【步步高】2014届高三数学大一轮复习-1.1集合的概念与运算教案-理-新人教A版
【步步高】2013-2014学年高中数学 第一章 §1.1.1第1课时集合的含义课件 新人教A版必修1
互异性知,方程的解集只有 1 个元素.
练一练·当堂检测、目标达成落实处
1.考查对象能否构成一个集合,就是要看是否有一个确定的特 征(或标准),能确定一个个体是否属于这个总体,如果有, 能构成集合,如果没有,就不能构成集合. 2.集合中元素的三个特性 (1)确定性:指的是作为一个集合中的元素,必须是确定的, 即一个集合一旦确定, 某一个元素属不属于这个集合是确定 的.要么是该集合中的元素要么不是,二者必居其一,这个 特性通常被用来判断涉及的总体是否构成集合. (2)互异性:集合中的元素必须是互异的,就是说,对于一个 给定的集合,它的任何两个元素都是不同的. (3)无序性:集合与其中元素的排列顺序无关,如由元素 a, b,c 与由元素 b,a,c 组成的集合是相等的集合.这个性质 通常用来判断两个集合的关系.
练一练·当堂检测、目标达成落实处
3.给出下列几个关系,正确的个数为
( D )
① 3∈R;②0.5 Q;③0∈N;④-3∈Z;⑤0∈N+. A.0 B. 1 C.2 D.3
解析 正确的有①③④,故选 D 项.
练一练·当堂检测、目标达成落实处
1 4.方程 x2-4x+4=0 的解集中,有________ 个元素.
解析 由于只有选项 D 有明确的标准,能组成一个集合.
研一研·问题探究、课堂更高效
探究点三 集合与集合中的元素的关系及表达
问题 1 集合及集合中的元素用怎样的字母来表示?
答 我们通常用大写拉丁字母 A,B,C,„表示集合;用小写
拉丁字母 a,b,c,„表示集合中的元素.
问题 2 集合与元素之间的关系如何表示?
( C )
【优化方案】2014届高考数学一轮复习 1.1 集合的概念与运算配套课件 理 人教版
【领悟归纳】
解决数集关系避免出错的一个有效手段即
是合理运用数轴帮助分析与求解,另外,在解含有参数的 不等式(或方程)时,要对参数进行讨论.本题易忽略对 “a=0”的讨论.
跟踪训练
2.(2012· 高考大纲全国卷)已知集合 A={1,3, m},B={1,m}, A∪B=A,则 m=( A.0 或 3 ) B.0 或 3
则 1 -a≤2
4 1 >- 2 a
a<-8 ,∴ 1 ,∴a<-8. a≤-2
当 a>0 时,若 A⊆B,如图,
则 4 a≤2
1 1 - ≥- 2 a
a≥2 ,∴ ,∴a≥2. a≥2
综上知,当 A⊆B 时,a<-8 或 a≥2. (2)当 a=0 时,显然 B⊆A; 当 a<0 时,若 B⊆A,如图,
2.元素与集合、集合与集合之间的关系 不属于 (1)元素与集合的关系包括______和_______,反映个体与整体 属于 之间的关系. (2)集合间的基本关系 ①相等:集合A与集合B中的所有元素都相同;符号语言为: A⊆B且B⊆A _____________⇔A=B. ②子集:A中任意一个元素均为B中的元素;符号语言为: ______或_______. A⊆B B⊇A
还是图形集;是表示函数的定义域、值域还是方程或不等式 的解集.
(2)化简具体化:具体求出相关集合中函数的定义域、值域或
方程、不等式的解集等;不能具体求出的,也应力求将相关 集合转化为最简的形式.
(3)运算直观化:借助数轴,直角坐标平面、维恩图等将有关
集合直观地表示出来.
失误防范 1.集合中的元素的三个性质,特别是无序性和互异性在解题
律求解,注意端点极易漏掉.
高三数学一轮复习精品教案4:1.1 集合的概念与运算教学设计
1.1 集合的概念与运算知识梳理一、集合中元素的特性 确定性、互异性、无序性 二、集合的表示方法 列举法、描述法、文氏图法三、元素与集合、集合与集合之间的关系(1)元素与集合:若元素x 是集合A 的元素,则x ∈A,否则x ∉A. (2)集合与集合之间的关系:子集:若集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集,记作()A B B A ⊆⊇或真子集:若A B ⊆且A≠B ,则称A 是B 的真子集,记作A B (或B A )相等:若A B B A ⊆⊆且,则称集合A 与B 相等,记作A=B 四、集合的运算(1)交集:A ∩B ={x |x ∈A 且x ∈B }. (2)并集: A ∪B ={x |x ∈A 或x ∈B }. (3)补集:U A ={x |x ∈U且x ∉A }.五、.熟记以下重要结论:(1)U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. (2),AB A A B A B A A B =⇔⊆=⇔⊇(3)德摩根公式:(),()U U U U U U C AB C A C B C A B C A C B ==.(4)容斥原理:()()card AB cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.(5)集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非空真子集有22n -个.课前预演1.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(R A )∩B 等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}2.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是 A.P ∩Q =P B.P ∩Q Q C.P ∪Q =QD.P ∩Q P3.设U 是全集,非空集合P 、Q 满足P Q U ,若求含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是_______________.4.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x ⊆A },则A 、B 、C 之间的关系是___________________.课堂讲练例1 设M 、N 是两个非空集合,定义M 与N 的差集为M -N ={x |x ∈M 且x ∉N },则M -(M -N )等于A.NB.M ∩NC.M ∪ND.M『变式训练』1.设全集{}|010,U x x x N *=<<∈,若{}3AB =,{}1,5,7U AC B =,{}9U U C A C B =,则A =,B =.例2 函数f (x )=⎩⎨⎧∈-∈,,M x xP x x 其中P 、M 为实数集R 的两个非空子集,又规定f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.给出下列四个判断,其中正确判断有①若P ∩M =∅,则f (P )∩f (M )=∅ ②若P ∩M ≠∅,则f (P )∩f (M )≠∅ ③若P ∪M =R ,则f (P )∪f (M )=R ④若P ∪M ≠R ,则f (P )∪f (M )≠RA.1个B.2个C.3个D.4个『变式训练』1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则 ( )()A P F = ()B Q E = ()C E F = ()D Q G =2.设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是A.P QB.Q PC.P =QD.P ∩Q =Q例3 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值. 『变式训练』设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q . 例4.已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.『变式训练』 记函数f (x )=132++-x x 的定义域为A ,g (x )= lg [(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围.误区特别警示设A={x|x 2-8x +15=0},B={x|ax -1=0},若B A,求实数a 组成的集合的子集有多少?错『答案』化简集合A={3,5},化简集合B={x|x=1a}∵B A,∴1a=3或1a=5,∴a=1135或,∴实数a组成的集合为{11,35},它的子集共有4个。
【苏教版】【步步高】2014届高三数学(理)大一轮复习学案第1章学案2命题及其关系、充分条件与必要条件
学案2 命题及其关系、充分条件与必要条件导学目标: 1.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.自主梳理1.命题用语言、符号或式子表达的,可以判断真假的语句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. 2.四种命题及其关系(1)四种命题 一般地,用p 和q 分别表示原命题的条件和结论,用綈p 和綈q 分别表示p 和q 的否定,于是四种命题的形式就是原命题:若p 则q (p ⇒q );逆命题:若q 则p (q ⇒p );否命题:若綈p 则綈q (綈p ⇒綈q );逆否命题:若綈q 则綈p (綈q ⇒綈p ).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p ⇒q ,则p 叫做q 的充分条件;若q ⇒p ,则p 叫做q 的必要条件;如果p ⇔q ,则p 叫做q 的充要条件.自我检测1.(2011·南京模拟)设集合A =⎩⎨⎧⎭⎬⎫x |x x -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的________条件.答案 充分不必要解析 ∵A =⎩⎨⎧⎭⎬⎫x |x x -1<0={x |0<x <1}, B ={x |0<x <3},∴A ≠B .当m ∈A 时,必有m ∈B ;而当m ∈B 时,m ∈A 不一定成立.∴“m ∈A ”是“m ∈B ”的充分而不必要条件.2.(2009·安徽改编)下列选项中,p 是q 的必要不充分条件的是________.(填序号) ①p :a +c >b +d ,q :a >b 且c >d ;②p :a >1,b >1,q :f (x )=a x -b (a >0,且a ≠1)的图象不过第二象限; ③p :x =1.q :x 2=x ;④p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数.答案 ①解析 ①中,由于a >b ,c >d ⇒a +c >b +d ,而a +c >b +d 却不一定推出a >b ,c >d ,故①中p 是q 的必要不充分条件;②中,当a >1,b >1时,函数f (x )=a x -b 不过第二象限,当f (x )=a x -b 不过第二象限时,有a >1,b ≥1,故②中p 是q 的充分不必要条件;③中,因为x =1时有x 2=x ,但x 2=x 时不一定有x =1,故③中p 是q 的充分不必要条件;④中p 是q 的充要条件.3.设a 、b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的________条件.答案 必要不充分解析 |a +b |=|a |+|b |⇒a 、b 同向⇒a 与b 共线;反之,当a 与b 共线时,不一定有|a +b |=|a |+|b |,故a 与b 共线是|a +b |=|a |+|b |的必要不充分条件.4.与命题“若a ∈M ,则b ∉ M ”等价的命题是____________________.答案 若b ∈M ,则a ∉ M解析 因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.5.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R ”的逆命题.其中真命题是________.(把你认为正确命题的序号都填在横线上)答案 ②③⑤解析 原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0Δ=4(m +1)2-4m (m +3)<0 ⇒⎩⎨⎧m >0m >1⇒m >1. 故⑤正确.探究点一 四种命题及其相互关系例1 写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引 给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定. 解 (1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题. 逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1 有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案 ①③解析 ①的逆命题是“若x ,y 互为相反数,则x +y =0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q ≤1,则Δ=4-4q ≥0,所以x 2+2x +q =0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二 充要条件的判断例2 给出下列命题,试分别指出p 是q 的什么条件.(1)p :x -2=0;q :(x -2)(x -3)=0.(2)p :两个三角形相似;q :两个三角形全等.(3)p :m <-2;q :方程x 2-x -m =0无实根.(4)p :一个四边形是矩形;q :四边形的对角线相等.解 (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0⇒x -2=0.∴p 是q 的充分不必要条件.(2)∵两个三角形相似⇒两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p 是q 的必要不充分条件.(3)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根⇒m <-2.∴p 是q 的充分不必要条件.(4)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形,∴q ⇒p .∴p 是q 的充分不必要条件.变式迁移2 下列各小题中,p 是q 的充要条件的是________.(填序号)①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .答案 ①④解析 ①q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ;②当f (x )=0时,由q ⇒p ;③若α,β=k π+π2(k ∈Z )时,显然cos α=cos β,但tan α≠tan β;④p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U A ⊇∁U B .故①④符合题意. 探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明 (1)必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0,则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0,两式相减可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0,可得b 2+c 2=a 2,故∠A =90°,(2)充分性:∵∠A =90°,∴b 2+c 2=a 2,b 2=a 2-c 2.①将①代入方程x 2+2ax +b 2=0,可得x 2+2ax +a 2-c 2=0,即(x +a -c )(x +a +c )=0.将①代入方程x 2+2cx -b 2=0,可得x 2+2cx +c 2-a 2=0,即(x +c -a )(x +c +a )=0.故两方程有公共根x =-(a +c ).所以方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°. 变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0. 证明 (1)必要性:∵a +b =1,∴a +b -1=0.∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)=0.(2)充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,∴a ≠0且b ≠0.∵a 2-ab +b 2=(a -b 2)2+34b 2>0. ∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想 例 (14分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.【答题模板】解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0. [2分] 另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0, 解得m ∈[-54,1]. [6分] ∵两根为整数,故和与积也为整数, ∴⎩⎪⎨⎪⎧ 4m ∈Z 4m ∈Z 4m 2-4m -5∈Z , [10分]∴m 为4的约数,∴m =-1或1,当m =-1时,第一个方程x 2+4x -4=0的根为非整数,而当m =1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m =1. [14分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m 的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m ≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数.1.研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p 与q 是否可以相互推出的两次判断,同时还要弄清是p 对q 而言,还是q 对p 而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与划归的数学思想。
2014届高考数学一轮总复习 第一篇 第1讲 集合的概念和运算 理 湘教版
第一篇集合与常用逻辑用语第1讲集合的概念和运算A级基础演练(时间:30分钟总分值:55分)一、选择题(每题5分,共20分)1.(2012·某某)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},那么A∩(∁R B)=( ).A.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)解析因为∁R B={x|x>3或x<-1},所以A∩(∁R B)={x|3<x<4}.答案 B2.(2012·某某)全集I={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},那么(∁I A)∩(∁I B)等于( ).A.{5,8} B.{7,9}C.{0,1,3} D.{2,4,6}解析根据集合运算的性质求解.因为A∪B={0,1,2,3,4,5,6,8},所以(∁I A)∩(∁I B)=∁I(A∪B)={7,9}.答案 B3.(2012·渝中区三模)设集合I={x|x<5,x∈N*},M={x|x2-5x+6=0},那么∁I M=( ).A.{1,4} B.{1,5} C.{2,3} D.{3,4}解析I={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁I M={1,4}.答案 A4.(2012·某某名校联考)假设集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},那么(∁R A)∩B =( ).A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅解析∁R A={x|-1≤x≤1},B={y|y≥0},∴(∁R A )∩B ={x |0≤x ≤1}.答案 C二、填空题(每题5分,共10分)5.(2012·某某模拟)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},那么实数a =________.解析∵3∈B ,又a 2+4≥4,∴a +2=3,∴a =1.答案 16.(2012·某某)设全集I ={a ,b ,c ,d },集合A ={a ,b },B ={b ,c ,d },那么(∁I A )∪(∁I B )=________.解析 依题意得知,∁I A ={c ,d },∁I B ={a },(∁I A )∪(∁I B )={a ,c ,d }.答案 {a ,c ,d }三、解答题(共25分)7.(12分)假设集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,某某数a ,b .解∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎪⎨⎪⎧ -a =-1+3=2,b =-1×3=-3,∴a =-2,b =-3.8.(13分)集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合以下条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.B 级 能力突破(时间:30分钟 总分值:45分)一、选择题(每题5分,共10分)1.(2011·某某)集合A ={(x ,y )|x ,y 是实数,且x 2+y 2=1},B ={(x ,y )|x ,y 是实数,且y =x },那么A ∩B 的元素个数为( ).A .0B .1C .2D .3解析 集合A 表示圆x 2+y 2=1上的点构成的集合,集合B 表示直线y =x 上的点构成的集合,可判定直线和圆相交,故A ∩B 的元素个数为2.答案 C2.(2012·大渡口二模)设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},那么A ∩B =( ). A .[-2,2] B .[0,2]C .[0,+∞) D.{(-1,1),(1,1)}解析A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2].答案 B二、填空题(每题5分,共10分)3.给定集合A ,假设对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,那么称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③假设集合A 1,A 2为闭集合,那么A 1∪A 2为闭集合.其中正确结论的序号是________.解析①中,-4+(-2)=-6∉A ,所以不正确.②中设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,n 1+n 2∈A ,n 1-n 2∈A ,所以②正确.③令A 1={n |n =3k ,k ∈Z },A 2={n |n =2k ,k ∈Z },3∈A 1,2∈A 2,但是,3+2∉A 1∪A 2,那么A 1∪A 2不是闭集合,所以③不正确.答案②4.集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},假设A ∩B ={x |-1<x <4},那么实数m 的值为________.解析 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.答案 8三、解答题(共25分)5.(12分)设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)假设a =15,试判定集合A 与B 的关系; (2)假设B ⊆A ,某某数a 组成的集合C .解 由x 2-8x +15=0,得x =3或x =5.∴A ={3,5}.(1)当a =15时,由15x -1=0,得x =5. ∴B ={5},∴B A .(2)∵A ={3,5}且B ⊆A ,∴假设B =∅,那么方程ax -1=0无解,有a =0.假设B ≠∅,那么a ≠0,由方程ax -1=0,得x =1a, ∴1a =3或1a =5,即a =13或a =15, ∴C =⎩⎨⎧⎭⎬⎫0,13,15. 6.(13分)(2012·某某模拟)设全集I =R ,集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,集合B ={x |a -1≤x ≤5-a ,a ∈R },假设B ∪A =A ,某某数a 的取值X 围.解 (1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵B ∪A =A ,∴B ⊆A ,∴B =∅或B ={2}.当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧ a -1=2,5-a =2,解得a =3.综上所述,所求a 的取值X 围是{a |a ≥3}.。
【步步高】高考数学总复习 第一章 1.1集合的概念与运算强化训练 理 北师大版
§1.1集合的概念与运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法.(4)常见数集的记法2.(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的运算并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)A ={x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}. ( × ) (2){1,2,3}={3,2,1}. ( √ ) (3)∅={0}.( × ) (4)若A ∩B =A ∩C ,则B =C .( × ) (5)已知集合M ={1,2,3,4},N ={2,3},则M ∩N =N .( √ ) (6)若全集U ={-1,0,1,2},P ={x ∈Z |x 2<4},则∁U P ={2}.( √ ) 2. (2013·北京)已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B 等于( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1} 答案 B解析 ∵-1,0∈B,1∉B ,∴A ∩B ={-1,0}.3. (2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9答案 C解析 x -y ∈{}-2,-1,0,1,2.4. (2013·课标全国Ⅱ)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}答案 A解析 化简集合M 得M ={x |-1<x <3,x ∈R },则M ∩N ={0,1,2}.5. 设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________. 答案 ⎣⎡⎭⎫34,43解析 A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (0)=-1<0, 根据对称性可知要使A ∩B 中恰含有一个整数, 则这个整数为2, 所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧a ≥34,a <43.即34≤a <43.题型一 集合的基本概念例1 (1)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.思维启迪 解决集合问题首先要理解集合的含义,明确元素的特征,抓住集合的“三性”.答案 (1)D (2)2解析 (1)由x -y ∈A ,及A ={1,2,3,4,5}得x >y , 当y =1时,x 可取2,3,4,5,有4个; 当y =2时,x 可取3,4,5,有3个; 当y =3时,x 可取4,5,有2个; 当y =4时,x 可取5,有1个. 故共有1+2+3+4=10(个),选D. (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,得ba =-1,所以a =-1,b =1.所以b -a =2.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .3(2)若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________. 答案 (1)C (2)0或98解析 (1)集合A 表示的是圆心在原点的单位圆,集合B 表示的是直线y =x ,据此画出图像,可得图像有两个交点,即A ∩B 的元素个数为2.(2)∵集合A 的子集只有两个,∴A 中只有一个元素. 当a =0时,x =23符合要求.当a ≠0时,Δ=(-3)2-4a ×2=0,∴a =98.故a =0或98.题型二 集合间的基本关系例2 (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.思维启迪 对于含有有限个元素的集合的子集,可按含元素的个数依次写出;B ⊆A 不要忽略B =∅的情形. 答案 (1)D (2)(-∞,4]解析 (1)用列举法表示集合A ,B ,根据集合关系求出集合C 的个数. 由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况, 否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间 端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn 图来直观解决这类问题.(1)设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( )A .6个B .5个C .4个D .3个(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________. 答案 (1)A (2)4解析 (1)集合{1,2,3}的所有子集共有23=8(个),集合{2}的所有子集共有2个,故满足要求的集合M 共有8-2=6(个). (2)由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 题型三 集合的基本运算例3 (1)(2013·湖北)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩(∁R B )等于 ( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}(2)(2012·天津)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.思维启迪 集合的运算问题可先对集合进行化简,然后结合数轴或Venn 图计算. 答案 (1)C (2)-1 1解析 (1)A ={x |x ≥0},B ={x |2≤x ≤4} ∴A ∩(∁R B )={x |x ≥0}∩{x |x >4或x <2} ={x |0≤x <2或x >4}.(2)先求出集合A ,再根据集合的交集的特点求解. A ={x |-5<x <1},因为A ∩B ={x |-1<x <n }, B ={x |(x -m )(x -2)<0},所以m =-1,n =1.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)设集合A =⎩⎪⎨⎪⎧x ∈R |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +1≥0,x -3≤0,B ={x ∈Z |x -2>0},则A ∩B =( ) A .{x |2<x ≤3} B .{3}C .{2,3}D .{x |-1≤x <2}(2)设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________. 答案 (1)B (2)1或2解析(1)A={x|-1≤x≤3},B={x∈Z|x>2},∴A∩B={x∈Z|2<x≤3}={3}.(2)A={-2,-1},由(∁U A)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.题型四集合中的新定义问题例4在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是() A.1 B.2 C.3 D.4思维启迪解答本题要充分理解[k]的意义,然后对选项逐一验证.答案 C解析因为2 014=402×5+4,又因为[4]={5n+4|n∈Z},所以2 014∈[4],故①正确;因为-3=5×(-1)+2,所以-3∈[2],故②不正确;因为所有的整数Z除以5可得的余数为0,1,2,3,4,所以③正确;若a,b属于同一“类”,则有a=5n1+k,b=5n2+k,所以a-b=5(n1-n2)∈[0],反过来,如果a-b∈[0],也可以得到a,b属于同一“类”,故④正确.故有3个结论正确.思维升华解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.设U 为全集,对集合X ,Y ,定义运算“”,满足XY =(∁U X )∪Y ,则对于任意集合X ,Y ,Z ,X (YZ )等于( )A .(X ∪Y )∪(∁U Z )B .(X ∩Y )∪(∁U Z )C .[(∁U X )∪(∁U Y )]∩ZD .(∁U X )∪(∁U Y )∪Z 答案 D 解析 因为X Y =(∁U X )∪Y ,所以Y Z =(∁U Y )∪Z ,所以X(YZ )=(∁U X )∪(YZ )=(∁U X )∪(∁U Y )∪Z ,故选D.遗忘空集致误典例:(5分)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,则由a 的可取值组成的集合为__________.易错分析 从集合的关系看,S ⊆P ,则S =∅或S ≠∅,易遗忘S =∅的情况. 解析 P ={-3,2}.当a =0时,S =∅,满足S ⊆P ; 当a ≠0时,方程ax +1=0的解集为x =-1a ,为满足S ⊆P 可使-1a =-3或-1a =2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.答案 ⎩⎨⎧⎭⎬⎫0,13,-12温馨提醒 (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)在解答本题时,存在两个典型错误.一是忽略对空集的讨论,如a =0时,S =∅;二是易忽略对字母的讨论.如-1a 可以为-3或2.因此,在解答此类问题时,一定要注意分类讨论,避免漏解.方法与技巧1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.失误与防范1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5.要注意A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.A组专项基础训练(时间:30分钟)一、选择题1.(2013·重庆)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于() A.{1,3,4} B.{3,4}C.{3} D.{4}答案 D解析因为A∪B={1,2,3},全集U={1,2,3,4},所以∁U(A∪B)={4},故选D.2.下列集合中表示同一集合的是() A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}答案 B解析选项A中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合.选项C中的集合M表示由直线x+y=1上的所有点组成的集合,集合N表示由直线x+y=1上的所有点的纵坐标组成的集合,即N ={y |x +y =1}=R ,故集合M 与N 不是同一个集合.选项D 中的集合M 有两个元素,而集合N 只含有一个元素,故集合M 与N 不是同一个集合.对选项B ,由集合元素的无序性,可知M ,N 表示同一个集合.3. 已知全集S ={1,2,a 2-2a +3},A ={1,a },∁S A ={3},则实数a 等于( )A .0或2B .0C .1或2D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4. 设集合M ={m ∈Z |m ≤-3或m ≥2},N ={n ∈Z |-1≤n ≤3},则(∁Z M )∩N 等于( )A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}答案 B解析 由已知,得∁Z M ={-2,-1,0,1}, N ={-1,0,1,2,3},所以(∁Z M )∩N ={-1,0,1}.5. 已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个答案 B解析 ∵M ={0,1,2,3,4},N ={1,3,5},∴M ∩N ={1,3}. ∴M ∩N 的子集共有22=4个.6. 已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )A .AB B .B AC .A =BD .A ∩B =∅答案 B解析 因为A ={x |x 2-x -2<0}, 所以A ={x |-1<x <2}.又B ={x |-1<x <1},画出数轴,可得B A .7. (2013·辽宁)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B 等于( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]答案 D解析 A ={x |1<x <4},B ={x |x ≤2},∴A ∩B ={x |1<x ≤2}.8.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |- 1<x ≤3},则右图中阴影部分表示的集合的真子集的个数为 ( ) A .3B .4C .7D .8答案 C解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6}, 由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个. 二、填空题9. 已知集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a =__________.答案 -1或2解析 由a 2-a +1=3,得a =-1或a =2,经检验符合.由a 2-a +1=a ,得a =1,由于集合中不能有相同元素,所以舍去.故a =-1或2.10.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =__________.答案 {(0,1),(-1,2)}解析 A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.11.(2013·天津改编)已知集合A ={x ||x |≤2},B ={x |x ≤1},则A ∩B =________.答案 {x |-2≤x ≤1}解析 易知A ={x |-2≤x ≤2},∴A ∩B ={x |-2≤x ≤1}.12.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围是________.答案 (-∞,-1]解析 因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.B 组 专项能力提升 (时间:15分钟)1.若集合A ={x |x 2-9x <0,x ∈N +},B ={y |4y∈N +},则A ∩B 中元素个数为( )A .0个B .1个C .2个D .3个答案 D解析 ∵A ={x |x 2-9x <0,x ∈N +}={1,2,3,4,5,6,7,8},B ={y |4y∈N +}={1,2,4},所以A ∩B={1,2,4},含有3个元素,选D.2. 已知集合M ={x |x x -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于( ) A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0} 答案 C解析 由x x -1≥0,得⎩⎪⎨⎪⎧x ≠1,x (x -1)≥0, ∴x >1或x ≤0,∴M ={x |x >1或x ≤0},N ={y |y ≥1},M ∩N ={x |x >1}.3. 已知U ={x ∈Z |y =ln ⎝⎛⎭⎫9x -1},M ={x ∈Z ||x -4|≤1},N ={x ∈N |6x∈Z },则集合{4,5}等于( ) A .M ∩NB .M ∩(∁U N )C .N ∩(∁U M )D .(∁U M )∪(∁U N ) 答案 B解析 集合U 为函数y =ln ⎝⎛⎭⎫9x -1的定义域内的整数集,由9x -1>0,即9-x x>0,解得0<x <9, 又x ∈Z ,所以x 可取1,2,3,4,5,6,7,8,故U ={1,2,3,4,5,6,7,8}.集合M 为满足不等式|x -4|≤1的整数集,解|x -4|≤1,得3≤x ≤5,又x ∈Z ,所以x 可取3,4,5,故M ={3,4,5}.集合N 是使6x为整数的自然数集合, 显然当x =1时,6x=6; 当x =2时,6x=3; 当x =3时,6x=2; 当x =6时,6x=1. 所以N ={1,2,3,6}.显然M ⊆U ,N ⊆U .而4∈M,4∈U,4∉N,5∈M,5∈U,5∉N ,所以4∈M,4∈∁U N,5∈M,5∈∁U N ,即{4,5}=M ∩(∁U N ).4. 已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P =________. 答案 ⎣⎡⎭⎫12,+∞ 解析 ∵U ={y |y =log 2x ,x >1}={y |y >0},P ={y |y =1x ,x >2}={y |0<y <12}, ∴∁U P ={y |y ≥12}=⎣⎡⎭⎫12,+∞. 5. 已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如右图所示,得c ≥1.6. 已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图像向上平移一个单位长度后得到的函数图像上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图像只能有一个交点,所以实数a 的取值范围是(1,+∞).。
高中数学步步高必修1课件配套课时作业与单元检测1.1.1第1课时
第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4.5.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A.0∈AB.a ∉AC.a ∈AD.a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A.1B.-2C.6D.25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A.2B.3C.0或3D.0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A.2个元素B.3个元素C.4个元素D.5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,…2.确定性互异性无序性3.一样4.a是集合A a不是集合A5.N N*或N+Z Q R作业设计1.C[选项A、B、D都因无法确定其构成集合的标准而不能构成集合.]2.C[由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D[集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.。
2014高考数学一轮总复习 1.1 集合及其运算教案 理 新人教A版
第一章集合与常用逻辑用语高考导航知识网络1.1 集合及其运算典例精析题型一集合中元素的性质【例1】设集合A={a+1,a-3,2a-1,a2+1},若-3∈A,求实数a的值. 【解析】令a+1=-3⇒a=-4,检验合格;令a-3=-3⇒a=0,此时a+1=a2+1,舍去;令2a -1=-3⇒a =-1,检验合格;而a2+1≠-3;故所求a 的值为-1或-4.【点拨】此题重在考查元素的确定性和互异性.首先确定-3是集合A 的元素,但A 中四个元素全是未知的,所以需要讨论;而当每一种情况求出a 的值以后,又需要由元素的互异性检验a 是否符合要求.【变式训练1】若a 、b ∈R ,集合{1,a +b ,a}={0,b a ,b},求a 和b 的值. 【解析】由{1,a +b ,a}={0,b a,b}, 得①⎪⎪⎩⎪⎪⎨⎧===+a b a b b a ,1,0 或②⎪⎪⎩⎪⎪⎨⎧===+1,,0b a a b b a 显然①无解;由②得a =-1,b =1.题型二 集合的基本运算【例2】已知A ={x|x2-8x +15=0},B ={x|ax -1=0},若B ⊆A ,求实数a.【解析】由已知得A ={3,5}.当a =0时,B =∅⊆A ;当a≠0时,B ={1a}. 要使B ⊆A ,则1a =3或1a =5,即a =13或15. 综上,a =0或13或15. 【点拨】对方程ax =1,两边除以x 的系数a ,能不能除,导致B 是否为空集,是本题分类讨论的根源.【变式训练2】(2013江西模拟)若集合A ={x||x|≤1,x ∈R},B ={y|y =x2,x ∈R},则A∩B 等于( )A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.【解析】选C.A =[-1,1],B =[0,+∞),所以A∩B=[0,1].题型三 集合语言的运用【例3】已知集合A =[2,log2t],集合B ={x|x2-14x +24≤0},x ,t ∈R ,且A ⊆B.(1)对于区间[a ,b],定义此区间的“长度”为b -a ,若A 的区间“长度”为3,试求t 的值;(2)某个函数f(x)的值域是B ,且f(x)∈A 的概率不小于0.6,试确定t 的取值范围.【解析】(1)因为A 的区间“长度”为3,所以log2t -2=3,即log2t =5,所以t =32.(2)由x2-14x +24≤0,得2≤x≤12,所以B =[2,12],所以B 的区间“长度”为10. 设A 的区间“长度”为y ,因为f(x)∈A 的概率不小于0.6,所以y 10≥0.6,所以y≥6,即log2t -2≥6,解得t≥28=256. 又A ⊆B ,所以log2t≤12,即t≤212=4 096,所以t 的取值范围为[256,4 096](或[28, 212]).【变式训练3】设全集U 是实数集R ,M ={x|x2>4},N ={x|2x -1≥1},则图中阴影部分所表示的集合是( )A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}【解析】选C.化简得M={x<-2或x>2},N={x|1<x≤3},故图中阴影部分为∁RM∩N={x|1<x≤2}.总结提高1.元素与集合及集合与集合之间的关系对于符号∈,∉和⊆,⊈的使用,实质上就是准确把握两者之间是元素与集合,还是集合与集合的关系.2.“数形结合”思想在集合运算中的运用认清集合的本质特征,准确地转化为图形关系,是解决集合运算中的重要数学思想. (1)要牢固掌握两个重要工具:韦恩图和数轴,连续取值的数集运算,一般借助数轴处理,而列举法表示的有限集合则侧重于用韦恩图处理.(2)学会将集合语言转化为代数、几何语言,借助函数图象及方程的曲线将问题形象化、直观化,以便于问题的解决.3.处理集合之间的关系时,是一个不可忽视、但又容易遗漏的内容,如A⊆B,A∩B=A,A∪B=B等条件中,集合A可以是空集,也可以是非空集合,通常必须分类讨论.。
《步步高》2014届高考数学大一轮复习课件(人教A版)易错题目辨析练——集合与常用逻辑用语(共36张PPT)
根;②q:存在一个整数 b,使函数 f(x)=x2+bx+1 在[0,+∞)
上是单调函数;③r:存在 x∈R,使 x2+x+1≥0 不成立.
A.0
B.1
C.2
D.3
解析
由于命题 p 是真命题,∴命题①的否定是假命题;
命题 q 是真命题,∴命题②的否定是假命题;
命题 r 是假命题,∴命题③的否定是真命题. 故只有一个是正确的,故选 B.
()
A.P=M B.Q=R C.R=M D.Q=N
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
1.已知集合 P={y=x2+1},Q={y|y=x2+1},R={x|y=x2+1},
M={(x,y)|y=x2+1},N={x|x≥1},则
( D)
A.P=M B.Q=R C.R=M D.Q=N
解析
集合 P 是用列举法表示的,只含有一个元素,即函数 y=x2 +1.集合 Q,R,N 中的元素全是数,即这三个集合都是数集, 集合 Q={y|y=x2+1}={y|y≥1},集合 R 是一切实数.集合 M 的元素是函数 y=x2+1 图象上所有的点.故选 D.
A组 专项基础训练
1
2
3
4
5
6
7
2.命题“对任意的 x∈R,x3-x2+1≤0”的否定是 A.不存在 x∈R,x3-x2+1≤0 B.存在 x∈R,x3-x2+1≤0 C.存在 x∈R,x3-x2+1>0 D.对任意的 x∈R,x3-x2+1>0 解析
8
9
()
A组 专项基础训练
1
2
3
4
5
高考数学大一轮复习 1.1 集合的概念与运算导学案 理(1
集合的概念与运算导学目标:1.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用韦恩(Venn)图表达集合的关系及运算.自主梳理1.集合元素的三个特征:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于关系,用符号∈或∉表示. 3.集合的表示法:列举法、描述法、图示法、区间法. 4.集合间的基本关系对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ).若A ⊆B ,且在B 中至少有一个元素x ∈B ,但x ∉A ,则A B (或BA ).若A ⊆B 且B ⊆A ,则A =B . 5.集合的运算及性质设集合A ,B ,则A ∩B ={x |x ∈A 且x ∈B },A ∪B ={x |x ∈A 或x ∈B }. 设全集为U ,则∁U A ={x |x ∈U 且x ∉A }.A ∩∅=∅,A ∩B ⊆A ,∩⊆, A ∩B =A ⇔A ⊆B .A ∪∅=A ,A ∪B ⊇A ,A ∪B ⊇B , A ∪B =B ⇔A ⊆B .A ∩∁U A =∅;A ∪∁U A =U .自我检测1.(2011·长沙模拟)下列集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|x +y =1},N ={y |x +y =1}C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)} 答案 C2.(2009·辽宁)已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N 等于( ) A .{x |-5<x <5} B .{x |-3<x <5} C .{x |-5<x ≤5} D .{x |-3<x ≤5} 答案 B解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.3.(2010·湖北)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},则A ∩B 的子集的个数是( )A .4B .3C .2D .1 答案 A 解析 易知椭圆x 24+y 216=1与函数y =3x的图象有两个交点,所以A ∩B 包含两个元素,故A ∩B 的子集个数是4个.4.(2010·潍坊五校联考)集合M ={y |y =x 2-1,x ∈R},集合N ={x |y =9-x 2,x ∈R},则M∩N等于( )A.{t|0≤t≤3} B.{t|-1≤t≤3}C.{(-2,1),(2,1)} D.∅答案 B解析∵y=x2-1≥-1,∴M=[-1,+∞).又∵y=9-x2,∴9-x2≥0.∴N=[-3,3].∴M∩N=[-1,3].5.(2011·福州模拟)已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=________.答案-1或2解析由a2-a+1=3,∴a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,但集合中有相同元素,舍去,故a=-1或2.探究点一 集合的基本概念例1 (2011·沈阳模拟)若a ,b ∈R ,集合{1,a +b ,a }={0,b a,b },求b -a 的值. 解题导引 解决该类问题的基本方法为:利用集合中元素的特点,列出方程组求解,但解出后应注意检验,看所得结果是否符合元素的互异性.解 由{1,a +b ,a }={0,b a,b }可知a ≠0,则只能a +b =0,则有以下对应关系:⎩⎪⎨⎪⎧a +b =0,ba =a ,b =1① 或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎪⎨⎪⎧a =-1,b =1,符合题意;②无解.∴b -a =2.变式迁移1 设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a ,b . 解 由元素的互异性知,a ≠1,b ≠1,a ≠0,又由A =B ,得⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1,解得a =-1,b =0. 探究点二 集合间的关系例2 设集合M ={x |x =5-4a +a 2,a ∈R},N ={y |y =4b 2+4b +2,b ∈R},则下列关系中正确的是( )A .M =NB .M NC .M ND .M ∈N解题导引 一般地,对于较为复杂的两个或两个以上的集合,要判断它们之间的关系,应先确定集合中元素的形式是数还是点或其他,属性如何.然后将所给集合化简整理,弄清每个集合中的元素个数或范围,再判断它们之间的关系.答案 A解析 集合M ={x |x =5-4a +a 2,a ∈R}={x |x =(a -2)2+1,a ∈R}={x |x ≥1}, N ={y |y =4b 2+4b +2,b ∈R}={y |y =(2b +1)2+1,b ∈R}={y |y ≥1}.∴M =N .变式迁移2 设集合P ={m |-1<m <0},Q ={m |mx 2+4mx -4<0对任意实数x 恒成立,且m ∈R},则下列关系中成立的是( )A .P QB .Q PC .P =QD .P ∩Q =∅ 答案 A解析 P ={m |-1<m <0},Q :⎩⎪⎨⎪⎧m <0,Δ=16m 2+16m <0,或m =0.∴-1<m ≤0.∴Q ={m |-1<m ≤0}. ∴P Q .探究点三 集合的运算例3 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}. (1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解题导引 解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.解 (1)A ={x |12≤x ≤3}.当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3}.当(∁R A )∩B =B 时,B ⊆∁R A , 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,a 的取值范围为a ≥-14.变式迁移3 (2011·阜阳模拟)已知A ={x ||x -a |<4},B ={x ||x -2|>3}. (1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围. 解 (1)当a =1时, A ={x |-3<x <5}, B ={x |x <-1或x >5}. ∴A ∩B ={x |-3<x <-1}. (2)∵A ={x |a -4<x <a +4},B ={x |x <-1或x >5},且A ∪B =R , ∴⎩⎪⎨⎪⎧a -4<-1a +4>5⇒1<a <3. ∴实数a 的取值范围是(1,3).分类讨论思想在集合中的应用例 (12分)(1)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可取值组成的集合;(2)若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,求由m 的可取值组成的集合.【答题模板】解 (1)P ={-3,2}.当a =0时,S =∅,满足S ⊆P ; [2分]当a ≠0时,方程ax +1=0的解为x =-1a,为满足S ⊆P 可使-1a =-3或-1a=2,即a =13或a =-12. [4分]故所求集合为{0,13,-12}. [6分](2)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; [8分] 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.[10分]故m <2或2≤m ≤3,即所求集合为{m |m ≤3}. [12分] 【突破思维障碍】在解决两个数集关系问题时,避免出错的一个有效手段即是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论,分类时要遵循“不重不漏”的分类原则,然后对于每一类情况都要给出问题的解答.【易错点剖析】(1)容易忽略a =0时,S =∅这种情况.(2)想当然认为m +1<2m -1忽略“>”或“=”两种情况.解答集合问题时应注意五点:1.注意集合中元素的性质——互异性的应用,解答时注意检验.2.注意描述法给出的集合的元素.如{y |y =2x },{x |y =2x },{(x ,y )|y =2x}表示不同的集合.3.注意∅的特殊性.在利用A ⊆B 解题时,应对A 是否为∅进行讨论. 4.注意数形结合思想的应用.在进行集合运算时要尽可能借助Venn 图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn 图表示,元素连续时用数轴表示,同时注意端点的取舍.5.注意补集思想的应用.在解决A ∩B ≠∅时,可以利用补集思想,先研究A ∩B =∅的情况,然后取补集.(满分:75分)一、选择题(每小题5分,共25分)1.满足{1}A ⊆{1,2,3}的集合A 的个数是( ) A .2 B .3 C .4 D .8 答案 B解析 A ={1}∪B ,其中B 为{2,3}的子集,且B 非空,显然这样的集合A 有3个, 即A ={1,2}或{1,3}或{1,2,3}. 2.(2011·杭州模拟)设P 、Q 为两个非空集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q }.若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9B .8C .7D .6 答案 B解析 P +Q ={1,2,3,4,6,7,8,11},故P +Q 中元素的个数是8.3.(2010·北京)集合P ={x ∈Z|0≤x <3},M ={x ∈Z|x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{1,2,3} D .{0,1,2,3} 答案 B解析 由题意知:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},∴P ∩M ={0,1,2}.4.(2010·天津)设集合A ={x ||x -a |<1,x ∈R},B ={x |1<x <5,x ∈R}.若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}答案 C解析 由|x -a |<1得-1<x -a <1, 即a -1<x <a +1.由图可知a +1≤1或a -1≥5,所以a ≤0或a ≥6.5.设全集U 是实数集R ,M ={x |x 2>4},N ={x |2x -1≥1},则右图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2} 答案 C解析 题图中阴影部分可表示为(∁U M )∩N ,集合M 为{x |x >2或x <-2},集合N 为 {x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.二、填空题(每小题4分,共12分)6.(2011·绍兴模拟)设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是________.答案 4解析 由题意知B 的元素至少含有3,因此集合B 可能为{3}、{1,3}、{2,3}、{1,2,3}.7.(2009·天津)设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1, n =0,1,2,3,4},则集合B =________. 答案 {2,4,6,8}解析 A ∪B ={x ∈N *|lg x <1}={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9}, ∴B ={2,4,6,8}. 8.(2010·江苏)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =____. 答案 1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 三、解答题(共38分)9.(12分)(2011·烟台模拟)集合A ={x |x 2+5x -6≤0},B ={x |x 2+3x >0},求A ∪B 和A ∩B .解 ∵A ={x |x 2+5x -6≤0} ={x |-6≤x ≤1}.(3分)B ={x |x 2+3x >0}={x |x <-3或x >0}.(6分) 如图所示,∴A ∪B ={x |-6≤x ≤1}∪{x |x <-3或x >0}=R.(9分) A ∩B ={x |-6≤x ≤1}∩{x |x <-3或x >0} ={x |-6≤x <-3,或0<x ≤1}.(12分)10.(12分)已知集合A ={x |0<ax +1≤5},集合B ={x |-12<x ≤2}.若B ⊆A ,求实数a的取值范围.解 当a =0时,显然B ⊆A ;(2分)当a <0时,若B ⊆A ,如图, 则⎩⎪⎨⎪⎧4a ≤-12,-1a >2,(5分)∴⎩⎪⎨⎪⎧a ≥-8,a >-12.∴-12<a <0;(7分)当a >0时,如图,若B ⊆A , 则⎩⎪⎨⎪⎧-1a ≤-12,4a ≥2,(9分)∴⎩⎪⎨⎪⎧a ≤2,a ≤2.∴0<a ≤2.(11分)综上知,当B ⊆A 时,-12<a ≤2.(12分)11.(14分)(2011·岳阳模拟)已知集合A ={x |x -5x +1≤0},B ={x |x 2-2x -m <0}, (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 由x -5x +1≤0,所以-1<x ≤5,所以A ={x |-1<x ≤5}.(3分) (1)当m =3时,B ={x |-1<x <3}, 则∁R B ={x |x ≤-1或x ≥3},(6分) 所以A ∩(∁R B )={x |3≤x ≤5}.(10分) (2)因为A ={x |-1<x ≤5}, A ∩B ={x |-1<x <4},(12分)所以有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意, 故实数m 的值为8.(14分)。
2014届高考数学第一轮复习讲义-集合
集
合
二.命题走向
有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向 无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用 Venn 图解题方法的训 练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值 5 分。 预测 2013 年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对 独立。具体题型估计为: (1)题型是 1 个选择题或 1 个填空题; (2)热点是集合的基本概念、运算和工具作用。
2
1 , 2 1 。 2
) D. {x|2<x<3 }
又因为当 q 1 时, m mq mq 与题意不符,所以, q 题型 3:集合的运算
例 5.已知集合 M={x|x<3 } ,N={x|log2x>1} ,则 M∩N=( A. B. {x|0<x<3 } C. {x|1<x<3 }
3 2
∴ x 1 或 x 2 。 点评:该题考察了集合间的关系以及集合的性质。分类讨论的过程中“当 x 0 时, 2 x 1 1 ”不能满足集合中元 素的互异性。此题的关键是理解符号 C S A {0} 是两层含义: 0 S且0 A 。 变式题:已知集合 A {m, m d , m 2d }, B {m, mq, mq } , 其中m 0 , 且A B ,求 q
2
解:由 A B 可知, (1)
m d mq
2 m 2d mq
,或(2)
m d mq 2 m 2d mq
3
资料整理自成都戴氏蜀汉路总校:/ (请勿翻版)
2014届高三数学总复习教案:1.1集合的概念
课堂过关第一章集合与常用逻辑用语第1课时集合的概念(对应学生用书(文)、(理)1~2页)考情分析考点新知了解集合的含义;体会元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的数学对象或数学问题;了解集合之间包含与相等的含义;能识别给定集合的子集;了解全集与空集的含义.①学会区分集合与元素,集合与集合之间的关系.②学会自然语言、图形语言、集合语言之间的互化.③集合含义中掌握集合的三要素.④不要求证明集合相等关系和包含关系.1. (必修1P10第5题改编)已知集合A={m+2,2m2+m},若3∈A,则m=________.答案:-32解析:因为3∈A,所以m+2=3或2m2+m=3.当m+2=3,即m=1时,2m2+m=3,此时集合A中有重复元素3,所以m=1不合题意,舍去;当2m2+m=3时,解得m=-32或m=1(舍去),此时当m=-32时,m+2=12≠3满足题意.所以m=-32.2. (必修1P7第4题改编)已知集合{a|0≤a<4,a∈N},用列举法可以表示为________.答案:{}0,1,2,3解析:因为a∈N,且0≤a<4,由此可知实数a的取值为0,1,2,3.3. (必修1P17第6题改编)已知集合A=[1,4),B=(-∞,a),AÍB,则a∈________.答案:[4,+∞)解析:在数轴上画出A、B集合,根据图象可知.4. (原创)设集合A={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则A、B的关系是________.答案:A=B解析:化简得A={x|x≥1},B={y|y≥1},所以A=B.5. (必修1P 17第8题改编)满足条件{1}ÍM Í{1,2,3}的集合M 的个数是________. 答案:4个解析:满足条件{1}ÍM Í{1,2,3}的集合M 有{1},{1,2},{1,3},{1,2,3},共4个.1. 集合的含义及其表示(1) 集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(2) 集合中元素的特征:确定性、互异性、无序性. (3) 集合的常用表示方法:列举法、描述法、Venn 图法.(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5) 常用数集及其记法:自然数集记作N ;正整数集记作N 或N +;整数集记作Z ;有理数集记作Q ;实数集记作R ;复数集记作C .2. 两类关系 (1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系.(2) 集合与集合之间的关系① 包含关系:如果集合A 中的每一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ÍB 或B ÊA ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”.② 真包含关系:如果A ÍB ,并且A ≠B ,那么集合A 称为集合B 的真子集,读作“集合A 真包含于集合B ”或“集合B 真包含集合A ”.③ 相等关系:如果两个集合所含的元素完全相同,即A 中的元素都是B 中的元素且B 中的元素都是A 中的元素,则称这两个集合相等.(3) 含有n 个元素的集合的子集共有2n 个,真子集共有2n -1个,非空子集共有2n -1个,非空真子集有2n -2个.题型1 正确理解和运用集合概念例1 已知集合A ={x|ax 2-3x +2=0,a ∈R }. (1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来; (3) 若A 中至多有一个元素,求a 的取值范围.解: (1) 若A 是空集,则Δ=9-8a <0,解得a >98.(2) 若A 中只有一个元素,则Δ=9-8a =0或a =0,解得a =98或a =0;当a =98时这个元素是43;当a =0时,这个元素是23.(3) 由(1)(2)知,当A 中至多有一个元素时,a 的取值范围是a ≥98或a =0.备选变式(教师专享)已知a ≤1时,集合[a ,2-a]中有且只有3个整数,则a 的取值范围是________. 答案:-1<a ≤0解析:因为a ≤1,所以2-a ≥1,所以1必在集合中.若区间端点均为整数,则a =0,集合中有0,1,2三个整数,所以a =0适合题意;若区间端点不为整数,则区间长度2<2-2a<4,解得-1<a<0,此时,集合中有0,1,2三个整数,-1<a<0适合题意.综上,a 的取值范围是-1<a ≤0.变式训练设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2+14,k ∈Z ,N ={x|x =k 4+12,k ∈Z },则M________N. 答案:真包含于题型2 集合元素的互异性例2 已知a 、b ∈R ,集合A ={a ,a +b ,1},B =⎩⎨⎧⎭⎬⎫b ,b a ,0,且A ÍB ,B ÍA ,求a-b 的值.解:∵ A ÍB ,B ÍA ,∴ A =B.∵ a ≠0,∴ a +b =0,即a =-b ,∴ ba=-1,∴ b =1,a =-1,∴ a -b =-2. 备选变式(教师专享)已知集合A ={a ,a +b, a +2b},B ={a ,ac, ac 2}.若A =B ,则c =________.答案:-12解析:分两种情况进行讨论.① 若a +b =ac 且a +2b =ac 2,消去b 得a +ac 2-2ac =0.当a =0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a ≠0.∴ c 2-2c +1=0,即c =1.但c =1时,B 中的三元素又相同,此时无解.② 若a +b =ac 2且a +2b =ac ,消去b 得2ac 2-ac -a =0.∵ a ≠0,∴ 2c 2-c -1=0,即(c -1)(2c +1)=0.又c ≠1,故c =-12.变式训练集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1,集合B ={a 2,a +b ,0},若A =B ,求a 2 013+b 2 014的值.解:由于a ≠0,由ba =0,得b =0,则A ={a ,0,1},B ={a 2,a ,0}.由A =B ,可得a 2=1.又a 2≠a ,则a ≠1,则a =-1.所以a 2 013+b 2 014=-1.题型3 根据集合的含义求参数范围例3 集合A ={x|-2≤x ≤5},集合B ={x|m +1≤x ≤2m -1}. (1) 若B ÍA ,求实数m 的取值范围;(2) 当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1) 当m +1>2m -1即m <2时,B =Æ满足B ÍA ;当m +1≤2m -1即m ≥2时,要使B ÍA 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,解得2≤m ≤3.综上所述,当m ≤3时有B Í A.(2) 因为x ∈R ,且A ={x|-2≤x ≤5},B ={x|m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立,则① 若B =Æ,即m +1>2m -1,得m <2时满足条件;② 若B ≠Æ,则要满足条件⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,解得m >4.或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,无解. 综上所述,实数m 的取值范围为m <2或m >4. 备选变式(教师专享)已知集合A ={y|y =-2x ,x ∈[2,3]},B ={x|x 2+3x -a 2-3a>0}.若A ÍB ,求实数a 的取值范围.解:由题意有A =[-8,-4],B ={x|(x -a)(x +a +3)>0}.① 当a =-32时,B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠-32,所以A ÍB 恒成立; ② 当a<-32时,B ={x|x<a 或x>-a -3}.因为A ÍB ,所以a>-4或-a -3<-8,解得a>-4或a>5(舍去),所以-4<a<-32;③ 当a>-32时,B ={x|x<-a -3或x>a}.因为A B ,所以-a -3>-4或a<-8(舍去),解得-32<a<1.综上,当A ÍB 时,实数a 的取值范围是(-4,1).1. 设集合A ={x|x <2},B ={x|x <a},且满足A 真包含于B ,则实数a 的取值范围是____________.答案:(2,+∞)解析:利用数轴可得实数a 的取值范围是(2,+∞).2. 已知集合A ={1,2,3,4,5},B ={(x ,y)|x ∈A ,y ∈A ,x -y ∈A},则B 中元素的个数为________.答案:10解析:B 中所含元素有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4).3. 若x ∈A ,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.答案:3解析:具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.4. 已知全集U =R ,集合M ={x|-2≤x -1≤2}和N ={x|x =2k -1,k =1,2,…}的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有________个.答案:2解析:由题图示可以看出阴影部分表示集合M 和N 的交集,所以由M ={x|-1≤x ≤3},得M ∩N ={1,3},有2个.5. 设P 、Q 为两个非空实数集合,定义集合P +Q ={a +b|a ∈P ,b ∈Q},若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数为________.答案:8解析:(1) ∵ P +Q ={a +b|a ∈P ,b ∈Q},P ={0,2,5},Q ={1,2,6},∴ 当a =0时,a +b 的值为1,2,6;当a =2时,a +b 的值为3,4,8;当a =5时,a +b 的值为6,7,11,∴ P +Q ={1,2,3,4,6,7,8,11},∴ P +Q 中有8个元素.1. 已知A ={x|x 2-2x -3≤0},若实数a ∈A ,则a 的取值范围是________.答案:[-1,3]解析:由条件,a 2-2a -3≤0,从而a ∈[-1,3].2. 现有含三个元素的集合,既可以表示为⎩⎨⎧⎭⎬⎫a ,b a ,1,也可表示为{a 2,a +b ,0},则a 2013+b 2 013=________.答案:-1解析:由已知得ba =0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 013+b 2 013=(-1)2 013=-1.3. 已知集合A ={x|(x -2)[x -(3a +1)]<0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -a x -(a 2+1)<0. (1) 当a =2时,求A ∩B ;(2) 求使B 真包含于A 的实数a 的取值范围.解:(1) A ∩B ={x|2<x <5}.(2) B ={x|a <x <a 2+1}.①若a =13时,A =Æ,不存在a 使B ÍA ;②若a >13时,2≤a ≤3;③若a <13时,-1≤a ≤-12.故a 的取值范围是⎣⎡⎦⎤-1,-12∪[2,3]. 4. 已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A ,求实数a 的值. 解:由题意知:a +2=1或(a +1)2=1或a 2+3a +3=1, ∴ a =-1或-2或0,根据元素的互异性排除-1,-2, ∴ a =0即为所求.1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y =f(x)}、{y|y =f(x)}、{(x ,y)|y =f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A B,则需考虑A=和A≠两种可能的情况.3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn图帮助分析.请使用课时训练(A)第1课时(见活页).[备课札记]。
高三数学一轮复习优质教案7:1.1 集合的概念与运算教学设计
1.1 集合的概念与运算『考纲解读』1. 理解集合、子集、并集、补集的概念;2. 了解空集、全集的意义;3. 掌握交集、并集、补集的有关术语和符号;4. 了解区别包含、真包含、不包含、属于、不属于等术语的不同含义。
『重点难点』1. 理解掌握集合的表示方法,能够判断元素与集合、集合与集合之间的关系;2. 会用韦恩图表示集合与集合的关系;3. 理解}0{、φ和}{φ的区别及0与三者间的关系;符号“∉∈,”是表示元素与集合之间关系的,如立体几何中的体现 点与直线(面)的关系 ;符号“⊄⊂,”或“⊆,”或“”等是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系4. 会用数形结合和分类讨论的思想解决有关集合的问题。
『课前预习』1. 集合中元素的特征: ______, ____ , ____ 。
2. 常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。
3. 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_ __ ,所有真子集的个数是__ _,所有非空真子集的个数是4. 集合M=8|,,3y y x y Z x ⎧⎫=∈⎨⎬+⎩⎭的元素个数是( )A .2个B .4个C .6个D .8个5. 用适当符号填空:π Q ;{3.14} Q ;N N *;{|21,}x x k k Z =+∈ {|21,}x x k k Z =-∈; *{|21,}x x k k N =+∈ *{|21,}x x k k N =-∈.6. 设集合M=1{|,}24k x x k Z =+∈,N=1{|,}42k x x k Z =+∈,则 ( )A .M=NB .M NC .MN D .M ⋂N=φ 7. 若A ⋂B=B ,,则A B (填,⊆⊇);若A ⋃B=B ,则A B.『典型例题』例1 设含有三个实数的集合可表示为}{d a d a a 2,,++,也可以表示为}{2,,aqaq a其中q R a 求常数、、,q d ∈例2 已知集合2{|210,,}x ax x a R x R ++=∈∈(1) 若A 中只有一个元素,求a 的值;(2) 若A 中至多有一个元素,求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1集合的概念与运算【2014高考会这样考】 1.考查集合中元素的互异性,以集合中含参数的元素为背景,探求参数的值;2.求几个集合的交、并、补集;3.通过集合中的新定义问题考查创新能力.【复习备考要这样做】 1.注意分类讨论,重视空集的特殊性;2.会利用Venn图、数轴等工具对集合进行运算;3.重视对集合中新定义问题的理解.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或?表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN*(或N+)ZQR2. 集合间的关系(1)子集:对任意的x∈A,都有x∈B,则A?B(或B?A).(2)真子集:若A?B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即??A,? B(B≠?).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A?B,且B?A,则A=B.3.集合的运算集合的并集集合的交集集合的补集图形符号A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}?UA={x|x∈U,且x?A}4. 集合的运算性质并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A.交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B.补集的性质:A∪(?UA)=U;A∩(?UA)=?;?U(?UA)=A.[难点正本疑点清源]1.正确理解集合的概念正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误.2.注意空集的特殊性空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A?B,则需考虑A=?和A≠?两种可能的情况.3.正确区分?,{0},{?}?是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{?}是含有一个元素?的集合.??{0},??{?},?∈{?},{0}∩{?}=?.1.(2012·江苏)已知集合A={1,2,4},B={2,4,6},则A∪B=________.答案{1,2,4,6}解析A∪B是由A,B的所有元素组成的.A∪B={1,2,4,6}.2.已知集合A={x|a-1≤x≤1+a},B={x|x2-5x+4≥0},若A∩B=?,则实数a的取值范围是________.答案(2,3)解析集合B中,x2-5x+4≥0,∴x≥4或x≤1.又∵集合A中a-1≤x≤1+a.∵A∩B=?,∴a+1<4且a-1>1,∴2<a<3.3.已知集合A={-1,2},B={x|mx+1=0},若A∪B=A,则m的可能取值组成的集合为________.答案解析∵A∪B=A,∴B?A,∴当B=?时,m=0;当-1∈B时,m=1;当2∈B时,m=-.∴m的值为0,1,-.4.(2012·江西)若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为() A.5 B.4 C.3 D.2答案 C解析当x=-1,y=0时,z=x+y=-1;当x=1,y=0时,z=x+y=1;当x=-1,y=2时,z=x+y=1;当x=1,y=2时,z=x+y=3,由集合中元素的互异性可知集合{z|z=x+y,x∈A,y∈B}={-1,1,3},即元素的个数为3. 5.(2011·北京)已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围为() A.(-∞,-1] B.[1,+∞)C.[-1,1] D.(-∞,-1]∪[1,+∞)答案 C解析由P={x|x2≤1}得P={x|-1≤x≤1}.由P∪M=P得M?P.又M={a},∴-1≤a≤1.题型一集合的基本概念例1(1)下列集合中表示同一集合的是() A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}(2)设a,b∈R,集合{1,a+b,a}=,则b-a=________.思维启迪:解决集合问题首先要考虑集合的“三性”:确定性、互异性、无序性,理解集合中元素的特征.答案(1)B(2)2解析(1)选项A中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合.选项C中的集合M表示由直线x+y=1上的所有的点组成的集合,集合N表示由直线x+y=1上的所有的点的纵坐标组成的集合,即N={y|x +y=1}=R,故集合M与N不是同一个集合.选项D中的集合M有两个元素,而集合N只含有一个元素,故集合M与N不是同一个集合.对选项B,由集合元素的无序性,可知M,N表示同一个集合.(2)因为{1,a+b,a}=,a≠0,所以a+b=0,得=-1,所以a=-1,b=1.所以b-a=2.探究提高(1)用描述法表示集合时要把握元素的特征,分清点集、数集;(2)要特别注意集合中元素的互异性,在解题过程中最容易被忽视,因此要对计算结果进行检验,防止所得结果违背集合中元素的互异性.若集合A={x|ax2-3x+2=0}的子集只有两个,则实数a=________.答案0或解析∵集合A的子集只有两个,∴A中只有一个元素.当a=0时,x=符合要求.当a≠0时,Δ=(-3)2-4a×2=0,∴a=.故a=0或.题型二集合间的基本关系例2已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B?A,求实数m的取值范围.思维启迪:若B?A,则B=?或B≠?,要分两种情况讨论.解当B=?时,有m+1≥2m-1,则m≤2.当B≠?时,若B?A,如图.则,解得2<m≤4.综上,m的取值范围为m≤4.探究提高(1)集合中元素的互异性,可以作为解题的依据和突破口;(2)对于数集关系问题,往往利用数轴进行分析;(3)对含参数的方程或不等式求解,要对参数进行分类讨论.已知集合A={x|log2x≤2},B=(-∞,a),若A?B,则实数a的取值范围是(c,+∞),其中c=________.答案 4解析由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A?B,如图所示,则a>4,即c=4.题型三集合的基本运算例3设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(?UA)∩B=?,则m的值是________.思维启迪:本题中的集合A,B均是一元二次方程的解集,其中集合B中的一元二次方程含有不确定的参数m,需要对这个参数进行分类讨论,同时需要根据(?UA)∩B=?对集合A,B 的关系进行转化.答案1或2解析A={-2,-1},由(?UA)∩B=?,得B?A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.探究提高本题的主要难点有两个:一是集合A,B之间关系的确定;二是对集合B中方程的分类求解.集合的交、并、补运算和集合的包含关系存在着一些必然的联系,这些联系通过Venn图进行直观的分析不难找出来,如A∪B=A?B?A,(?UA)∩B=??B?A等,在解题中碰到这种情况时要善于转化,这是破解这类难点的一种极为有效的方法.设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(?RA)∩B=B,求实数a的取值范围.解(1)∵A={x|≤x≤3},当a=-4时,B={x|-2<x<2},∴A∩B={x|≤x<2},A∪B={x|-2<x≤3}.(2)?RA={x|x<或x>3},当(?RA)∩B=B时,B??RA,即A∩B=?.①当B=?,即a≥0时,满足B??RA;②当B≠?,即a<0时,B={x|-<x<},要使B??RA,需≤,解得-≤a<0.综上可得,实数a的取值范围是a≥-.题型四集合中的新定义问题例4(2011·广东)设S是整数集Z的非空子集,如果?a,b∈S,有ab∈S,则称S关于数的乘法是封闭的.若T,V是Z的两个不相交的非空子集,T∪V=Z,且?a,b,c∈T,有abc ∈T;?x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的思维启迪:本题是一道新定义问题试题,较为抽象,题意难以理解,但若“以退为进”,取一些特殊的数集代入检验,即可解决.答案 A解析不妨设1∈T,则对于?a,b∈T,∵?a,b,c∈T,都有abc∈T,不妨令c=1,则ab ∈T,故T关于乘法是封闭的,故T、V中至少有一个关于乘法是封闭的;若T为偶数集,V 为奇数集,则它们符合题意,且均是关于乘法是封闭的,从而B、C错误;若T为非负整数集,V为负整数集,显然T、V是Z的两个不相交的非空子集,T∪V=Z,且?a,b,c∈T,有abc∈T,?x,y,z∈V,有xyz∈V,但是对于?x,y∈V,有xy>0,xy?V,D错误.故选A. 探究提高本题旨在考查我们接受和处理新信息的能力,解题时要充分理解题目的含义,进行全面分析,灵活处理.已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1?A,且x+1?A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4个元素的子集共有________个.答案 6解析由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},这样的集合共有6个.集合中元素特征认识不明致误典例:(5分)(2012·课标全国)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10易错分析本题属于创新型的概念理解题,准确地理解集合B是解决本题的关键,该题解题过程易出错的原因有两个,一是误以为集合B中的元素(x,y)不是有序数对,而是无序的两个数值;二是对于集合B的元素的性质中的“x∈A,y∈A,x-y∈A”,只关注“x∈A,y∈A”,而忽视“x-y∈A”的限制条件导致错解.解析∵B={(x,y)|x∈A,y∈A,x-y∈A},A={1,2,3,4,5},∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,y=1,2,3,4.∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B中所含元素的个数为10.答案 D温馨提醒判断集合中元素的性质时要注意两个方面:一是要注意集合中代表元素的字母符号,区分x、y、(x,y);二是准确把握元素所具有的性质特征,如集合{x|y=f(x)}表示函数y =f(x)的定义域,{y|y=f(x)}表示函数y=f(x)的值域,{(x,y)|y=f(x)}表示函数y=f(x)图象上的点.遗忘空集致误典例:(4分)若集合P={x|x2+x-6=0},S={x|ax+1=0},且S?P,则由a的可取值组成的集合为__________.易错分析从集合的关系看,S?P,则S=?或S≠?,易遗忘S=?的情况.解析(1)P={-3,2}.当a=0时,S=?,满足S?P;当a≠0时,方程ax+1=0的解集为x=-,为满足S?P可使-=-3或-=2,即a=或a=-.故所求集合为.答案温馨提醒(1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)在解答本题时,存在两个典型错误.一是忽略对空集的讨论,如S=?时,a=0;二是易忽略对字母的讨论.如-可以为-3或2.因此,在解答此类问题时,一定要注意分类讨论,避免漏解.方法与技巧1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.失误与防范1.空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.3.解答集合题目,认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5.要注意A?B、A∩B=A、A∪B=B、?UA??UB、A∩(?UB)=?这五个关系式的等价性.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.(2012·广东)设集合U={1,2,3,4,5,6},M={1,2,4},则?UM等于() A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}答案 C解析∵U={1,2,3,4,5,6},M={1,2,4},∴?UM={3,5,6}.2.(2011·课标全国)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有() A.2个B.4个C.6个D.8个答案 B解析∵M={0,1,2,3,4},N={1,3,5},∴M∩N={1,3}.∴M∩N的子集共有22=4个.3.(2012·山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(?UA)∪B为() A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案 C解析∵?UA={0,4},B={2,4},∴(?UA)∪B={0,2,4}.4.已知集合M={x|≥0,x∈R},N={y|y=3x2+1,x∈R},则M∩N等于() A.? B.{x|x≥1}C.{x|x>1} D.{x|x≥1或x<0}答案 C解析由≥0,得∴x>1或x≤0,∴M={x|x>1或x≤0},N={y|y≥1},M∩N={x|x>1}.二、填空题(每小题5分,共15分)5.已知集合A={1,3,a},B={1,a2-a+1},且B?A,则a=__________.答案-1或2解析由a2-a+1=3,得a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,由于集合中不能有相同元素,所以舍去.故a=-1或2.6.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=_________. 答案{(0,1),(-1,2)}解析A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.7.(2012·天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B =(-1,n),则m=________,n=________.答案-1 1解析A={x|-5<x<1},因为A∩B={x|-1<x<n},B={x|(x-m)(x-2)<0},所以m=-1,n=1.三、解答题(共22分)8.(10分)已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A??RB,求实数m的取值范围.解由已知得A={x|-1≤x≤3},B={x|m-2≤x≤m+2}.(1)∵A∩B=[0,3],∴∴m=2.(2)?RB={x|x<m-2或x>m+2},∵A??RB,∴m-2>3或m+2<-1,即m>5或m<-3.9.(12分)设符号@是数集A中的一种运算:如果对于任意的x,y∈A,都有x@y=xy∈A,则称运算@对集合A是封闭的.设A={x|x=m+n,m、n∈Z},判断A对通常的实数的乘法运算是否封闭?解设x=m1+n1,y=m2+n2,那么xy=(m1+n1)×(m2+n2)=(m1n2+m2n1)+m1m2+2n1n2.令m=m1m2+2n1n2,n=m1n2+m2n1,则xy=m+n,由于m1,n1,m2,n2∈R,所以m,n∈R.故A对通常的实数的乘法运算是封闭的.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A?C?B的集合C的个数为()A.1 B.2 C.3 D.4答案 D解析用列举法表示集合A,B,根据集合关系求出集合C的个数.由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.(2011·安徽)设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S?A且S∩B≠?的集合S的个数是()A.57 B.56 C.49 D.8答案 B解析由S?A知S是A的子集,又∵A={1,2,3,4,5,6},∴满足条件S?A的S共有26=64(种)可能.又∵S∩B≠?,B={4,5,6,7,8},∴S中必含4,5,6中至少一个元素,而在满足S?A的所有子集S中,不含4,5,6的子集共有23=8(种),∴满足题意的集合S的可能个数为64-8=56.3.(2011·湖北)已知U={y|y=log2x,x>1},P={y|y=,x>2},则?UP等于() A. B.C.(0,+∞) D.(-∞,0]∪答案 A解析∵U={y|y=log2x,x>1}={y|y>0},P={y|y=,x>2}={y|0<y<},∴?UP={y|y≥}=.二、填空题(每小题5分,共15分)4.(2012·陕西改编)集合M={x|lg x>0},N={x|x2≤4},则M∩N=____________. 答案(1,2]解析M={x|lg x>0}={x|x>1},N={x|x2≤4}={x|-2≤x≤2},∴M∩N={x|x>1}∩{x|-2≤x≤2}={x|1<x≤2}.5.已知M={(x,y)|=a+1},N={(x,y)|(a2-1)x+(a-1)y=15},若M∩N=?,则a的值为____________.答案1,-1,,-4解析集合M表示挖去点(2,3)的直线,集合N表示一条直线,因此由M∩N=?知,点(2,3)在集合N所表示的直线上或两直线平行,由此求得a的值为1,-1,,-4.6.设A={x||x|≤3},B={y|y=-x2+t},若A∩B=?,则实数t的取值范围是__________.答案(-∞,-3)解析A={x|-3≤x≤3},B={y|y≤t},由A∩B=?知,t<-3.三、解答题7.(13分)已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+,0≤x≤3}.(1)若A∩B=?,求a的取值范围;(2)当a取使不等式x2+1≥ax恒成立的a的最小值时,求(?RA)∩B.解A={y|y<a或y>a2+1},B={y|2≤y≤4}.(1)当A∩B=?时,∴≤a≤2或a≤-.(2)由x2+1≥ax,得x2-ax+1≥0,依题意Δ=a2-4≤0,∴-2≤a≤2.∴a的最小值为-2.当a=-2时,A={y|y<-2或y>5}.∴?RA={y|-2≤y≤5},∴(?RA)∩B={y|2≤y≤4}.。