阴影部分所示,∵z=3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.答案:4二保高考,全练题型做到高考达标1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )解析:选C (x -2y +1)(x +y -3)≤0⇔⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.结合图形可知选C.2.已知x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,则z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1B .324C .116D .132解析:选D 根据约束条件作出可行域如图中阴影部分所示,而z =8-x ·⎝ ⎛⎭⎪⎫12y =2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.3.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π解析:选D 作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积为最大值S =π×⎝ ⎛⎭⎪⎫422=4π.4.(2016·郑州第一次质量预测)已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x -1,x +3y -5≤0,那么点P 到直线3x -4y -13=0的距离的最小值为( )A .115B .2C .95D .1解析:选B 在坐标平面内画出题中的不等式组表示的平面区域及直线3x -4y -13=0,结合图形可知,在该平面区域内所有的点中,到直线3x -4y -13=0的距离最近的点是(1,0).又点(1,0)到直线3x-4y -13=0的距离等于|3×1-4×0-13|5=2,即点P 到直线3x -4y -13=0的距离的最小值为2.5.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}解析:选B 作出不等式组所表示的平面区域,如图所示. 易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.6.(2014·安徽高考)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解析:作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.答案:47.(2016·山西质检)若变量x ,y 满足⎩⎪⎨⎪⎧|x |+|y |≤1,xy ≥0,则2x +y 的取值范围为________.解析:作出满足不等式组的平面区域,如图中阴影部分所示,平移直线2x +y =0,经过点(1,0)时,2x +y 取得最大值2×1+0=2,经过点(-1,0)时,2x +y 取得最小值2×(-1)+0=-2,所以2x +y 的取值范围为[-2,2].答案:[-2,2]8.(2016·郑州第二次质量预测)已知实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为________.解析:画出可行域,如图阴影部分所示.由b =x -2y 得,y =12x -b2.易知在点(a ,a )处b 取最小值,故a -2a =-2,可得a =2.在点(2,-4)处b 取最大值,于是b 的最大值为2+8=10.答案:109.已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D 的不等式组.(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为:⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ][4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0.解得-18<a <14.故a 的取值范围是(-18,14).10.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)取最小值-2,过C (1,0)取最大值1. 所以z 的最大值为1, 最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围为(-4,2). 三上台阶,自主选做志在冲刺名校1.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x+2y -4=0的距离最大,此时z max =21.答案:212.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 解:(1)依题意每天生产的伞兵个数为100-x -y , 所以利润w =5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4 100-x -y ≤600,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N.整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N.目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w 有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.。